linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/compiler.h>
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/gfp.h>
  28#include <linux/init.h>
  29#include <linux/interrupt.h>
  30#include <linux/io.h>
  31#include <linux/kernel.h>
  32#include <linux/list.h>
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/moduleparam.h>
  36#include <linux/pci.h>
  37#include <linux/pci_ids.h>
  38#include <linux/spinlock.h>
  39#include <linux/string.h>
  40
  41#include <asm/atomic.h>
  42#include <asm/byteorder.h>
  43#include <asm/page.h>
  44#include <asm/system.h>
  45
  46#ifdef CONFIG_PPC_PMAC
  47#include <asm/pmac_feature.h>
  48#endif
  49
  50#include "core.h"
  51#include "ohci.h"
  52
  53#define DESCRIPTOR_OUTPUT_MORE          0
  54#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  55#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  56#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  57#define DESCRIPTOR_STATUS               (1 << 11)
  58#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  59#define DESCRIPTOR_PING                 (1 << 7)
  60#define DESCRIPTOR_YY                   (1 << 6)
  61#define DESCRIPTOR_NO_IRQ               (0 << 4)
  62#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  63#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  64#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  65#define DESCRIPTOR_WAIT                 (3 << 0)
  66
  67struct descriptor {
  68        __le16 req_count;
  69        __le16 control;
  70        __le32 data_address;
  71        __le32 branch_address;
  72        __le16 res_count;
  73        __le16 transfer_status;
  74} __attribute__((aligned(16)));
  75
  76struct db_descriptor {
  77        __le16 first_size;
  78        __le16 control;
  79        __le16 second_req_count;
  80        __le16 first_req_count;
  81        __le32 branch_address;
  82        __le16 second_res_count;
  83        __le16 first_res_count;
  84        __le32 reserved0;
  85        __le32 first_buffer;
  86        __le32 second_buffer;
  87        __le32 reserved1;
  88} __attribute__((aligned(16)));
  89
  90#define CONTROL_SET(regs)       (regs)
  91#define CONTROL_CLEAR(regs)     ((regs) + 4)
  92#define COMMAND_PTR(regs)       ((regs) + 12)
  93#define CONTEXT_MATCH(regs)     ((regs) + 16)
  94
  95struct ar_buffer {
  96        struct descriptor descriptor;
  97        struct ar_buffer *next;
  98        __le32 data[0];
  99};
 100
 101struct ar_context {
 102        struct fw_ohci *ohci;
 103        struct ar_buffer *current_buffer;
 104        struct ar_buffer *last_buffer;
 105        void *pointer;
 106        u32 regs;
 107        struct tasklet_struct tasklet;
 108};
 109
 110struct context;
 111
 112typedef int (*descriptor_callback_t)(struct context *ctx,
 113                                     struct descriptor *d,
 114                                     struct descriptor *last);
 115
 116/*
 117 * A buffer that contains a block of DMA-able coherent memory used for
 118 * storing a portion of a DMA descriptor program.
 119 */
 120struct descriptor_buffer {
 121        struct list_head list;
 122        dma_addr_t buffer_bus;
 123        size_t buffer_size;
 124        size_t used;
 125        struct descriptor buffer[0];
 126};
 127
 128struct context {
 129        struct fw_ohci *ohci;
 130        u32 regs;
 131        int total_allocation;
 132
 133        /*
 134         * List of page-sized buffers for storing DMA descriptors.
 135         * Head of list contains buffers in use and tail of list contains
 136         * free buffers.
 137         */
 138        struct list_head buffer_list;
 139
 140        /*
 141         * Pointer to a buffer inside buffer_list that contains the tail
 142         * end of the current DMA program.
 143         */
 144        struct descriptor_buffer *buffer_tail;
 145
 146        /*
 147         * The descriptor containing the branch address of the first
 148         * descriptor that has not yet been filled by the device.
 149         */
 150        struct descriptor *last;
 151
 152        /*
 153         * The last descriptor in the DMA program.  It contains the branch
 154         * address that must be updated upon appending a new descriptor.
 155         */
 156        struct descriptor *prev;
 157
 158        descriptor_callback_t callback;
 159
 160        struct tasklet_struct tasklet;
 161};
 162
 163#define IT_HEADER_SY(v)          ((v) <<  0)
 164#define IT_HEADER_TCODE(v)       ((v) <<  4)
 165#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 166#define IT_HEADER_TAG(v)         ((v) << 14)
 167#define IT_HEADER_SPEED(v)       ((v) << 16)
 168#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 169
 170struct iso_context {
 171        struct fw_iso_context base;
 172        struct context context;
 173        int excess_bytes;
 174        void *header;
 175        size_t header_length;
 176};
 177
 178#define CONFIG_ROM_SIZE 1024
 179
 180struct fw_ohci {
 181        struct fw_card card;
 182
 183        __iomem char *registers;
 184        dma_addr_t self_id_bus;
 185        __le32 *self_id_cpu;
 186        struct tasklet_struct bus_reset_tasklet;
 187        int node_id;
 188        int generation;
 189        int request_generation; /* for timestamping incoming requests */
 190        atomic_t bus_seconds;
 191
 192        bool use_dualbuffer;
 193        bool old_uninorth;
 194        bool bus_reset_packet_quirk;
 195
 196        /*
 197         * Spinlock for accessing fw_ohci data.  Never call out of
 198         * this driver with this lock held.
 199         */
 200        spinlock_t lock;
 201        u32 self_id_buffer[512];
 202
 203        /* Config rom buffers */
 204        __be32 *config_rom;
 205        dma_addr_t config_rom_bus;
 206        __be32 *next_config_rom;
 207        dma_addr_t next_config_rom_bus;
 208        u32 next_header;
 209
 210        struct ar_context ar_request_ctx;
 211        struct ar_context ar_response_ctx;
 212        struct context at_request_ctx;
 213        struct context at_response_ctx;
 214
 215        u32 it_context_mask;
 216        struct iso_context *it_context_list;
 217        u64 ir_context_channels;
 218        u32 ir_context_mask;
 219        struct iso_context *ir_context_list;
 220};
 221
 222static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 223{
 224        return container_of(card, struct fw_ohci, card);
 225}
 226
 227#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 228#define IR_CONTEXT_BUFFER_FILL          0x80000000
 229#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 230#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 231#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 232#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 233
 234#define CONTEXT_RUN     0x8000
 235#define CONTEXT_WAKE    0x1000
 236#define CONTEXT_DEAD    0x0800
 237#define CONTEXT_ACTIVE  0x0400
 238
 239#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 240#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 241#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 242
 243#define OHCI1394_REGISTER_SIZE          0x800
 244#define OHCI_LOOP_COUNT                 500
 245#define OHCI1394_PCI_HCI_Control        0x40
 246#define SELF_ID_BUF_SIZE                0x800
 247#define OHCI_TCODE_PHY_PACKET           0x0e
 248#define OHCI_VERSION_1_1                0x010010
 249
 250static char ohci_driver_name[] = KBUILD_MODNAME;
 251
 252#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
 253
 254#define OHCI_PARAM_DEBUG_AT_AR          1
 255#define OHCI_PARAM_DEBUG_SELFIDS        2
 256#define OHCI_PARAM_DEBUG_IRQS           4
 257#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 258
 259static int param_debug;
 260module_param_named(debug, param_debug, int, 0644);
 261MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 262        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 263        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 264        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 265        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 266        ", or a combination, or all = -1)");
 267
 268static void log_irqs(u32 evt)
 269{
 270        if (likely(!(param_debug &
 271                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 272                return;
 273
 274        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 275            !(evt & OHCI1394_busReset))
 276                return;
 277
 278        fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 279            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 280            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 281            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 282            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 283            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 284            evt & OHCI1394_isochRx              ? " IR"                 : "",
 285            evt & OHCI1394_isochTx              ? " IT"                 : "",
 286            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 287            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 288            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 289            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 290            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 291            evt & OHCI1394_busReset             ? " busReset"           : "",
 292            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 293                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 294                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 295                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 296                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 297                    OHCI1394_cycleInconsistent |
 298                    OHCI1394_regAccessFail | OHCI1394_busReset)
 299                                                ? " ?"                  : "");
 300}
 301
 302static const char *speed[] = {
 303        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 304};
 305static const char *power[] = {
 306        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 307        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 308};
 309static const char port[] = { '.', '-', 'p', 'c', };
 310
 311static char _p(u32 *s, int shift)
 312{
 313        return port[*s >> shift & 3];
 314}
 315
 316static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
 317{
 318        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 319                return;
 320
 321        fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
 322                  self_id_count, generation, node_id);
 323
 324        for (; self_id_count--; ++s)
 325                if ((*s & 1 << 23) == 0)
 326                        fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
 327                            "%s gc=%d %s %s%s%s\n",
 328                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 329                            speed[*s >> 14 & 3], *s >> 16 & 63,
 330                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 331                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 332                else
 333                        fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 334                            *s, *s >> 24 & 63,
 335                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 336                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 337}
 338
 339static const char *evts[] = {
 340        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 341        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 342        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 343        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 344        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 345        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 346        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 347        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 348        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 349        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 350        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 351        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 352        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 353        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 354        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 355        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 356        [0x20] = "pending/cancelled",
 357};
 358static const char *tcodes[] = {
 359        [0x0] = "QW req",               [0x1] = "BW req",
 360        [0x2] = "W resp",               [0x3] = "-reserved-",
 361        [0x4] = "QR req",               [0x5] = "BR req",
 362        [0x6] = "QR resp",              [0x7] = "BR resp",
 363        [0x8] = "cycle start",          [0x9] = "Lk req",
 364        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 365        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 366        [0xe] = "link internal",        [0xf] = "-reserved-",
 367};
 368static const char *phys[] = {
 369        [0x0] = "phy config packet",    [0x1] = "link-on packet",
 370        [0x2] = "self-id packet",       [0x3] = "-reserved-",
 371};
 372
 373static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
 374{
 375        int tcode = header[0] >> 4 & 0xf;
 376        char specific[12];
 377
 378        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 379                return;
 380
 381        if (unlikely(evt >= ARRAY_SIZE(evts)))
 382                        evt = 0x1f;
 383
 384        if (evt == OHCI1394_evt_bus_reset) {
 385                fw_notify("A%c evt_bus_reset, generation %d\n",
 386                    dir, (header[2] >> 16) & 0xff);
 387                return;
 388        }
 389
 390        if (header[0] == ~header[1]) {
 391                fw_notify("A%c %s, %s, %08x\n",
 392                    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
 393                return;
 394        }
 395
 396        switch (tcode) {
 397        case 0x0: case 0x6: case 0x8:
 398                snprintf(specific, sizeof(specific), " = %08x",
 399                         be32_to_cpu((__force __be32)header[3]));
 400                break;
 401        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 402                snprintf(specific, sizeof(specific), " %x,%x",
 403                         header[3] >> 16, header[3] & 0xffff);
 404                break;
 405        default:
 406                specific[0] = '\0';
 407        }
 408
 409        switch (tcode) {
 410        case 0xe: case 0xa:
 411                fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
 412                break;
 413        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 414                fw_notify("A%c spd %x tl %02x, "
 415                    "%04x -> %04x, %s, "
 416                    "%s, %04x%08x%s\n",
 417                    dir, speed, header[0] >> 10 & 0x3f,
 418                    header[1] >> 16, header[0] >> 16, evts[evt],
 419                    tcodes[tcode], header[1] & 0xffff, header[2], specific);
 420                break;
 421        default:
 422                fw_notify("A%c spd %x tl %02x, "
 423                    "%04x -> %04x, %s, "
 424                    "%s%s\n",
 425                    dir, speed, header[0] >> 10 & 0x3f,
 426                    header[1] >> 16, header[0] >> 16, evts[evt],
 427                    tcodes[tcode], specific);
 428        }
 429}
 430
 431#else
 432
 433#define log_irqs(evt)
 434#define log_selfids(node_id, generation, self_id_count, sid)
 435#define log_ar_at_event(dir, speed, header, evt)
 436
 437#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
 438
 439static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 440{
 441        writel(data, ohci->registers + offset);
 442}
 443
 444static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 445{
 446        return readl(ohci->registers + offset);
 447}
 448
 449static inline void flush_writes(const struct fw_ohci *ohci)
 450{
 451        /* Do a dummy read to flush writes. */
 452        reg_read(ohci, OHCI1394_Version);
 453}
 454
 455static int ohci_update_phy_reg(struct fw_card *card, int addr,
 456                               int clear_bits, int set_bits)
 457{
 458        struct fw_ohci *ohci = fw_ohci(card);
 459        u32 val, old;
 460
 461        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 462        flush_writes(ohci);
 463        msleep(2);
 464        val = reg_read(ohci, OHCI1394_PhyControl);
 465        if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
 466                fw_error("failed to set phy reg bits.\n");
 467                return -EBUSY;
 468        }
 469
 470        old = OHCI1394_PhyControl_ReadData(val);
 471        old = (old & ~clear_bits) | set_bits;
 472        reg_write(ohci, OHCI1394_PhyControl,
 473                  OHCI1394_PhyControl_Write(addr, old));
 474
 475        return 0;
 476}
 477
 478static int ar_context_add_page(struct ar_context *ctx)
 479{
 480        struct device *dev = ctx->ohci->card.device;
 481        struct ar_buffer *ab;
 482        dma_addr_t uninitialized_var(ab_bus);
 483        size_t offset;
 484
 485        ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
 486        if (ab == NULL)
 487                return -ENOMEM;
 488
 489        ab->next = NULL;
 490        memset(&ab->descriptor, 0, sizeof(ab->descriptor));
 491        ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
 492                                                    DESCRIPTOR_STATUS |
 493                                                    DESCRIPTOR_BRANCH_ALWAYS);
 494        offset = offsetof(struct ar_buffer, data);
 495        ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
 496        ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
 497        ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
 498        ab->descriptor.branch_address = 0;
 499
 500        ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
 501        ctx->last_buffer->next = ab;
 502        ctx->last_buffer = ab;
 503
 504        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 505        flush_writes(ctx->ohci);
 506
 507        return 0;
 508}
 509
 510static void ar_context_release(struct ar_context *ctx)
 511{
 512        struct ar_buffer *ab, *ab_next;
 513        size_t offset;
 514        dma_addr_t ab_bus;
 515
 516        for (ab = ctx->current_buffer; ab; ab = ab_next) {
 517                ab_next = ab->next;
 518                offset = offsetof(struct ar_buffer, data);
 519                ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
 520                dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
 521                                  ab, ab_bus);
 522        }
 523}
 524
 525#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 526#define cond_le32_to_cpu(v) \
 527        (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
 528#else
 529#define cond_le32_to_cpu(v) le32_to_cpu(v)
 530#endif
 531
 532static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 533{
 534        struct fw_ohci *ohci = ctx->ohci;
 535        struct fw_packet p;
 536        u32 status, length, tcode;
 537        int evt;
 538
 539        p.header[0] = cond_le32_to_cpu(buffer[0]);
 540        p.header[1] = cond_le32_to_cpu(buffer[1]);
 541        p.header[2] = cond_le32_to_cpu(buffer[2]);
 542
 543        tcode = (p.header[0] >> 4) & 0x0f;
 544        switch (tcode) {
 545        case TCODE_WRITE_QUADLET_REQUEST:
 546        case TCODE_READ_QUADLET_RESPONSE:
 547                p.header[3] = (__force __u32) buffer[3];
 548                p.header_length = 16;
 549                p.payload_length = 0;
 550                break;
 551
 552        case TCODE_READ_BLOCK_REQUEST :
 553                p.header[3] = cond_le32_to_cpu(buffer[3]);
 554                p.header_length = 16;
 555                p.payload_length = 0;
 556                break;
 557
 558        case TCODE_WRITE_BLOCK_REQUEST:
 559        case TCODE_READ_BLOCK_RESPONSE:
 560        case TCODE_LOCK_REQUEST:
 561        case TCODE_LOCK_RESPONSE:
 562                p.header[3] = cond_le32_to_cpu(buffer[3]);
 563                p.header_length = 16;
 564                p.payload_length = p.header[3] >> 16;
 565                break;
 566
 567        case TCODE_WRITE_RESPONSE:
 568        case TCODE_READ_QUADLET_REQUEST:
 569        case OHCI_TCODE_PHY_PACKET:
 570                p.header_length = 12;
 571                p.payload_length = 0;
 572                break;
 573
 574        default:
 575                /* FIXME: Stop context, discard everything, and restart? */
 576                p.header_length = 0;
 577                p.payload_length = 0;
 578        }
 579
 580        p.payload = (void *) buffer + p.header_length;
 581
 582        /* FIXME: What to do about evt_* errors? */
 583        length = (p.header_length + p.payload_length + 3) / 4;
 584        status = cond_le32_to_cpu(buffer[length]);
 585        evt    = (status >> 16) & 0x1f;
 586
 587        p.ack        = evt - 16;
 588        p.speed      = (status >> 21) & 0x7;
 589        p.timestamp  = status & 0xffff;
 590        p.generation = ohci->request_generation;
 591
 592        log_ar_at_event('R', p.speed, p.header, evt);
 593
 594        /*
 595         * The OHCI bus reset handler synthesizes a phy packet with
 596         * the new generation number when a bus reset happens (see
 597         * section 8.4.2.3).  This helps us determine when a request
 598         * was received and make sure we send the response in the same
 599         * generation.  We only need this for requests; for responses
 600         * we use the unique tlabel for finding the matching
 601         * request.
 602         *
 603         * Alas some chips sometimes emit bus reset packets with a
 604         * wrong generation.  We set the correct generation for these
 605         * at a slightly incorrect time (in bus_reset_tasklet).
 606         */
 607        if (evt == OHCI1394_evt_bus_reset) {
 608                if (!ohci->bus_reset_packet_quirk)
 609                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 610        } else if (ctx == &ohci->ar_request_ctx) {
 611                fw_core_handle_request(&ohci->card, &p);
 612        } else {
 613                fw_core_handle_response(&ohci->card, &p);
 614        }
 615
 616        return buffer + length + 1;
 617}
 618
 619static void ar_context_tasklet(unsigned long data)
 620{
 621        struct ar_context *ctx = (struct ar_context *)data;
 622        struct fw_ohci *ohci = ctx->ohci;
 623        struct ar_buffer *ab;
 624        struct descriptor *d;
 625        void *buffer, *end;
 626
 627        ab = ctx->current_buffer;
 628        d = &ab->descriptor;
 629
 630        if (d->res_count == 0) {
 631                size_t size, rest, offset;
 632                dma_addr_t start_bus;
 633                void *start;
 634
 635                /*
 636                 * This descriptor is finished and we may have a
 637                 * packet split across this and the next buffer. We
 638                 * reuse the page for reassembling the split packet.
 639                 */
 640
 641                offset = offsetof(struct ar_buffer, data);
 642                start = buffer = ab;
 643                start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
 644
 645                ab = ab->next;
 646                d = &ab->descriptor;
 647                size = buffer + PAGE_SIZE - ctx->pointer;
 648                rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
 649                memmove(buffer, ctx->pointer, size);
 650                memcpy(buffer + size, ab->data, rest);
 651                ctx->current_buffer = ab;
 652                ctx->pointer = (void *) ab->data + rest;
 653                end = buffer + size + rest;
 654
 655                while (buffer < end)
 656                        buffer = handle_ar_packet(ctx, buffer);
 657
 658                dma_free_coherent(ohci->card.device, PAGE_SIZE,
 659                                  start, start_bus);
 660                ar_context_add_page(ctx);
 661        } else {
 662                buffer = ctx->pointer;
 663                ctx->pointer = end =
 664                        (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
 665
 666                while (buffer < end)
 667                        buffer = handle_ar_packet(ctx, buffer);
 668        }
 669}
 670
 671static int ar_context_init(struct ar_context *ctx,
 672                           struct fw_ohci *ohci, u32 regs)
 673{
 674        struct ar_buffer ab;
 675
 676        ctx->regs        = regs;
 677        ctx->ohci        = ohci;
 678        ctx->last_buffer = &ab;
 679        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 680
 681        ar_context_add_page(ctx);
 682        ar_context_add_page(ctx);
 683        ctx->current_buffer = ab.next;
 684        ctx->pointer = ctx->current_buffer->data;
 685
 686        return 0;
 687}
 688
 689static void ar_context_run(struct ar_context *ctx)
 690{
 691        struct ar_buffer *ab = ctx->current_buffer;
 692        dma_addr_t ab_bus;
 693        size_t offset;
 694
 695        offset = offsetof(struct ar_buffer, data);
 696        ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
 697
 698        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
 699        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
 700        flush_writes(ctx->ohci);
 701}
 702
 703static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
 704{
 705        int b, key;
 706
 707        b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
 708        key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
 709
 710        /* figure out which descriptor the branch address goes in */
 711        if (z == 2 && (b == 3 || key == 2))
 712                return d;
 713        else
 714                return d + z - 1;
 715}
 716
 717static void context_tasklet(unsigned long data)
 718{
 719        struct context *ctx = (struct context *) data;
 720        struct descriptor *d, *last;
 721        u32 address;
 722        int z;
 723        struct descriptor_buffer *desc;
 724
 725        desc = list_entry(ctx->buffer_list.next,
 726                        struct descriptor_buffer, list);
 727        last = ctx->last;
 728        while (last->branch_address != 0) {
 729                struct descriptor_buffer *old_desc = desc;
 730                address = le32_to_cpu(last->branch_address);
 731                z = address & 0xf;
 732                address &= ~0xf;
 733
 734                /* If the branch address points to a buffer outside of the
 735                 * current buffer, advance to the next buffer. */
 736                if (address < desc->buffer_bus ||
 737                                address >= desc->buffer_bus + desc->used)
 738                        desc = list_entry(desc->list.next,
 739                                        struct descriptor_buffer, list);
 740                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
 741                last = find_branch_descriptor(d, z);
 742
 743                if (!ctx->callback(ctx, d, last))
 744                        break;
 745
 746                if (old_desc != desc) {
 747                        /* If we've advanced to the next buffer, move the
 748                         * previous buffer to the free list. */
 749                        unsigned long flags;
 750                        old_desc->used = 0;
 751                        spin_lock_irqsave(&ctx->ohci->lock, flags);
 752                        list_move_tail(&old_desc->list, &ctx->buffer_list);
 753                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
 754                }
 755                ctx->last = last;
 756        }
 757}
 758
 759/*
 760 * Allocate a new buffer and add it to the list of free buffers for this
 761 * context.  Must be called with ohci->lock held.
 762 */
 763static int context_add_buffer(struct context *ctx)
 764{
 765        struct descriptor_buffer *desc;
 766        dma_addr_t uninitialized_var(bus_addr);
 767        int offset;
 768
 769        /*
 770         * 16MB of descriptors should be far more than enough for any DMA
 771         * program.  This will catch run-away userspace or DoS attacks.
 772         */
 773        if (ctx->total_allocation >= 16*1024*1024)
 774                return -ENOMEM;
 775
 776        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
 777                        &bus_addr, GFP_ATOMIC);
 778        if (!desc)
 779                return -ENOMEM;
 780
 781        offset = (void *)&desc->buffer - (void *)desc;
 782        desc->buffer_size = PAGE_SIZE - offset;
 783        desc->buffer_bus = bus_addr + offset;
 784        desc->used = 0;
 785
 786        list_add_tail(&desc->list, &ctx->buffer_list);
 787        ctx->total_allocation += PAGE_SIZE;
 788
 789        return 0;
 790}
 791
 792static int context_init(struct context *ctx, struct fw_ohci *ohci,
 793                        u32 regs, descriptor_callback_t callback)
 794{
 795        ctx->ohci = ohci;
 796        ctx->regs = regs;
 797        ctx->total_allocation = 0;
 798
 799        INIT_LIST_HEAD(&ctx->buffer_list);
 800        if (context_add_buffer(ctx) < 0)
 801                return -ENOMEM;
 802
 803        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
 804                        struct descriptor_buffer, list);
 805
 806        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
 807        ctx->callback = callback;
 808
 809        /*
 810         * We put a dummy descriptor in the buffer that has a NULL
 811         * branch address and looks like it's been sent.  That way we
 812         * have a descriptor to append DMA programs to.
 813         */
 814        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
 815        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
 816        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
 817        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
 818        ctx->last = ctx->buffer_tail->buffer;
 819        ctx->prev = ctx->buffer_tail->buffer;
 820
 821        return 0;
 822}
 823
 824static void context_release(struct context *ctx)
 825{
 826        struct fw_card *card = &ctx->ohci->card;
 827        struct descriptor_buffer *desc, *tmp;
 828
 829        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
 830                dma_free_coherent(card->device, PAGE_SIZE, desc,
 831                        desc->buffer_bus -
 832                        ((void *)&desc->buffer - (void *)desc));
 833}
 834
 835/* Must be called with ohci->lock held */
 836static struct descriptor *context_get_descriptors(struct context *ctx,
 837                                                  int z, dma_addr_t *d_bus)
 838{
 839        struct descriptor *d = NULL;
 840        struct descriptor_buffer *desc = ctx->buffer_tail;
 841
 842        if (z * sizeof(*d) > desc->buffer_size)
 843                return NULL;
 844
 845        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
 846                /* No room for the descriptor in this buffer, so advance to the
 847                 * next one. */
 848
 849                if (desc->list.next == &ctx->buffer_list) {
 850                        /* If there is no free buffer next in the list,
 851                         * allocate one. */
 852                        if (context_add_buffer(ctx) < 0)
 853                                return NULL;
 854                }
 855                desc = list_entry(desc->list.next,
 856                                struct descriptor_buffer, list);
 857                ctx->buffer_tail = desc;
 858        }
 859
 860        d = desc->buffer + desc->used / sizeof(*d);
 861        memset(d, 0, z * sizeof(*d));
 862        *d_bus = desc->buffer_bus + desc->used;
 863
 864        return d;
 865}
 866
 867static void context_run(struct context *ctx, u32 extra)
 868{
 869        struct fw_ohci *ohci = ctx->ohci;
 870
 871        reg_write(ohci, COMMAND_PTR(ctx->regs),
 872                  le32_to_cpu(ctx->last->branch_address));
 873        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
 874        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
 875        flush_writes(ohci);
 876}
 877
 878static void context_append(struct context *ctx,
 879                           struct descriptor *d, int z, int extra)
 880{
 881        dma_addr_t d_bus;
 882        struct descriptor_buffer *desc = ctx->buffer_tail;
 883
 884        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
 885
 886        desc->used += (z + extra) * sizeof(*d);
 887        ctx->prev->branch_address = cpu_to_le32(d_bus | z);
 888        ctx->prev = find_branch_descriptor(d, z);
 889
 890        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 891        flush_writes(ctx->ohci);
 892}
 893
 894static void context_stop(struct context *ctx)
 895{
 896        u32 reg;
 897        int i;
 898
 899        reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 900        flush_writes(ctx->ohci);
 901
 902        for (i = 0; i < 10; i++) {
 903                reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
 904                if ((reg & CONTEXT_ACTIVE) == 0)
 905                        return;
 906
 907                mdelay(1);
 908        }
 909        fw_error("Error: DMA context still active (0x%08x)\n", reg);
 910}
 911
 912struct driver_data {
 913        struct fw_packet *packet;
 914};
 915
 916/*
 917 * This function apppends a packet to the DMA queue for transmission.
 918 * Must always be called with the ochi->lock held to ensure proper
 919 * generation handling and locking around packet queue manipulation.
 920 */
 921static int at_context_queue_packet(struct context *ctx,
 922                                   struct fw_packet *packet)
 923{
 924        struct fw_ohci *ohci = ctx->ohci;
 925        dma_addr_t d_bus, uninitialized_var(payload_bus);
 926        struct driver_data *driver_data;
 927        struct descriptor *d, *last;
 928        __le32 *header;
 929        int z, tcode;
 930        u32 reg;
 931
 932        d = context_get_descriptors(ctx, 4, &d_bus);
 933        if (d == NULL) {
 934                packet->ack = RCODE_SEND_ERROR;
 935                return -1;
 936        }
 937
 938        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
 939        d[0].res_count = cpu_to_le16(packet->timestamp);
 940
 941        /*
 942         * The DMA format for asyncronous link packets is different
 943         * from the IEEE1394 layout, so shift the fields around
 944         * accordingly.  If header_length is 8, it's a PHY packet, to
 945         * which we need to prepend an extra quadlet.
 946         */
 947
 948        header = (__le32 *) &d[1];
 949        switch (packet->header_length) {
 950        case 16:
 951        case 12:
 952                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
 953                                        (packet->speed << 16));
 954                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
 955                                        (packet->header[0] & 0xffff0000));
 956                header[2] = cpu_to_le32(packet->header[2]);
 957
 958                tcode = (packet->header[0] >> 4) & 0x0f;
 959                if (TCODE_IS_BLOCK_PACKET(tcode))
 960                        header[3] = cpu_to_le32(packet->header[3]);
 961                else
 962                        header[3] = (__force __le32) packet->header[3];
 963
 964                d[0].req_count = cpu_to_le16(packet->header_length);
 965                break;
 966
 967        case 8:
 968                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
 969                                        (packet->speed << 16));
 970                header[1] = cpu_to_le32(packet->header[0]);
 971                header[2] = cpu_to_le32(packet->header[1]);
 972                d[0].req_count = cpu_to_le16(12);
 973                break;
 974
 975        case 4:
 976                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
 977                                        (packet->speed << 16));
 978                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
 979                d[0].req_count = cpu_to_le16(8);
 980                break;
 981
 982        default:
 983                /* BUG(); */
 984                packet->ack = RCODE_SEND_ERROR;
 985                return -1;
 986        }
 987
 988        driver_data = (struct driver_data *) &d[3];
 989        driver_data->packet = packet;
 990        packet->driver_data = driver_data;
 991
 992        if (packet->payload_length > 0) {
 993                payload_bus =
 994                        dma_map_single(ohci->card.device, packet->payload,
 995                                       packet->payload_length, DMA_TO_DEVICE);
 996                if (dma_mapping_error(ohci->card.device, payload_bus)) {
 997                        packet->ack = RCODE_SEND_ERROR;
 998                        return -1;
 999                }
1000                packet->payload_bus = payload_bus;
1001
1002                d[2].req_count    = cpu_to_le16(packet->payload_length);
1003                d[2].data_address = cpu_to_le32(payload_bus);
1004                last = &d[2];
1005                z = 3;
1006        } else {
1007                last = &d[0];
1008                z = 2;
1009        }
1010
1011        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1012                                     DESCRIPTOR_IRQ_ALWAYS |
1013                                     DESCRIPTOR_BRANCH_ALWAYS);
1014
1015        /*
1016         * If the controller and packet generations don't match, we need to
1017         * bail out and try again.  If IntEvent.busReset is set, the AT context
1018         * is halted, so appending to the context and trying to run it is
1019         * futile.  Most controllers do the right thing and just flush the AT
1020         * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1021         * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1022         * up stalling out.  So we just bail out in software and try again
1023         * later, and everyone is happy.
1024         * FIXME: Document how the locking works.
1025         */
1026        if (ohci->generation != packet->generation ||
1027            reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1028                if (packet->payload_length > 0)
1029                        dma_unmap_single(ohci->card.device, payload_bus,
1030                                         packet->payload_length, DMA_TO_DEVICE);
1031                packet->ack = RCODE_GENERATION;
1032                return -1;
1033        }
1034
1035        context_append(ctx, d, z, 4 - z);
1036
1037        /* If the context isn't already running, start it up. */
1038        reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1039        if ((reg & CONTEXT_RUN) == 0)
1040                context_run(ctx, 0);
1041
1042        return 0;
1043}
1044
1045static int handle_at_packet(struct context *context,
1046                            struct descriptor *d,
1047                            struct descriptor *last)
1048{
1049        struct driver_data *driver_data;
1050        struct fw_packet *packet;
1051        struct fw_ohci *ohci = context->ohci;
1052        int evt;
1053
1054        if (last->transfer_status == 0)
1055                /* This descriptor isn't done yet, stop iteration. */
1056                return 0;
1057
1058        driver_data = (struct driver_data *) &d[3];
1059        packet = driver_data->packet;
1060        if (packet == NULL)
1061                /* This packet was cancelled, just continue. */
1062                return 1;
1063
1064        if (packet->payload_bus)
1065                dma_unmap_single(ohci->card.device, packet->payload_bus,
1066                                 packet->payload_length, DMA_TO_DEVICE);
1067
1068        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1069        packet->timestamp = le16_to_cpu(last->res_count);
1070
1071        log_ar_at_event('T', packet->speed, packet->header, evt);
1072
1073        switch (evt) {
1074        case OHCI1394_evt_timeout:
1075                /* Async response transmit timed out. */
1076                packet->ack = RCODE_CANCELLED;
1077                break;
1078
1079        case OHCI1394_evt_flushed:
1080                /*
1081                 * The packet was flushed should give same error as
1082                 * when we try to use a stale generation count.
1083                 */
1084                packet->ack = RCODE_GENERATION;
1085                break;
1086
1087        case OHCI1394_evt_missing_ack:
1088                /*
1089                 * Using a valid (current) generation count, but the
1090                 * node is not on the bus or not sending acks.
1091                 */
1092                packet->ack = RCODE_NO_ACK;
1093                break;
1094
1095        case ACK_COMPLETE + 0x10:
1096        case ACK_PENDING + 0x10:
1097        case ACK_BUSY_X + 0x10:
1098        case ACK_BUSY_A + 0x10:
1099        case ACK_BUSY_B + 0x10:
1100        case ACK_DATA_ERROR + 0x10:
1101        case ACK_TYPE_ERROR + 0x10:
1102                packet->ack = evt - 0x10;
1103                break;
1104
1105        default:
1106                packet->ack = RCODE_SEND_ERROR;
1107                break;
1108        }
1109
1110        packet->callback(packet, &ohci->card, packet->ack);
1111
1112        return 1;
1113}
1114
1115#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1116#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1117#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1118#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1119#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1120
1121static void handle_local_rom(struct fw_ohci *ohci,
1122                             struct fw_packet *packet, u32 csr)
1123{
1124        struct fw_packet response;
1125        int tcode, length, i;
1126
1127        tcode = HEADER_GET_TCODE(packet->header[0]);
1128        if (TCODE_IS_BLOCK_PACKET(tcode))
1129                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1130        else
1131                length = 4;
1132
1133        i = csr - CSR_CONFIG_ROM;
1134        if (i + length > CONFIG_ROM_SIZE) {
1135                fw_fill_response(&response, packet->header,
1136                                 RCODE_ADDRESS_ERROR, NULL, 0);
1137        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1138                fw_fill_response(&response, packet->header,
1139                                 RCODE_TYPE_ERROR, NULL, 0);
1140        } else {
1141                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1142                                 (void *) ohci->config_rom + i, length);
1143        }
1144
1145        fw_core_handle_response(&ohci->card, &response);
1146}
1147
1148static void handle_local_lock(struct fw_ohci *ohci,
1149                              struct fw_packet *packet, u32 csr)
1150{
1151        struct fw_packet response;
1152        int tcode, length, ext_tcode, sel;
1153        __be32 *payload, lock_old;
1154        u32 lock_arg, lock_data;
1155
1156        tcode = HEADER_GET_TCODE(packet->header[0]);
1157        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1158        payload = packet->payload;
1159        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1160
1161        if (tcode == TCODE_LOCK_REQUEST &&
1162            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1163                lock_arg = be32_to_cpu(payload[0]);
1164                lock_data = be32_to_cpu(payload[1]);
1165        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1166                lock_arg = 0;
1167                lock_data = 0;
1168        } else {
1169                fw_fill_response(&response, packet->header,
1170                                 RCODE_TYPE_ERROR, NULL, 0);
1171                goto out;
1172        }
1173
1174        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1175        reg_write(ohci, OHCI1394_CSRData, lock_data);
1176        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1177        reg_write(ohci, OHCI1394_CSRControl, sel);
1178
1179        if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1180                lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1181        else
1182                fw_notify("swap not done yet\n");
1183
1184        fw_fill_response(&response, packet->header,
1185                         RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1186 out:
1187        fw_core_handle_response(&ohci->card, &response);
1188}
1189
1190static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1191{
1192        u64 offset;
1193        u32 csr;
1194
1195        if (ctx == &ctx->ohci->at_request_ctx) {
1196                packet->ack = ACK_PENDING;
1197                packet->callback(packet, &ctx->ohci->card, packet->ack);
1198        }
1199
1200        offset =
1201                ((unsigned long long)
1202                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1203                packet->header[2];
1204        csr = offset - CSR_REGISTER_BASE;
1205
1206        /* Handle config rom reads. */
1207        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1208                handle_local_rom(ctx->ohci, packet, csr);
1209        else switch (csr) {
1210        case CSR_BUS_MANAGER_ID:
1211        case CSR_BANDWIDTH_AVAILABLE:
1212        case CSR_CHANNELS_AVAILABLE_HI:
1213        case CSR_CHANNELS_AVAILABLE_LO:
1214                handle_local_lock(ctx->ohci, packet, csr);
1215                break;
1216        default:
1217                if (ctx == &ctx->ohci->at_request_ctx)
1218                        fw_core_handle_request(&ctx->ohci->card, packet);
1219                else
1220                        fw_core_handle_response(&ctx->ohci->card, packet);
1221                break;
1222        }
1223
1224        if (ctx == &ctx->ohci->at_response_ctx) {
1225                packet->ack = ACK_COMPLETE;
1226                packet->callback(packet, &ctx->ohci->card, packet->ack);
1227        }
1228}
1229
1230static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1231{
1232        unsigned long flags;
1233        int ret;
1234
1235        spin_lock_irqsave(&ctx->ohci->lock, flags);
1236
1237        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1238            ctx->ohci->generation == packet->generation) {
1239                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1240                handle_local_request(ctx, packet);
1241                return;
1242        }
1243
1244        ret = at_context_queue_packet(ctx, packet);
1245        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1246
1247        if (ret < 0)
1248                packet->callback(packet, &ctx->ohci->card, packet->ack);
1249
1250}
1251
1252static void bus_reset_tasklet(unsigned long data)
1253{
1254        struct fw_ohci *ohci = (struct fw_ohci *)data;
1255        int self_id_count, i, j, reg;
1256        int generation, new_generation;
1257        unsigned long flags;
1258        void *free_rom = NULL;
1259        dma_addr_t free_rom_bus = 0;
1260
1261        reg = reg_read(ohci, OHCI1394_NodeID);
1262        if (!(reg & OHCI1394_NodeID_idValid)) {
1263                fw_notify("node ID not valid, new bus reset in progress\n");
1264                return;
1265        }
1266        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1267                fw_notify("malconfigured bus\n");
1268                return;
1269        }
1270        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1271                               OHCI1394_NodeID_nodeNumber);
1272
1273        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1274        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1275                fw_notify("inconsistent self IDs\n");
1276                return;
1277        }
1278        /*
1279         * The count in the SelfIDCount register is the number of
1280         * bytes in the self ID receive buffer.  Since we also receive
1281         * the inverted quadlets and a header quadlet, we shift one
1282         * bit extra to get the actual number of self IDs.
1283         */
1284        self_id_count = (reg >> 3) & 0xff;
1285        if (self_id_count == 0 || self_id_count > 252) {
1286                fw_notify("inconsistent self IDs\n");
1287                return;
1288        }
1289        generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1290        rmb();
1291
1292        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1293                if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1294                        fw_notify("inconsistent self IDs\n");
1295                        return;
1296                }
1297                ohci->self_id_buffer[j] =
1298                                cond_le32_to_cpu(ohci->self_id_cpu[i]);
1299        }
1300        rmb();
1301
1302        /*
1303         * Check the consistency of the self IDs we just read.  The
1304         * problem we face is that a new bus reset can start while we
1305         * read out the self IDs from the DMA buffer. If this happens,
1306         * the DMA buffer will be overwritten with new self IDs and we
1307         * will read out inconsistent data.  The OHCI specification
1308         * (section 11.2) recommends a technique similar to
1309         * linux/seqlock.h, where we remember the generation of the
1310         * self IDs in the buffer before reading them out and compare
1311         * it to the current generation after reading them out.  If
1312         * the two generations match we know we have a consistent set
1313         * of self IDs.
1314         */
1315
1316        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1317        if (new_generation != generation) {
1318                fw_notify("recursive bus reset detected, "
1319                          "discarding self ids\n");
1320                return;
1321        }
1322
1323        /* FIXME: Document how the locking works. */
1324        spin_lock_irqsave(&ohci->lock, flags);
1325
1326        ohci->generation = generation;
1327        context_stop(&ohci->at_request_ctx);
1328        context_stop(&ohci->at_response_ctx);
1329        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1330
1331        if (ohci->bus_reset_packet_quirk)
1332                ohci->request_generation = generation;
1333
1334        /*
1335         * This next bit is unrelated to the AT context stuff but we
1336         * have to do it under the spinlock also.  If a new config rom
1337         * was set up before this reset, the old one is now no longer
1338         * in use and we can free it. Update the config rom pointers
1339         * to point to the current config rom and clear the
1340         * next_config_rom pointer so a new udpate can take place.
1341         */
1342
1343        if (ohci->next_config_rom != NULL) {
1344                if (ohci->next_config_rom != ohci->config_rom) {
1345                        free_rom      = ohci->config_rom;
1346                        free_rom_bus  = ohci->config_rom_bus;
1347                }
1348                ohci->config_rom      = ohci->next_config_rom;
1349                ohci->config_rom_bus  = ohci->next_config_rom_bus;
1350                ohci->next_config_rom = NULL;
1351
1352                /*
1353                 * Restore config_rom image and manually update
1354                 * config_rom registers.  Writing the header quadlet
1355                 * will indicate that the config rom is ready, so we
1356                 * do that last.
1357                 */
1358                reg_write(ohci, OHCI1394_BusOptions,
1359                          be32_to_cpu(ohci->config_rom[2]));
1360                ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1361                reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1362        }
1363
1364#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1365        reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1366        reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1367#endif
1368
1369        spin_unlock_irqrestore(&ohci->lock, flags);
1370
1371        if (free_rom)
1372                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1373                                  free_rom, free_rom_bus);
1374
1375        log_selfids(ohci->node_id, generation,
1376                    self_id_count, ohci->self_id_buffer);
1377
1378        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1379                                 self_id_count, ohci->self_id_buffer);
1380}
1381
1382static irqreturn_t irq_handler(int irq, void *data)
1383{
1384        struct fw_ohci *ohci = data;
1385        u32 event, iso_event, cycle_time;
1386        int i;
1387
1388        event = reg_read(ohci, OHCI1394_IntEventClear);
1389
1390        if (!event || !~event)
1391                return IRQ_NONE;
1392
1393        /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1394        reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1395        log_irqs(event);
1396
1397        if (event & OHCI1394_selfIDComplete)
1398                tasklet_schedule(&ohci->bus_reset_tasklet);
1399
1400        if (event & OHCI1394_RQPkt)
1401                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1402
1403        if (event & OHCI1394_RSPkt)
1404                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1405
1406        if (event & OHCI1394_reqTxComplete)
1407                tasklet_schedule(&ohci->at_request_ctx.tasklet);
1408
1409        if (event & OHCI1394_respTxComplete)
1410                tasklet_schedule(&ohci->at_response_ctx.tasklet);
1411
1412        iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1413        reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1414
1415        while (iso_event) {
1416                i = ffs(iso_event) - 1;
1417                tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1418                iso_event &= ~(1 << i);
1419        }
1420
1421        iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1422        reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1423
1424        while (iso_event) {
1425                i = ffs(iso_event) - 1;
1426                tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1427                iso_event &= ~(1 << i);
1428        }
1429
1430        if (unlikely(event & OHCI1394_regAccessFail))
1431                fw_error("Register access failure - "
1432                         "please notify linux1394-devel@lists.sf.net\n");
1433
1434        if (unlikely(event & OHCI1394_postedWriteErr))
1435                fw_error("PCI posted write error\n");
1436
1437        if (unlikely(event & OHCI1394_cycleTooLong)) {
1438                if (printk_ratelimit())
1439                        fw_notify("isochronous cycle too long\n");
1440                reg_write(ohci, OHCI1394_LinkControlSet,
1441                          OHCI1394_LinkControl_cycleMaster);
1442        }
1443
1444        if (unlikely(event & OHCI1394_cycleInconsistent)) {
1445                /*
1446                 * We need to clear this event bit in order to make
1447                 * cycleMatch isochronous I/O work.  In theory we should
1448                 * stop active cycleMatch iso contexts now and restart
1449                 * them at least two cycles later.  (FIXME?)
1450                 */
1451                if (printk_ratelimit())
1452                        fw_notify("isochronous cycle inconsistent\n");
1453        }
1454
1455        if (event & OHCI1394_cycle64Seconds) {
1456                cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1457                if ((cycle_time & 0x80000000) == 0)
1458                        atomic_inc(&ohci->bus_seconds);
1459        }
1460
1461        return IRQ_HANDLED;
1462}
1463
1464static int software_reset(struct fw_ohci *ohci)
1465{
1466        int i;
1467
1468        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1469
1470        for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1471                if ((reg_read(ohci, OHCI1394_HCControlSet) &
1472                     OHCI1394_HCControl_softReset) == 0)
1473                        return 0;
1474                msleep(1);
1475        }
1476
1477        return -EBUSY;
1478}
1479
1480static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1481{
1482        struct fw_ohci *ohci = fw_ohci(card);
1483        struct pci_dev *dev = to_pci_dev(card->device);
1484        u32 lps;
1485        int i;
1486
1487        if (software_reset(ohci)) {
1488                fw_error("Failed to reset ohci card.\n");
1489                return -EBUSY;
1490        }
1491
1492        /*
1493         * Now enable LPS, which we need in order to start accessing
1494         * most of the registers.  In fact, on some cards (ALI M5251),
1495         * accessing registers in the SClk domain without LPS enabled
1496         * will lock up the machine.  Wait 50msec to make sure we have
1497         * full link enabled.  However, with some cards (well, at least
1498         * a JMicron PCIe card), we have to try again sometimes.
1499         */
1500        reg_write(ohci, OHCI1394_HCControlSet,
1501                  OHCI1394_HCControl_LPS |
1502                  OHCI1394_HCControl_postedWriteEnable);
1503        flush_writes(ohci);
1504
1505        for (lps = 0, i = 0; !lps && i < 3; i++) {
1506                msleep(50);
1507                lps = reg_read(ohci, OHCI1394_HCControlSet) &
1508                      OHCI1394_HCControl_LPS;
1509        }
1510
1511        if (!lps) {
1512                fw_error("Failed to set Link Power Status\n");
1513                return -EIO;
1514        }
1515
1516        reg_write(ohci, OHCI1394_HCControlClear,
1517                  OHCI1394_HCControl_noByteSwapData);
1518
1519        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1520        reg_write(ohci, OHCI1394_LinkControlClear,
1521                  OHCI1394_LinkControl_rcvPhyPkt);
1522        reg_write(ohci, OHCI1394_LinkControlSet,
1523                  OHCI1394_LinkControl_rcvSelfID |
1524                  OHCI1394_LinkControl_cycleTimerEnable |
1525                  OHCI1394_LinkControl_cycleMaster);
1526
1527        reg_write(ohci, OHCI1394_ATRetries,
1528                  OHCI1394_MAX_AT_REQ_RETRIES |
1529                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1530                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1531
1532        ar_context_run(&ohci->ar_request_ctx);
1533        ar_context_run(&ohci->ar_response_ctx);
1534
1535        reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1536        reg_write(ohci, OHCI1394_IntEventClear, ~0);
1537        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1538        reg_write(ohci, OHCI1394_IntMaskSet,
1539                  OHCI1394_selfIDComplete |
1540                  OHCI1394_RQPkt | OHCI1394_RSPkt |
1541                  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1542                  OHCI1394_isochRx | OHCI1394_isochTx |
1543                  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1544                  OHCI1394_cycleInconsistent |
1545                  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1546                  OHCI1394_masterIntEnable);
1547        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1548                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1549
1550        /* Activate link_on bit and contender bit in our self ID packets.*/
1551        if (ohci_update_phy_reg(card, 4, 0,
1552                                PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1553                return -EIO;
1554
1555        /*
1556         * When the link is not yet enabled, the atomic config rom
1557         * update mechanism described below in ohci_set_config_rom()
1558         * is not active.  We have to update ConfigRomHeader and
1559         * BusOptions manually, and the write to ConfigROMmap takes
1560         * effect immediately.  We tie this to the enabling of the
1561         * link, so we have a valid config rom before enabling - the
1562         * OHCI requires that ConfigROMhdr and BusOptions have valid
1563         * values before enabling.
1564         *
1565         * However, when the ConfigROMmap is written, some controllers
1566         * always read back quadlets 0 and 2 from the config rom to
1567         * the ConfigRomHeader and BusOptions registers on bus reset.
1568         * They shouldn't do that in this initial case where the link
1569         * isn't enabled.  This means we have to use the same
1570         * workaround here, setting the bus header to 0 and then write
1571         * the right values in the bus reset tasklet.
1572         */
1573
1574        if (config_rom) {
1575                ohci->next_config_rom =
1576                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1577                                           &ohci->next_config_rom_bus,
1578                                           GFP_KERNEL);
1579                if (ohci->next_config_rom == NULL)
1580                        return -ENOMEM;
1581
1582                memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1583                fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1584        } else {
1585                /*
1586                 * In the suspend case, config_rom is NULL, which
1587                 * means that we just reuse the old config rom.
1588                 */
1589                ohci->next_config_rom = ohci->config_rom;
1590                ohci->next_config_rom_bus = ohci->config_rom_bus;
1591        }
1592
1593        ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1594        ohci->next_config_rom[0] = 0;
1595        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1596        reg_write(ohci, OHCI1394_BusOptions,
1597                  be32_to_cpu(ohci->next_config_rom[2]));
1598        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1599
1600        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1601
1602        if (request_irq(dev->irq, irq_handler,
1603                        IRQF_SHARED, ohci_driver_name, ohci)) {
1604                fw_error("Failed to allocate shared interrupt %d.\n",
1605                         dev->irq);
1606                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1607                                  ohci->config_rom, ohci->config_rom_bus);
1608                return -EIO;
1609        }
1610
1611        reg_write(ohci, OHCI1394_HCControlSet,
1612                  OHCI1394_HCControl_linkEnable |
1613                  OHCI1394_HCControl_BIBimageValid);
1614        flush_writes(ohci);
1615
1616        /*
1617         * We are ready to go, initiate bus reset to finish the
1618         * initialization.
1619         */
1620
1621        fw_core_initiate_bus_reset(&ohci->card, 1);
1622
1623        return 0;
1624}
1625
1626static int ohci_set_config_rom(struct fw_card *card,
1627                               u32 *config_rom, size_t length)
1628{
1629        struct fw_ohci *ohci;
1630        unsigned long flags;
1631        int ret = -EBUSY;
1632        __be32 *next_config_rom;
1633        dma_addr_t uninitialized_var(next_config_rom_bus);
1634
1635        ohci = fw_ohci(card);
1636
1637        /*
1638         * When the OHCI controller is enabled, the config rom update
1639         * mechanism is a bit tricky, but easy enough to use.  See
1640         * section 5.5.6 in the OHCI specification.
1641         *
1642         * The OHCI controller caches the new config rom address in a
1643         * shadow register (ConfigROMmapNext) and needs a bus reset
1644         * for the changes to take place.  When the bus reset is
1645         * detected, the controller loads the new values for the
1646         * ConfigRomHeader and BusOptions registers from the specified
1647         * config rom and loads ConfigROMmap from the ConfigROMmapNext
1648         * shadow register. All automatically and atomically.
1649         *
1650         * Now, there's a twist to this story.  The automatic load of
1651         * ConfigRomHeader and BusOptions doesn't honor the
1652         * noByteSwapData bit, so with a be32 config rom, the
1653         * controller will load be32 values in to these registers
1654         * during the atomic update, even on litte endian
1655         * architectures.  The workaround we use is to put a 0 in the
1656         * header quadlet; 0 is endian agnostic and means that the
1657         * config rom isn't ready yet.  In the bus reset tasklet we
1658         * then set up the real values for the two registers.
1659         *
1660         * We use ohci->lock to avoid racing with the code that sets
1661         * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1662         */
1663
1664        next_config_rom =
1665                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1666                                   &next_config_rom_bus, GFP_KERNEL);
1667        if (next_config_rom == NULL)
1668                return -ENOMEM;
1669
1670        spin_lock_irqsave(&ohci->lock, flags);
1671
1672        if (ohci->next_config_rom == NULL) {
1673                ohci->next_config_rom = next_config_rom;
1674                ohci->next_config_rom_bus = next_config_rom_bus;
1675
1676                memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1677                fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1678                                  length * 4);
1679
1680                ohci->next_header = config_rom[0];
1681                ohci->next_config_rom[0] = 0;
1682
1683                reg_write(ohci, OHCI1394_ConfigROMmap,
1684                          ohci->next_config_rom_bus);
1685                ret = 0;
1686        }
1687
1688        spin_unlock_irqrestore(&ohci->lock, flags);
1689
1690        /*
1691         * Now initiate a bus reset to have the changes take
1692         * effect. We clean up the old config rom memory and DMA
1693         * mappings in the bus reset tasklet, since the OHCI
1694         * controller could need to access it before the bus reset
1695         * takes effect.
1696         */
1697        if (ret == 0)
1698                fw_core_initiate_bus_reset(&ohci->card, 1);
1699        else
1700                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1701                                  next_config_rom, next_config_rom_bus);
1702
1703        return ret;
1704}
1705
1706static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1707{
1708        struct fw_ohci *ohci = fw_ohci(card);
1709
1710        at_context_transmit(&ohci->at_request_ctx, packet);
1711}
1712
1713static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1714{
1715        struct fw_ohci *ohci = fw_ohci(card);
1716
1717        at_context_transmit(&ohci->at_response_ctx, packet);
1718}
1719
1720static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1721{
1722        struct fw_ohci *ohci = fw_ohci(card);
1723        struct context *ctx = &ohci->at_request_ctx;
1724        struct driver_data *driver_data = packet->driver_data;
1725        int ret = -ENOENT;
1726
1727        tasklet_disable(&ctx->tasklet);
1728
1729        if (packet->ack != 0)
1730                goto out;
1731
1732        if (packet->payload_bus)
1733                dma_unmap_single(ohci->card.device, packet->payload_bus,
1734                                 packet->payload_length, DMA_TO_DEVICE);
1735
1736        log_ar_at_event('T', packet->speed, packet->header, 0x20);
1737        driver_data->packet = NULL;
1738        packet->ack = RCODE_CANCELLED;
1739        packet->callback(packet, &ohci->card, packet->ack);
1740        ret = 0;
1741 out:
1742        tasklet_enable(&ctx->tasklet);
1743
1744        return ret;
1745}
1746
1747static int ohci_enable_phys_dma(struct fw_card *card,
1748                                int node_id, int generation)
1749{
1750#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1751        return 0;
1752#else
1753        struct fw_ohci *ohci = fw_ohci(card);
1754        unsigned long flags;
1755        int n, ret = 0;
1756
1757        /*
1758         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1759         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1760         */
1761
1762        spin_lock_irqsave(&ohci->lock, flags);
1763
1764        if (ohci->generation != generation) {
1765                ret = -ESTALE;
1766                goto out;
1767        }
1768
1769        /*
1770         * Note, if the node ID contains a non-local bus ID, physical DMA is
1771         * enabled for _all_ nodes on remote buses.
1772         */
1773
1774        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1775        if (n < 32)
1776                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1777        else
1778                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1779
1780        flush_writes(ohci);
1781 out:
1782        spin_unlock_irqrestore(&ohci->lock, flags);
1783
1784        return ret;
1785#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1786}
1787
1788static u64 ohci_get_bus_time(struct fw_card *card)
1789{
1790        struct fw_ohci *ohci = fw_ohci(card);
1791        u32 cycle_time;
1792        u64 bus_time;
1793
1794        cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1795        bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1796
1797        return bus_time;
1798}
1799
1800static void copy_iso_headers(struct iso_context *ctx, void *p)
1801{
1802        int i = ctx->header_length;
1803
1804        if (i + ctx->base.header_size > PAGE_SIZE)
1805                return;
1806
1807        /*
1808         * The iso header is byteswapped to little endian by
1809         * the controller, but the remaining header quadlets
1810         * are big endian.  We want to present all the headers
1811         * as big endian, so we have to swap the first quadlet.
1812         */
1813        if (ctx->base.header_size > 0)
1814                *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1815        if (ctx->base.header_size > 4)
1816                *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1817        if (ctx->base.header_size > 8)
1818                memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1819        ctx->header_length += ctx->base.header_size;
1820}
1821
1822static int handle_ir_dualbuffer_packet(struct context *context,
1823                                       struct descriptor *d,
1824                                       struct descriptor *last)
1825{
1826        struct iso_context *ctx =
1827                container_of(context, struct iso_context, context);
1828        struct db_descriptor *db = (struct db_descriptor *) d;
1829        __le32 *ir_header;
1830        size_t header_length;
1831        void *p, *end;
1832
1833        if (db->first_res_count != 0 && db->second_res_count != 0) {
1834                if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1835                        /* This descriptor isn't done yet, stop iteration. */
1836                        return 0;
1837                }
1838                ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1839        }
1840
1841        header_length = le16_to_cpu(db->first_req_count) -
1842                le16_to_cpu(db->first_res_count);
1843
1844        p = db + 1;
1845        end = p + header_length;
1846        while (p < end) {
1847                copy_iso_headers(ctx, p);
1848                ctx->excess_bytes +=
1849                        (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1850                p += max(ctx->base.header_size, (size_t)8);
1851        }
1852
1853        ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1854                le16_to_cpu(db->second_res_count);
1855
1856        if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1857                ir_header = (__le32 *) (db + 1);
1858                ctx->base.callback(&ctx->base,
1859                                   le32_to_cpu(ir_header[0]) & 0xffff,
1860                                   ctx->header_length, ctx->header,
1861                                   ctx->base.callback_data);
1862                ctx->header_length = 0;
1863        }
1864
1865        return 1;
1866}
1867
1868static int handle_ir_packet_per_buffer(struct context *context,
1869                                       struct descriptor *d,
1870                                       struct descriptor *last)
1871{
1872        struct iso_context *ctx =
1873                container_of(context, struct iso_context, context);
1874        struct descriptor *pd;
1875        __le32 *ir_header;
1876        void *p;
1877
1878        for (pd = d; pd <= last; pd++) {
1879                if (pd->transfer_status)
1880                        break;
1881        }
1882        if (pd > last)
1883                /* Descriptor(s) not done yet, stop iteration */
1884                return 0;
1885
1886        p = last + 1;
1887        copy_iso_headers(ctx, p);
1888
1889        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1890                ir_header = (__le32 *) p;
1891                ctx->base.callback(&ctx->base,
1892                                   le32_to_cpu(ir_header[0]) & 0xffff,
1893                                   ctx->header_length, ctx->header,
1894                                   ctx->base.callback_data);
1895                ctx->header_length = 0;
1896        }
1897
1898        return 1;
1899}
1900
1901static int handle_it_packet(struct context *context,
1902                            struct descriptor *d,
1903                            struct descriptor *last)
1904{
1905        struct iso_context *ctx =
1906                container_of(context, struct iso_context, context);
1907        int i;
1908        struct descriptor *pd;
1909
1910        for (pd = d; pd <= last; pd++)
1911                if (pd->transfer_status)
1912                        break;
1913        if (pd > last)
1914                /* Descriptor(s) not done yet, stop iteration */
1915                return 0;
1916
1917        i = ctx->header_length;
1918        if (i + 4 < PAGE_SIZE) {
1919                /* Present this value as big-endian to match the receive code */
1920                *(__be32 *)(ctx->header + i) = cpu_to_be32(
1921                                ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1922                                le16_to_cpu(pd->res_count));
1923                ctx->header_length += 4;
1924        }
1925        if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1926                ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1927                                   ctx->header_length, ctx->header,
1928                                   ctx->base.callback_data);
1929                ctx->header_length = 0;
1930        }
1931        return 1;
1932}
1933
1934static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1935                                int type, int channel, size_t header_size)
1936{
1937        struct fw_ohci *ohci = fw_ohci(card);
1938        struct iso_context *ctx, *list;
1939        descriptor_callback_t callback;
1940        u64 *channels, dont_care = ~0ULL;
1941        u32 *mask, regs;
1942        unsigned long flags;
1943        int index, ret = -ENOMEM;
1944
1945        if (type == FW_ISO_CONTEXT_TRANSMIT) {
1946                channels = &dont_care;
1947                mask = &ohci->it_context_mask;
1948                list = ohci->it_context_list;
1949                callback = handle_it_packet;
1950        } else {
1951                channels = &ohci->ir_context_channels;
1952                mask = &ohci->ir_context_mask;
1953                list = ohci->ir_context_list;
1954                if (ohci->use_dualbuffer)
1955                        callback = handle_ir_dualbuffer_packet;
1956                else
1957                        callback = handle_ir_packet_per_buffer;
1958        }
1959
1960        spin_lock_irqsave(&ohci->lock, flags);
1961        index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1962        if (index >= 0) {
1963                *channels &= ~(1ULL << channel);
1964                *mask &= ~(1 << index);
1965        }
1966        spin_unlock_irqrestore(&ohci->lock, flags);
1967
1968        if (index < 0)
1969                return ERR_PTR(-EBUSY);
1970
1971        if (type == FW_ISO_CONTEXT_TRANSMIT)
1972                regs = OHCI1394_IsoXmitContextBase(index);
1973        else
1974                regs = OHCI1394_IsoRcvContextBase(index);
1975
1976        ctx = &list[index];
1977        memset(ctx, 0, sizeof(*ctx));
1978        ctx->header_length = 0;
1979        ctx->header = (void *) __get_free_page(GFP_KERNEL);
1980        if (ctx->header == NULL)
1981                goto out;
1982
1983        ret = context_init(&ctx->context, ohci, regs, callback);
1984        if (ret < 0)
1985                goto out_with_header;
1986
1987        return &ctx->base;
1988
1989 out_with_header:
1990        free_page((unsigned long)ctx->header);
1991 out:
1992        spin_lock_irqsave(&ohci->lock, flags);
1993        *mask |= 1 << index;
1994        spin_unlock_irqrestore(&ohci->lock, flags);
1995
1996        return ERR_PTR(ret);
1997}
1998
1999static int ohci_start_iso(struct fw_iso_context *base,
2000                          s32 cycle, u32 sync, u32 tags)
2001{
2002        struct iso_context *ctx = container_of(base, struct iso_context, base);
2003        struct fw_ohci *ohci = ctx->context.ohci;
2004        u32 control, match;
2005        int index;
2006
2007        if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2008                index = ctx - ohci->it_context_list;
2009                match = 0;
2010                if (cycle >= 0)
2011                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2012                                (cycle & 0x7fff) << 16;
2013
2014                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2015                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2016                context_run(&ctx->context, match);
2017        } else {
2018                index = ctx - ohci->ir_context_list;
2019                control = IR_CONTEXT_ISOCH_HEADER;
2020                if (ohci->use_dualbuffer)
2021                        control |= IR_CONTEXT_DUAL_BUFFER_MODE;
2022                match = (tags << 28) | (sync << 8) | ctx->base.channel;
2023                if (cycle >= 0) {
2024                        match |= (cycle & 0x07fff) << 12;
2025                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2026                }
2027
2028                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2029                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2030                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2031                context_run(&ctx->context, control);
2032        }
2033
2034        return 0;
2035}
2036
2037static int ohci_stop_iso(struct fw_iso_context *base)
2038{
2039        struct fw_ohci *ohci = fw_ohci(base->card);
2040        struct iso_context *ctx = container_of(base, struct iso_context, base);
2041        int index;
2042
2043        if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2044                index = ctx - ohci->it_context_list;
2045                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2046        } else {
2047                index = ctx - ohci->ir_context_list;
2048                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2049        }
2050        flush_writes(ohci);
2051        context_stop(&ctx->context);
2052
2053        return 0;
2054}
2055
2056static void ohci_free_iso_context(struct fw_iso_context *base)
2057{
2058        struct fw_ohci *ohci = fw_ohci(base->card);
2059        struct iso_context *ctx = container_of(base, struct iso_context, base);
2060        unsigned long flags;
2061        int index;
2062
2063        ohci_stop_iso(base);
2064        context_release(&ctx->context);
2065        free_page((unsigned long)ctx->header);
2066
2067        spin_lock_irqsave(&ohci->lock, flags);
2068
2069        if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2070                index = ctx - ohci->it_context_list;
2071                ohci->it_context_mask |= 1 << index;
2072        } else {
2073                index = ctx - ohci->ir_context_list;
2074                ohci->ir_context_mask |= 1 << index;
2075                ohci->ir_context_channels |= 1ULL << base->channel;
2076        }
2077
2078        spin_unlock_irqrestore(&ohci->lock, flags);
2079}
2080
2081static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2082                                   struct fw_iso_packet *packet,
2083                                   struct fw_iso_buffer *buffer,
2084                                   unsigned long payload)
2085{
2086        struct iso_context *ctx = container_of(base, struct iso_context, base);
2087        struct descriptor *d, *last, *pd;
2088        struct fw_iso_packet *p;
2089        __le32 *header;
2090        dma_addr_t d_bus, page_bus;
2091        u32 z, header_z, payload_z, irq;
2092        u32 payload_index, payload_end_index, next_page_index;
2093        int page, end_page, i, length, offset;
2094
2095        /*
2096         * FIXME: Cycle lost behavior should be configurable: lose
2097         * packet, retransmit or terminate..
2098         */
2099
2100        p = packet;
2101        payload_index = payload;
2102
2103        if (p->skip)
2104                z = 1;
2105        else
2106                z = 2;
2107        if (p->header_length > 0)
2108                z++;
2109
2110        /* Determine the first page the payload isn't contained in. */
2111        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2112        if (p->payload_length > 0)
2113                payload_z = end_page - (payload_index >> PAGE_SHIFT);
2114        else
2115                payload_z = 0;
2116
2117        z += payload_z;
2118
2119        /* Get header size in number of descriptors. */
2120        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2121
2122        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2123        if (d == NULL)
2124                return -ENOMEM;
2125
2126        if (!p->skip) {
2127                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2128                d[0].req_count = cpu_to_le16(8);
2129
2130                header = (__le32 *) &d[1];
2131                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2132                                        IT_HEADER_TAG(p->tag) |
2133                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2134                                        IT_HEADER_CHANNEL(ctx->base.channel) |
2135                                        IT_HEADER_SPEED(ctx->base.speed));
2136                header[1] =
2137                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2138                                                          p->payload_length));
2139        }
2140
2141        if (p->header_length > 0) {
2142                d[2].req_count    = cpu_to_le16(p->header_length);
2143                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2144                memcpy(&d[z], p->header, p->header_length);
2145        }
2146
2147        pd = d + z - payload_z;
2148        payload_end_index = payload_index + p->payload_length;
2149        for (i = 0; i < payload_z; i++) {
2150                page               = payload_index >> PAGE_SHIFT;
2151                offset             = payload_index & ~PAGE_MASK;
2152                next_page_index    = (page + 1) << PAGE_SHIFT;
2153                length             =
2154                        min(next_page_index, payload_end_index) - payload_index;
2155                pd[i].req_count    = cpu_to_le16(length);
2156
2157                page_bus = page_private(buffer->pages[page]);
2158                pd[i].data_address = cpu_to_le32(page_bus + offset);
2159
2160                payload_index += length;
2161        }
2162
2163        if (p->interrupt)
2164                irq = DESCRIPTOR_IRQ_ALWAYS;
2165        else
2166                irq = DESCRIPTOR_NO_IRQ;
2167
2168        last = z == 2 ? d : d + z - 1;
2169        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2170                                     DESCRIPTOR_STATUS |
2171                                     DESCRIPTOR_BRANCH_ALWAYS |
2172                                     irq);
2173
2174        context_append(&ctx->context, d, z, header_z);
2175
2176        return 0;
2177}
2178
2179static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2180                                             struct fw_iso_packet *packet,
2181                                             struct fw_iso_buffer *buffer,
2182                                             unsigned long payload)
2183{
2184        struct iso_context *ctx = container_of(base, struct iso_context, base);
2185        struct db_descriptor *db = NULL;
2186        struct descriptor *d;
2187        struct fw_iso_packet *p;
2188        dma_addr_t d_bus, page_bus;
2189        u32 z, header_z, length, rest;
2190        int page, offset, packet_count, header_size;
2191
2192        /*
2193         * FIXME: Cycle lost behavior should be configurable: lose
2194         * packet, retransmit or terminate..
2195         */
2196
2197        p = packet;
2198        z = 2;
2199
2200        /*
2201         * The OHCI controller puts the isochronous header and trailer in the
2202         * buffer, so we need at least 8 bytes.
2203         */
2204        packet_count = p->header_length / ctx->base.header_size;
2205        header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2206
2207        /* Get header size in number of descriptors. */
2208        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2209        page     = payload >> PAGE_SHIFT;
2210        offset   = payload & ~PAGE_MASK;
2211        rest     = p->payload_length;
2212
2213        /* FIXME: make packet-per-buffer/dual-buffer a context option */
2214        while (rest > 0) {
2215                d = context_get_descriptors(&ctx->context,
2216                                            z + header_z, &d_bus);
2217                if (d == NULL)
2218                        return -ENOMEM;
2219
2220                db = (struct db_descriptor *) d;
2221                db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2222                                          DESCRIPTOR_BRANCH_ALWAYS);
2223                db->first_size =
2224                    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2225                if (p->skip && rest == p->payload_length) {
2226                        db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2227                        db->first_req_count = db->first_size;
2228                } else {
2229                        db->first_req_count = cpu_to_le16(header_size);
2230                }
2231                db->first_res_count = db->first_req_count;
2232                db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2233
2234                if (p->skip && rest == p->payload_length)
2235                        length = 4;
2236                else if (offset + rest < PAGE_SIZE)
2237                        length = rest;
2238                else
2239                        length = PAGE_SIZE - offset;
2240
2241                db->second_req_count = cpu_to_le16(length);
2242                db->second_res_count = db->second_req_count;
2243                page_bus = page_private(buffer->pages[page]);
2244                db->second_buffer = cpu_to_le32(page_bus + offset);
2245
2246                if (p->interrupt && length == rest)
2247                        db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2248
2249                context_append(&ctx->context, d, z, header_z);
2250                offset = (offset + length) & ~PAGE_MASK;
2251                rest -= length;
2252                if (offset == 0)
2253                        page++;
2254        }
2255
2256        return 0;
2257}
2258
2259static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2260                                        struct fw_iso_packet *packet,
2261                                        struct fw_iso_buffer *buffer,
2262                                        unsigned long payload)
2263{
2264        struct iso_context *ctx = container_of(base, struct iso_context, base);
2265        struct descriptor *d = NULL, *pd = NULL;
2266        struct fw_iso_packet *p = packet;
2267        dma_addr_t d_bus, page_bus;
2268        u32 z, header_z, rest;
2269        int i, j, length;
2270        int page, offset, packet_count, header_size, payload_per_buffer;
2271
2272        /*
2273         * The OHCI controller puts the isochronous header and trailer in the
2274         * buffer, so we need at least 8 bytes.
2275         */
2276        packet_count = p->header_length / ctx->base.header_size;
2277        header_size  = max(ctx->base.header_size, (size_t)8);
2278
2279        /* Get header size in number of descriptors. */
2280        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2281        page     = payload >> PAGE_SHIFT;
2282        offset   = payload & ~PAGE_MASK;
2283        payload_per_buffer = p->payload_length / packet_count;
2284
2285        for (i = 0; i < packet_count; i++) {
2286                /* d points to the header descriptor */
2287                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2288                d = context_get_descriptors(&ctx->context,
2289                                z + header_z, &d_bus);
2290                if (d == NULL)
2291                        return -ENOMEM;
2292
2293                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2294                                              DESCRIPTOR_INPUT_MORE);
2295                if (p->skip && i == 0)
2296                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2297                d->req_count    = cpu_to_le16(header_size);
2298                d->res_count    = d->req_count;
2299                d->transfer_status = 0;
2300                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2301
2302                rest = payload_per_buffer;
2303                for (j = 1; j < z; j++) {
2304                        pd = d + j;
2305                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2306                                                  DESCRIPTOR_INPUT_MORE);
2307
2308                        if (offset + rest < PAGE_SIZE)
2309                                length = rest;
2310                        else
2311                                length = PAGE_SIZE - offset;
2312                        pd->req_count = cpu_to_le16(length);
2313                        pd->res_count = pd->req_count;
2314                        pd->transfer_status = 0;
2315
2316                        page_bus = page_private(buffer->pages[page]);
2317                        pd->data_address = cpu_to_le32(page_bus + offset);
2318
2319                        offset = (offset + length) & ~PAGE_MASK;
2320                        rest -= length;
2321                        if (offset == 0)
2322                                page++;
2323                }
2324                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2325                                          DESCRIPTOR_INPUT_LAST |
2326                                          DESCRIPTOR_BRANCH_ALWAYS);
2327                if (p->interrupt && i == packet_count - 1)
2328                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2329
2330                context_append(&ctx->context, d, z, header_z);
2331        }
2332
2333        return 0;
2334}
2335
2336static int ohci_queue_iso(struct fw_iso_context *base,
2337                          struct fw_iso_packet *packet,
2338                          struct fw_iso_buffer *buffer,
2339                          unsigned long payload)
2340{
2341        struct iso_context *ctx = container_of(base, struct iso_context, base);
2342        unsigned long flags;
2343        int ret;
2344
2345        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2346        if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2347                ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2348        else if (ctx->context.ohci->use_dualbuffer)
2349                ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2350                                                        buffer, payload);
2351        else
2352                ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2353                                                        buffer, payload);
2354        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2355
2356        return ret;
2357}
2358
2359static const struct fw_card_driver ohci_driver = {
2360        .enable                 = ohci_enable,
2361        .update_phy_reg         = ohci_update_phy_reg,
2362        .set_config_rom         = ohci_set_config_rom,
2363        .send_request           = ohci_send_request,
2364        .send_response          = ohci_send_response,
2365        .cancel_packet          = ohci_cancel_packet,
2366        .enable_phys_dma        = ohci_enable_phys_dma,
2367        .get_bus_time           = ohci_get_bus_time,
2368
2369        .allocate_iso_context   = ohci_allocate_iso_context,
2370        .free_iso_context       = ohci_free_iso_context,
2371        .queue_iso              = ohci_queue_iso,
2372        .start_iso              = ohci_start_iso,
2373        .stop_iso               = ohci_stop_iso,
2374};
2375
2376#ifdef CONFIG_PPC_PMAC
2377static void ohci_pmac_on(struct pci_dev *dev)
2378{
2379        if (machine_is(powermac)) {
2380                struct device_node *ofn = pci_device_to_OF_node(dev);
2381
2382                if (ofn) {
2383                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2384                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2385                }
2386        }
2387}
2388
2389static void ohci_pmac_off(struct pci_dev *dev)
2390{
2391        if (machine_is(powermac)) {
2392                struct device_node *ofn = pci_device_to_OF_node(dev);
2393
2394                if (ofn) {
2395                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2396                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2397                }
2398        }
2399}
2400#else
2401#define ohci_pmac_on(dev)
2402#define ohci_pmac_off(dev)
2403#endif /* CONFIG_PPC_PMAC */
2404
2405#define PCI_VENDOR_ID_AGERE             PCI_VENDOR_ID_ATT
2406#define PCI_DEVICE_ID_AGERE_FW643       0x5901
2407
2408static int __devinit pci_probe(struct pci_dev *dev,
2409                               const struct pci_device_id *ent)
2410{
2411        struct fw_ohci *ohci;
2412        u32 bus_options, max_receive, link_speed, version;
2413        u64 guid;
2414        int err;
2415        size_t size;
2416
2417        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2418        if (ohci == NULL) {
2419                err = -ENOMEM;
2420                goto fail;
2421        }
2422
2423        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2424
2425        ohci_pmac_on(dev);
2426
2427        err = pci_enable_device(dev);
2428        if (err) {
2429                fw_error("Failed to enable OHCI hardware\n");
2430                goto fail_free;
2431        }
2432
2433        pci_set_master(dev);
2434        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2435        pci_set_drvdata(dev, ohci);
2436
2437        spin_lock_init(&ohci->lock);
2438
2439        tasklet_init(&ohci->bus_reset_tasklet,
2440                     bus_reset_tasklet, (unsigned long)ohci);
2441
2442        err = pci_request_region(dev, 0, ohci_driver_name);
2443        if (err) {
2444                fw_error("MMIO resource unavailable\n");
2445                goto fail_disable;
2446        }
2447
2448        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2449        if (ohci->registers == NULL) {
2450                fw_error("Failed to remap registers\n");
2451                err = -ENXIO;
2452                goto fail_iomem;
2453        }
2454
2455        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2456        ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2457
2458        /* dual-buffer mode is broken if more than one IR context is active */
2459        if (dev->vendor == PCI_VENDOR_ID_AGERE &&
2460            dev->device == PCI_DEVICE_ID_AGERE_FW643)
2461                ohci->use_dualbuffer = false;
2462
2463        /* dual-buffer mode is broken */
2464        if (dev->vendor == PCI_VENDOR_ID_RICOH &&
2465            dev->device == PCI_DEVICE_ID_RICOH_R5C832)
2466                ohci->use_dualbuffer = false;
2467
2468/* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2469#if !defined(CONFIG_X86_32)
2470        /* dual-buffer mode is broken with descriptor addresses above 2G */
2471        if (dev->vendor == PCI_VENDOR_ID_TI &&
2472            dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2473                ohci->use_dualbuffer = false;
2474#endif
2475
2476#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2477        ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2478                             dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2479#endif
2480        ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2481
2482        ar_context_init(&ohci->ar_request_ctx, ohci,
2483                        OHCI1394_AsReqRcvContextControlSet);
2484
2485        ar_context_init(&ohci->ar_response_ctx, ohci,
2486                        OHCI1394_AsRspRcvContextControlSet);
2487
2488        context_init(&ohci->at_request_ctx, ohci,
2489                     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2490
2491        context_init(&ohci->at_response_ctx, ohci,
2492                     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2493
2494        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2495        ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2496        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2497        size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2498        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2499
2500        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2501        ohci->ir_context_channels = ~0ULL;
2502        ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2503        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2504        size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2505        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2506
2507        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2508                err = -ENOMEM;
2509                goto fail_contexts;
2510        }
2511
2512        /* self-id dma buffer allocation */
2513        ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2514                                               SELF_ID_BUF_SIZE,
2515                                               &ohci->self_id_bus,
2516                                               GFP_KERNEL);
2517        if (ohci->self_id_cpu == NULL) {
2518                err = -ENOMEM;
2519                goto fail_contexts;
2520        }
2521
2522        bus_options = reg_read(ohci, OHCI1394_BusOptions);
2523        max_receive = (bus_options >> 12) & 0xf;
2524        link_speed = bus_options & 0x7;
2525        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2526                reg_read(ohci, OHCI1394_GUIDLo);
2527
2528        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2529        if (err)
2530                goto fail_self_id;
2531
2532        fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2533                  dev_name(&dev->dev), version >> 16, version & 0xff);
2534
2535        return 0;
2536
2537 fail_self_id:
2538        dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2539                          ohci->self_id_cpu, ohci->self_id_bus);
2540 fail_contexts:
2541        kfree(ohci->ir_context_list);
2542        kfree(ohci->it_context_list);
2543        context_release(&ohci->at_response_ctx);
2544        context_release(&ohci->at_request_ctx);
2545        ar_context_release(&ohci->ar_response_ctx);
2546        ar_context_release(&ohci->ar_request_ctx);
2547        pci_iounmap(dev, ohci->registers);
2548 fail_iomem:
2549        pci_release_region(dev, 0);
2550 fail_disable:
2551        pci_disable_device(dev);
2552 fail_free:
2553        kfree(&ohci->card);
2554        ohci_pmac_off(dev);
2555 fail:
2556        if (err == -ENOMEM)
2557                fw_error("Out of memory\n");
2558
2559        return err;
2560}
2561
2562static void pci_remove(struct pci_dev *dev)
2563{
2564        struct fw_ohci *ohci;
2565
2566        ohci = pci_get_drvdata(dev);
2567        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2568        flush_writes(ohci);
2569        fw_core_remove_card(&ohci->card);
2570
2571        /*
2572         * FIXME: Fail all pending packets here, now that the upper
2573         * layers can't queue any more.
2574         */
2575
2576        software_reset(ohci);
2577        free_irq(dev->irq, ohci);
2578
2579        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2580                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2581                                  ohci->next_config_rom, ohci->next_config_rom_bus);
2582        if (ohci->config_rom)
2583                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2584                                  ohci->config_rom, ohci->config_rom_bus);
2585        dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2586                          ohci->self_id_cpu, ohci->self_id_bus);
2587        ar_context_release(&ohci->ar_request_ctx);
2588        ar_context_release(&ohci->ar_response_ctx);
2589        context_release(&ohci->at_request_ctx);
2590        context_release(&ohci->at_response_ctx);
2591        kfree(ohci->it_context_list);
2592        kfree(ohci->ir_context_list);
2593        pci_iounmap(dev, ohci->registers);
2594        pci_release_region(dev, 0);
2595        pci_disable_device(dev);
2596        kfree(&ohci->card);
2597        ohci_pmac_off(dev);
2598
2599        fw_notify("Removed fw-ohci device.\n");
2600}
2601
2602#ifdef CONFIG_PM
2603static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2604{
2605        struct fw_ohci *ohci = pci_get_drvdata(dev);
2606        int err;
2607
2608        software_reset(ohci);
2609        free_irq(dev->irq, ohci);
2610        err = pci_save_state(dev);
2611        if (err) {
2612                fw_error("pci_save_state failed\n");
2613                return err;
2614        }
2615        err = pci_set_power_state(dev, pci_choose_state(dev, state));
2616        if (err)
2617                fw_error("pci_set_power_state failed with %d\n", err);
2618        ohci_pmac_off(dev);
2619
2620        return 0;
2621}
2622
2623static int pci_resume(struct pci_dev *dev)
2624{
2625        struct fw_ohci *ohci = pci_get_drvdata(dev);
2626        int err;
2627
2628        ohci_pmac_on(dev);
2629        pci_set_power_state(dev, PCI_D0);
2630        pci_restore_state(dev);
2631        err = pci_enable_device(dev);
2632        if (err) {
2633                fw_error("pci_enable_device failed\n");
2634                return err;
2635        }
2636
2637        return ohci_enable(&ohci->card, NULL, 0);
2638}
2639#endif
2640
2641static struct pci_device_id pci_table[] = {
2642        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2643        { }
2644};
2645
2646MODULE_DEVICE_TABLE(pci, pci_table);
2647
2648static struct pci_driver fw_ohci_pci_driver = {
2649        .name           = ohci_driver_name,
2650        .id_table       = pci_table,
2651        .probe          = pci_probe,
2652        .remove         = pci_remove,
2653#ifdef CONFIG_PM
2654        .resume         = pci_resume,
2655        .suspend        = pci_suspend,
2656#endif
2657};
2658
2659MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2660MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2661MODULE_LICENSE("GPL");
2662
2663/* Provide a module alias so root-on-sbp2 initrds don't break. */
2664#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2665MODULE_ALIAS("ohci1394");
2666#endif
2667
2668static int __init fw_ohci_init(void)
2669{
2670        return pci_register_driver(&fw_ohci_pci_driver);
2671}
2672
2673static void __exit fw_ohci_cleanup(void)
2674{
2675        pci_unregister_driver(&fw_ohci_pci_driver);
2676}
2677
2678module_init(fw_ohci_init);
2679module_exit(fw_ohci_cleanup);
2680