linux/drivers/gpu/drm/drm_modes.c
<<
>>
Prefs
   1/*
   2 * The list_sort function is (presumably) licensed under the GPL (see the
   3 * top level "COPYING" file for details).
   4 *
   5 * The remainder of this file is:
   6 *
   7 * Copyright © 1997-2003 by The XFree86 Project, Inc.
   8 * Copyright © 2007 Dave Airlie
   9 * Copyright © 2007-2008 Intel Corporation
  10 *   Jesse Barnes <jesse.barnes@intel.com>
  11 * Copyright 2005-2006 Luc Verhaegen
  12 * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
  13 *
  14 * Permission is hereby granted, free of charge, to any person obtaining a
  15 * copy of this software and associated documentation files (the "Software"),
  16 * to deal in the Software without restriction, including without limitation
  17 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  18 * and/or sell copies of the Software, and to permit persons to whom the
  19 * Software is furnished to do so, subject to the following conditions:
  20 *
  21 * The above copyright notice and this permission notice shall be included in
  22 * all copies or substantial portions of the Software.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  27 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  28 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  29 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  30 * OTHER DEALINGS IN THE SOFTWARE.
  31 *
  32 * Except as contained in this notice, the name of the copyright holder(s)
  33 * and author(s) shall not be used in advertising or otherwise to promote
  34 * the sale, use or other dealings in this Software without prior written
  35 * authorization from the copyright holder(s) and author(s).
  36 */
  37
  38#include <linux/list.h>
  39#include "drmP.h"
  40#include "drm.h"
  41#include "drm_crtc.h"
  42
  43/**
  44 * drm_mode_debug_printmodeline - debug print a mode
  45 * @dev: DRM device
  46 * @mode: mode to print
  47 *
  48 * LOCKING:
  49 * None.
  50 *
  51 * Describe @mode using DRM_DEBUG.
  52 */
  53void drm_mode_debug_printmodeline(struct drm_display_mode *mode)
  54{
  55        DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
  56                        "0x%x 0x%x\n",
  57                mode->base.id, mode->name, mode->vrefresh, mode->clock,
  58                mode->hdisplay, mode->hsync_start,
  59                mode->hsync_end, mode->htotal,
  60                mode->vdisplay, mode->vsync_start,
  61                mode->vsync_end, mode->vtotal, mode->type, mode->flags);
  62}
  63EXPORT_SYMBOL(drm_mode_debug_printmodeline);
  64
  65/**
  66 * drm_cvt_mode -create a modeline based on CVT algorithm
  67 * @dev: DRM device
  68 * @hdisplay: hdisplay size
  69 * @vdisplay: vdisplay size
  70 * @vrefresh  : vrefresh rate
  71 * @reduced : Whether the GTF calculation is simplified
  72 * @interlaced:Whether the interlace is supported
  73 *
  74 * LOCKING:
  75 * none.
  76 *
  77 * return the modeline based on CVT algorithm
  78 *
  79 * This function is called to generate the modeline based on CVT algorithm
  80 * according to the hdisplay, vdisplay, vrefresh.
  81 * It is based from the VESA(TM) Coordinated Video Timing Generator by
  82 * Graham Loveridge April 9, 2003 available at
  83 * http://www.vesa.org/public/CVT/CVTd6r1.xls
  84 *
  85 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
  86 * What I have done is to translate it by using integer calculation.
  87 */
  88#define HV_FACTOR                       1000
  89struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
  90                                      int vdisplay, int vrefresh,
  91                                      bool reduced, bool interlaced, bool margins)
  92{
  93        /* 1) top/bottom margin size (% of height) - default: 1.8, */
  94#define CVT_MARGIN_PERCENTAGE           18
  95        /* 2) character cell horizontal granularity (pixels) - default 8 */
  96#define CVT_H_GRANULARITY               8
  97        /* 3) Minimum vertical porch (lines) - default 3 */
  98#define CVT_MIN_V_PORCH                 3
  99        /* 4) Minimum number of vertical back porch lines - default 6 */
 100#define CVT_MIN_V_BPORCH                6
 101        /* Pixel Clock step (kHz) */
 102#define CVT_CLOCK_STEP                  250
 103        struct drm_display_mode *drm_mode;
 104        unsigned int vfieldrate, hperiod;
 105        int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
 106        int interlace;
 107
 108        /* allocate the drm_display_mode structure. If failure, we will
 109         * return directly
 110         */
 111        drm_mode = drm_mode_create(dev);
 112        if (!drm_mode)
 113                return NULL;
 114
 115        /* the CVT default refresh rate is 60Hz */
 116        if (!vrefresh)
 117                vrefresh = 60;
 118
 119        /* the required field fresh rate */
 120        if (interlaced)
 121                vfieldrate = vrefresh * 2;
 122        else
 123                vfieldrate = vrefresh;
 124
 125        /* horizontal pixels */
 126        hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
 127
 128        /* determine the left&right borders */
 129        hmargin = 0;
 130        if (margins) {
 131                hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
 132                hmargin -= hmargin % CVT_H_GRANULARITY;
 133        }
 134        /* find the total active pixels */
 135        drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
 136
 137        /* find the number of lines per field */
 138        if (interlaced)
 139                vdisplay_rnd = vdisplay / 2;
 140        else
 141                vdisplay_rnd = vdisplay;
 142
 143        /* find the top & bottom borders */
 144        vmargin = 0;
 145        if (margins)
 146                vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
 147
 148        drm_mode->vdisplay = vdisplay + 2 * vmargin;
 149
 150        /* Interlaced */
 151        if (interlaced)
 152                interlace = 1;
 153        else
 154                interlace = 0;
 155
 156        /* Determine VSync Width from aspect ratio */
 157        if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
 158                vsync = 4;
 159        else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
 160                vsync = 5;
 161        else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
 162                vsync = 6;
 163        else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
 164                vsync = 7;
 165        else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
 166                vsync = 7;
 167        else /* custom */
 168                vsync = 10;
 169
 170        if (!reduced) {
 171                /* simplify the GTF calculation */
 172                /* 4) Minimum time of vertical sync + back porch interval (µs)
 173                 * default 550.0
 174                 */
 175                int tmp1, tmp2;
 176#define CVT_MIN_VSYNC_BP        550
 177                /* 3) Nominal HSync width (% of line period) - default 8 */
 178#define CVT_HSYNC_PERCENTAGE    8
 179                unsigned int hblank_percentage;
 180                int vsyncandback_porch, vback_porch, hblank;
 181
 182                /* estimated the horizontal period */
 183                tmp1 = HV_FACTOR * 1000000  -
 184                                CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
 185                tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
 186                                interlace;
 187                hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
 188
 189                tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
 190                /* 9. Find number of lines in sync + backporch */
 191                if (tmp1 < (vsync + CVT_MIN_V_PORCH))
 192                        vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
 193                else
 194                        vsyncandback_porch = tmp1;
 195                /* 10. Find number of lines in back porch */
 196                vback_porch = vsyncandback_porch - vsync;
 197                drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
 198                                vsyncandback_porch + CVT_MIN_V_PORCH;
 199                /* 5) Definition of Horizontal blanking time limitation */
 200                /* Gradient (%/kHz) - default 600 */
 201#define CVT_M_FACTOR    600
 202                /* Offset (%) - default 40 */
 203#define CVT_C_FACTOR    40
 204                /* Blanking time scaling factor - default 128 */
 205#define CVT_K_FACTOR    128
 206                /* Scaling factor weighting - default 20 */
 207#define CVT_J_FACTOR    20
 208#define CVT_M_PRIME     (CVT_M_FACTOR * CVT_K_FACTOR / 256)
 209#define CVT_C_PRIME     ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
 210                         CVT_J_FACTOR)
 211                /* 12. Find ideal blanking duty cycle from formula */
 212                hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
 213                                        hperiod / 1000;
 214                /* 13. Blanking time */
 215                if (hblank_percentage < 20 * HV_FACTOR)
 216                        hblank_percentage = 20 * HV_FACTOR;
 217                hblank = drm_mode->hdisplay * hblank_percentage /
 218                         (100 * HV_FACTOR - hblank_percentage);
 219                hblank -= hblank % (2 * CVT_H_GRANULARITY);
 220                /* 14. find the total pixes per line */
 221                drm_mode->htotal = drm_mode->hdisplay + hblank;
 222                drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
 223                drm_mode->hsync_start = drm_mode->hsync_end -
 224                        (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
 225                drm_mode->hsync_start += CVT_H_GRANULARITY -
 226                        drm_mode->hsync_start % CVT_H_GRANULARITY;
 227                /* fill the Vsync values */
 228                drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
 229                drm_mode->vsync_end = drm_mode->vsync_start + vsync;
 230        } else {
 231                /* Reduced blanking */
 232                /* Minimum vertical blanking interval time (µs)- default 460 */
 233#define CVT_RB_MIN_VBLANK       460
 234                /* Fixed number of clocks for horizontal sync */
 235#define CVT_RB_H_SYNC           32
 236                /* Fixed number of clocks for horizontal blanking */
 237#define CVT_RB_H_BLANK          160
 238                /* Fixed number of lines for vertical front porch - default 3*/
 239#define CVT_RB_VFPORCH          3
 240                int vbilines;
 241                int tmp1, tmp2;
 242                /* 8. Estimate Horizontal period. */
 243                tmp1 = HV_FACTOR * 1000000 -
 244                        CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
 245                tmp2 = vdisplay_rnd + 2 * vmargin;
 246                hperiod = tmp1 / (tmp2 * vfieldrate);
 247                /* 9. Find number of lines in vertical blanking */
 248                vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
 249                /* 10. Check if vertical blanking is sufficient */
 250                if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
 251                        vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
 252                /* 11. Find total number of lines in vertical field */
 253                drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
 254                /* 12. Find total number of pixels in a line */
 255                drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
 256                /* Fill in HSync values */
 257                drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
 258                drm_mode->hsync_start = drm_mode->hsync_end = CVT_RB_H_SYNC;
 259        }
 260        /* 15/13. Find pixel clock frequency (kHz for xf86) */
 261        drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
 262        drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
 263        /* 18/16. Find actual vertical frame frequency */
 264        /* ignore - just set the mode flag for interlaced */
 265        if (interlaced)
 266                drm_mode->vtotal *= 2;
 267        /* Fill the mode line name */
 268        drm_mode_set_name(drm_mode);
 269        if (reduced)
 270                drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
 271                                        DRM_MODE_FLAG_NVSYNC);
 272        else
 273                drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
 274                                        DRM_MODE_FLAG_NHSYNC);
 275        if (interlaced)
 276                drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
 277
 278    return drm_mode;
 279}
 280EXPORT_SYMBOL(drm_cvt_mode);
 281
 282/**
 283 * drm_gtf_mode - create the modeline based on GTF algorithm
 284 *
 285 * @dev         :drm device
 286 * @hdisplay    :hdisplay size
 287 * @vdisplay    :vdisplay size
 288 * @vrefresh    :vrefresh rate.
 289 * @interlaced  :whether the interlace is supported
 290 * @margins     :whether the margin is supported
 291 *
 292 * LOCKING.
 293 * none.
 294 *
 295 * return the modeline based on GTF algorithm
 296 *
 297 * This function is to create the modeline based on the GTF algorithm.
 298 * Generalized Timing Formula is derived from:
 299 *      GTF Spreadsheet by Andy Morrish (1/5/97)
 300 *      available at http://www.vesa.org
 301 *
 302 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
 303 * What I have done is to translate it by using integer calculation.
 304 * I also refer to the function of fb_get_mode in the file of
 305 * drivers/video/fbmon.c
 306 */
 307struct drm_display_mode *drm_gtf_mode(struct drm_device *dev, int hdisplay,
 308                                      int vdisplay, int vrefresh,
 309                                      bool interlaced, int margins)
 310{
 311        /* 1) top/bottom margin size (% of height) - default: 1.8, */
 312#define GTF_MARGIN_PERCENTAGE           18
 313        /* 2) character cell horizontal granularity (pixels) - default 8 */
 314#define GTF_CELL_GRAN                   8
 315        /* 3) Minimum vertical porch (lines) - default 3 */
 316#define GTF_MIN_V_PORCH                 1
 317        /* width of vsync in lines */
 318#define V_SYNC_RQD                      3
 319        /* width of hsync as % of total line */
 320#define H_SYNC_PERCENT                  8
 321        /* min time of vsync + back porch (microsec) */
 322#define MIN_VSYNC_PLUS_BP               550
 323        /* blanking formula gradient */
 324#define GTF_M                           600
 325        /* blanking formula offset */
 326#define GTF_C                           40
 327        /* blanking formula scaling factor */
 328#define GTF_K                           128
 329        /* blanking formula scaling factor */
 330#define GTF_J                           20
 331        /* C' and M' are part of the Blanking Duty Cycle computation */
 332#define GTF_C_PRIME             (((GTF_C - GTF_J) * GTF_K / 256) + GTF_J)
 333#define GTF_M_PRIME             (GTF_K * GTF_M / 256)
 334        struct drm_display_mode *drm_mode;
 335        unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
 336        int top_margin, bottom_margin;
 337        int interlace;
 338        unsigned int hfreq_est;
 339        int vsync_plus_bp, vback_porch;
 340        unsigned int vtotal_lines, vfieldrate_est, hperiod;
 341        unsigned int vfield_rate, vframe_rate;
 342        int left_margin, right_margin;
 343        unsigned int total_active_pixels, ideal_duty_cycle;
 344        unsigned int hblank, total_pixels, pixel_freq;
 345        int hsync, hfront_porch, vodd_front_porch_lines;
 346        unsigned int tmp1, tmp2;
 347
 348        drm_mode = drm_mode_create(dev);
 349        if (!drm_mode)
 350                return NULL;
 351
 352        /* 1. In order to give correct results, the number of horizontal
 353         * pixels requested is first processed to ensure that it is divisible
 354         * by the character size, by rounding it to the nearest character
 355         * cell boundary:
 356         */
 357        hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
 358        hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
 359
 360        /* 2. If interlace is requested, the number of vertical lines assumed
 361         * by the calculation must be halved, as the computation calculates
 362         * the number of vertical lines per field.
 363         */
 364        if (interlaced)
 365                vdisplay_rnd = vdisplay / 2;
 366        else
 367                vdisplay_rnd = vdisplay;
 368
 369        /* 3. Find the frame rate required: */
 370        if (interlaced)
 371                vfieldrate_rqd = vrefresh * 2;
 372        else
 373                vfieldrate_rqd = vrefresh;
 374
 375        /* 4. Find number of lines in Top margin: */
 376        top_margin = 0;
 377        if (margins)
 378                top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
 379                                1000;
 380        /* 5. Find number of lines in bottom margin: */
 381        bottom_margin = top_margin;
 382
 383        /* 6. If interlace is required, then set variable interlace: */
 384        if (interlaced)
 385                interlace = 1;
 386        else
 387                interlace = 0;
 388
 389        /* 7. Estimate the Horizontal frequency */
 390        {
 391                tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
 392                tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
 393                                2 + interlace;
 394                hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
 395        }
 396
 397        /* 8. Find the number of lines in V sync + back porch */
 398        /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
 399        vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
 400        vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
 401        /*  9. Find the number of lines in V back porch alone: */
 402        vback_porch = vsync_plus_bp - V_SYNC_RQD;
 403        /*  10. Find the total number of lines in Vertical field period: */
 404        vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
 405                        vsync_plus_bp + GTF_MIN_V_PORCH;
 406        /*  11. Estimate the Vertical field frequency: */
 407        vfieldrate_est = hfreq_est / vtotal_lines;
 408        /*  12. Find the actual horizontal period: */
 409        hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
 410
 411        /*  13. Find the actual Vertical field frequency: */
 412        vfield_rate = hfreq_est / vtotal_lines;
 413        /*  14. Find the Vertical frame frequency: */
 414        if (interlaced)
 415                vframe_rate = vfield_rate / 2;
 416        else
 417                vframe_rate = vfield_rate;
 418        /*  15. Find number of pixels in left margin: */
 419        if (margins)
 420                left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
 421                                1000;
 422        else
 423                left_margin = 0;
 424
 425        /* 16.Find number of pixels in right margin: */
 426        right_margin = left_margin;
 427        /* 17.Find total number of active pixels in image and left and right */
 428        total_active_pixels = hdisplay_rnd + left_margin + right_margin;
 429        /* 18.Find the ideal blanking duty cycle from blanking duty cycle */
 430        ideal_duty_cycle = GTF_C_PRIME * 1000 -
 431                                (GTF_M_PRIME * 1000000 / hfreq_est);
 432        /* 19.Find the number of pixels in the blanking time to the nearest
 433         * double character cell: */
 434        hblank = total_active_pixels * ideal_duty_cycle /
 435                        (100000 - ideal_duty_cycle);
 436        hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
 437        hblank = hblank * 2 * GTF_CELL_GRAN;
 438        /* 20.Find total number of pixels: */
 439        total_pixels = total_active_pixels + hblank;
 440        /* 21.Find pixel clock frequency: */
 441        pixel_freq = total_pixels * hfreq_est / 1000;
 442        /* Stage 1 computations are now complete; I should really pass
 443         * the results to another function and do the Stage 2 computations,
 444         * but I only need a few more values so I'll just append the
 445         * computations here for now */
 446        /* 17. Find the number of pixels in the horizontal sync period: */
 447        hsync = H_SYNC_PERCENT * total_pixels / 100;
 448        hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
 449        hsync = hsync * GTF_CELL_GRAN;
 450        /* 18. Find the number of pixels in horizontal front porch period */
 451        hfront_porch = hblank / 2 - hsync;
 452        /*  36. Find the number of lines in the odd front porch period: */
 453        vodd_front_porch_lines = GTF_MIN_V_PORCH ;
 454
 455        /* finally, pack the results in the mode struct */
 456        drm_mode->hdisplay = hdisplay_rnd;
 457        drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
 458        drm_mode->hsync_end = drm_mode->hsync_start + hsync;
 459        drm_mode->htotal = total_pixels;
 460        drm_mode->vdisplay = vdisplay_rnd;
 461        drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
 462        drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
 463        drm_mode->vtotal = vtotal_lines;
 464
 465        drm_mode->clock = pixel_freq;
 466
 467        drm_mode_set_name(drm_mode);
 468        drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
 469
 470        if (interlaced) {
 471                drm_mode->vtotal *= 2;
 472                drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
 473        }
 474
 475        return drm_mode;
 476}
 477EXPORT_SYMBOL(drm_gtf_mode);
 478/**
 479 * drm_mode_set_name - set the name on a mode
 480 * @mode: name will be set in this mode
 481 *
 482 * LOCKING:
 483 * None.
 484 *
 485 * Set the name of @mode to a standard format.
 486 */
 487void drm_mode_set_name(struct drm_display_mode *mode)
 488{
 489        snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d", mode->hdisplay,
 490                 mode->vdisplay);
 491}
 492EXPORT_SYMBOL(drm_mode_set_name);
 493
 494/**
 495 * drm_mode_list_concat - move modes from one list to another
 496 * @head: source list
 497 * @new: dst list
 498 *
 499 * LOCKING:
 500 * Caller must ensure both lists are locked.
 501 *
 502 * Move all the modes from @head to @new.
 503 */
 504void drm_mode_list_concat(struct list_head *head, struct list_head *new)
 505{
 506
 507        struct list_head *entry, *tmp;
 508
 509        list_for_each_safe(entry, tmp, head) {
 510                list_move_tail(entry, new);
 511        }
 512}
 513EXPORT_SYMBOL(drm_mode_list_concat);
 514
 515/**
 516 * drm_mode_width - get the width of a mode
 517 * @mode: mode
 518 *
 519 * LOCKING:
 520 * None.
 521 *
 522 * Return @mode's width (hdisplay) value.
 523 *
 524 * FIXME: is this needed?
 525 *
 526 * RETURNS:
 527 * @mode->hdisplay
 528 */
 529int drm_mode_width(struct drm_display_mode *mode)
 530{
 531        return mode->hdisplay;
 532
 533}
 534EXPORT_SYMBOL(drm_mode_width);
 535
 536/**
 537 * drm_mode_height - get the height of a mode
 538 * @mode: mode
 539 *
 540 * LOCKING:
 541 * None.
 542 *
 543 * Return @mode's height (vdisplay) value.
 544 *
 545 * FIXME: is this needed?
 546 *
 547 * RETURNS:
 548 * @mode->vdisplay
 549 */
 550int drm_mode_height(struct drm_display_mode *mode)
 551{
 552        return mode->vdisplay;
 553}
 554EXPORT_SYMBOL(drm_mode_height);
 555
 556/**
 557 * drm_mode_vrefresh - get the vrefresh of a mode
 558 * @mode: mode
 559 *
 560 * LOCKING:
 561 * None.
 562 *
 563 * Return @mode's vrefresh rate or calculate it if necessary.
 564 *
 565 * FIXME: why is this needed?  shouldn't vrefresh be set already?
 566 *
 567 * RETURNS:
 568 * Vertical refresh rate. It will be the result of actual value plus 0.5.
 569 * If it is 70.288, it will return 70Hz.
 570 * If it is 59.6, it will return 60Hz.
 571 */
 572int drm_mode_vrefresh(struct drm_display_mode *mode)
 573{
 574        int refresh = 0;
 575        unsigned int calc_val;
 576
 577        if (mode->vrefresh > 0)
 578                refresh = mode->vrefresh;
 579        else if (mode->htotal > 0 && mode->vtotal > 0) {
 580                int vtotal;
 581                vtotal = mode->vtotal;
 582                /* work out vrefresh the value will be x1000 */
 583                calc_val = (mode->clock * 1000);
 584                calc_val /= mode->htotal;
 585                refresh = (calc_val + vtotal / 2) / vtotal;
 586
 587                if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 588                        refresh *= 2;
 589                if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
 590                        refresh /= 2;
 591                if (mode->vscan > 1)
 592                        refresh /= mode->vscan;
 593        }
 594        return refresh;
 595}
 596EXPORT_SYMBOL(drm_mode_vrefresh);
 597
 598/**
 599 * drm_mode_set_crtcinfo - set CRTC modesetting parameters
 600 * @p: mode
 601 * @adjust_flags: unused? (FIXME)
 602 *
 603 * LOCKING:
 604 * None.
 605 *
 606 * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
 607 */
 608void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
 609{
 610        if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
 611                return;
 612
 613        p->crtc_hdisplay = p->hdisplay;
 614        p->crtc_hsync_start = p->hsync_start;
 615        p->crtc_hsync_end = p->hsync_end;
 616        p->crtc_htotal = p->htotal;
 617        p->crtc_hskew = p->hskew;
 618        p->crtc_vdisplay = p->vdisplay;
 619        p->crtc_vsync_start = p->vsync_start;
 620        p->crtc_vsync_end = p->vsync_end;
 621        p->crtc_vtotal = p->vtotal;
 622
 623        if (p->flags & DRM_MODE_FLAG_INTERLACE) {
 624                if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
 625                        p->crtc_vdisplay /= 2;
 626                        p->crtc_vsync_start /= 2;
 627                        p->crtc_vsync_end /= 2;
 628                        p->crtc_vtotal /= 2;
 629                }
 630
 631                p->crtc_vtotal |= 1;
 632        }
 633
 634        if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
 635                p->crtc_vdisplay *= 2;
 636                p->crtc_vsync_start *= 2;
 637                p->crtc_vsync_end *= 2;
 638                p->crtc_vtotal *= 2;
 639        }
 640
 641        if (p->vscan > 1) {
 642                p->crtc_vdisplay *= p->vscan;
 643                p->crtc_vsync_start *= p->vscan;
 644                p->crtc_vsync_end *= p->vscan;
 645                p->crtc_vtotal *= p->vscan;
 646        }
 647
 648        p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
 649        p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
 650        p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
 651        p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
 652
 653        p->crtc_hadjusted = false;
 654        p->crtc_vadjusted = false;
 655}
 656EXPORT_SYMBOL(drm_mode_set_crtcinfo);
 657
 658
 659/**
 660 * drm_mode_duplicate - allocate and duplicate an existing mode
 661 * @m: mode to duplicate
 662 *
 663 * LOCKING:
 664 * None.
 665 *
 666 * Just allocate a new mode, copy the existing mode into it, and return
 667 * a pointer to it.  Used to create new instances of established modes.
 668 */
 669struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
 670                                            struct drm_display_mode *mode)
 671{
 672        struct drm_display_mode *nmode;
 673        int new_id;
 674
 675        nmode = drm_mode_create(dev);
 676        if (!nmode)
 677                return NULL;
 678
 679        new_id = nmode->base.id;
 680        *nmode = *mode;
 681        nmode->base.id = new_id;
 682        INIT_LIST_HEAD(&nmode->head);
 683        return nmode;
 684}
 685EXPORT_SYMBOL(drm_mode_duplicate);
 686
 687/**
 688 * drm_mode_equal - test modes for equality
 689 * @mode1: first mode
 690 * @mode2: second mode
 691 *
 692 * LOCKING:
 693 * None.
 694 *
 695 * Check to see if @mode1 and @mode2 are equivalent.
 696 *
 697 * RETURNS:
 698 * True if the modes are equal, false otherwise.
 699 */
 700bool drm_mode_equal(struct drm_display_mode *mode1, struct drm_display_mode *mode2)
 701{
 702        /* do clock check convert to PICOS so fb modes get matched
 703         * the same */
 704        if (mode1->clock && mode2->clock) {
 705                if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
 706                        return false;
 707        } else if (mode1->clock != mode2->clock)
 708                return false;
 709
 710        if (mode1->hdisplay == mode2->hdisplay &&
 711            mode1->hsync_start == mode2->hsync_start &&
 712            mode1->hsync_end == mode2->hsync_end &&
 713            mode1->htotal == mode2->htotal &&
 714            mode1->hskew == mode2->hskew &&
 715            mode1->vdisplay == mode2->vdisplay &&
 716            mode1->vsync_start == mode2->vsync_start &&
 717            mode1->vsync_end == mode2->vsync_end &&
 718            mode1->vtotal == mode2->vtotal &&
 719            mode1->vscan == mode2->vscan &&
 720            mode1->flags == mode2->flags)
 721                return true;
 722
 723        return false;
 724}
 725EXPORT_SYMBOL(drm_mode_equal);
 726
 727/**
 728 * drm_mode_validate_size - make sure modes adhere to size constraints
 729 * @dev: DRM device
 730 * @mode_list: list of modes to check
 731 * @maxX: maximum width
 732 * @maxY: maximum height
 733 * @maxPitch: max pitch
 734 *
 735 * LOCKING:
 736 * Caller must hold a lock protecting @mode_list.
 737 *
 738 * The DRM device (@dev) has size and pitch limits.  Here we validate the
 739 * modes we probed for @dev against those limits and set their status as
 740 * necessary.
 741 */
 742void drm_mode_validate_size(struct drm_device *dev,
 743                            struct list_head *mode_list,
 744                            int maxX, int maxY, int maxPitch)
 745{
 746        struct drm_display_mode *mode;
 747
 748        list_for_each_entry(mode, mode_list, head) {
 749                if (maxPitch > 0 && mode->hdisplay > maxPitch)
 750                        mode->status = MODE_BAD_WIDTH;
 751
 752                if (maxX > 0 && mode->hdisplay > maxX)
 753                        mode->status = MODE_VIRTUAL_X;
 754
 755                if (maxY > 0 && mode->vdisplay > maxY)
 756                        mode->status = MODE_VIRTUAL_Y;
 757        }
 758}
 759EXPORT_SYMBOL(drm_mode_validate_size);
 760
 761/**
 762 * drm_mode_validate_clocks - validate modes against clock limits
 763 * @dev: DRM device
 764 * @mode_list: list of modes to check
 765 * @min: minimum clock rate array
 766 * @max: maximum clock rate array
 767 * @n_ranges: number of clock ranges (size of arrays)
 768 *
 769 * LOCKING:
 770 * Caller must hold a lock protecting @mode_list.
 771 *
 772 * Some code may need to check a mode list against the clock limits of the
 773 * device in question.  This function walks the mode list, testing to make
 774 * sure each mode falls within a given range (defined by @min and @max
 775 * arrays) and sets @mode->status as needed.
 776 */
 777void drm_mode_validate_clocks(struct drm_device *dev,
 778                              struct list_head *mode_list,
 779                              int *min, int *max, int n_ranges)
 780{
 781        struct drm_display_mode *mode;
 782        int i;
 783
 784        list_for_each_entry(mode, mode_list, head) {
 785                bool good = false;
 786                for (i = 0; i < n_ranges; i++) {
 787                        if (mode->clock >= min[i] && mode->clock <= max[i]) {
 788                                good = true;
 789                                break;
 790                        }
 791                }
 792                if (!good)
 793                        mode->status = MODE_CLOCK_RANGE;
 794        }
 795}
 796EXPORT_SYMBOL(drm_mode_validate_clocks);
 797
 798/**
 799 * drm_mode_prune_invalid - remove invalid modes from mode list
 800 * @dev: DRM device
 801 * @mode_list: list of modes to check
 802 * @verbose: be verbose about it
 803 *
 804 * LOCKING:
 805 * Caller must hold a lock protecting @mode_list.
 806 *
 807 * Once mode list generation is complete, a caller can use this routine to
 808 * remove invalid modes from a mode list.  If any of the modes have a
 809 * status other than %MODE_OK, they are removed from @mode_list and freed.
 810 */
 811void drm_mode_prune_invalid(struct drm_device *dev,
 812                            struct list_head *mode_list, bool verbose)
 813{
 814        struct drm_display_mode *mode, *t;
 815
 816        list_for_each_entry_safe(mode, t, mode_list, head) {
 817                if (mode->status != MODE_OK) {
 818                        list_del(&mode->head);
 819                        if (verbose) {
 820                                drm_mode_debug_printmodeline(mode);
 821                                DRM_DEBUG_KMS("Not using %s mode %d\n",
 822                                        mode->name, mode->status);
 823                        }
 824                        drm_mode_destroy(dev, mode);
 825                }
 826        }
 827}
 828EXPORT_SYMBOL(drm_mode_prune_invalid);
 829
 830/**
 831 * drm_mode_compare - compare modes for favorability
 832 * @lh_a: list_head for first mode
 833 * @lh_b: list_head for second mode
 834 *
 835 * LOCKING:
 836 * None.
 837 *
 838 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
 839 * which is better.
 840 *
 841 * RETURNS:
 842 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
 843 * positive if @lh_b is better than @lh_a.
 844 */
 845static int drm_mode_compare(struct list_head *lh_a, struct list_head *lh_b)
 846{
 847        struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
 848        struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
 849        int diff;
 850
 851        diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
 852                ((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
 853        if (diff)
 854                return diff;
 855        diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
 856        if (diff)
 857                return diff;
 858        diff = b->clock - a->clock;
 859        return diff;
 860}
 861
 862/* FIXME: what we don't have a list sort function? */
 863/* list sort from Mark J Roberts (mjr@znex.org) */
 864void list_sort(struct list_head *head,
 865               int (*cmp)(struct list_head *a, struct list_head *b))
 866{
 867        struct list_head *p, *q, *e, *list, *tail, *oldhead;
 868        int insize, nmerges, psize, qsize, i;
 869
 870        list = head->next;
 871        list_del(head);
 872        insize = 1;
 873        for (;;) {
 874                p = oldhead = list;
 875                list = tail = NULL;
 876                nmerges = 0;
 877
 878                while (p) {
 879                        nmerges++;
 880                        q = p;
 881                        psize = 0;
 882                        for (i = 0; i < insize; i++) {
 883                                psize++;
 884                                q = q->next == oldhead ? NULL : q->next;
 885                                if (!q)
 886                                        break;
 887                        }
 888
 889                        qsize = insize;
 890                        while (psize > 0 || (qsize > 0 && q)) {
 891                                if (!psize) {
 892                                        e = q;
 893                                        q = q->next;
 894                                        qsize--;
 895                                        if (q == oldhead)
 896                                                q = NULL;
 897                                } else if (!qsize || !q) {
 898                                        e = p;
 899                                        p = p->next;
 900                                        psize--;
 901                                        if (p == oldhead)
 902                                                p = NULL;
 903                                } else if (cmp(p, q) <= 0) {
 904                                        e = p;
 905                                        p = p->next;
 906                                        psize--;
 907                                        if (p == oldhead)
 908                                                p = NULL;
 909                                } else {
 910                                        e = q;
 911                                        q = q->next;
 912                                        qsize--;
 913                                        if (q == oldhead)
 914                                                q = NULL;
 915                                }
 916                                if (tail)
 917                                        tail->next = e;
 918                                else
 919                                        list = e;
 920                                e->prev = tail;
 921                                tail = e;
 922                        }
 923                        p = q;
 924                }
 925
 926                tail->next = list;
 927                list->prev = tail;
 928
 929                if (nmerges <= 1)
 930                        break;
 931
 932                insize *= 2;
 933        }
 934
 935        head->next = list;
 936        head->prev = list->prev;
 937        list->prev->next = head;
 938        list->prev = head;
 939}
 940
 941/**
 942 * drm_mode_sort - sort mode list
 943 * @mode_list: list to sort
 944 *
 945 * LOCKING:
 946 * Caller must hold a lock protecting @mode_list.
 947 *
 948 * Sort @mode_list by favorability, putting good modes first.
 949 */
 950void drm_mode_sort(struct list_head *mode_list)
 951{
 952        list_sort(mode_list, drm_mode_compare);
 953}
 954EXPORT_SYMBOL(drm_mode_sort);
 955
 956/**
 957 * drm_mode_connector_list_update - update the mode list for the connector
 958 * @connector: the connector to update
 959 *
 960 * LOCKING:
 961 * Caller must hold a lock protecting @mode_list.
 962 *
 963 * This moves the modes from the @connector probed_modes list
 964 * to the actual mode list. It compares the probed mode against the current
 965 * list and only adds different modes. All modes unverified after this point
 966 * will be removed by the prune invalid modes.
 967 */
 968void drm_mode_connector_list_update(struct drm_connector *connector)
 969{
 970        struct drm_display_mode *mode;
 971        struct drm_display_mode *pmode, *pt;
 972        int found_it;
 973
 974        list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
 975                                 head) {
 976                found_it = 0;
 977                /* go through current modes checking for the new probed mode */
 978                list_for_each_entry(mode, &connector->modes, head) {
 979                        if (drm_mode_equal(pmode, mode)) {
 980                                found_it = 1;
 981                                /* if equal delete the probed mode */
 982                                mode->status = pmode->status;
 983                                /* Merge type bits together */
 984                                mode->type |= pmode->type;
 985                                list_del(&pmode->head);
 986                                drm_mode_destroy(connector->dev, pmode);
 987                                break;
 988                        }
 989                }
 990
 991                if (!found_it) {
 992                        list_move_tail(&pmode->head, &connector->modes);
 993                }
 994        }
 995}
 996EXPORT_SYMBOL(drm_mode_connector_list_update);
 997