linux/drivers/gpu/drm/i915/i915_gem.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include "drmP.h"
  29#include "drm.h"
  30#include "i915_drm.h"
  31#include "i915_drv.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/swap.h>
  35#include <linux/pci.h>
  36
  37#define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  38
  39static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  40static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43                                             int write);
  44static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45                                                     uint64_t offset,
  46                                                     uint64_t size);
  47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  50                                           unsigned alignment);
  51static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  52static int i915_gem_evict_something(struct drm_device *dev, int min_size);
  53static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
  54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  55                                struct drm_i915_gem_pwrite *args,
  56                                struct drm_file *file_priv);
  57
  58static LIST_HEAD(shrink_list);
  59static DEFINE_SPINLOCK(shrink_list_lock);
  60
  61int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  62                     unsigned long end)
  63{
  64        drm_i915_private_t *dev_priv = dev->dev_private;
  65
  66        if (start >= end ||
  67            (start & (PAGE_SIZE - 1)) != 0 ||
  68            (end & (PAGE_SIZE - 1)) != 0) {
  69                return -EINVAL;
  70        }
  71
  72        drm_mm_init(&dev_priv->mm.gtt_space, start,
  73                    end - start);
  74
  75        dev->gtt_total = (uint32_t) (end - start);
  76
  77        return 0;
  78}
  79
  80int
  81i915_gem_init_ioctl(struct drm_device *dev, void *data,
  82                    struct drm_file *file_priv)
  83{
  84        struct drm_i915_gem_init *args = data;
  85        int ret;
  86
  87        mutex_lock(&dev->struct_mutex);
  88        ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  89        mutex_unlock(&dev->struct_mutex);
  90
  91        return ret;
  92}
  93
  94int
  95i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  96                            struct drm_file *file_priv)
  97{
  98        struct drm_i915_gem_get_aperture *args = data;
  99
 100        if (!(dev->driver->driver_features & DRIVER_GEM))
 101                return -ENODEV;
 102
 103        args->aper_size = dev->gtt_total;
 104        args->aper_available_size = (args->aper_size -
 105                                     atomic_read(&dev->pin_memory));
 106
 107        return 0;
 108}
 109
 110
 111/**
 112 * Creates a new mm object and returns a handle to it.
 113 */
 114int
 115i915_gem_create_ioctl(struct drm_device *dev, void *data,
 116                      struct drm_file *file_priv)
 117{
 118        struct drm_i915_gem_create *args = data;
 119        struct drm_gem_object *obj;
 120        int ret;
 121        u32 handle;
 122
 123        args->size = roundup(args->size, PAGE_SIZE);
 124
 125        /* Allocate the new object */
 126        obj = drm_gem_object_alloc(dev, args->size);
 127        if (obj == NULL)
 128                return -ENOMEM;
 129
 130        ret = drm_gem_handle_create(file_priv, obj, &handle);
 131        mutex_lock(&dev->struct_mutex);
 132        drm_gem_object_handle_unreference(obj);
 133        mutex_unlock(&dev->struct_mutex);
 134
 135        if (ret)
 136                return ret;
 137
 138        args->handle = handle;
 139
 140        return 0;
 141}
 142
 143static inline int
 144fast_shmem_read(struct page **pages,
 145                loff_t page_base, int page_offset,
 146                char __user *data,
 147                int length)
 148{
 149        char __iomem *vaddr;
 150        int unwritten;
 151
 152        vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
 153        if (vaddr == NULL)
 154                return -ENOMEM;
 155        unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
 156        kunmap_atomic(vaddr, KM_USER0);
 157
 158        if (unwritten)
 159                return -EFAULT;
 160
 161        return 0;
 162}
 163
 164static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
 165{
 166        drm_i915_private_t *dev_priv = obj->dev->dev_private;
 167        struct drm_i915_gem_object *obj_priv = obj->driver_private;
 168
 169        return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
 170                obj_priv->tiling_mode != I915_TILING_NONE;
 171}
 172
 173static inline int
 174slow_shmem_copy(struct page *dst_page,
 175                int dst_offset,
 176                struct page *src_page,
 177                int src_offset,
 178                int length)
 179{
 180        char *dst_vaddr, *src_vaddr;
 181
 182        dst_vaddr = kmap_atomic(dst_page, KM_USER0);
 183        if (dst_vaddr == NULL)
 184                return -ENOMEM;
 185
 186        src_vaddr = kmap_atomic(src_page, KM_USER1);
 187        if (src_vaddr == NULL) {
 188                kunmap_atomic(dst_vaddr, KM_USER0);
 189                return -ENOMEM;
 190        }
 191
 192        memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
 193
 194        kunmap_atomic(src_vaddr, KM_USER1);
 195        kunmap_atomic(dst_vaddr, KM_USER0);
 196
 197        return 0;
 198}
 199
 200static inline int
 201slow_shmem_bit17_copy(struct page *gpu_page,
 202                      int gpu_offset,
 203                      struct page *cpu_page,
 204                      int cpu_offset,
 205                      int length,
 206                      int is_read)
 207{
 208        char *gpu_vaddr, *cpu_vaddr;
 209
 210        /* Use the unswizzled path if this page isn't affected. */
 211        if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
 212                if (is_read)
 213                        return slow_shmem_copy(cpu_page, cpu_offset,
 214                                               gpu_page, gpu_offset, length);
 215                else
 216                        return slow_shmem_copy(gpu_page, gpu_offset,
 217                                               cpu_page, cpu_offset, length);
 218        }
 219
 220        gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
 221        if (gpu_vaddr == NULL)
 222                return -ENOMEM;
 223
 224        cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
 225        if (cpu_vaddr == NULL) {
 226                kunmap_atomic(gpu_vaddr, KM_USER0);
 227                return -ENOMEM;
 228        }
 229
 230        /* Copy the data, XORing A6 with A17 (1). The user already knows he's
 231         * XORing with the other bits (A9 for Y, A9 and A10 for X)
 232         */
 233        while (length > 0) {
 234                int cacheline_end = ALIGN(gpu_offset + 1, 64);
 235                int this_length = min(cacheline_end - gpu_offset, length);
 236                int swizzled_gpu_offset = gpu_offset ^ 64;
 237
 238                if (is_read) {
 239                        memcpy(cpu_vaddr + cpu_offset,
 240                               gpu_vaddr + swizzled_gpu_offset,
 241                               this_length);
 242                } else {
 243                        memcpy(gpu_vaddr + swizzled_gpu_offset,
 244                               cpu_vaddr + cpu_offset,
 245                               this_length);
 246                }
 247                cpu_offset += this_length;
 248                gpu_offset += this_length;
 249                length -= this_length;
 250        }
 251
 252        kunmap_atomic(cpu_vaddr, KM_USER1);
 253        kunmap_atomic(gpu_vaddr, KM_USER0);
 254
 255        return 0;
 256}
 257
 258/**
 259 * This is the fast shmem pread path, which attempts to copy_from_user directly
 260 * from the backing pages of the object to the user's address space.  On a
 261 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 262 */
 263static int
 264i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
 265                          struct drm_i915_gem_pread *args,
 266                          struct drm_file *file_priv)
 267{
 268        struct drm_i915_gem_object *obj_priv = obj->driver_private;
 269        ssize_t remain;
 270        loff_t offset, page_base;
 271        char __user *user_data;
 272        int page_offset, page_length;
 273        int ret;
 274
 275        user_data = (char __user *) (uintptr_t) args->data_ptr;
 276        remain = args->size;
 277
 278        mutex_lock(&dev->struct_mutex);
 279
 280        ret = i915_gem_object_get_pages(obj);
 281        if (ret != 0)
 282                goto fail_unlock;
 283
 284        ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
 285                                                        args->size);
 286        if (ret != 0)
 287                goto fail_put_pages;
 288
 289        obj_priv = obj->driver_private;
 290        offset = args->offset;
 291
 292        while (remain > 0) {
 293                /* Operation in this page
 294                 *
 295                 * page_base = page offset within aperture
 296                 * page_offset = offset within page
 297                 * page_length = bytes to copy for this page
 298                 */
 299                page_base = (offset & ~(PAGE_SIZE-1));
 300                page_offset = offset & (PAGE_SIZE-1);
 301                page_length = remain;
 302                if ((page_offset + remain) > PAGE_SIZE)
 303                        page_length = PAGE_SIZE - page_offset;
 304
 305                ret = fast_shmem_read(obj_priv->pages,
 306                                      page_base, page_offset,
 307                                      user_data, page_length);
 308                if (ret)
 309                        goto fail_put_pages;
 310
 311                remain -= page_length;
 312                user_data += page_length;
 313                offset += page_length;
 314        }
 315
 316fail_put_pages:
 317        i915_gem_object_put_pages(obj);
 318fail_unlock:
 319        mutex_unlock(&dev->struct_mutex);
 320
 321        return ret;
 322}
 323
 324static inline gfp_t
 325i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
 326{
 327        return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
 328}
 329
 330static inline void
 331i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
 332{
 333        mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
 334}
 335
 336static int
 337i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
 338{
 339        int ret;
 340
 341        ret = i915_gem_object_get_pages(obj);
 342
 343        /* If we've insufficient memory to map in the pages, attempt
 344         * to make some space by throwing out some old buffers.
 345         */
 346        if (ret == -ENOMEM) {
 347                struct drm_device *dev = obj->dev;
 348                gfp_t gfp;
 349
 350                ret = i915_gem_evict_something(dev, obj->size);
 351                if (ret)
 352                        return ret;
 353
 354                gfp = i915_gem_object_get_page_gfp_mask(obj);
 355                i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
 356                ret = i915_gem_object_get_pages(obj);
 357                i915_gem_object_set_page_gfp_mask (obj, gfp);
 358        }
 359
 360        return ret;
 361}
 362
 363/**
 364 * This is the fallback shmem pread path, which allocates temporary storage
 365 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 366 * can copy out of the object's backing pages while holding the struct mutex
 367 * and not take page faults.
 368 */
 369static int
 370i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
 371                          struct drm_i915_gem_pread *args,
 372                          struct drm_file *file_priv)
 373{
 374        struct drm_i915_gem_object *obj_priv = obj->driver_private;
 375        struct mm_struct *mm = current->mm;
 376        struct page **user_pages;
 377        ssize_t remain;
 378        loff_t offset, pinned_pages, i;
 379        loff_t first_data_page, last_data_page, num_pages;
 380        int shmem_page_index, shmem_page_offset;
 381        int data_page_index,  data_page_offset;
 382        int page_length;
 383        int ret;
 384        uint64_t data_ptr = args->data_ptr;
 385        int do_bit17_swizzling;
 386
 387        remain = args->size;
 388
 389        /* Pin the user pages containing the data.  We can't fault while
 390         * holding the struct mutex, yet we want to hold it while
 391         * dereferencing the user data.
 392         */
 393        first_data_page = data_ptr / PAGE_SIZE;
 394        last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 395        num_pages = last_data_page - first_data_page + 1;
 396
 397        user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
 398        if (user_pages == NULL)
 399                return -ENOMEM;
 400
 401        down_read(&mm->mmap_sem);
 402        pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 403                                      num_pages, 1, 0, user_pages, NULL);
 404        up_read(&mm->mmap_sem);
 405        if (pinned_pages < num_pages) {
 406                ret = -EFAULT;
 407                goto fail_put_user_pages;
 408        }
 409
 410        do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 411
 412        mutex_lock(&dev->struct_mutex);
 413
 414        ret = i915_gem_object_get_pages_or_evict(obj);
 415        if (ret)
 416                goto fail_unlock;
 417
 418        ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
 419                                                        args->size);
 420        if (ret != 0)
 421                goto fail_put_pages;
 422
 423        obj_priv = obj->driver_private;
 424        offset = args->offset;
 425
 426        while (remain > 0) {
 427                /* Operation in this page
 428                 *
 429                 * shmem_page_index = page number within shmem file
 430                 * shmem_page_offset = offset within page in shmem file
 431                 * data_page_index = page number in get_user_pages return
 432                 * data_page_offset = offset with data_page_index page.
 433                 * page_length = bytes to copy for this page
 434                 */
 435                shmem_page_index = offset / PAGE_SIZE;
 436                shmem_page_offset = offset & ~PAGE_MASK;
 437                data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 438                data_page_offset = data_ptr & ~PAGE_MASK;
 439
 440                page_length = remain;
 441                if ((shmem_page_offset + page_length) > PAGE_SIZE)
 442                        page_length = PAGE_SIZE - shmem_page_offset;
 443                if ((data_page_offset + page_length) > PAGE_SIZE)
 444                        page_length = PAGE_SIZE - data_page_offset;
 445
 446                if (do_bit17_swizzling) {
 447                        ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
 448                                                    shmem_page_offset,
 449                                                    user_pages[data_page_index],
 450                                                    data_page_offset,
 451                                                    page_length,
 452                                                    1);
 453                } else {
 454                        ret = slow_shmem_copy(user_pages[data_page_index],
 455                                              data_page_offset,
 456                                              obj_priv->pages[shmem_page_index],
 457                                              shmem_page_offset,
 458                                              page_length);
 459                }
 460                if (ret)
 461                        goto fail_put_pages;
 462
 463                remain -= page_length;
 464                data_ptr += page_length;
 465                offset += page_length;
 466        }
 467
 468fail_put_pages:
 469        i915_gem_object_put_pages(obj);
 470fail_unlock:
 471        mutex_unlock(&dev->struct_mutex);
 472fail_put_user_pages:
 473        for (i = 0; i < pinned_pages; i++) {
 474                SetPageDirty(user_pages[i]);
 475                page_cache_release(user_pages[i]);
 476        }
 477        drm_free_large(user_pages);
 478
 479        return ret;
 480}
 481
 482/**
 483 * Reads data from the object referenced by handle.
 484 *
 485 * On error, the contents of *data are undefined.
 486 */
 487int
 488i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 489                     struct drm_file *file_priv)
 490{
 491        struct drm_i915_gem_pread *args = data;
 492        struct drm_gem_object *obj;
 493        struct drm_i915_gem_object *obj_priv;
 494        int ret;
 495
 496        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
 497        if (obj == NULL)
 498                return -EBADF;
 499        obj_priv = obj->driver_private;
 500
 501        /* Bounds check source.
 502         *
 503         * XXX: This could use review for overflow issues...
 504         */
 505        if (args->offset > obj->size || args->size > obj->size ||
 506            args->offset + args->size > obj->size) {
 507                drm_gem_object_unreference(obj);
 508                return -EINVAL;
 509        }
 510
 511        if (i915_gem_object_needs_bit17_swizzle(obj)) {
 512                ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
 513        } else {
 514                ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
 515                if (ret != 0)
 516                        ret = i915_gem_shmem_pread_slow(dev, obj, args,
 517                                                        file_priv);
 518        }
 519
 520        drm_gem_object_unreference(obj);
 521
 522        return ret;
 523}
 524
 525/* This is the fast write path which cannot handle
 526 * page faults in the source data
 527 */
 528
 529static inline int
 530fast_user_write(struct io_mapping *mapping,
 531                loff_t page_base, int page_offset,
 532                char __user *user_data,
 533                int length)
 534{
 535        char *vaddr_atomic;
 536        unsigned long unwritten;
 537
 538        vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 539        unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
 540                                                      user_data, length);
 541        io_mapping_unmap_atomic(vaddr_atomic);
 542        if (unwritten)
 543                return -EFAULT;
 544        return 0;
 545}
 546
 547/* Here's the write path which can sleep for
 548 * page faults
 549 */
 550
 551static inline int
 552slow_kernel_write(struct io_mapping *mapping,
 553                  loff_t gtt_base, int gtt_offset,
 554                  struct page *user_page, int user_offset,
 555                  int length)
 556{
 557        char *src_vaddr, *dst_vaddr;
 558        unsigned long unwritten;
 559
 560        dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
 561        src_vaddr = kmap_atomic(user_page, KM_USER1);
 562        unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
 563                                                      src_vaddr + user_offset,
 564                                                      length);
 565        kunmap_atomic(src_vaddr, KM_USER1);
 566        io_mapping_unmap_atomic(dst_vaddr);
 567        if (unwritten)
 568                return -EFAULT;
 569        return 0;
 570}
 571
 572static inline int
 573fast_shmem_write(struct page **pages,
 574                 loff_t page_base, int page_offset,
 575                 char __user *data,
 576                 int length)
 577{
 578        char __iomem *vaddr;
 579        unsigned long unwritten;
 580
 581        vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
 582        if (vaddr == NULL)
 583                return -ENOMEM;
 584        unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
 585        kunmap_atomic(vaddr, KM_USER0);
 586
 587        if (unwritten)
 588                return -EFAULT;
 589        return 0;
 590}
 591
 592/**
 593 * This is the fast pwrite path, where we copy the data directly from the
 594 * user into the GTT, uncached.
 595 */
 596static int
 597i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
 598                         struct drm_i915_gem_pwrite *args,
 599                         struct drm_file *file_priv)
 600{
 601        struct drm_i915_gem_object *obj_priv = obj->driver_private;
 602        drm_i915_private_t *dev_priv = dev->dev_private;
 603        ssize_t remain;
 604        loff_t offset, page_base;
 605        char __user *user_data;
 606        int page_offset, page_length;
 607        int ret;
 608
 609        user_data = (char __user *) (uintptr_t) args->data_ptr;
 610        remain = args->size;
 611        if (!access_ok(VERIFY_READ, user_data, remain))
 612                return -EFAULT;
 613
 614
 615        mutex_lock(&dev->struct_mutex);
 616        ret = i915_gem_object_pin(obj, 0);
 617        if (ret) {
 618                mutex_unlock(&dev->struct_mutex);
 619                return ret;
 620        }
 621        ret = i915_gem_object_set_to_gtt_domain(obj, 1);
 622        if (ret)
 623                goto fail;
 624
 625        obj_priv = obj->driver_private;
 626        offset = obj_priv->gtt_offset + args->offset;
 627
 628        while (remain > 0) {
 629                /* Operation in this page
 630                 *
 631                 * page_base = page offset within aperture
 632                 * page_offset = offset within page
 633                 * page_length = bytes to copy for this page
 634                 */
 635                page_base = (offset & ~(PAGE_SIZE-1));
 636                page_offset = offset & (PAGE_SIZE-1);
 637                page_length = remain;
 638                if ((page_offset + remain) > PAGE_SIZE)
 639                        page_length = PAGE_SIZE - page_offset;
 640
 641                ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
 642                                       page_offset, user_data, page_length);
 643
 644                /* If we get a fault while copying data, then (presumably) our
 645                 * source page isn't available.  Return the error and we'll
 646                 * retry in the slow path.
 647                 */
 648                if (ret)
 649                        goto fail;
 650
 651                remain -= page_length;
 652                user_data += page_length;
 653                offset += page_length;
 654        }
 655
 656fail:
 657        i915_gem_object_unpin(obj);
 658        mutex_unlock(&dev->struct_mutex);
 659
 660        return ret;
 661}
 662
 663/**
 664 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 665 * the memory and maps it using kmap_atomic for copying.
 666 *
 667 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 668 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 669 */
 670static int
 671i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
 672                         struct drm_i915_gem_pwrite *args,
 673                         struct drm_file *file_priv)
 674{
 675        struct drm_i915_gem_object *obj_priv = obj->driver_private;
 676        drm_i915_private_t *dev_priv = dev->dev_private;
 677        ssize_t remain;
 678        loff_t gtt_page_base, offset;
 679        loff_t first_data_page, last_data_page, num_pages;
 680        loff_t pinned_pages, i;
 681        struct page **user_pages;
 682        struct mm_struct *mm = current->mm;
 683        int gtt_page_offset, data_page_offset, data_page_index, page_length;
 684        int ret;
 685        uint64_t data_ptr = args->data_ptr;
 686
 687        remain = args->size;
 688
 689        /* Pin the user pages containing the data.  We can't fault while
 690         * holding the struct mutex, and all of the pwrite implementations
 691         * want to hold it while dereferencing the user data.
 692         */
 693        first_data_page = data_ptr / PAGE_SIZE;
 694        last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 695        num_pages = last_data_page - first_data_page + 1;
 696
 697        user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
 698        if (user_pages == NULL)
 699                return -ENOMEM;
 700
 701        down_read(&mm->mmap_sem);
 702        pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 703                                      num_pages, 0, 0, user_pages, NULL);
 704        up_read(&mm->mmap_sem);
 705        if (pinned_pages < num_pages) {
 706                ret = -EFAULT;
 707                goto out_unpin_pages;
 708        }
 709
 710        mutex_lock(&dev->struct_mutex);
 711        ret = i915_gem_object_pin(obj, 0);
 712        if (ret)
 713                goto out_unlock;
 714
 715        ret = i915_gem_object_set_to_gtt_domain(obj, 1);
 716        if (ret)
 717                goto out_unpin_object;
 718
 719        obj_priv = obj->driver_private;
 720        offset = obj_priv->gtt_offset + args->offset;
 721
 722        while (remain > 0) {
 723                /* Operation in this page
 724                 *
 725                 * gtt_page_base = page offset within aperture
 726                 * gtt_page_offset = offset within page in aperture
 727                 * data_page_index = page number in get_user_pages return
 728                 * data_page_offset = offset with data_page_index page.
 729                 * page_length = bytes to copy for this page
 730                 */
 731                gtt_page_base = offset & PAGE_MASK;
 732                gtt_page_offset = offset & ~PAGE_MASK;
 733                data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 734                data_page_offset = data_ptr & ~PAGE_MASK;
 735
 736                page_length = remain;
 737                if ((gtt_page_offset + page_length) > PAGE_SIZE)
 738                        page_length = PAGE_SIZE - gtt_page_offset;
 739                if ((data_page_offset + page_length) > PAGE_SIZE)
 740                        page_length = PAGE_SIZE - data_page_offset;
 741
 742                ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
 743                                        gtt_page_base, gtt_page_offset,
 744                                        user_pages[data_page_index],
 745                                        data_page_offset,
 746                                        page_length);
 747
 748                /* If we get a fault while copying data, then (presumably) our
 749                 * source page isn't available.  Return the error and we'll
 750                 * retry in the slow path.
 751                 */
 752                if (ret)
 753                        goto out_unpin_object;
 754
 755                remain -= page_length;
 756                offset += page_length;
 757                data_ptr += page_length;
 758        }
 759
 760out_unpin_object:
 761        i915_gem_object_unpin(obj);
 762out_unlock:
 763        mutex_unlock(&dev->struct_mutex);
 764out_unpin_pages:
 765        for (i = 0; i < pinned_pages; i++)
 766                page_cache_release(user_pages[i]);
 767        drm_free_large(user_pages);
 768
 769        return ret;
 770}
 771
 772/**
 773 * This is the fast shmem pwrite path, which attempts to directly
 774 * copy_from_user into the kmapped pages backing the object.
 775 */
 776static int
 777i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
 778                           struct drm_i915_gem_pwrite *args,
 779                           struct drm_file *file_priv)
 780{
 781        struct drm_i915_gem_object *obj_priv = obj->driver_private;
 782        ssize_t remain;
 783        loff_t offset, page_base;
 784        char __user *user_data;
 785        int page_offset, page_length;
 786        int ret;
 787
 788        user_data = (char __user *) (uintptr_t) args->data_ptr;
 789        remain = args->size;
 790
 791        mutex_lock(&dev->struct_mutex);
 792
 793        ret = i915_gem_object_get_pages(obj);
 794        if (ret != 0)
 795                goto fail_unlock;
 796
 797        ret = i915_gem_object_set_to_cpu_domain(obj, 1);
 798        if (ret != 0)
 799                goto fail_put_pages;
 800
 801        obj_priv = obj->driver_private;
 802        offset = args->offset;
 803        obj_priv->dirty = 1;
 804
 805        while (remain > 0) {
 806                /* Operation in this page
 807                 *
 808                 * page_base = page offset within aperture
 809                 * page_offset = offset within page
 810                 * page_length = bytes to copy for this page
 811                 */
 812                page_base = (offset & ~(PAGE_SIZE-1));
 813                page_offset = offset & (PAGE_SIZE-1);
 814                page_length = remain;
 815                if ((page_offset + remain) > PAGE_SIZE)
 816                        page_length = PAGE_SIZE - page_offset;
 817
 818                ret = fast_shmem_write(obj_priv->pages,
 819                                       page_base, page_offset,
 820                                       user_data, page_length);
 821                if (ret)
 822                        goto fail_put_pages;
 823
 824                remain -= page_length;
 825                user_data += page_length;
 826                offset += page_length;
 827        }
 828
 829fail_put_pages:
 830        i915_gem_object_put_pages(obj);
 831fail_unlock:
 832        mutex_unlock(&dev->struct_mutex);
 833
 834        return ret;
 835}
 836
 837/**
 838 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 839 * the memory and maps it using kmap_atomic for copying.
 840 *
 841 * This avoids taking mmap_sem for faulting on the user's address while the
 842 * struct_mutex is held.
 843 */
 844static int
 845i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
 846                           struct drm_i915_gem_pwrite *args,
 847                           struct drm_file *file_priv)
 848{
 849        struct drm_i915_gem_object *obj_priv = obj->driver_private;
 850        struct mm_struct *mm = current->mm;
 851        struct page **user_pages;
 852        ssize_t remain;
 853        loff_t offset, pinned_pages, i;
 854        loff_t first_data_page, last_data_page, num_pages;
 855        int shmem_page_index, shmem_page_offset;
 856        int data_page_index,  data_page_offset;
 857        int page_length;
 858        int ret;
 859        uint64_t data_ptr = args->data_ptr;
 860        int do_bit17_swizzling;
 861
 862        remain = args->size;
 863
 864        /* Pin the user pages containing the data.  We can't fault while
 865         * holding the struct mutex, and all of the pwrite implementations
 866         * want to hold it while dereferencing the user data.
 867         */
 868        first_data_page = data_ptr / PAGE_SIZE;
 869        last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
 870        num_pages = last_data_page - first_data_page + 1;
 871
 872        user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
 873        if (user_pages == NULL)
 874                return -ENOMEM;
 875
 876        down_read(&mm->mmap_sem);
 877        pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
 878                                      num_pages, 0, 0, user_pages, NULL);
 879        up_read(&mm->mmap_sem);
 880        if (pinned_pages < num_pages) {
 881                ret = -EFAULT;
 882                goto fail_put_user_pages;
 883        }
 884
 885        do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 886
 887        mutex_lock(&dev->struct_mutex);
 888
 889        ret = i915_gem_object_get_pages_or_evict(obj);
 890        if (ret)
 891                goto fail_unlock;
 892
 893        ret = i915_gem_object_set_to_cpu_domain(obj, 1);
 894        if (ret != 0)
 895                goto fail_put_pages;
 896
 897        obj_priv = obj->driver_private;
 898        offset = args->offset;
 899        obj_priv->dirty = 1;
 900
 901        while (remain > 0) {
 902                /* Operation in this page
 903                 *
 904                 * shmem_page_index = page number within shmem file
 905                 * shmem_page_offset = offset within page in shmem file
 906                 * data_page_index = page number in get_user_pages return
 907                 * data_page_offset = offset with data_page_index page.
 908                 * page_length = bytes to copy for this page
 909                 */
 910                shmem_page_index = offset / PAGE_SIZE;
 911                shmem_page_offset = offset & ~PAGE_MASK;
 912                data_page_index = data_ptr / PAGE_SIZE - first_data_page;
 913                data_page_offset = data_ptr & ~PAGE_MASK;
 914
 915                page_length = remain;
 916                if ((shmem_page_offset + page_length) > PAGE_SIZE)
 917                        page_length = PAGE_SIZE - shmem_page_offset;
 918                if ((data_page_offset + page_length) > PAGE_SIZE)
 919                        page_length = PAGE_SIZE - data_page_offset;
 920
 921                if (do_bit17_swizzling) {
 922                        ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
 923                                                    shmem_page_offset,
 924                                                    user_pages[data_page_index],
 925                                                    data_page_offset,
 926                                                    page_length,
 927                                                    0);
 928                } else {
 929                        ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
 930                                              shmem_page_offset,
 931                                              user_pages[data_page_index],
 932                                              data_page_offset,
 933                                              page_length);
 934                }
 935                if (ret)
 936                        goto fail_put_pages;
 937
 938                remain -= page_length;
 939                data_ptr += page_length;
 940                offset += page_length;
 941        }
 942
 943fail_put_pages:
 944        i915_gem_object_put_pages(obj);
 945fail_unlock:
 946        mutex_unlock(&dev->struct_mutex);
 947fail_put_user_pages:
 948        for (i = 0; i < pinned_pages; i++)
 949                page_cache_release(user_pages[i]);
 950        drm_free_large(user_pages);
 951
 952        return ret;
 953}
 954
 955/**
 956 * Writes data to the object referenced by handle.
 957 *
 958 * On error, the contents of the buffer that were to be modified are undefined.
 959 */
 960int
 961i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 962                      struct drm_file *file_priv)
 963{
 964        struct drm_i915_gem_pwrite *args = data;
 965        struct drm_gem_object *obj;
 966        struct drm_i915_gem_object *obj_priv;
 967        int ret = 0;
 968
 969        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
 970        if (obj == NULL)
 971                return -EBADF;
 972        obj_priv = obj->driver_private;
 973
 974        /* Bounds check destination.
 975         *
 976         * XXX: This could use review for overflow issues...
 977         */
 978        if (args->offset > obj->size || args->size > obj->size ||
 979            args->offset + args->size > obj->size) {
 980                drm_gem_object_unreference(obj);
 981                return -EINVAL;
 982        }
 983
 984        /* We can only do the GTT pwrite on untiled buffers, as otherwise
 985         * it would end up going through the fenced access, and we'll get
 986         * different detiling behavior between reading and writing.
 987         * pread/pwrite currently are reading and writing from the CPU
 988         * perspective, requiring manual detiling by the client.
 989         */
 990        if (obj_priv->phys_obj)
 991                ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
 992        else if (obj_priv->tiling_mode == I915_TILING_NONE &&
 993                 dev->gtt_total != 0) {
 994                ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
 995                if (ret == -EFAULT) {
 996                        ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
 997                                                       file_priv);
 998                }
 999        } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001        } else {
1002                ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                if (ret == -EFAULT) {
1004                        ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                         file_priv);
1006                }
1007        }
1008
1009#if WATCH_PWRITE
1010        if (ret)
1011                DRM_INFO("pwrite failed %d\n", ret);
1012#endif
1013
1014        drm_gem_object_unreference(obj);
1015
1016        return ret;
1017}
1018
1019/**
1020 * Called when user space prepares to use an object with the CPU, either
1021 * through the mmap ioctl's mapping or a GTT mapping.
1022 */
1023int
1024i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                          struct drm_file *file_priv)
1026{
1027        struct drm_i915_private *dev_priv = dev->dev_private;
1028        struct drm_i915_gem_set_domain *args = data;
1029        struct drm_gem_object *obj;
1030        struct drm_i915_gem_object *obj_priv;
1031        uint32_t read_domains = args->read_domains;
1032        uint32_t write_domain = args->write_domain;
1033        int ret;
1034
1035        if (!(dev->driver->driver_features & DRIVER_GEM))
1036                return -ENODEV;
1037
1038        /* Only handle setting domains to types used by the CPU. */
1039        if (write_domain & I915_GEM_GPU_DOMAINS)
1040                return -EINVAL;
1041
1042        if (read_domains & I915_GEM_GPU_DOMAINS)
1043                return -EINVAL;
1044
1045        /* Having something in the write domain implies it's in the read
1046         * domain, and only that read domain.  Enforce that in the request.
1047         */
1048        if (write_domain != 0 && read_domains != write_domain)
1049                return -EINVAL;
1050
1051        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052        if (obj == NULL)
1053                return -EBADF;
1054        obj_priv = obj->driver_private;
1055
1056        mutex_lock(&dev->struct_mutex);
1057
1058        intel_mark_busy(dev, obj);
1059
1060#if WATCH_BUF
1061        DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                 obj, obj->size, read_domains, write_domain);
1063#endif
1064        if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                /* Update the LRU on the fence for the CPU access that's
1068                 * about to occur.
1069                 */
1070                if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                        list_move_tail(&obj_priv->fence_list,
1072                                       &dev_priv->mm.fence_list);
1073                }
1074
1075                /* Silently promote "you're not bound, there was nothing to do"
1076                 * to success, since the client was just asking us to
1077                 * make sure everything was done.
1078                 */
1079                if (ret == -EINVAL)
1080                        ret = 0;
1081        } else {
1082                ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083        }
1084
1085        drm_gem_object_unreference(obj);
1086        mutex_unlock(&dev->struct_mutex);
1087        return ret;
1088}
1089
1090/**
1091 * Called when user space has done writes to this buffer
1092 */
1093int
1094i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                      struct drm_file *file_priv)
1096{
1097        struct drm_i915_gem_sw_finish *args = data;
1098        struct drm_gem_object *obj;
1099        struct drm_i915_gem_object *obj_priv;
1100        int ret = 0;
1101
1102        if (!(dev->driver->driver_features & DRIVER_GEM))
1103                return -ENODEV;
1104
1105        mutex_lock(&dev->struct_mutex);
1106        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107        if (obj == NULL) {
1108                mutex_unlock(&dev->struct_mutex);
1109                return -EBADF;
1110        }
1111
1112#if WATCH_BUF
1113        DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                 __func__, args->handle, obj, obj->size);
1115#endif
1116        obj_priv = obj->driver_private;
1117
1118        /* Pinned buffers may be scanout, so flush the cache */
1119        if (obj_priv->pin_count)
1120                i915_gem_object_flush_cpu_write_domain(obj);
1121
1122        drm_gem_object_unreference(obj);
1123        mutex_unlock(&dev->struct_mutex);
1124        return ret;
1125}
1126
1127/**
1128 * Maps the contents of an object, returning the address it is mapped
1129 * into.
1130 *
1131 * While the mapping holds a reference on the contents of the object, it doesn't
1132 * imply a ref on the object itself.
1133 */
1134int
1135i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                   struct drm_file *file_priv)
1137{
1138        struct drm_i915_gem_mmap *args = data;
1139        struct drm_gem_object *obj;
1140        loff_t offset;
1141        unsigned long addr;
1142
1143        if (!(dev->driver->driver_features & DRIVER_GEM))
1144                return -ENODEV;
1145
1146        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147        if (obj == NULL)
1148                return -EBADF;
1149
1150        offset = args->offset;
1151
1152        down_write(&current->mm->mmap_sem);
1153        addr = do_mmap(obj->filp, 0, args->size,
1154                       PROT_READ | PROT_WRITE, MAP_SHARED,
1155                       args->offset);
1156        up_write(&current->mm->mmap_sem);
1157        mutex_lock(&dev->struct_mutex);
1158        drm_gem_object_unreference(obj);
1159        mutex_unlock(&dev->struct_mutex);
1160        if (IS_ERR((void *)addr))
1161                return addr;
1162
1163        args->addr_ptr = (uint64_t) addr;
1164
1165        return 0;
1166}
1167
1168/**
1169 * i915_gem_fault - fault a page into the GTT
1170 * vma: VMA in question
1171 * vmf: fault info
1172 *
1173 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174 * from userspace.  The fault handler takes care of binding the object to
1175 * the GTT (if needed), allocating and programming a fence register (again,
1176 * only if needed based on whether the old reg is still valid or the object
1177 * is tiled) and inserting a new PTE into the faulting process.
1178 *
1179 * Note that the faulting process may involve evicting existing objects
1180 * from the GTT and/or fence registers to make room.  So performance may
1181 * suffer if the GTT working set is large or there are few fence registers
1182 * left.
1183 */
1184int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185{
1186        struct drm_gem_object *obj = vma->vm_private_data;
1187        struct drm_device *dev = obj->dev;
1188        struct drm_i915_private *dev_priv = dev->dev_private;
1189        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190        pgoff_t page_offset;
1191        unsigned long pfn;
1192        int ret = 0;
1193        bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195        /* We don't use vmf->pgoff since that has the fake offset */
1196        page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                PAGE_SHIFT;
1198
1199        /* Now bind it into the GTT if needed */
1200        mutex_lock(&dev->struct_mutex);
1201        if (!obj_priv->gtt_space) {
1202                ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                if (ret)
1204                        goto unlock;
1205
1206                list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207
1208                ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209                if (ret)
1210                        goto unlock;
1211        }
1212
1213        /* Need a new fence register? */
1214        if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215                ret = i915_gem_object_get_fence_reg(obj);
1216                if (ret)
1217                        goto unlock;
1218        }
1219
1220        pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221                page_offset;
1222
1223        /* Finally, remap it using the new GTT offset */
1224        ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225unlock:
1226        mutex_unlock(&dev->struct_mutex);
1227
1228        switch (ret) {
1229        case 0:
1230        case -ERESTARTSYS:
1231                return VM_FAULT_NOPAGE;
1232        case -ENOMEM:
1233        case -EAGAIN:
1234                return VM_FAULT_OOM;
1235        default:
1236                return VM_FAULT_SIGBUS;
1237        }
1238}
1239
1240/**
1241 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242 * @obj: obj in question
1243 *
1244 * GEM memory mapping works by handing back to userspace a fake mmap offset
1245 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1246 * up the object based on the offset and sets up the various memory mapping
1247 * structures.
1248 *
1249 * This routine allocates and attaches a fake offset for @obj.
1250 */
1251static int
1252i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253{
1254        struct drm_device *dev = obj->dev;
1255        struct drm_gem_mm *mm = dev->mm_private;
1256        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257        struct drm_map_list *list;
1258        struct drm_local_map *map;
1259        int ret = 0;
1260
1261        /* Set the object up for mmap'ing */
1262        list = &obj->map_list;
1263        list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264        if (!list->map)
1265                return -ENOMEM;
1266
1267        map = list->map;
1268        map->type = _DRM_GEM;
1269        map->size = obj->size;
1270        map->handle = obj;
1271
1272        /* Get a DRM GEM mmap offset allocated... */
1273        list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274                                                    obj->size / PAGE_SIZE, 0, 0);
1275        if (!list->file_offset_node) {
1276                DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277                ret = -ENOMEM;
1278                goto out_free_list;
1279        }
1280
1281        list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282                                                  obj->size / PAGE_SIZE, 0);
1283        if (!list->file_offset_node) {
1284                ret = -ENOMEM;
1285                goto out_free_list;
1286        }
1287
1288        list->hash.key = list->file_offset_node->start;
1289        if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290                DRM_ERROR("failed to add to map hash\n");
1291                goto out_free_mm;
1292        }
1293
1294        /* By now we should be all set, any drm_mmap request on the offset
1295         * below will get to our mmap & fault handler */
1296        obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1297
1298        return 0;
1299
1300out_free_mm:
1301        drm_mm_put_block(list->file_offset_node);
1302out_free_list:
1303        kfree(list->map);
1304
1305        return ret;
1306}
1307
1308/**
1309 * i915_gem_release_mmap - remove physical page mappings
1310 * @obj: obj in question
1311 *
1312 * Preserve the reservation of the mmaping with the DRM core code, but
1313 * relinquish ownership of the pages back to the system.
1314 *
1315 * It is vital that we remove the page mapping if we have mapped a tiled
1316 * object through the GTT and then lose the fence register due to
1317 * resource pressure. Similarly if the object has been moved out of the
1318 * aperture, than pages mapped into userspace must be revoked. Removing the
1319 * mapping will then trigger a page fault on the next user access, allowing
1320 * fixup by i915_gem_fault().
1321 */
1322void
1323i915_gem_release_mmap(struct drm_gem_object *obj)
1324{
1325        struct drm_device *dev = obj->dev;
1326        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1327
1328        if (dev->dev_mapping)
1329                unmap_mapping_range(dev->dev_mapping,
1330                                    obj_priv->mmap_offset, obj->size, 1);
1331}
1332
1333static void
1334i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1335{
1336        struct drm_device *dev = obj->dev;
1337        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1338        struct drm_gem_mm *mm = dev->mm_private;
1339        struct drm_map_list *list;
1340
1341        list = &obj->map_list;
1342        drm_ht_remove_item(&mm->offset_hash, &list->hash);
1343
1344        if (list->file_offset_node) {
1345                drm_mm_put_block(list->file_offset_node);
1346                list->file_offset_node = NULL;
1347        }
1348
1349        if (list->map) {
1350                kfree(list->map);
1351                list->map = NULL;
1352        }
1353
1354        obj_priv->mmap_offset = 0;
1355}
1356
1357/**
1358 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1359 * @obj: object to check
1360 *
1361 * Return the required GTT alignment for an object, taking into account
1362 * potential fence register mapping if needed.
1363 */
1364static uint32_t
1365i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1366{
1367        struct drm_device *dev = obj->dev;
1368        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1369        int start, i;
1370
1371        /*
1372         * Minimum alignment is 4k (GTT page size), but might be greater
1373         * if a fence register is needed for the object.
1374         */
1375        if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1376                return 4096;
1377
1378        /*
1379         * Previous chips need to be aligned to the size of the smallest
1380         * fence register that can contain the object.
1381         */
1382        if (IS_I9XX(dev))
1383                start = 1024*1024;
1384        else
1385                start = 512*1024;
1386
1387        for (i = start; i < obj->size; i <<= 1)
1388                ;
1389
1390        return i;
1391}
1392
1393/**
1394 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1395 * @dev: DRM device
1396 * @data: GTT mapping ioctl data
1397 * @file_priv: GEM object info
1398 *
1399 * Simply returns the fake offset to userspace so it can mmap it.
1400 * The mmap call will end up in drm_gem_mmap(), which will set things
1401 * up so we can get faults in the handler above.
1402 *
1403 * The fault handler will take care of binding the object into the GTT
1404 * (since it may have been evicted to make room for something), allocating
1405 * a fence register, and mapping the appropriate aperture address into
1406 * userspace.
1407 */
1408int
1409i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1410                        struct drm_file *file_priv)
1411{
1412        struct drm_i915_gem_mmap_gtt *args = data;
1413        struct drm_i915_private *dev_priv = dev->dev_private;
1414        struct drm_gem_object *obj;
1415        struct drm_i915_gem_object *obj_priv;
1416        int ret;
1417
1418        if (!(dev->driver->driver_features & DRIVER_GEM))
1419                return -ENODEV;
1420
1421        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1422        if (obj == NULL)
1423                return -EBADF;
1424
1425        mutex_lock(&dev->struct_mutex);
1426
1427        obj_priv = obj->driver_private;
1428
1429        if (obj_priv->madv != I915_MADV_WILLNEED) {
1430                DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1431                drm_gem_object_unreference(obj);
1432                mutex_unlock(&dev->struct_mutex);
1433                return -EINVAL;
1434        }
1435
1436
1437        if (!obj_priv->mmap_offset) {
1438                ret = i915_gem_create_mmap_offset(obj);
1439                if (ret) {
1440                        drm_gem_object_unreference(obj);
1441                        mutex_unlock(&dev->struct_mutex);
1442                        return ret;
1443                }
1444        }
1445
1446        args->offset = obj_priv->mmap_offset;
1447
1448        /*
1449         * Pull it into the GTT so that we have a page list (makes the
1450         * initial fault faster and any subsequent flushing possible).
1451         */
1452        if (!obj_priv->agp_mem) {
1453                ret = i915_gem_object_bind_to_gtt(obj, 0);
1454                if (ret) {
1455                        drm_gem_object_unreference(obj);
1456                        mutex_unlock(&dev->struct_mutex);
1457                        return ret;
1458                }
1459                list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1460        }
1461
1462        drm_gem_object_unreference(obj);
1463        mutex_unlock(&dev->struct_mutex);
1464
1465        return 0;
1466}
1467
1468void
1469i915_gem_object_put_pages(struct drm_gem_object *obj)
1470{
1471        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1472        int page_count = obj->size / PAGE_SIZE;
1473        int i;
1474
1475        BUG_ON(obj_priv->pages_refcount == 0);
1476        BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1477
1478        if (--obj_priv->pages_refcount != 0)
1479                return;
1480
1481        if (obj_priv->tiling_mode != I915_TILING_NONE)
1482                i915_gem_object_save_bit_17_swizzle(obj);
1483
1484        if (obj_priv->madv == I915_MADV_DONTNEED)
1485                obj_priv->dirty = 0;
1486
1487        for (i = 0; i < page_count; i++) {
1488                if (obj_priv->pages[i] == NULL)
1489                        break;
1490
1491                if (obj_priv->dirty)
1492                        set_page_dirty(obj_priv->pages[i]);
1493
1494                if (obj_priv->madv == I915_MADV_WILLNEED)
1495                        mark_page_accessed(obj_priv->pages[i]);
1496
1497                page_cache_release(obj_priv->pages[i]);
1498        }
1499        obj_priv->dirty = 0;
1500
1501        drm_free_large(obj_priv->pages);
1502        obj_priv->pages = NULL;
1503}
1504
1505static void
1506i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1507{
1508        struct drm_device *dev = obj->dev;
1509        drm_i915_private_t *dev_priv = dev->dev_private;
1510        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1511
1512        /* Add a reference if we're newly entering the active list. */
1513        if (!obj_priv->active) {
1514                drm_gem_object_reference(obj);
1515                obj_priv->active = 1;
1516        }
1517        /* Move from whatever list we were on to the tail of execution. */
1518        spin_lock(&dev_priv->mm.active_list_lock);
1519        list_move_tail(&obj_priv->list,
1520                       &dev_priv->mm.active_list);
1521        spin_unlock(&dev_priv->mm.active_list_lock);
1522        obj_priv->last_rendering_seqno = seqno;
1523}
1524
1525static void
1526i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1527{
1528        struct drm_device *dev = obj->dev;
1529        drm_i915_private_t *dev_priv = dev->dev_private;
1530        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1531
1532        BUG_ON(!obj_priv->active);
1533        list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1534        obj_priv->last_rendering_seqno = 0;
1535}
1536
1537/* Immediately discard the backing storage */
1538static void
1539i915_gem_object_truncate(struct drm_gem_object *obj)
1540{
1541        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1542        struct inode *inode;
1543
1544        inode = obj->filp->f_path.dentry->d_inode;
1545        if (inode->i_op->truncate)
1546                inode->i_op->truncate (inode);
1547
1548        obj_priv->madv = __I915_MADV_PURGED;
1549}
1550
1551static inline int
1552i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1553{
1554        return obj_priv->madv == I915_MADV_DONTNEED;
1555}
1556
1557static void
1558i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1559{
1560        struct drm_device *dev = obj->dev;
1561        drm_i915_private_t *dev_priv = dev->dev_private;
1562        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1563
1564        i915_verify_inactive(dev, __FILE__, __LINE__);
1565        if (obj_priv->pin_count != 0)
1566                list_del_init(&obj_priv->list);
1567        else
1568                list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1569
1570        obj_priv->last_rendering_seqno = 0;
1571        if (obj_priv->active) {
1572                obj_priv->active = 0;
1573                drm_gem_object_unreference(obj);
1574        }
1575        i915_verify_inactive(dev, __FILE__, __LINE__);
1576}
1577
1578/**
1579 * Creates a new sequence number, emitting a write of it to the status page
1580 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1581 *
1582 * Must be called with struct_lock held.
1583 *
1584 * Returned sequence numbers are nonzero on success.
1585 */
1586static uint32_t
1587i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1588                 uint32_t flush_domains)
1589{
1590        drm_i915_private_t *dev_priv = dev->dev_private;
1591        struct drm_i915_file_private *i915_file_priv = NULL;
1592        struct drm_i915_gem_request *request;
1593        uint32_t seqno;
1594        int was_empty;
1595        RING_LOCALS;
1596
1597        if (file_priv != NULL)
1598                i915_file_priv = file_priv->driver_priv;
1599
1600        request = kzalloc(sizeof(*request), GFP_KERNEL);
1601        if (request == NULL)
1602                return 0;
1603
1604        /* Grab the seqno we're going to make this request be, and bump the
1605         * next (skipping 0 so it can be the reserved no-seqno value).
1606         */
1607        seqno = dev_priv->mm.next_gem_seqno;
1608        dev_priv->mm.next_gem_seqno++;
1609        if (dev_priv->mm.next_gem_seqno == 0)
1610                dev_priv->mm.next_gem_seqno++;
1611
1612        BEGIN_LP_RING(4);
1613        OUT_RING(MI_STORE_DWORD_INDEX);
1614        OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1615        OUT_RING(seqno);
1616
1617        OUT_RING(MI_USER_INTERRUPT);
1618        ADVANCE_LP_RING();
1619
1620        DRM_DEBUG("%d\n", seqno);
1621
1622        request->seqno = seqno;
1623        request->emitted_jiffies = jiffies;
1624        was_empty = list_empty(&dev_priv->mm.request_list);
1625        list_add_tail(&request->list, &dev_priv->mm.request_list);
1626        if (i915_file_priv) {
1627                list_add_tail(&request->client_list,
1628                              &i915_file_priv->mm.request_list);
1629        } else {
1630                INIT_LIST_HEAD(&request->client_list);
1631        }
1632
1633        /* Associate any objects on the flushing list matching the write
1634         * domain we're flushing with our flush.
1635         */
1636        if (flush_domains != 0) {
1637                struct drm_i915_gem_object *obj_priv, *next;
1638
1639                list_for_each_entry_safe(obj_priv, next,
1640                                         &dev_priv->mm.flushing_list, list) {
1641                        struct drm_gem_object *obj = obj_priv->obj;
1642
1643                        if ((obj->write_domain & flush_domains) ==
1644                            obj->write_domain) {
1645                                uint32_t old_write_domain = obj->write_domain;
1646
1647                                obj->write_domain = 0;
1648                                i915_gem_object_move_to_active(obj, seqno);
1649
1650                                trace_i915_gem_object_change_domain(obj,
1651                                                                    obj->read_domains,
1652                                                                    old_write_domain);
1653                        }
1654                }
1655
1656        }
1657
1658        if (!dev_priv->mm.suspended) {
1659                mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1660                if (was_empty)
1661                        queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1662        }
1663        return seqno;
1664}
1665
1666/**
1667 * Command execution barrier
1668 *
1669 * Ensures that all commands in the ring are finished
1670 * before signalling the CPU
1671 */
1672static uint32_t
1673i915_retire_commands(struct drm_device *dev)
1674{
1675        drm_i915_private_t *dev_priv = dev->dev_private;
1676        uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1677        uint32_t flush_domains = 0;
1678        RING_LOCALS;
1679
1680        /* The sampler always gets flushed on i965 (sigh) */
1681        if (IS_I965G(dev))
1682                flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1683        BEGIN_LP_RING(2);
1684        OUT_RING(cmd);
1685        OUT_RING(0); /* noop */
1686        ADVANCE_LP_RING();
1687        return flush_domains;
1688}
1689
1690/**
1691 * Moves buffers associated only with the given active seqno from the active
1692 * to inactive list, potentially freeing them.
1693 */
1694static void
1695i915_gem_retire_request(struct drm_device *dev,
1696                        struct drm_i915_gem_request *request)
1697{
1698        drm_i915_private_t *dev_priv = dev->dev_private;
1699
1700        trace_i915_gem_request_retire(dev, request->seqno);
1701
1702        /* Move any buffers on the active list that are no longer referenced
1703         * by the ringbuffer to the flushing/inactive lists as appropriate.
1704         */
1705        spin_lock(&dev_priv->mm.active_list_lock);
1706        while (!list_empty(&dev_priv->mm.active_list)) {
1707                struct drm_gem_object *obj;
1708                struct drm_i915_gem_object *obj_priv;
1709
1710                obj_priv = list_first_entry(&dev_priv->mm.active_list,
1711                                            struct drm_i915_gem_object,
1712                                            list);
1713                obj = obj_priv->obj;
1714
1715                /* If the seqno being retired doesn't match the oldest in the
1716                 * list, then the oldest in the list must still be newer than
1717                 * this seqno.
1718                 */
1719                if (obj_priv->last_rendering_seqno != request->seqno)
1720                        goto out;
1721
1722#if WATCH_LRU
1723                DRM_INFO("%s: retire %d moves to inactive list %p\n",
1724                         __func__, request->seqno, obj);
1725#endif
1726
1727                if (obj->write_domain != 0)
1728                        i915_gem_object_move_to_flushing(obj);
1729                else {
1730                        /* Take a reference on the object so it won't be
1731                         * freed while the spinlock is held.  The list
1732                         * protection for this spinlock is safe when breaking
1733                         * the lock like this since the next thing we do
1734                         * is just get the head of the list again.
1735                         */
1736                        drm_gem_object_reference(obj);
1737                        i915_gem_object_move_to_inactive(obj);
1738                        spin_unlock(&dev_priv->mm.active_list_lock);
1739                        drm_gem_object_unreference(obj);
1740                        spin_lock(&dev_priv->mm.active_list_lock);
1741                }
1742        }
1743out:
1744        spin_unlock(&dev_priv->mm.active_list_lock);
1745}
1746
1747/**
1748 * Returns true if seq1 is later than seq2.
1749 */
1750bool
1751i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1752{
1753        return (int32_t)(seq1 - seq2) >= 0;
1754}
1755
1756uint32_t
1757i915_get_gem_seqno(struct drm_device *dev)
1758{
1759        drm_i915_private_t *dev_priv = dev->dev_private;
1760
1761        return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1762}
1763
1764/**
1765 * This function clears the request list as sequence numbers are passed.
1766 */
1767void
1768i915_gem_retire_requests(struct drm_device *dev)
1769{
1770        drm_i915_private_t *dev_priv = dev->dev_private;
1771        uint32_t seqno;
1772
1773        if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1774                return;
1775
1776        seqno = i915_get_gem_seqno(dev);
1777
1778        while (!list_empty(&dev_priv->mm.request_list)) {
1779                struct drm_i915_gem_request *request;
1780                uint32_t retiring_seqno;
1781
1782                request = list_first_entry(&dev_priv->mm.request_list,
1783                                           struct drm_i915_gem_request,
1784                                           list);
1785                retiring_seqno = request->seqno;
1786
1787                if (i915_seqno_passed(seqno, retiring_seqno) ||
1788                    atomic_read(&dev_priv->mm.wedged)) {
1789                        i915_gem_retire_request(dev, request);
1790
1791                        list_del(&request->list);
1792                        list_del(&request->client_list);
1793                        kfree(request);
1794                } else
1795                        break;
1796        }
1797
1798        if (unlikely (dev_priv->trace_irq_seqno &&
1799                      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1800                i915_user_irq_put(dev);
1801                dev_priv->trace_irq_seqno = 0;
1802        }
1803}
1804
1805void
1806i915_gem_retire_work_handler(struct work_struct *work)
1807{
1808        drm_i915_private_t *dev_priv;
1809        struct drm_device *dev;
1810
1811        dev_priv = container_of(work, drm_i915_private_t,
1812                                mm.retire_work.work);
1813        dev = dev_priv->dev;
1814
1815        mutex_lock(&dev->struct_mutex);
1816        i915_gem_retire_requests(dev);
1817        if (!dev_priv->mm.suspended &&
1818            !list_empty(&dev_priv->mm.request_list))
1819                queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820        mutex_unlock(&dev->struct_mutex);
1821}
1822
1823/**
1824 * Waits for a sequence number to be signaled, and cleans up the
1825 * request and object lists appropriately for that event.
1826 */
1827static int
1828i915_wait_request(struct drm_device *dev, uint32_t seqno)
1829{
1830        drm_i915_private_t *dev_priv = dev->dev_private;
1831        u32 ier;
1832        int ret = 0;
1833
1834        BUG_ON(seqno == 0);
1835
1836        if (atomic_read(&dev_priv->mm.wedged))
1837                return -EIO;
1838
1839        if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1840                if (IS_IGDNG(dev))
1841                        ier = I915_READ(DEIER) | I915_READ(GTIER);
1842                else
1843                        ier = I915_READ(IER);
1844                if (!ier) {
1845                        DRM_ERROR("something (likely vbetool) disabled "
1846                                  "interrupts, re-enabling\n");
1847                        i915_driver_irq_preinstall(dev);
1848                        i915_driver_irq_postinstall(dev);
1849                }
1850
1851                trace_i915_gem_request_wait_begin(dev, seqno);
1852
1853                dev_priv->mm.waiting_gem_seqno = seqno;
1854                i915_user_irq_get(dev);
1855                ret = wait_event_interruptible(dev_priv->irq_queue,
1856                                               i915_seqno_passed(i915_get_gem_seqno(dev),
1857                                                                 seqno) ||
1858                                               atomic_read(&dev_priv->mm.wedged));
1859                i915_user_irq_put(dev);
1860                dev_priv->mm.waiting_gem_seqno = 0;
1861
1862                trace_i915_gem_request_wait_end(dev, seqno);
1863        }
1864        if (atomic_read(&dev_priv->mm.wedged))
1865                ret = -EIO;
1866
1867        if (ret && ret != -ERESTARTSYS)
1868                DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1869                          __func__, ret, seqno, i915_get_gem_seqno(dev));
1870
1871        /* Directly dispatch request retiring.  While we have the work queue
1872         * to handle this, the waiter on a request often wants an associated
1873         * buffer to have made it to the inactive list, and we would need
1874         * a separate wait queue to handle that.
1875         */
1876        if (ret == 0)
1877                i915_gem_retire_requests(dev);
1878
1879        return ret;
1880}
1881
1882static void
1883i915_gem_flush(struct drm_device *dev,
1884               uint32_t invalidate_domains,
1885               uint32_t flush_domains)
1886{
1887        drm_i915_private_t *dev_priv = dev->dev_private;
1888        uint32_t cmd;
1889        RING_LOCALS;
1890
1891#if WATCH_EXEC
1892        DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1893                  invalidate_domains, flush_domains);
1894#endif
1895        trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1896                                     invalidate_domains, flush_domains);
1897
1898        if (flush_domains & I915_GEM_DOMAIN_CPU)
1899                drm_agp_chipset_flush(dev);
1900
1901        if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1902                /*
1903                 * read/write caches:
1904                 *
1905                 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1906                 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1907                 * also flushed at 2d versus 3d pipeline switches.
1908                 *
1909                 * read-only caches:
1910                 *
1911                 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1912                 * MI_READ_FLUSH is set, and is always flushed on 965.
1913                 *
1914                 * I915_GEM_DOMAIN_COMMAND may not exist?
1915                 *
1916                 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1917                 * invalidated when MI_EXE_FLUSH is set.
1918                 *
1919                 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1920                 * invalidated with every MI_FLUSH.
1921                 *
1922                 * TLBs:
1923                 *
1924                 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1925                 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1926                 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1927                 * are flushed at any MI_FLUSH.
1928                 */
1929
1930                cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1931                if ((invalidate_domains|flush_domains) &
1932                    I915_GEM_DOMAIN_RENDER)
1933                        cmd &= ~MI_NO_WRITE_FLUSH;
1934                if (!IS_I965G(dev)) {
1935                        /*
1936                         * On the 965, the sampler cache always gets flushed
1937                         * and this bit is reserved.
1938                         */
1939                        if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1940                                cmd |= MI_READ_FLUSH;
1941                }
1942                if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1943                        cmd |= MI_EXE_FLUSH;
1944
1945#if WATCH_EXEC
1946                DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1947#endif
1948                BEGIN_LP_RING(2);
1949                OUT_RING(cmd);
1950                OUT_RING(0); /* noop */
1951                ADVANCE_LP_RING();
1952        }
1953}
1954
1955/**
1956 * Ensures that all rendering to the object has completed and the object is
1957 * safe to unbind from the GTT or access from the CPU.
1958 */
1959static int
1960i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1961{
1962        struct drm_device *dev = obj->dev;
1963        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1964        int ret;
1965
1966        /* This function only exists to support waiting for existing rendering,
1967         * not for emitting required flushes.
1968         */
1969        BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1970
1971        /* If there is rendering queued on the buffer being evicted, wait for
1972         * it.
1973         */
1974        if (obj_priv->active) {
1975#if WATCH_BUF
1976                DRM_INFO("%s: object %p wait for seqno %08x\n",
1977                          __func__, obj, obj_priv->last_rendering_seqno);
1978#endif
1979                ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1980                if (ret != 0)
1981                        return ret;
1982        }
1983
1984        return 0;
1985}
1986
1987/**
1988 * Unbinds an object from the GTT aperture.
1989 */
1990int
1991i915_gem_object_unbind(struct drm_gem_object *obj)
1992{
1993        struct drm_device *dev = obj->dev;
1994        struct drm_i915_gem_object *obj_priv = obj->driver_private;
1995        int ret = 0;
1996
1997#if WATCH_BUF
1998        DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1999        DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2000#endif
2001        if (obj_priv->gtt_space == NULL)
2002                return 0;
2003
2004        if (obj_priv->pin_count != 0) {
2005                DRM_ERROR("Attempting to unbind pinned buffer\n");
2006                return -EINVAL;
2007        }
2008
2009        /* blow away mappings if mapped through GTT */
2010        i915_gem_release_mmap(obj);
2011
2012        if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2013                i915_gem_clear_fence_reg(obj);
2014
2015        /* Move the object to the CPU domain to ensure that
2016         * any possible CPU writes while it's not in the GTT
2017         * are flushed when we go to remap it. This will
2018         * also ensure that all pending GPU writes are finished
2019         * before we unbind.
2020         */
2021        ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2022        if (ret) {
2023                if (ret != -ERESTARTSYS)
2024                        DRM_ERROR("set_domain failed: %d\n", ret);
2025                return ret;
2026        }
2027
2028        BUG_ON(obj_priv->active);
2029
2030        if (obj_priv->agp_mem != NULL) {
2031                drm_unbind_agp(obj_priv->agp_mem);
2032                drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2033                obj_priv->agp_mem = NULL;
2034        }
2035
2036        i915_gem_object_put_pages(obj);
2037        BUG_ON(obj_priv->pages_refcount);
2038
2039        if (obj_priv->gtt_space) {
2040                atomic_dec(&dev->gtt_count);
2041                atomic_sub(obj->size, &dev->gtt_memory);
2042
2043                drm_mm_put_block(obj_priv->gtt_space);
2044                obj_priv->gtt_space = NULL;
2045        }
2046
2047        /* Remove ourselves from the LRU list if present. */
2048        if (!list_empty(&obj_priv->list))
2049                list_del_init(&obj_priv->list);
2050
2051        if (i915_gem_object_is_purgeable(obj_priv))
2052                i915_gem_object_truncate(obj);
2053
2054        trace_i915_gem_object_unbind(obj);
2055
2056        return 0;
2057}
2058
2059static struct drm_gem_object *
2060i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2061{
2062        drm_i915_private_t *dev_priv = dev->dev_private;
2063        struct drm_i915_gem_object *obj_priv;
2064        struct drm_gem_object *best = NULL;
2065        struct drm_gem_object *first = NULL;
2066
2067        /* Try to find the smallest clean object */
2068        list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2069                struct drm_gem_object *obj = obj_priv->obj;
2070                if (obj->size >= min_size) {
2071                        if ((!obj_priv->dirty ||
2072                             i915_gem_object_is_purgeable(obj_priv)) &&
2073                            (!best || obj->size < best->size)) {
2074                                best = obj;
2075                                if (best->size == min_size)
2076                                        return best;
2077                        }
2078                        if (!first)
2079                            first = obj;
2080                }
2081        }
2082
2083        return best ? best : first;
2084}
2085
2086static int
2087i915_gem_evict_everything(struct drm_device *dev)
2088{
2089        drm_i915_private_t *dev_priv = dev->dev_private;
2090        uint32_t seqno;
2091        int ret;
2092        bool lists_empty;
2093
2094        spin_lock(&dev_priv->mm.active_list_lock);
2095        lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2096                       list_empty(&dev_priv->mm.flushing_list) &&
2097                       list_empty(&dev_priv->mm.active_list));
2098        spin_unlock(&dev_priv->mm.active_list_lock);
2099
2100        if (lists_empty)
2101                return -ENOSPC;
2102
2103        /* Flush everything (on to the inactive lists) and evict */
2104        i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2105        seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2106        if (seqno == 0)
2107                return -ENOMEM;
2108
2109        ret = i915_wait_request(dev, seqno);
2110        if (ret)
2111                return ret;
2112
2113        ret = i915_gem_evict_from_inactive_list(dev);
2114        if (ret)
2115                return ret;
2116
2117        spin_lock(&dev_priv->mm.active_list_lock);
2118        lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2119                       list_empty(&dev_priv->mm.flushing_list) &&
2120                       list_empty(&dev_priv->mm.active_list));
2121        spin_unlock(&dev_priv->mm.active_list_lock);
2122        BUG_ON(!lists_empty);
2123
2124        return 0;
2125}
2126
2127static int
2128i915_gem_evict_something(struct drm_device *dev, int min_size)
2129{
2130        drm_i915_private_t *dev_priv = dev->dev_private;
2131        struct drm_gem_object *obj;
2132        int ret;
2133
2134        for (;;) {
2135                i915_gem_retire_requests(dev);
2136
2137                /* If there's an inactive buffer available now, grab it
2138                 * and be done.
2139                 */
2140                obj = i915_gem_find_inactive_object(dev, min_size);
2141                if (obj) {
2142                        struct drm_i915_gem_object *obj_priv;
2143
2144#if WATCH_LRU
2145                        DRM_INFO("%s: evicting %p\n", __func__, obj);
2146#endif
2147                        obj_priv = obj->driver_private;
2148                        BUG_ON(obj_priv->pin_count != 0);
2149                        BUG_ON(obj_priv->active);
2150
2151                        /* Wait on the rendering and unbind the buffer. */
2152                        return i915_gem_object_unbind(obj);
2153                }
2154
2155                /* If we didn't get anything, but the ring is still processing
2156                 * things, wait for the next to finish and hopefully leave us
2157                 * a buffer to evict.
2158                 */
2159                if (!list_empty(&dev_priv->mm.request_list)) {
2160                        struct drm_i915_gem_request *request;
2161
2162                        request = list_first_entry(&dev_priv->mm.request_list,
2163                                                   struct drm_i915_gem_request,
2164                                                   list);
2165
2166                        ret = i915_wait_request(dev, request->seqno);
2167                        if (ret)
2168                                return ret;
2169
2170                        continue;
2171                }
2172
2173                /* If we didn't have anything on the request list but there
2174                 * are buffers awaiting a flush, emit one and try again.
2175                 * When we wait on it, those buffers waiting for that flush
2176                 * will get moved to inactive.
2177                 */
2178                if (!list_empty(&dev_priv->mm.flushing_list)) {
2179                        struct drm_i915_gem_object *obj_priv;
2180
2181                        /* Find an object that we can immediately reuse */
2182                        list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2183                                obj = obj_priv->obj;
2184                                if (obj->size >= min_size)
2185                                        break;
2186
2187                                obj = NULL;
2188                        }
2189
2190                        if (obj != NULL) {
2191                                uint32_t seqno;
2192
2193                                i915_gem_flush(dev,
2194                                               obj->write_domain,
2195                                               obj->write_domain);
2196                                seqno = i915_add_request(dev, NULL, obj->write_domain);
2197                                if (seqno == 0)
2198                                        return -ENOMEM;
2199
2200                                ret = i915_wait_request(dev, seqno);
2201                                if (ret)
2202                                        return ret;
2203
2204                                continue;
2205                        }
2206                }
2207
2208                /* If we didn't do any of the above, there's no single buffer
2209                 * large enough to swap out for the new one, so just evict
2210                 * everything and start again. (This should be rare.)
2211                 */
2212                if (!list_empty (&dev_priv->mm.inactive_list))
2213                        return i915_gem_evict_from_inactive_list(dev);
2214                else
2215                        return i915_gem_evict_everything(dev);
2216        }
2217}
2218
2219int
2220i915_gem_object_get_pages(struct drm_gem_object *obj)
2221{
2222        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2223        int page_count, i;
2224        struct address_space *mapping;
2225        struct inode *inode;
2226        struct page *page;
2227        int ret;
2228
2229        if (obj_priv->pages_refcount++ != 0)
2230                return 0;
2231
2232        /* Get the list of pages out of our struct file.  They'll be pinned
2233         * at this point until we release them.
2234         */
2235        page_count = obj->size / PAGE_SIZE;
2236        BUG_ON(obj_priv->pages != NULL);
2237        obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2238        if (obj_priv->pages == NULL) {
2239                obj_priv->pages_refcount--;
2240                return -ENOMEM;
2241        }
2242
2243        inode = obj->filp->f_path.dentry->d_inode;
2244        mapping = inode->i_mapping;
2245        for (i = 0; i < page_count; i++) {
2246                page = read_mapping_page(mapping, i, NULL);
2247                if (IS_ERR(page)) {
2248                        ret = PTR_ERR(page);
2249                        i915_gem_object_put_pages(obj);
2250                        return ret;
2251                }
2252                obj_priv->pages[i] = page;
2253        }
2254
2255        if (obj_priv->tiling_mode != I915_TILING_NONE)
2256                i915_gem_object_do_bit_17_swizzle(obj);
2257
2258        return 0;
2259}
2260
2261static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2262{
2263        struct drm_gem_object *obj = reg->obj;
2264        struct drm_device *dev = obj->dev;
2265        drm_i915_private_t *dev_priv = dev->dev_private;
2266        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2267        int regnum = obj_priv->fence_reg;
2268        uint64_t val;
2269
2270        val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2271                    0xfffff000) << 32;
2272        val |= obj_priv->gtt_offset & 0xfffff000;
2273        val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2274        if (obj_priv->tiling_mode == I915_TILING_Y)
2275                val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2276        val |= I965_FENCE_REG_VALID;
2277
2278        I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2279}
2280
2281static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2282{
2283        struct drm_gem_object *obj = reg->obj;
2284        struct drm_device *dev = obj->dev;
2285        drm_i915_private_t *dev_priv = dev->dev_private;
2286        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2287        int regnum = obj_priv->fence_reg;
2288        int tile_width;
2289        uint32_t fence_reg, val;
2290        uint32_t pitch_val;
2291
2292        if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2293            (obj_priv->gtt_offset & (obj->size - 1))) {
2294                WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2295                     __func__, obj_priv->gtt_offset, obj->size);
2296                return;
2297        }
2298
2299        if (obj_priv->tiling_mode == I915_TILING_Y &&
2300            HAS_128_BYTE_Y_TILING(dev))
2301                tile_width = 128;
2302        else
2303                tile_width = 512;
2304
2305        /* Note: pitch better be a power of two tile widths */
2306        pitch_val = obj_priv->stride / tile_width;
2307        pitch_val = ffs(pitch_val) - 1;
2308
2309        val = obj_priv->gtt_offset;
2310        if (obj_priv->tiling_mode == I915_TILING_Y)
2311                val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2312        val |= I915_FENCE_SIZE_BITS(obj->size);
2313        val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2314        val |= I830_FENCE_REG_VALID;
2315
2316        if (regnum < 8)
2317                fence_reg = FENCE_REG_830_0 + (regnum * 4);
2318        else
2319                fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2320        I915_WRITE(fence_reg, val);
2321}
2322
2323static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2324{
2325        struct drm_gem_object *obj = reg->obj;
2326        struct drm_device *dev = obj->dev;
2327        drm_i915_private_t *dev_priv = dev->dev_private;
2328        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2329        int regnum = obj_priv->fence_reg;
2330        uint32_t val;
2331        uint32_t pitch_val;
2332        uint32_t fence_size_bits;
2333
2334        if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2335            (obj_priv->gtt_offset & (obj->size - 1))) {
2336                WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2337                     __func__, obj_priv->gtt_offset);
2338                return;
2339        }
2340
2341        pitch_val = obj_priv->stride / 128;
2342        pitch_val = ffs(pitch_val) - 1;
2343        WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2344
2345        val = obj_priv->gtt_offset;
2346        if (obj_priv->tiling_mode == I915_TILING_Y)
2347                val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2348        fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2349        WARN_ON(fence_size_bits & ~0x00000f00);
2350        val |= fence_size_bits;
2351        val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2352        val |= I830_FENCE_REG_VALID;
2353
2354        I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2355}
2356
2357/**
2358 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2359 * @obj: object to map through a fence reg
2360 *
2361 * When mapping objects through the GTT, userspace wants to be able to write
2362 * to them without having to worry about swizzling if the object is tiled.
2363 *
2364 * This function walks the fence regs looking for a free one for @obj,
2365 * stealing one if it can't find any.
2366 *
2367 * It then sets up the reg based on the object's properties: address, pitch
2368 * and tiling format.
2369 */
2370int
2371i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2372{
2373        struct drm_device *dev = obj->dev;
2374        struct drm_i915_private *dev_priv = dev->dev_private;
2375        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2376        struct drm_i915_fence_reg *reg = NULL;
2377        struct drm_i915_gem_object *old_obj_priv = NULL;
2378        int i, ret, avail;
2379
2380        /* Just update our place in the LRU if our fence is getting used. */
2381        if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2382                list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2383                return 0;
2384        }
2385
2386        switch (obj_priv->tiling_mode) {
2387        case I915_TILING_NONE:
2388                WARN(1, "allocating a fence for non-tiled object?\n");
2389                break;
2390        case I915_TILING_X:
2391                if (!obj_priv->stride)
2392                        return -EINVAL;
2393                WARN((obj_priv->stride & (512 - 1)),
2394                     "object 0x%08x is X tiled but has non-512B pitch\n",
2395                     obj_priv->gtt_offset);
2396                break;
2397        case I915_TILING_Y:
2398                if (!obj_priv->stride)
2399                        return -EINVAL;
2400                WARN((obj_priv->stride & (128 - 1)),
2401                     "object 0x%08x is Y tiled but has non-128B pitch\n",
2402                     obj_priv->gtt_offset);
2403                break;
2404        }
2405
2406        /* First try to find a free reg */
2407        avail = 0;
2408        for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2409                reg = &dev_priv->fence_regs[i];
2410                if (!reg->obj)
2411                        break;
2412
2413                old_obj_priv = reg->obj->driver_private;
2414                if (!old_obj_priv->pin_count)
2415                    avail++;
2416        }
2417
2418        /* None available, try to steal one or wait for a user to finish */
2419        if (i == dev_priv->num_fence_regs) {
2420                struct drm_gem_object *old_obj = NULL;
2421
2422                if (avail == 0)
2423                        return -ENOSPC;
2424
2425                list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2426                                    fence_list) {
2427                        old_obj = old_obj_priv->obj;
2428
2429                        if (old_obj_priv->pin_count)
2430                                continue;
2431
2432                        /* Take a reference, as otherwise the wait_rendering
2433                         * below may cause the object to get freed out from
2434                         * under us.
2435                         */
2436                        drm_gem_object_reference(old_obj);
2437
2438                        /* i915 uses fences for GPU access to tiled buffers */
2439                        if (IS_I965G(dev) || !old_obj_priv->active)
2440                                break;
2441
2442                        /* This brings the object to the head of the LRU if it
2443                         * had been written to.  The only way this should
2444                         * result in us waiting longer than the expected
2445                         * optimal amount of time is if there was a
2446                         * fence-using buffer later that was read-only.
2447                         */
2448                        i915_gem_object_flush_gpu_write_domain(old_obj);
2449                        ret = i915_gem_object_wait_rendering(old_obj);
2450                        if (ret != 0) {
2451                                drm_gem_object_unreference(old_obj);
2452                                return ret;
2453                        }
2454
2455                        break;
2456                }
2457
2458                /*
2459                 * Zap this virtual mapping so we can set up a fence again
2460                 * for this object next time we need it.
2461                 */
2462                i915_gem_release_mmap(old_obj);
2463
2464                i = old_obj_priv->fence_reg;
2465                reg = &dev_priv->fence_regs[i];
2466
2467                old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2468                list_del_init(&old_obj_priv->fence_list);
2469
2470                drm_gem_object_unreference(old_obj);
2471        }
2472
2473        obj_priv->fence_reg = i;
2474        list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2475
2476        reg->obj = obj;
2477
2478        if (IS_I965G(dev))
2479                i965_write_fence_reg(reg);
2480        else if (IS_I9XX(dev))
2481                i915_write_fence_reg(reg);
2482        else
2483                i830_write_fence_reg(reg);
2484
2485        trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2486
2487        return 0;
2488}
2489
2490/**
2491 * i915_gem_clear_fence_reg - clear out fence register info
2492 * @obj: object to clear
2493 *
2494 * Zeroes out the fence register itself and clears out the associated
2495 * data structures in dev_priv and obj_priv.
2496 */
2497static void
2498i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2499{
2500        struct drm_device *dev = obj->dev;
2501        drm_i915_private_t *dev_priv = dev->dev_private;
2502        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2503
2504        if (IS_I965G(dev))
2505                I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2506        else {
2507                uint32_t fence_reg;
2508
2509                if (obj_priv->fence_reg < 8)
2510                        fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2511                else
2512                        fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2513                                                       8) * 4;
2514
2515                I915_WRITE(fence_reg, 0);
2516        }
2517
2518        dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2519        obj_priv->fence_reg = I915_FENCE_REG_NONE;
2520        list_del_init(&obj_priv->fence_list);
2521}
2522
2523/**
2524 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2525 * to the buffer to finish, and then resets the fence register.
2526 * @obj: tiled object holding a fence register.
2527 *
2528 * Zeroes out the fence register itself and clears out the associated
2529 * data structures in dev_priv and obj_priv.
2530 */
2531int
2532i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2533{
2534        struct drm_device *dev = obj->dev;
2535        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2536
2537        if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2538                return 0;
2539
2540        /* On the i915, GPU access to tiled buffers is via a fence,
2541         * therefore we must wait for any outstanding access to complete
2542         * before clearing the fence.
2543         */
2544        if (!IS_I965G(dev)) {
2545                int ret;
2546
2547                i915_gem_object_flush_gpu_write_domain(obj);
2548                i915_gem_object_flush_gtt_write_domain(obj);
2549                ret = i915_gem_object_wait_rendering(obj);
2550                if (ret != 0)
2551                        return ret;
2552        }
2553
2554        i915_gem_clear_fence_reg (obj);
2555
2556        return 0;
2557}
2558
2559/**
2560 * Finds free space in the GTT aperture and binds the object there.
2561 */
2562static int
2563i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2564{
2565        struct drm_device *dev = obj->dev;
2566        drm_i915_private_t *dev_priv = dev->dev_private;
2567        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2568        struct drm_mm_node *free_space;
2569        bool retry_alloc = false;
2570        int ret;
2571
2572        if (dev_priv->mm.suspended)
2573                return -EBUSY;
2574
2575        if (obj_priv->madv != I915_MADV_WILLNEED) {
2576                DRM_ERROR("Attempting to bind a purgeable object\n");
2577                return -EINVAL;
2578        }
2579
2580        if (alignment == 0)
2581                alignment = i915_gem_get_gtt_alignment(obj);
2582        if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2583                DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2584                return -EINVAL;
2585        }
2586
2587 search_free:
2588        free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2589                                        obj->size, alignment, 0);
2590        if (free_space != NULL) {
2591                obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2592                                                       alignment);
2593                if (obj_priv->gtt_space != NULL) {
2594                        obj_priv->gtt_space->private = obj;
2595                        obj_priv->gtt_offset = obj_priv->gtt_space->start;
2596                }
2597        }
2598        if (obj_priv->gtt_space == NULL) {
2599                /* If the gtt is empty and we're still having trouble
2600                 * fitting our object in, we're out of memory.
2601                 */
2602#if WATCH_LRU
2603                DRM_INFO("%s: GTT full, evicting something\n", __func__);
2604#endif
2605                ret = i915_gem_evict_something(dev, obj->size);
2606                if (ret)
2607                        return ret;
2608
2609                goto search_free;
2610        }
2611
2612#if WATCH_BUF
2613        DRM_INFO("Binding object of size %zd at 0x%08x\n",
2614                 obj->size, obj_priv->gtt_offset);
2615#endif
2616        if (retry_alloc) {
2617                i915_gem_object_set_page_gfp_mask (obj,
2618                                                   i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2619        }
2620        ret = i915_gem_object_get_pages(obj);
2621        if (retry_alloc) {
2622                i915_gem_object_set_page_gfp_mask (obj,
2623                                                   i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2624        }
2625        if (ret) {
2626                drm_mm_put_block(obj_priv->gtt_space);
2627                obj_priv->gtt_space = NULL;
2628
2629                if (ret == -ENOMEM) {
2630                        /* first try to clear up some space from the GTT */
2631                        ret = i915_gem_evict_something(dev, obj->size);
2632                        if (ret) {
2633                                /* now try to shrink everyone else */
2634                                if (! retry_alloc) {
2635                                    retry_alloc = true;
2636                                    goto search_free;
2637                                }
2638
2639                                return ret;
2640                        }
2641
2642                        goto search_free;
2643                }
2644
2645                return ret;
2646        }
2647
2648        /* Create an AGP memory structure pointing at our pages, and bind it
2649         * into the GTT.
2650         */
2651        obj_priv->agp_mem = drm_agp_bind_pages(dev,
2652                                               obj_priv->pages,
2653                                               obj->size >> PAGE_SHIFT,
2654                                               obj_priv->gtt_offset,
2655                                               obj_priv->agp_type);
2656        if (obj_priv->agp_mem == NULL) {
2657                i915_gem_object_put_pages(obj);
2658                drm_mm_put_block(obj_priv->gtt_space);
2659                obj_priv->gtt_space = NULL;
2660
2661                ret = i915_gem_evict_something(dev, obj->size);
2662                if (ret)
2663                        return ret;
2664
2665                goto search_free;
2666        }
2667        atomic_inc(&dev->gtt_count);
2668        atomic_add(obj->size, &dev->gtt_memory);
2669
2670        /* Assert that the object is not currently in any GPU domain. As it
2671         * wasn't in the GTT, there shouldn't be any way it could have been in
2672         * a GPU cache
2673         */
2674        BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2675        BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2676
2677        trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2678
2679        return 0;
2680}
2681
2682void
2683i915_gem_clflush_object(struct drm_gem_object *obj)
2684{
2685        struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2686
2687        /* If we don't have a page list set up, then we're not pinned
2688         * to GPU, and we can ignore the cache flush because it'll happen
2689         * again at bind time.
2690         */
2691        if (obj_priv->pages == NULL)
2692                return;
2693
2694        trace_i915_gem_object_clflush(obj);
2695
2696        drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2697}
2698
2699/** Flushes any GPU write domain for the object if it's dirty. */
2700static void
2701i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2702{
2703        struct drm_device *dev = obj->dev;
2704        uint32_t seqno;
2705        uint32_t old_write_domain;
2706
2707        if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2708                return;
2709
2710        /* Queue the GPU write cache flushing we need. */
2711        old_write_domain = obj->write_domain;
2712        i915_gem_flush(dev, 0, obj->write_domain);
2713        seqno = i915_add_request(dev, NULL, obj->write_domain);
2714        obj->write_domain = 0;
2715        i915_gem_object_move_to_active(obj, seqno);
2716
2717        trace_i915_gem_object_change_domain(obj,
2718                                            obj->read_domains,
2719                                            old_write_domain);
2720}
2721
2722/** Flushes the GTT write domain for the object if it's dirty. */
2723static void
2724i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2725{
2726        uint32_t old_write_domain;
2727
2728        if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2729                return;
2730
2731        /* No actual flushing is required for the GTT write domain.   Writes
2732         * to it immediately go to main memory as far as we know, so there's
2733         * no chipset flush.  It also doesn't land in render cache.
2734         */
2735        old_write_domain = obj->write_domain;
2736        obj->write_domain = 0;
2737
2738        trace_i915_gem_object_change_domain(obj,
2739                                            obj->read_domains,
2740                                            old_write_domain);
2741}
2742
2743/** Flushes the CPU write domain for the object if it's dirty. */
2744static void
2745i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2746{
2747        struct drm_device *dev = obj->dev;
2748        uint32_t old_write_domain;
2749
2750        if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2751                return;
2752
2753        i915_gem_clflush_object(obj);
2754        drm_agp_chipset_flush(dev);
2755        old_write_domain = obj->write_domain;
2756        obj->write_domain = 0;
2757
2758        trace_i915_gem_object_change_domain(obj,
2759                                            obj->read_domains,
2760                                            old_write_domain);
2761}
2762
2763/**
2764 * Moves a single object to the GTT read, and possibly write domain.
2765 *
2766 * This function returns when the move is complete, including waiting on
2767 * flushes to occur.
2768 */
2769int
2770i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2771{
2772        struct drm_i915_gem_object *obj_priv = obj->driver_private;
2773        uint32_t old_write_domain, old_read_domains;
2774        int ret;
2775
2776        /* Not valid to be called on unbound objects. */
2777        if (obj_priv->gtt_space == NULL)
2778                return -EINVAL;
2779
2780        i915_gem_object_flush_gpu_write_domain(obj);
2781        /* Wait on any GPU rendering and flushing to occur. */
2782        ret = i915_gem_object_wait_rendering(obj);
2783        if (ret != 0)
2784                return ret;
2785
2786        old_write_domain = obj->write_domain;
2787        old_read_domains = obj->read_domains;
2788
2789        /* If we're writing through the GTT domain, then CPU and GPU caches
2790         * will need to be invalidated at next use.
2791         */
2792        if (write)
2793                obj->read_domains &= I915_GEM_DOMAIN_GTT;
2794
2795        i915_gem_object_flush_cpu_write_domain(obj);
2796
2797        /* It should now be out of any other write domains, and we can update
2798         * the domain values for our changes.
2799         */
2800        BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2801        obj->read_domains |= I915_GEM_DOMAIN_GTT;
2802        if (write) {
2803                obj->write_domain = I915_GEM_DOMAIN_GTT;
2804                obj_priv->dirty = 1;
2805        }
2806
2807        trace_i915_gem_object_change_domain(obj,
2808                                            old_read_domains,
2809                                            old_write_domain);
2810
2811        return 0;
2812}
2813
2814/**
2815 * Moves a single object to the CPU read, and possibly write domain.
2816 *
2817 * This function returns when the move is complete, including waiting on
2818 * flushes to occur.
2819 */
2820static int
2821i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2822{
2823        uint32_t old_write_domain, old_read_domains;
2824        int ret;
2825
2826        i915_gem_object_flush_gpu_write_domain(obj);
2827        /* Wait on any GPU rendering and flushing to occur. */
2828        ret = i915_gem_object_wait_rendering(obj);
2829        if (ret != 0)
2830                return ret;
2831
2832        i915_gem_object_flush_gtt_write_domain(obj);
2833
2834        /* If we have a partially-valid cache of the object in the CPU,
2835         * finish invalidating it and free the per-page flags.
2836         */
2837        i915_gem_object_set_to_full_cpu_read_domain(obj);
2838
2839        old_write_domain = obj->write_domain;
2840        old_read_domains = obj->read_domains;
2841
2842        /* Flush the CPU cache if it's still invalid. */
2843        if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2844                i915_gem_clflush_object(obj);
2845
2846                obj->read_domains |= I915_GEM_DOMAIN_CPU;
2847        }
2848
2849        /* It should now be out of any other write domains, and we can update
2850         * the domain values for our changes.
2851         */
2852        BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2853
2854        /* If we're writing through the CPU, then the GPU read domains will
2855         * need to be invalidated at next use.
2856         */
2857        if (write) {
2858                obj->read_domains &= I915_GEM_DOMAIN_CPU;
2859                obj->write_domain = I915_GEM_DOMAIN_CPU;
2860        }
2861
2862        trace_i915_gem_object_change_domain(obj,
2863                                            old_read_domains,
2864                                            old_write_domain);
2865
2866        return 0;
2867}
2868
2869/*
2870 * Set the next domain for the specified object. This
2871 * may not actually perform the necessary flushing/invaliding though,
2872 * as that may want to be batched with other set_domain operations
2873 *
2874 * This is (we hope) the only really tricky part of gem. The goal
2875 * is fairly simple -- track which caches hold bits of the object
2876 * and make sure they remain coherent. A few concrete examples may
2877 * help to explain how it works. For shorthand, we use the notation
2878 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2879 * a pair of read and write domain masks.
2880 *
2881 * Case 1: the batch buffer
2882 *
2883 *      1. Allocated
2884 *      2. Written by CPU
2885 *      3. Mapped to GTT
2886 *      4. Read by GPU
2887 *      5. Unmapped from GTT
2888 *      6. Freed
2889 *
2890 *      Let's take these a step at a time
2891 *
2892 *      1. Allocated
2893 *              Pages allocated from the kernel may still have
2894 *              cache contents, so we set them to (CPU, CPU) always.
2895 *      2. Written by CPU (using pwrite)
2896 *              The pwrite function calls set_domain (CPU, CPU) and
2897 *              this function does nothing (as nothing changes)
2898 *      3. Mapped by GTT
2899 *              This function asserts that the object is not
2900 *              currently in any GPU-based read or write domains
2901 *      4. Read by GPU
2902 *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2903 *              As write_domain is zero, this function adds in the
2904 *              current read domains (CPU+COMMAND, 0).
2905 *              flush_domains is set to CPU.
2906 *              invalidate_domains is set to COMMAND
2907 *              clflush is run to get data out of the CPU caches
2908 *              then i915_dev_set_domain calls i915_gem_flush to
2909 *              emit an MI_FLUSH and drm_agp_chipset_flush
2910 *      5. Unmapped from GTT
2911 *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2912 *              flush_domains and invalidate_domains end up both zero
2913 *              so no flushing/invalidating happens
2914 *      6. Freed
2915 *              yay, done
2916 *
2917 * Case 2: The shared render buffer
2918 *
2919 *      1. Allocated
2920 *      2. Mapped to GTT
2921 *      3. Read/written by GPU
2922 *      4. set_domain to (CPU,CPU)
2923 *      5. Read/written by CPU
2924 *      6. Read/written by GPU
2925 *
2926 *      1. Allocated
2927 *              Same as last example, (CPU, CPU)
2928 *      2. Mapped to GTT
2929 *              Nothing changes (assertions find that it is not in the GPU)
2930 *      3. Read/written by GPU
2931 *              execbuffer calls set_domain (RENDER, RENDER)
2932 *              flush_domains gets CPU
2933 *              invalidate_domains gets GPU
2934 *              clflush (obj)
2935 *              MI_FLUSH and drm_agp_chipset_flush
2936 *      4. set_domain (CPU, CPU)
2937 *              flush_domains gets GPU
2938 *              invalidate_domains gets CPU
2939 *              wait_rendering (obj) to make sure all drawing is complete.
2940 *              This will include an MI_FLUSH to get the data from GPU
2941 *              to memory
2942 *              clflush (obj) to invalidate the CPU cache
2943 *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2944 *      5. Read/written by CPU
2945 *              cache lines are loaded and dirtied
2946 *      6. Read written by GPU
2947 *              Same as last GPU access
2948 *
2949 * Case 3: The constant buffer
2950 *
2951 *      1. Allocated
2952 *      2. Written by CPU
2953 *      3. Read by GPU
2954 *      4. Updated (written) by CPU again
2955 *      5. Read by GPU
2956 *
2957 *      1. Allocated
2958 *              (CPU, CPU)
2959 *      2. Written by CPU
2960 *              (CPU, CPU)
2961 *      3. Read by GPU
2962 *              (CPU+RENDER, 0)
2963 *              flush_domains = CPU
2964 *              invalidate_domains = RENDER
2965 *              clflush (obj)
2966 *              MI_FLUSH
2967 *              drm_agp_chipset_flush
2968 *      4. Updated (written) by CPU again
2969 *              (CPU, CPU)
2970 *              flush_domains = 0 (no previous write domain)
2971 *              invalidate_domains = 0 (no new read domains)
2972 *      5. Read by GPU
2973 *              (CPU+RENDER, 0)
2974 *              flush_domains = CPU
2975 *              invalidate_domains = RENDER
2976 *              clflush (obj)
2977 *              MI_FLUSH
2978 *              drm_agp_chipset_flush
2979 */
2980static void
2981i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2982{
2983        struct drm_device               *dev = obj->dev;
2984        struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2985        uint32_t                        invalidate_domains = 0;
2986        uint32_t                        flush_domains = 0;
2987        uint32_t                        old_read_domains;
2988
2989        BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2990        BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2991
2992        intel_mark_busy(dev, obj);
2993
2994#if WATCH_BUF
2995        DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2996                 __func__, obj,
2997                 obj->read_domains, obj->pending_read_domains,
2998                 obj->write_domain, obj->pending_write_domain);
2999#endif
3000        /*
3001         * If the object isn't moving to a new write domain,
3002         * let the object stay in multiple read domains
3003         */
3004        if (obj->pending_write_domain == 0)
3005                obj->pending_read_domains |= obj->read_domains;
3006        else
3007                obj_priv->dirty = 1;
3008
3009        /*
3010         * Flush the current write domain if
3011         * the new read domains don't match. Invalidate
3012         * any read domains which differ from the old
3013         * write domain
3014         */
3015        if (obj->write_domain &&
3016            obj->write_domain != obj->pending_read_domains) {
3017                flush_domains |= obj->write_domain;
3018                invalidate_domains |=
3019                        obj->pending_read_domains & ~obj->write_domain;
3020        }
3021        /*
3022         * Invalidate any read caches which may have
3023         * stale data. That is, any new read domains.
3024         */
3025        invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3026        if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3027#if WATCH_BUF
3028                DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3029                         __func__, flush_domains, invalidate_domains);
3030#endif
3031                i915_gem_clflush_object(obj);
3032        }
3033
3034        old_read_domains = obj->read_domains;
3035
3036        /* The actual obj->write_domain will be updated with
3037         * pending_write_domain after we emit the accumulated flush for all
3038         * of our domain changes in execbuffers (which clears objects'
3039         * write_domains).  So if we have a current write domain that we
3040         * aren't changing, set pending_write_domain to that.
3041         */
3042        if (flush_domains == 0 && obj->pending_write_domain == 0)
3043                obj->pending_write_domain = obj->write_domain;
3044        obj->read_domains = obj->pending_read_domains;
3045
3046        dev->invalidate_domains |= invalidate_domains;
3047        dev->flush_domains |= flush_domains;
3048#if WATCH_BUF
3049        DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3050                 __func__,
3051                 obj->read_domains, obj->write_domain,
3052                 dev->invalidate_domains, dev->flush_domains);
3053#endif
3054
3055        trace_i915_gem_object_change_domain(obj,
3056                                            old_read_domains,
3057                                            obj->write_domain);
3058}
3059
3060/**
3061 * Moves the object from a partially CPU read to a full one.
3062 *
3063 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3064 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3065 */
3066static void
3067i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3068{
3069        struct drm_i915_gem_object *obj_priv = obj->driver_private;
3070
3071        if (!obj_priv->page_cpu_valid)
3072                return;
3073
3074        /* If we're partially in the CPU read domain, finish moving it in.
3075         */
3076        if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3077                int i;
3078
3079                for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3080                        if (obj_priv->page_cpu_valid[i])
3081                                continue;
3082                        drm_clflush_pages(obj_priv->pages + i, 1);
3083                }
3084        }
3085
3086        /* Free the page_cpu_valid mappings which are now stale, whether
3087         * or not we've got I915_GEM_DOMAIN_CPU.
3088         */
3089        kfree(obj_priv->page_cpu_valid);
3090        obj_priv->page_cpu_valid = NULL;
3091}
3092
3093/**
3094 * Set the CPU read domain on a range of the object.
3095 *
3096 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3097 * not entirely valid.  The page_cpu_valid member of the object flags which
3098 * pages have been flushed, and will be respected by
3099 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3100 * of the whole object.
3101 *
3102 * This function returns when the move is complete, including waiting on
3103 * flushes to occur.
3104 */
3105static int
3106i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3107                                          uint64_t offset, uint64_t size)
3108{
3109        struct drm_i915_gem_object *obj_priv = obj->driver_private;
3110        uint32_t old_read_domains;
3111        int i, ret;
3112
3113        if (offset == 0 && size == obj->size)
3114                return i915_gem_object_set_to_cpu_domain(obj, 0);
3115
3116        i915_gem_object_flush_gpu_write_domain(obj);
3117        /* Wait on any GPU rendering and flushing to occur. */
3118        ret = i915_gem_object_wait_rendering(obj);
3119        if (ret != 0)
3120                return ret;
3121        i915_gem_object_flush_gtt_write_domain(obj);
3122
3123        /* If we're already fully in the CPU read domain, we're done. */
3124        if (obj_priv->page_cpu_valid == NULL &&
3125            (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3126                return 0;
3127
3128        /* Otherwise, create/clear the per-page CPU read domain flag if we're
3129         * newly adding I915_GEM_DOMAIN_CPU
3130         */
3131        if (obj_priv->page_cpu_valid == NULL) {
3132                obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3133                                                   GFP_KERNEL);
3134                if (obj_priv->page_cpu_valid == NULL)
3135                        return -ENOMEM;
3136        } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3137                memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3138
3139        /* Flush the cache on any pages that are still invalid from the CPU's
3140         * perspective.
3141         */
3142        for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3143             i++) {
3144                if (obj_priv->page_cpu_valid[i])
3145                        continue;
3146
3147                drm_clflush_pages(obj_priv->pages + i, 1);
3148
3149                obj_priv->page_cpu_valid[i] = 1;
3150        }
3151
3152        /* It should now be out of any other write domains, and we can update
3153         * the domain values for our changes.
3154         */
3155        BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3156
3157        old_read_domains = obj->read_domains;
3158        obj->read_domains |= I915_GEM_DOMAIN_CPU;
3159
3160        trace_i915_gem_object_change_domain(obj,
3161                                            old_read_domains,
3162                                            obj->write_domain);
3163
3164        return 0;
3165}
3166
3167/**
3168 * Pin an object to the GTT and evaluate the relocations landing in it.
3169 */
3170static int
3171i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3172                                 struct drm_file *file_priv,
3173                                 struct drm_i915_gem_exec_object *entry,
3174                                 struct drm_i915_gem_relocation_entry *relocs)
3175{
3176        struct drm_device *dev = obj->dev;
3177        drm_i915_private_t *dev_priv = dev->dev_private;
3178        struct drm_i915_gem_object *obj_priv = obj->driver_private;
3179        int i, ret;
3180        void __iomem *reloc_page;
3181
3182        /* Choose the GTT offset for our buffer and put it there. */
3183        ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3184        if (ret)
3185                return ret;
3186
3187        entry->offset = obj_priv->gtt_offset;
3188
3189        /* Apply the relocations, using the GTT aperture to avoid cache
3190         * flushing requirements.
3191         */
3192        for (i = 0; i < entry->relocation_count; i++) {
3193                struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3194                struct drm_gem_object *target_obj;
3195                struct drm_i915_gem_object *target_obj_priv;
3196                uint32_t reloc_val, reloc_offset;
3197                uint32_t __iomem *reloc_entry;
3198
3199                target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3200                                                   reloc->target_handle);
3201                if (target_obj == NULL) {
3202                        i915_gem_object_unpin(obj);
3203                        return -EBADF;
3204                }
3205                target_obj_priv = target_obj->driver_private;
3206
3207#if WATCH_RELOC
3208                DRM_INFO("%s: obj %p offset %08x target %d "
3209                         "read %08x write %08x gtt %08x "
3210                         "presumed %08x delta %08x\n",
3211                         __func__,
3212                         obj,
3213                         (int) reloc->offset,
3214                         (int) reloc->target_handle,
3215                         (int) reloc->read_domains,
3216                         (int) reloc->write_domain,
3217                         (int) target_obj_priv->gtt_offset,
3218                         (int) reloc->presumed_offset,
3219                         reloc->delta);
3220#endif
3221
3222                /* The target buffer should have appeared before us in the
3223                 * exec_object list, so it should have a GTT space bound by now.
3224                 */
3225                if (target_obj_priv->gtt_space == NULL) {
3226                        DRM_ERROR("No GTT space found for object %d\n",
3227                                  reloc->target_handle);
3228                        drm_gem_object_unreference(target_obj);
3229                        i915_gem_object_unpin(obj);
3230                        return -EINVAL;
3231                }
3232
3233                /* Validate that the target is in a valid r/w GPU domain */
3234                if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3235                    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3236                        DRM_ERROR("reloc with read/write CPU domains: "
3237                                  "obj %p target %d offset %d "
3238                                  "read %08x write %08x",
3239                                  obj, reloc->target_handle,
3240                                  (int) reloc->offset,
3241                                  reloc->read_domains,
3242                                  reloc->write_domain);
3243                        drm_gem_object_unreference(target_obj);
3244                        i915_gem_object_unpin(obj);
3245                        return -EINVAL;
3246                }
3247                if (reloc->write_domain && target_obj->pending_write_domain &&
3248                    reloc->write_domain != target_obj->pending_write_domain) {
3249                        DRM_ERROR("Write domain conflict: "
3250                                  "obj %p target %d offset %d "
3251                                  "new %08x old %08x\n",
3252                                  obj, reloc->target_handle,
3253                                  (int) reloc->offset,
3254                                  reloc->write_domain,
3255                                  target_obj->pending_write_domain);
3256                        drm_gem_object_unreference(target_obj);
3257                        i915_gem_object_unpin(obj);
3258                        return -EINVAL;
3259                }
3260
3261                target_obj->pending_read_domains |= reloc->read_domains;
3262                target_obj->pending_write_domain |= reloc->write_domain;
3263
3264                /* If the relocation already has the right value in it, no
3265                 * more work needs to be done.
3266                 */
3267                if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3268                        drm_gem_object_unreference(target_obj);
3269                        continue;
3270                }
3271
3272                /* Check that the relocation address is valid... */
3273                if (reloc->offset > obj->size - 4) {
3274                        DRM_ERROR("Relocation beyond object bounds: "
3275                                  "obj %p target %d offset %d size %d.\n",
3276                                  obj, reloc->target_handle,
3277                                  (int) reloc->offset, (int) obj->size);
3278                        drm_gem_object_unreference(target_obj);
3279                        i915_gem_object_unpin(obj);
3280                        return -EINVAL;
3281                }
3282                if (reloc->offset & 3) {
3283                        DRM_ERROR("Relocation not 4-byte aligned: "
3284                                  "obj %p target %d offset %d.\n",
3285                                  obj, reloc->target_handle,
3286                                  (int) reloc->offset);
3287                        drm_gem_object_unreference(target_obj);
3288                        i915_gem_object_unpin(obj);
3289                        return -EINVAL;
3290                }
3291
3292                /* and points to somewhere within the target object. */
3293                if (reloc->delta >= target_obj->size) {
3294                        DRM_ERROR("Relocation beyond target object bounds: "
3295                                  "obj %p target %d delta %d size %d.\n",
3296                                  obj, reloc->target_handle,
3297                                  (int) reloc->delta, (int) target_obj->size);
3298                        drm_gem_object_unreference(target_obj);
3299                        i915_gem_object_unpin(obj);
3300                        return -EINVAL;
3301                }
3302
3303                ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3304                if (ret != 0) {
3305                        drm_gem_object_unreference(target_obj);
3306                        i915_gem_object_unpin(obj);
3307                        return -EINVAL;
3308                }
3309
3310                /* Map the page containing the relocation we're going to
3311                 * perform.
3312                 */
3313                reloc_offset = obj_priv->gtt_offset + reloc->offset;
3314                reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3315                                                      (reloc_offset &
3316                                                       ~(PAGE_SIZE - 1)));
3317                reloc_entry = (uint32_t __iomem *)(reloc_page +
3318                                                   (reloc_offset & (PAGE_SIZE - 1)));
3319                reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3320
3321#if WATCH_BUF
3322                DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3323                          obj, (unsigned int) reloc->offset,
3324                          readl(reloc_entry), reloc_val);
3325#endif
3326                writel(reloc_val, reloc_entry);
3327                io_mapping_unmap_atomic(reloc_page);
3328
3329                /* The updated presumed offset for this entry will be
3330                 * copied back out to the user.
3331                 */
3332                reloc->presumed_offset = target_obj_priv->gtt_offset;
3333
3334                drm_gem_object_unreference(target_obj);
3335        }
3336
3337#if WATCH_BUF
3338        if (0)
3339                i915_gem_dump_object(obj, 128, __func__, ~0);
3340#endif
3341        return 0;
3342}
3343
3344/** Dispatch a batchbuffer to the ring
3345 */
3346static int
3347i915_dispatch_gem_execbuffer(struct drm_device *dev,
3348                              struct drm_i915_gem_execbuffer *exec,
3349                              struct drm_clip_rect *cliprects,
3350                              uint64_t exec_offset)
3351{
3352        drm_i915_private_t *dev_priv = dev->dev_private;
3353        int nbox = exec->num_cliprects;
3354        int i = 0, count;
3355        uint32_t exec_start, exec_len;
3356        RING_LOCALS;
3357
3358        exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3359        exec_len = (uint32_t) exec->batch_len;
3360
3361        trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3362
3363        count = nbox ? nbox : 1;
3364
3365        for (i = 0; i < count; i++) {
3366                if (i < nbox) {
3367                        int ret = i915_emit_box(dev, cliprects, i,
3368                                                exec->DR1, exec->DR4);
3369                        if (ret)
3370                                return ret;
3371                }
3372
3373                if (IS_I830(dev) || IS_845G(dev)) {
3374                        BEGIN_LP_RING(4);
3375                        OUT_RING(MI_BATCH_BUFFER);
3376                        OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3377                        OUT_RING(exec_start + exec_len - 4);
3378                        OUT_RING(0);
3379                        ADVANCE_LP_RING();
3380                } else {
3381                        BEGIN_LP_RING(2);
3382                        if (IS_I965G(dev)) {
3383                                OUT_RING(MI_BATCH_BUFFER_START |
3384                                         (2 << 6) |
3385                                         MI_BATCH_NON_SECURE_I965);
3386                                OUT_RING(exec_start);
3387                        } else {
3388                                OUT_RING(MI_BATCH_BUFFER_START |
3389                                         (2 << 6));
3390                                OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3391                        }
3392                        ADVANCE_LP_RING();
3393                }
3394        }
3395
3396        /* XXX breadcrumb */
3397        return 0;
3398}
3399
3400/* Throttle our rendering by waiting until the ring has completed our requests
3401 * emitted over 20 msec ago.
3402 *
3403 * Note that if we were to use the current jiffies each time around the loop,
3404 * we wouldn't escape the function with any frames outstanding if the time to
3405 * render a frame was over 20ms.
3406 *
3407 * This should get us reasonable parallelism between CPU and GPU but also
3408 * relatively low latency when blocking on a particular request to finish.
3409 */
3410static int
3411i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3412{
3413        struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3414        int ret = 0;
3415        unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3416
3417        mutex_lock(&dev->struct_mutex);
3418        while (!list_empty(&i915_file_priv->mm.request_list)) {
3419                struct drm_i915_gem_request *request;
3420
3421                request = list_first_entry(&i915_file_priv->mm.request_list,
3422                                           struct drm_i915_gem_request,
3423                                           client_list);
3424
3425                if (time_after_eq(request->emitted_jiffies, recent_enough))
3426                        break;
3427
3428                ret = i915_wait_request(dev, request->seqno);
3429                if (ret != 0)
3430                        break;
3431        }
3432        mutex_unlock(&dev->struct_mutex);
3433
3434        return ret;
3435}
3436
3437static int
3438i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3439                              uint32_t buffer_count,
3440                              struct drm_i915_gem_relocation_entry **relocs)
3441{
3442        uint32_t reloc_count = 0, reloc_index = 0, i;
3443        int ret;
3444
3445        *relocs = NULL;
3446        for (i = 0; i < buffer_count; i++) {
3447                if (reloc_count + exec_list[i].relocation_count < reloc_count)
3448                        return -EINVAL;
3449                reloc_count += exec_list[i].relocation_count;
3450        }
3451
3452        *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3453        if (*relocs == NULL)
3454                return -ENOMEM;
3455
3456        for (i = 0; i < buffer_count; i++) {
3457                struct drm_i915_gem_relocation_entry __user *user_relocs;
3458
3459                user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3460
3461                ret = copy_from_user(&(*relocs)[reloc_index],
3462                                     user_relocs,
3463                                     exec_list[i].relocation_count *
3464                                     sizeof(**relocs));
3465                if (ret != 0) {
3466                        drm_free_large(*relocs);
3467                        *relocs = NULL;
3468                        return -EFAULT;
3469                }
3470
3471                reloc_index += exec_list[i].relocation_count;
3472        }
3473
3474        return 0;
3475}
3476
3477static int
3478i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3479                            uint32_t buffer_count,
3480                            struct drm_i915_gem_relocation_entry *relocs)
3481{
3482        uint32_t reloc_count = 0, i;
3483        int ret = 0;
3484
3485        for (i = 0; i < buffer_count; i++) {
3486                struct drm_i915_gem_relocation_entry __user *user_relocs;
3487                int unwritten;
3488
3489                user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3490
3491                unwritten = copy_to_user(user_relocs,
3492                                         &relocs[reloc_count],
3493                                         exec_list[i].relocation_count *
3494                                         sizeof(*relocs));
3495
3496                if (unwritten) {
3497                        ret = -EFAULT;
3498                        goto err;
3499                }
3500
3501                reloc_count += exec_list[i].relocation_count;
3502        }
3503
3504err:
3505        drm_free_large(relocs);
3506
3507        return ret;
3508}
3509
3510static int
3511i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3512                           uint64_t exec_offset)
3513{
3514        uint32_t exec_start, exec_len;
3515
3516        exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3517        exec_len = (uint32_t) exec->batch_len;
3518
3519        if ((exec_start | exec_len) & 0x7)
3520                return -EINVAL;
3521
3522        if (!exec_start)
3523                return -EINVAL;
3524
3525        return 0;
3526}
3527
3528int
3529i915_gem_execbuffer(struct drm_device *dev, void *data,
3530                    struct drm_file *file_priv)
3531{
3532        drm_i915_private_t *dev_priv = dev->dev_private;
3533        struct drm_i915_gem_execbuffer *args = data;
3534        struct drm_i915_gem_exec_object *exec_list = NULL;
3535        struct drm_gem_object **object_list = NULL;
3536        struct drm_gem_object *batch_obj;
3537        struct drm_i915_gem_object *obj_priv;
3538        struct drm_clip_rect *cliprects = NULL;
3539        struct drm_i915_gem_relocation_entry *relocs;
3540        int ret, ret2, i, pinned = 0;
3541        uint64_t exec_offset;
3542        uint32_t seqno, flush_domains, reloc_index;
3543        int pin_tries;
3544
3545#if WATCH_EXEC
3546        DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3547                  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3548#endif
3549
3550        if (args->buffer_count < 1) {
3551                DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3552                return -EINVAL;
3553        }
3554        /* Copy in the exec list from userland */
3555        exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3556        object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3557        if (exec_list == NULL || object_list == NULL) {
3558                DRM_ERROR("Failed to allocate exec or object list "
3559                          "for %d buffers\n",
3560                          args->buffer_count);
3561                ret = -ENOMEM;
3562                goto pre_mutex_err;
3563        }
3564        ret = copy_from_user(exec_list,
3565                             (struct drm_i915_relocation_entry __user *)
3566                             (uintptr_t) args->buffers_ptr,
3567                             sizeof(*exec_list) * args->buffer_count);
3568        if (ret != 0) {
3569                DRM_ERROR("copy %d exec entries failed %d\n",
3570                          args->buffer_count, ret);
3571                goto pre_mutex_err;
3572        }
3573
3574        if (args->num_cliprects != 0) {
3575                cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3576                                    GFP_KERNEL);
3577                if (cliprects == NULL)
3578                        goto pre_mutex_err;
3579
3580                ret = copy_from_user(cliprects,
3581                                     (struct drm_clip_rect __user *)
3582                                     (uintptr_t) args->cliprects_ptr,
3583                                     sizeof(*cliprects) * args->num_cliprects);
3584                if (ret != 0) {
3585                        DRM_ERROR("copy %d cliprects failed: %d\n",
3586                                  args->num_cliprects, ret);
3587                        goto pre_mutex_err;
3588                }
3589        }
3590
3591        ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3592                                            &relocs);
3593        if (ret != 0)
3594                goto pre_mutex_err;
3595
3596        mutex_lock(&dev->struct_mutex);
3597
3598        i915_verify_inactive(dev, __FILE__, __LINE__);
3599
3600        if (atomic_read(&dev_priv->mm.wedged)) {
3601                DRM_ERROR("Execbuf while wedged\n");
3602                mutex_unlock(&dev->struct_mutex);
3603                ret = -EIO;
3604                goto pre_mutex_err;
3605        }
3606
3607        if (dev_priv->mm.suspended) {
3608                DRM_ERROR("Execbuf while VT-switched.\n");
3609                mutex_unlock(&dev->struct_mutex);
3610                ret = -EBUSY;
3611                goto pre_mutex_err;
3612        }
3613
3614        /* Look up object handles */
3615        for (i = 0; i < args->buffer_count; i++) {
3616                object_list[i] = drm_gem_object_lookup(dev, file_priv,
3617                                                       exec_list[i].handle);
3618                if (object_list[i] == NULL) {
3619                        DRM_ERROR("Invalid object handle %d at index %d\n",
3620                                   exec_list[i].handle, i);
3621                        ret = -EBADF;
3622                        goto err;
3623                }
3624
3625                obj_priv = object_list[i]->driver_private;
3626                if (obj_priv->in_execbuffer) {
3627                        DRM_ERROR("Object %p appears more than once in object list\n",
3628                                   object_list[i]);
3629                        ret = -EBADF;
3630                        goto err;
3631                }
3632                obj_priv->in_execbuffer = true;
3633        }
3634
3635        /* Pin and relocate */
3636        for (pin_tries = 0; ; pin_tries++) {
3637                ret = 0;
3638                reloc_index = 0;
3639
3640                for (i = 0; i < args->buffer_count; i++) {
3641                        object_list[i]->pending_read_domains = 0;
3642                        object_list[i]->pending_write_domain = 0;
3643                        ret = i915_gem_object_pin_and_relocate(object_list[i],
3644                                                               file_priv,
3645                                                               &exec_list[i],
3646                                                               &relocs[reloc_index]);
3647                        if (ret)
3648                                break;
3649                        pinned = i + 1;
3650                        reloc_index += exec_list[i].relocation_count;
3651                }
3652                /* success */
3653                if (ret == 0)
3654                        break;
3655
3656                /* error other than GTT full, or we've already tried again */
3657                if (ret != -ENOSPC || pin_tries >= 1) {
3658                        if (ret != -ERESTARTSYS) {
3659                                unsigned long long total_size = 0;
3660                                for (i = 0; i < args->buffer_count; i++)
3661                                        total_size += object_list[i]->size;
3662                                DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3663                                          pinned+1, args->buffer_count,
3664                                          total_size, ret);
3665                                DRM_ERROR("%d objects [%d pinned], "
3666                                          "%d object bytes [%d pinned], "
3667                                          "%d/%d gtt bytes\n",
3668                                          atomic_read(&dev->object_count),
3669                                          atomic_read(&dev->pin_count),
3670                                          atomic_read(&dev->object_memory),
3671                                          atomic_read(&dev->pin_memory),
3672                                          atomic_read(&dev->gtt_memory),
3673                                          dev->gtt_total);
3674                        }
3675                        goto err;
3676                }
3677
3678                /* unpin all of our buffers */
3679                for (i = 0; i < pinned; i++)
3680                        i915_gem_object_unpin(object_list[i]);
3681                pinned = 0;
3682
3683                /* evict everyone we can from the aperture */
3684                ret = i915_gem_evict_everything(dev);
3685                if (ret && ret != -ENOSPC)
3686                        goto err;
3687        }
3688
3689        /* Set the pending read domains for the batch buffer to COMMAND */
3690        batch_obj = object_list[args->buffer_count-1];
3691        if (batch_obj->pending_write_domain) {
3692                DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3693                ret = -EINVAL;
3694                goto err;
3695        }
3696        batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3697
3698        /* Sanity check the batch buffer, prior to moving objects */
3699        exec_offset = exec_list[args->buffer_count - 1].offset;
3700        ret = i915_gem_check_execbuffer (args, exec_offset);
3701        if (ret != 0) {
3702                DRM_ERROR("execbuf with invalid offset/length\n");
3703                goto err;
3704        }
3705
3706        i915_verify_inactive(dev, __FILE__, __LINE__);
3707
3708        /* Zero the global flush/invalidate flags. These
3709         * will be modified as new domains are computed
3710         * for each object
3711         */
3712        dev->invalidate_domains = 0;
3713        dev->flush_domains = 0;
3714
3715        for (i = 0; i < args->buffer_count; i++) {
3716                struct drm_gem_object *obj = object_list[i];
3717
3718                /* Compute new gpu domains and update invalidate/flush */
3719                i915_gem_object_set_to_gpu_domain(obj);
3720        }
3721
3722        i915_verify_inactive(dev, __FILE__, __LINE__);
3723
3724        if (dev->invalidate_domains | dev->flush_domains) {
3725#if WATCH_EXEC
3726                DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3727                          __func__,
3728                         dev->invalidate_domains,
3729                         dev->flush_domains);
3730#endif
3731                i915_gem_flush(dev,
3732                               dev->invalidate_domains,
3733                               dev->flush_domains);
3734                if (dev->flush_domains)
3735                        (void)i915_add_request(dev, file_priv,
3736                                               dev->flush_domains);
3737        }
3738
3739        for (i = 0; i < args->buffer_count; i++) {
3740                struct drm_gem_object *obj = object_list[i];
3741                uint32_t old_write_domain = obj->write_domain;
3742
3743                obj->write_domain = obj->pending_write_domain;
3744                trace_i915_gem_object_change_domain(obj,
3745                                                    obj->read_domains,
3746                                                    old_write_domain);
3747        }
3748
3749        i915_verify_inactive(dev, __FILE__, __LINE__);
3750
3751#if WATCH_COHERENCY
3752        for (i = 0; i < args->buffer_count; i++) {
3753                i915_gem_object_check_coherency(object_list[i],
3754                                                exec_list[i].handle);
3755        }
3756#endif
3757
3758#if WATCH_EXEC
3759        i915_gem_dump_object(batch_obj,
3760                              args->batch_len,
3761                              __func__,
3762                              ~0);
3763#endif
3764
3765        /* Exec the batchbuffer */
3766        ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3767        if (ret) {
3768                DRM_ERROR("dispatch failed %d\n", ret);
3769                goto err;
3770        }
3771
3772        /*
3773         * Ensure that the commands in the batch buffer are
3774         * finished before the interrupt fires
3775         */
3776        flush_domains = i915_retire_commands(dev);
3777
3778        i915_verify_inactive(dev, __FILE__, __LINE__);
3779
3780        /*
3781         * Get a seqno representing the execution of the current buffer,
3782         * which we can wait on.  We would like to mitigate these interrupts,
3783         * likely by only creating seqnos occasionally (so that we have
3784         * *some* interrupts representing completion of buffers that we can
3785         * wait on when trying to clear up gtt space).
3786         */
3787        seqno = i915_add_request(dev, file_priv, flush_domains);
3788        BUG_ON(seqno == 0);
3789        for (i = 0; i < args->buffer_count; i++) {
3790                struct drm_gem_object *obj = object_list[i];
3791
3792                i915_gem_object_move_to_active(obj, seqno);
3793#if WATCH_LRU
3794                DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3795#endif
3796        }
3797#if WATCH_LRU
3798        i915_dump_lru(dev, __func__);
3799#endif
3800
3801        i915_verify_inactive(dev, __FILE__, __LINE__);
3802
3803err:
3804        for (i = 0; i < pinned; i++)
3805                i915_gem_object_unpin(object_list[i]);
3806
3807        for (i = 0; i < args->buffer_count; i++) {
3808                if (object_list[i]) {
3809                        obj_priv = object_list[i]->driver_private;
3810                        obj_priv->in_execbuffer = false;
3811                }
3812                drm_gem_object_unreference(object_list[i]);
3813        }
3814
3815        mutex_unlock(&dev->struct_mutex);
3816
3817        if (!ret) {
3818                /* Copy the new buffer offsets back to the user's exec list. */
3819                ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3820                                   (uintptr_t) args->buffers_ptr,
3821                                   exec_list,
3822                                   sizeof(*exec_list) * args->buffer_count);
3823                if (ret) {
3824                        ret = -EFAULT;
3825                        DRM_ERROR("failed to copy %d exec entries "
3826                                  "back to user (%d)\n",
3827                                  args->buffer_count, ret);
3828                }
3829        }
3830
3831        /* Copy the updated relocations out regardless of current error
3832         * state.  Failure to update the relocs would mean that the next
3833         * time userland calls execbuf, it would do so with presumed offset
3834         * state that didn't match the actual object state.
3835         */
3836        ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3837                                           relocs);
3838        if (ret2 != 0) {
3839                DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3840
3841                if (ret == 0)
3842                        ret = ret2;
3843        }
3844
3845pre_mutex_err:
3846        drm_free_large(object_list);
3847        drm_free_large(exec_list);
3848        kfree(cliprects);
3849
3850        return ret;
3851}
3852
3853int
3854i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3855{
3856        struct drm_device *dev = obj->dev;
3857        struct drm_i915_gem_object *obj_priv = obj->driver_private;
3858        int ret;
3859
3860        i915_verify_inactive(dev, __FILE__, __LINE__);
3861        if (obj_priv->gtt_space == NULL) {
3862                ret = i915_gem_object_bind_to_gtt(obj, alignment);
3863                if (ret)
3864                        return ret;
3865        }
3866        /*
3867         * Pre-965 chips need a fence register set up in order to
3868         * properly handle tiled surfaces.
3869         */
3870        if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3871                ret = i915_gem_object_get_fence_reg(obj);
3872                if (ret != 0) {
3873                        if (ret != -EBUSY && ret != -ERESTARTSYS)
3874                                DRM_ERROR("Failure to install fence: %d\n",
3875                                          ret);
3876                        return ret;
3877                }
3878        }
3879        obj_priv->pin_count++;
3880
3881        /* If the object is not active and not pending a flush,
3882         * remove it from the inactive list
3883         */
3884        if (obj_priv->pin_count == 1) {
3885                atomic_inc(&dev->pin_count);
3886                atomic_add(obj->size, &dev->pin_memory);
3887                if (!obj_priv->active &&
3888                    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3889                    !list_empty(&obj_priv->list))
3890                        list_del_init(&obj_priv->list);
3891        }
3892        i915_verify_inactive(dev, __FILE__, __LINE__);
3893
3894        return 0;
3895}
3896
3897void
3898i915_gem_object_unpin(struct drm_gem_object *obj)
3899{
3900        struct drm_device *dev = obj->dev;
3901        drm_i915_private_t *dev_priv = dev->dev_private;
3902        struct drm_i915_gem_object *obj_priv = obj->driver_private;
3903
3904        i915_verify_inactive(dev, __FILE__, __LINE__);
3905        obj_priv->pin_count--;
3906        BUG_ON(obj_priv->pin_count < 0);
3907        BUG_ON(obj_priv->gtt_space == NULL);
3908
3909        /* If the object is no longer pinned, and is
3910         * neither active nor being flushed, then stick it on
3911         * the inactive list
3912         */
3913        if (obj_priv->pin_count == 0) {
3914                if (!obj_priv->active &&
3915                    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3916                        list_move_tail(&obj_priv->list,
3917                                       &dev_priv->mm.inactive_list);
3918                atomic_dec(&dev->pin_count);
3919                atomic_sub(obj->size, &dev->pin_memory);
3920        }
3921        i915_verify_inactive(dev, __FILE__, __LINE__);
3922}
3923
3924int
3925i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3926                   struct drm_file *file_priv)
3927{
3928        struct drm_i915_gem_pin *args = data;
3929        struct drm_gem_object *obj;
3930        struct drm_i915_gem_object *obj_priv;
3931        int ret;
3932
3933        mutex_lock(&dev->struct_mutex);
3934
3935        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3936        if (obj == NULL) {
3937                DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3938                          args->handle);
3939                mutex_unlock(&dev->struct_mutex);
3940                return -EBADF;
3941        }
3942        obj_priv = obj->driver_private;
3943
3944        if (obj_priv->madv != I915_MADV_WILLNEED) {
3945                DRM_ERROR("Attempting to pin a purgeable buffer\n");
3946                drm_gem_object_unreference(obj);
3947                mutex_unlock(&dev->struct_mutex);
3948                return -EINVAL;
3949        }
3950
3951        if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3952                DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3953                          args->handle);
3954                drm_gem_object_unreference(obj);
3955                mutex_unlock(&dev->struct_mutex);
3956                return -EINVAL;
3957        }
3958
3959        obj_priv->user_pin_count++;
3960        obj_priv->pin_filp = file_priv;
3961        if (obj_priv->user_pin_count == 1) {
3962                ret = i915_gem_object_pin(obj, args->alignment);
3963                if (ret != 0) {
3964                        drm_gem_object_unreference(obj);
3965                        mutex_unlock(&dev->struct_mutex);
3966                        return ret;
3967                }
3968        }
3969
3970        /* XXX - flush the CPU caches for pinned objects
3971         * as the X server doesn't manage domains yet
3972         */
3973        i915_gem_object_flush_cpu_write_domain(obj);
3974        args->offset = obj_priv->gtt_offset;
3975        drm_gem_object_unreference(obj);
3976        mutex_unlock(&dev->struct_mutex);
3977
3978        return 0;
3979}
3980
3981int
3982i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3983                     struct drm_file *file_priv)
3984{
3985        struct drm_i915_gem_pin *args = data;
3986        struct drm_gem_object *obj;
3987        struct drm_i915_gem_object *obj_priv;
3988
3989        mutex_lock(&dev->struct_mutex);
3990
3991        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3992        if (obj == NULL) {
3993                DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3994                          args->handle);
3995                mutex_unlock(&dev->struct_mutex);
3996                return -EBADF;
3997        }
3998
3999        obj_priv = obj->driver_private;
4000        if (obj_priv->pin_filp != file_priv) {
4001                DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4002                          args->handle);
4003                drm_gem_object_unreference(obj);
4004                mutex_unlock(&dev->struct_mutex);
4005                return -EINVAL;
4006        }
4007        obj_priv->user_pin_count--;
4008        if (obj_priv->user_pin_count == 0) {
4009                obj_priv->pin_filp = NULL;
4010                i915_gem_object_unpin(obj);
4011        }
4012
4013        drm_gem_object_unreference(obj);
4014        mutex_unlock(&dev->struct_mutex);
4015        return 0;
4016}
4017
4018int
4019i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4020                    struct drm_file *file_priv)
4021{
4022        struct drm_i915_gem_busy *args = data;
4023        struct drm_gem_object *obj;
4024        struct drm_i915_gem_object *obj_priv;
4025
4026        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4027        if (obj == NULL) {
4028                DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4029                          args->handle);
4030                return -EBADF;
4031        }
4032
4033        mutex_lock(&dev->struct_mutex);
4034        /* Update the active list for the hardware's current position.
4035         * Otherwise this only updates on a delayed timer or when irqs are
4036         * actually unmasked, and our working set ends up being larger than
4037         * required.
4038         */
4039        i915_gem_retire_requests(dev);
4040
4041        obj_priv = obj->driver_private;
4042        /* Don't count being on the flushing list against the object being
4043         * done.  Otherwise, a buffer left on the flushing list but not getting
4044         * flushed (because nobody's flushing that domain) won't ever return
4045         * unbusy and get reused by libdrm's bo cache.  The other expected
4046         * consumer of this interface, OpenGL's occlusion queries, also specs
4047         * that the objects get unbusy "eventually" without any interference.
4048         */
4049        args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4050
4051        drm_gem_object_unreference(obj);
4052        mutex_unlock(&dev->struct_mutex);
4053        return 0;
4054}
4055
4056int
4057i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4058                        struct drm_file *file_priv)
4059{
4060    return i915_gem_ring_throttle(dev, file_priv);
4061}
4062
4063int
4064i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4065                       struct drm_file *file_priv)
4066{
4067        struct drm_i915_gem_madvise *args = data;
4068        struct drm_gem_object *obj;
4069        struct drm_i915_gem_object *obj_priv;
4070
4071        switch (args->madv) {
4072        case I915_MADV_DONTNEED:
4073        case I915_MADV_WILLNEED:
4074            break;
4075        default:
4076            return -EINVAL;
4077        }
4078
4079        obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4080        if (obj == NULL) {
4081                DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4082                          args->handle);
4083                return -EBADF;
4084        }
4085
4086        mutex_lock(&dev->struct_mutex);
4087        obj_priv = obj->driver_private;
4088
4089        if (obj_priv->pin_count) {
4090                drm_gem_object_unreference(obj);
4091                mutex_unlock(&dev->struct_mutex);
4092
4093                DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4094                return -EINVAL;
4095        }
4096
4097        if (obj_priv->madv != __I915_MADV_PURGED)
4098                obj_priv->madv = args->madv;
4099
4100        /* if the object is no longer bound, discard its backing storage */
4101        if (i915_gem_object_is_purgeable(obj_priv) &&
4102            obj_priv->gtt_space == NULL)
4103                i915_gem_object_truncate(obj);
4104
4105        args->retained = obj_priv->madv != __I915_MADV_PURGED;
4106
4107        drm_gem_object_unreference(obj);
4108        mutex_unlock(&dev->struct_mutex);
4109
4110        return 0;
4111}
4112
4113int i915_gem_init_object(struct drm_gem_object *obj)
4114{
4115        struct drm_i915_gem_object *obj_priv;
4116
4117        obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4118        if (obj_priv == NULL)
4119                return -ENOMEM;
4120
4121        /*
4122         * We've just allocated pages from the kernel,
4123         * so they've just been written by the CPU with
4124         * zeros. They'll need to be clflushed before we
4125         * use them with the GPU.
4126         */
4127        obj->write_domain = I915_GEM_DOMAIN_CPU;
4128        obj->read_domains = I915_GEM_DOMAIN_CPU;
4129
4130        obj_priv->agp_type = AGP_USER_MEMORY;
4131
4132        obj->driver_private = obj_priv;
4133        obj_priv->obj = obj;
4134        obj_priv->fence_reg = I915_FENCE_REG_NONE;
4135        INIT_LIST_HEAD(&obj_priv->list);
4136        INIT_LIST_HEAD(&obj_priv->fence_list);
4137        obj_priv->madv = I915_MADV_WILLNEED;
4138
4139        trace_i915_gem_object_create(obj);
4140
4141        return 0;
4142}
4143
4144void i915_gem_free_object(struct drm_gem_object *obj)
4145{
4146        struct drm_device *dev = obj->dev;
4147        struct drm_i915_gem_object *obj_priv = obj->driver_private;
4148
4149        trace_i915_gem_object_destroy(obj);
4150
4151        while (obj_priv->pin_count > 0)
4152                i915_gem_object_unpin(obj);
4153
4154        if (obj_priv->phys_obj)
4155                i915_gem_detach_phys_object(dev, obj);
4156
4157        i915_gem_object_unbind(obj);
4158
4159        if (obj_priv->mmap_offset)
4160                i915_gem_free_mmap_offset(obj);
4161
4162        kfree(obj_priv->page_cpu_valid);
4163        kfree(obj_priv->bit_17);
4164        kfree(obj->driver_private);
4165}
4166
4167/** Unbinds all inactive objects. */
4168static int
4169i915_gem_evict_from_inactive_list(struct drm_device *dev)
4170{
4171        drm_i915_private_t *dev_priv = dev->dev_private;
4172
4173        while (!list_empty(&dev_priv->mm.inactive_list)) {
4174                struct drm_gem_object *obj;
4175                int ret;
4176
4177                obj = list_first_entry(&dev_priv->mm.inactive_list,
4178                                       struct drm_i915_gem_object,
4179                                       list)->obj;
4180
4181                ret = i915_gem_object_unbind(obj);
4182                if (ret != 0) {
4183                        DRM_ERROR("Error unbinding object: %d\n", ret);
4184                        return ret;
4185                }
4186        }
4187
4188        return 0;
4189}
4190
4191int
4192i915_gem_idle(struct drm_device *dev)
4193{
4194        drm_i915_private_t *dev_priv = dev->dev_private;
4195        uint32_t seqno, cur_seqno, last_seqno;
4196        int stuck, ret;
4197
4198        mutex_lock(&dev->struct_mutex);
4199
4200        if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4201                mutex_unlock(&dev->struct_mutex);
4202                return 0;
4203        }
4204
4205        /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4206         * We need to replace this with a semaphore, or something.
4207         */
4208        dev_priv->mm.suspended = 1;
4209        del_timer(&dev_priv->hangcheck_timer);
4210
4211        /* Cancel the retire work handler, wait for it to finish if running
4212         */
4213        mutex_unlock(&dev->struct_mutex);
4214        cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4215        mutex_lock(&dev->struct_mutex);
4216
4217        i915_kernel_lost_context(dev);
4218
4219        /* Flush the GPU along with all non-CPU write domains
4220         */
4221        i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4222        seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4223
4224        if (seqno == 0) {
4225                mutex_unlock(&dev->struct_mutex);
4226                return -ENOMEM;
4227        }
4228
4229        dev_priv->mm.waiting_gem_seqno = seqno;
4230        last_seqno = 0;
4231        stuck = 0;
4232        for (;;) {
4233                cur_seqno = i915_get_gem_seqno(dev);
4234                if (i915_seqno_passed(cur_seqno, seqno))
4235                        break;
4236                if (last_seqno == cur_seqno) {
4237                        if (stuck++ > 100) {
4238                                DRM_ERROR("hardware wedged\n");
4239                                atomic_set(&dev_priv->mm.wedged, 1);
4240                                DRM_WAKEUP(&dev_priv->irq_queue);
4241                                break;
4242                        }
4243                }
4244                msleep(10);
4245                last_seqno = cur_seqno;
4246        }
4247        dev_priv->mm.waiting_gem_seqno = 0;
4248
4249        i915_gem_retire_requests(dev);
4250
4251        spin_lock(&dev_priv->mm.active_list_lock);
4252        if (!atomic_read(&dev_priv->mm.wedged)) {
4253                /* Active and flushing should now be empty as we've
4254                 * waited for a sequence higher than any pending execbuffer
4255                 */
4256                WARN_ON(!list_empty(&dev_priv->mm.active_list));
4257                WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4258                /* Request should now be empty as we've also waited
4259                 * for the last request in the list
4260                 */
4261                WARN_ON(!list_empty(&dev_priv->mm.request_list));
4262        }
4263
4264        /* Empty the active and flushing lists to inactive.  If there's
4265         * anything left at this point, it means that we're wedged and
4266         * nothing good's going to happen by leaving them there.  So strip
4267         * the GPU domains and just stuff them onto inactive.
4268         */
4269        while (!list_empty(&dev_priv->mm.active_list)) {
4270                struct drm_gem_object *obj;
4271                uint32_t old_write_domain;
4272
4273                obj = list_first_entry(&dev_priv->mm.active_list,
4274                                       struct drm_i915_gem_object,
4275                                       list)->obj;
4276                old_write_domain = obj->write_domain;
4277                obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4278                i915_gem_object_move_to_inactive(obj);
4279
4280                trace_i915_gem_object_change_domain(obj,
4281                                                    obj->read_domains,
4282                                                    old_write_domain);
4283        }
4284        spin_unlock(&dev_priv->mm.active_list_lock);
4285
4286        while (!list_empty(&dev_priv->mm.flushing_list)) {
4287                struct drm_gem_object *obj;
4288                uint32_t old_write_domain;
4289
4290                obj = list_first_entry(&dev_priv->mm.flushing_list,
4291                                       struct drm_i915_gem_object,
4292                                       list)->obj;
4293                old_write_domain = obj->write_domain;
4294                obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4295                i915_gem_object_move_to_inactive(obj);
4296
4297                trace_i915_gem_object_change_domain(obj,
4298                                                    obj->read_domains,
4299                                                    old_write_domain);
4300        }
4301
4302
4303        /* Move all inactive buffers out of the GTT. */
4304        ret = i915_gem_evict_from_inactive_list(dev);
4305        WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4306        if (ret) {
4307                mutex_unlock(&dev->struct_mutex);
4308                return ret;
4309        }
4310
4311        i915_gem_cleanup_ringbuffer(dev);
4312        mutex_unlock(&dev->struct_mutex);
4313
4314        return 0;
4315}
4316
4317static int
4318i915_gem_init_hws(struct drm_device *dev)
4319{
4320        drm_i915_private_t *dev_priv = dev->dev_private;
4321        struct drm_gem_object *obj;
4322        struct drm_i915_gem_object *obj_priv;
4323        int ret;
4324
4325        /* If we need a physical address for the status page, it's already
4326         * initialized at driver load time.
4327         */
4328        if (!I915_NEED_GFX_HWS(dev))
4329                return 0;
4330
4331        obj = drm_gem_object_alloc(dev, 4096);
4332        if (obj == NULL) {
4333                DRM_ERROR("Failed to allocate status page\n");
4334                return -ENOMEM;
4335        }
4336        obj_priv = obj->driver_private;
4337        obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4338
4339        ret = i915_gem_object_pin(obj, 4096);
4340        if (ret != 0) {
4341                drm_gem_object_unreference(obj);
4342                return ret;
4343        }
4344
4345        dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4346
4347        dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4348        if (dev_priv->hw_status_page == NULL) {
4349                DRM_ERROR("Failed to map status page.\n");
4350                memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4351                i915_gem_object_unpin(obj);
4352                drm_gem_object_unreference(obj);
4353                return -EINVAL;
4354        }
4355        dev_priv->hws_obj = obj;
4356        memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4357        I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4358        I915_READ(HWS_PGA); /* posting read */
4359        DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4360
4361        return 0;
4362}
4363
4364static void
4365i915_gem_cleanup_hws(struct drm_device *dev)
4366{
4367        drm_i915_private_t *dev_priv = dev->dev_private;
4368        struct drm_gem_object *obj;
4369        struct drm_i915_gem_object *obj_priv;
4370
4371        if (dev_priv->hws_obj == NULL)
4372                return;
4373
4374        obj = dev_priv->hws_obj;
4375        obj_priv = obj->driver_private;
4376
4377        kunmap(obj_priv->pages[0]);
4378        i915_gem_object_unpin(obj);
4379        drm_gem_object_unreference(obj);
4380        dev_priv->hws_obj = NULL;
4381
4382        memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4383        dev_priv->hw_status_page = NULL;
4384
4385        /* Write high address into HWS_PGA when disabling. */
4386        I915_WRITE(HWS_PGA, 0x1ffff000);
4387}
4388
4389int
4390i915_gem_init_ringbuffer(struct drm_device *dev)
4391{
4392        drm_i915_private_t *dev_priv = dev->dev_private;
4393        struct drm_gem_object *obj;
4394        struct drm_i915_gem_object *obj_priv;
4395        drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4396        int ret;
4397        u32 head;
4398
4399        ret = i915_gem_init_hws(dev);
4400        if (ret != 0)
4401                return ret;
4402
4403        obj = drm_gem_object_alloc(dev, 128 * 1024);
4404        if (obj == NULL) {
4405                DRM_ERROR("Failed to allocate ringbuffer\n");
4406                i915_gem_cleanup_hws(dev);
4407                return -ENOMEM;
4408        }
4409        obj_priv = obj->driver_private;
4410
4411        ret = i915_gem_object_pin(obj, 4096);
4412        if (ret != 0) {
4413                drm_gem_object_unreference(obj);
4414                i915_gem_cleanup_hws(dev);
4415                return ret;
4416        }
4417
4418        /* Set up the kernel mapping for the ring. */
4419        ring->Size = obj->size;
4420
4421        ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4422        ring->map.size = obj->size;
4423        ring->map.type = 0;
4424        ring->map.flags = 0;
4425        ring->map.mtrr = 0;
4426
4427        drm_core_ioremap_wc(&ring->map, dev);
4428        if (ring->map.handle == NULL) {
4429                DRM_ERROR("Failed to map ringbuffer.\n");
4430                memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4431                i915_gem_object_unpin(obj);
4432                drm_gem_object_unreference(obj);
4433                i915_gem_cleanup_hws(dev);
4434                return -EINVAL;
4435        }
4436        ring->ring_obj = obj;
4437        ring->virtual_start = ring->map.handle;
4438
4439        /* Stop the ring if it's running. */
4440        I915_WRITE(PRB0_CTL, 0);
4441        I915_WRITE(PRB0_TAIL, 0);
4442        I915_WRITE(PRB0_HEAD, 0);
4443
4444        /* Initialize the ring. */
4445        I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4446        head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4447
4448        /* G45 ring initialization fails to reset head to zero */
4449        if (head != 0) {
4450                DRM_ERROR("Ring head not reset to zero "
4451                          "ctl %08x head %08x tail %08x start %08x\n",
4452                          I915_READ(PRB0_CTL),
4453                          I915_READ(PRB0_HEAD),
4454                          I915_READ(PRB0_TAIL),
4455                          I915_READ(PRB0_START));
4456                I915_WRITE(PRB0_HEAD, 0);
4457
4458                DRM_ERROR("Ring head forced to zero "
4459                          "ctl %08x head %08x tail %08x start %08x\n",
4460                          I915_READ(PRB0_CTL),
4461                          I915_READ(PRB0_HEAD),
4462                          I915_READ(PRB0_TAIL),
4463                          I915_READ(PRB0_START));
4464        }
4465
4466        I915_WRITE(PRB0_CTL,
4467                   ((obj->size - 4096) & RING_NR_PAGES) |
4468                   RING_NO_REPORT |
4469                   RING_VALID);
4470
4471        head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4472
4473        /* If the head is still not zero, the ring is dead */
4474        if (head != 0) {
4475                DRM_ERROR("Ring initialization failed "
4476                          "ctl %08x head %08x tail %08x start %08x\n",
4477                          I915_READ(PRB0_CTL),
4478                          I915_READ(PRB0_HEAD),
4479                          I915_READ(PRB0_TAIL),
4480                          I915_READ(PRB0_START));
4481                return -EIO;
4482        }
4483
4484        /* Update our cache of the ring state */
4485        if (!drm_core_check_feature(dev, DRIVER_MODESET))
4486                i915_kernel_lost_context(dev);
4487        else {
4488                ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4489                ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4490                ring->space = ring->head - (ring->tail + 8);
4491                if (ring->space < 0)
4492                        ring->space += ring->Size;
4493        }
4494
4495        return 0;
4496}
4497
4498void
4499i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4500{
4501        drm_i915_private_t *dev_priv = dev->dev_private;
4502
4503        if (dev_priv->ring.ring_obj == NULL)
4504                return;
4505
4506        drm_core_ioremapfree(&dev_priv->ring.map, dev);
4507
4508        i915_gem_object_unpin(dev_priv->ring.ring_obj);
4509        drm_gem_object_unreference(dev_priv->ring.ring_obj);
4510        dev_priv->ring.ring_obj = NULL;
4511        memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4512
4513        i915_gem_cleanup_hws(dev);
4514}
4515
4516int
4517i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4518                       struct drm_file *file_priv)
4519{
4520        drm_i915_private_t *dev_priv = dev->dev_private;
4521        int ret;
4522
4523        if (drm_core_check_feature(dev, DRIVER_MODESET))
4524                return 0;
4525
4526        if (atomic_read(&dev_priv->mm.wedged)) {
4527                DRM_ERROR("Reenabling wedged hardware, good luck\n");
4528                atomic_set(&dev_priv->mm.wedged, 0);
4529        }
4530
4531        mutex_lock(&dev->struct_mutex);
4532        dev_priv->mm.suspended = 0;
4533
4534        ret = i915_gem_init_ringbuffer(dev);
4535        if (ret != 0) {
4536                mutex_unlock(&dev->struct_mutex);
4537                return ret;
4538        }
4539
4540        spin_lock(&dev_priv->mm.active_list_lock);
4541        BUG_ON(!list_empty(&dev_priv->mm.active_list));
4542        spin_unlock(&dev_priv->mm.active_list_lock);
4543
4544        BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4545        BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4546        BUG_ON(!list_empty(&dev_priv->mm.request_list));
4547        mutex_unlock(&dev->struct_mutex);
4548
4549        drm_irq_install(dev);
4550
4551        return 0;
4552}
4553
4554int
4555i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4556                       struct drm_file *file_priv)
4557{
4558        if (drm_core_check_feature(dev, DRIVER_MODESET))
4559                return 0;
4560
4561        drm_irq_uninstall(dev);
4562        return i915_gem_idle(dev);
4563}
4564
4565void
4566i915_gem_lastclose(struct drm_device *dev)
4567{
4568        int ret;
4569
4570        if (drm_core_check_feature(dev, DRIVER_MODESET))
4571                return;
4572
4573        ret = i915_gem_idle(dev);
4574        if (ret)
4575                DRM_ERROR("failed to idle hardware: %d\n", ret);
4576}
4577
4578void
4579i915_gem_load(struct drm_device *dev)
4580{
4581        int i;
4582        drm_i915_private_t *dev_priv = dev->dev_private;
4583
4584        spin_lock_init(&dev_priv->mm.active_list_lock);
4585        INIT_LIST_HEAD(&dev_priv->mm.active_list);
4586        INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4587        INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4588        INIT_LIST_HEAD(&dev_priv->mm.request_list);
4589        INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4590        INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4591                          i915_gem_retire_work_handler);
4592        dev_priv->mm.next_gem_seqno = 1;
4593
4594        spin_lock(&shrink_list_lock);
4595        list_add(&dev_priv->mm.shrink_list, &shrink_list);
4596        spin_unlock(&shrink_list_lock);
4597
4598        /* Old X drivers will take 0-2 for front, back, depth buffers */
4599        dev_priv->fence_reg_start = 3;
4600
4601        if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4602                dev_priv->num_fence_regs = 16;
4603        else
4604                dev_priv->num_fence_regs = 8;
4605
4606        /* Initialize fence registers to zero */
4607        if (IS_I965G(dev)) {
4608                for (i = 0; i < 16; i++)
4609                        I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4610        } else {
4611                for (i = 0; i < 8; i++)
4612                        I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4613                if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4614                        for (i = 0; i < 8; i++)
4615                                I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4616        }
4617
4618        i915_gem_detect_bit_6_swizzle(dev);
4619}
4620
4621/*
4622 * Create a physically contiguous memory object for this object
4623 * e.g. for cursor + overlay regs
4624 */
4625int i915_gem_init_phys_object(struct drm_device *dev,
4626                              int id, int size)
4627{
4628        drm_i915_private_t *dev_priv = dev->dev_private;
4629        struct drm_i915_gem_phys_object *phys_obj;
4630        int ret;
4631
4632        if (dev_priv->mm.phys_objs[id - 1] || !size)
4633                return 0;
4634
4635        phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4636        if (!phys_obj)
4637                return -ENOMEM;
4638
4639        phys_obj->id = id;
4640
4641        phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4642        if (!phys_obj->handle) {
4643                ret = -ENOMEM;
4644                goto kfree_obj;
4645        }
4646#ifdef CONFIG_X86
4647        set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4648#endif
4649
4650        dev_priv->mm.phys_objs[id - 1] = phys_obj;
4651
4652        return 0;
4653kfree_obj:
4654        kfree(phys_obj);
4655        return ret;
4656}
4657
4658void i915_gem_free_phys_object(struct drm_device *dev, int id)
4659{
4660        drm_i915_private_t *dev_priv = dev->dev_private;
4661        struct drm_i915_gem_phys_object *phys_obj;
4662
4663        if (!dev_priv->mm.phys_objs[id - 1])
4664                return;
4665
4666        phys_obj = dev_priv->mm.phys_objs[id - 1];
4667        if (phys_obj->cur_obj) {
4668                i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4669        }
4670
4671#ifdef CONFIG_X86
4672        set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4673#endif
4674        drm_pci_free(dev, phys_obj->handle);
4675        kfree(phys_obj);
4676        dev_priv->mm.phys_objs[id - 1] = NULL;
4677}
4678
4679void i915_gem_free_all_phys_object(struct drm_device *dev)
4680{
4681        int i;
4682
4683        for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4684                i915_gem_free_phys_object(dev, i);
4685}
4686
4687void i915_gem_detach_phys_object(struct drm_device *dev,
4688                                 struct drm_gem_object *obj)
4689{
4690        struct drm_i915_gem_object *obj_priv;
4691        int i;
4692        int ret;
4693        int page_count;
4694
4695        obj_priv = obj->driver_private;
4696        if (!obj_priv->phys_obj)
4697                return;
4698
4699        ret = i915_gem_object_get_pages(obj);
4700        if (ret)
4701                goto out;
4702
4703        page_count = obj->size / PAGE_SIZE;
4704
4705        for (i = 0; i < page_count; i++) {
4706                char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4707                char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4708
4709                memcpy(dst, src, PAGE_SIZE);
4710                kunmap_atomic(dst, KM_USER0);
4711        }
4712        drm_clflush_pages(obj_priv->pages, page_count);
4713        drm_agp_chipset_flush(dev);
4714
4715        i915_gem_object_put_pages(obj);
4716out:
4717        obj_priv->phys_obj->cur_obj = NULL;
4718        obj_priv->phys_obj = NULL;
4719}
4720
4721int
4722i915_gem_attach_phys_object(struct drm_device *dev,
4723                            struct drm_gem_object *obj, int id)
4724{
4725        drm_i915_private_t *dev_priv = dev->dev_private;
4726        struct drm_i915_gem_object *obj_priv;
4727        int ret = 0;
4728        int page_count;
4729        int i;
4730
4731        if (id > I915_MAX_PHYS_OBJECT)
4732                return -EINVAL;
4733
4734        obj_priv = obj->driver_private;
4735
4736        if (obj_priv->phys_obj) {
4737                if (obj_priv->phys_obj->id == id)
4738                        return 0;
4739                i915_gem_detach_phys_object(dev, obj);
4740        }
4741
4742
4743        /* create a new object */
4744        if (!dev_priv->mm.phys_objs[id - 1]) {
4745                ret = i915_gem_init_phys_object(dev, id,
4746                                                obj->size);
4747                if (ret) {
4748                        DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4749                        goto out;
4750                }
4751        }
4752
4753        /* bind to the object */
4754        obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4755        obj_priv->phys_obj->cur_obj = obj;
4756
4757        ret = i915_gem_object_get_pages(obj);
4758        if (ret) {
4759                DRM_ERROR("failed to get page list\n");
4760                goto out;
4761        }
4762
4763        page_count = obj->size / PAGE_SIZE;
4764
4765        for (i = 0; i < page_count; i++) {
4766                char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4767                char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4768
4769                memcpy(dst, src, PAGE_SIZE);
4770                kunmap_atomic(src, KM_USER0);
4771        }
4772
4773        i915_gem_object_put_pages(obj);
4774
4775        return 0;
4776out:
4777        return ret;
4778}
4779
4780static int
4781i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4782                     struct drm_i915_gem_pwrite *args,
4783                     struct drm_file *file_priv)
4784{
4785        struct drm_i915_gem_object *obj_priv = obj->driver_private;
4786        void *obj_addr;
4787        int ret;
4788        char __user *user_data;
4789
4790        user_data = (char __user *) (uintptr_t) args->data_ptr;
4791        obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4792
4793        DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4794        ret = copy_from_user(obj_addr, user_data, args->size);
4795        if (ret)
4796                return -EFAULT;
4797
4798        drm_agp_chipset_flush(dev);
4799        return 0;
4800}
4801
4802void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4803{
4804        struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4805
4806        /* Clean up our request list when the client is going away, so that
4807         * later retire_requests won't dereference our soon-to-be-gone
4808         * file_priv.
4809         */
4810        mutex_lock(&dev->struct_mutex);
4811        while (!list_empty(&i915_file_priv->mm.request_list))
4812                list_del_init(i915_file_priv->mm.request_list.next);
4813        mutex_unlock(&dev->struct_mutex);
4814}
4815
4816static int
4817i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4818{
4819        drm_i915_private_t *dev_priv, *next_dev;
4820        struct drm_i915_gem_object *obj_priv, *next_obj;
4821        int cnt = 0;
4822        int would_deadlock = 1;
4823
4824        /* "fast-path" to count number of available objects */
4825        if (nr_to_scan == 0) {
4826                spin_lock(&shrink_list_lock);
4827                list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4828                        struct drm_device *dev = dev_priv->dev;
4829
4830                        if (mutex_trylock(&dev->struct_mutex)) {
4831                                list_for_each_entry(obj_priv,
4832                                                    &dev_priv->mm.inactive_list,
4833                                                    list)
4834                                        cnt++;
4835                                mutex_unlock(&dev->struct_mutex);
4836                        }
4837                }
4838                spin_unlock(&shrink_list_lock);
4839
4840                return (cnt / 100) * sysctl_vfs_cache_pressure;
4841        }
4842
4843        spin_lock(&shrink_list_lock);
4844
4845        /* first scan for clean buffers */
4846        list_for_each_entry_safe(dev_priv, next_dev,
4847                                 &shrink_list, mm.shrink_list) {
4848                struct drm_device *dev = dev_priv->dev;
4849
4850                if (! mutex_trylock(&dev->struct_mutex))
4851                        continue;
4852
4853                spin_unlock(&shrink_list_lock);
4854
4855                i915_gem_retire_requests(dev);
4856
4857                list_for_each_entry_safe(obj_priv, next_obj,
4858                                         &dev_priv->mm.inactive_list,
4859                                         list) {
4860                        if (i915_gem_object_is_purgeable(obj_priv)) {
4861                                i915_gem_object_unbind(obj_priv->obj);
4862                                if (--nr_to_scan <= 0)
4863                                        break;
4864                        }
4865                }
4866
4867                spin_lock(&shrink_list_lock);
4868                mutex_unlock(&dev->struct_mutex);
4869
4870                would_deadlock = 0;
4871
4872                if (nr_to_scan <= 0)
4873                        break;
4874        }
4875
4876        /* second pass, evict/count anything still on the inactive list */
4877        list_for_each_entry_safe(dev_priv, next_dev,
4878                                 &shrink_list, mm.shrink_list) {
4879                struct drm_device *dev = dev_priv->dev;
4880
4881                if (! mutex_trylock(&dev->struct_mutex))
4882                        continue;
4883
4884                spin_unlock(&shrink_list_lock);
4885
4886                list_for_each_entry_safe(obj_priv, next_obj,
4887                                         &dev_priv->mm.inactive_list,
4888                                         list) {
4889                        if (nr_to_scan > 0) {
4890                                i915_gem_object_unbind(obj_priv->obj);
4891                                nr_to_scan--;
4892                        } else
4893                                cnt++;
4894                }
4895
4896                spin_lock(&shrink_list_lock);
4897                mutex_unlock(&dev->struct_mutex);
4898
4899                would_deadlock = 0;
4900        }
4901
4902        spin_unlock(&shrink_list_lock);
4903
4904        if (would_deadlock)
4905                return -1;
4906        else if (cnt > 0)
4907                return (cnt / 100) * sysctl_vfs_cache_pressure;
4908        else
4909                return 0;
4910}
4911
4912static struct shrinker shrinker = {
4913        .shrink = i915_gem_shrink,
4914        .seeks = DEFAULT_SEEKS,
4915};
4916
4917__init void
4918i915_gem_shrinker_init(void)
4919{
4920    register_shrinker(&shrinker);
4921}
4922
4923__exit void
4924i915_gem_shrinker_exit(void)
4925{
4926    unregister_shrinker(&shrinker);
4927}
4928