linux/drivers/hwmon/asb100.c
<<
>>
Prefs
   1/*
   2    asb100.c - Part of lm_sensors, Linux kernel modules for hardware
   3                monitoring
   4
   5    Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
   6
   7        (derived from w83781d.c)
   8
   9    Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
  10    Philip Edelbrock <phil@netroedge.com>, and
  11    Mark Studebaker <mdsxyz123@yahoo.com>
  12
  13    This program is free software; you can redistribute it and/or modify
  14    it under the terms of the GNU General Public License as published by
  15    the Free Software Foundation; either version 2 of the License, or
  16    (at your option) any later version.
  17
  18    This program is distributed in the hope that it will be useful,
  19    but WITHOUT ANY WARRANTY; without even the implied warranty of
  20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21    GNU General Public License for more details.
  22
  23    You should have received a copy of the GNU General Public License
  24    along with this program; if not, write to the Free Software
  25    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26*/
  27
  28/*
  29    This driver supports the hardware sensor chips: Asus ASB100 and
  30    ASB100-A "BACH".
  31
  32    ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
  33    way for the driver to tell which one is there.
  34
  35    Chip        #vin    #fanin  #pwm    #temp   wchipid vendid  i2c     ISA
  36    asb100      7       3       1       4       0x31    0x0694  yes     no
  37*/
  38
  39#include <linux/module.h>
  40#include <linux/slab.h>
  41#include <linux/i2c.h>
  42#include <linux/hwmon.h>
  43#include <linux/hwmon-sysfs.h>
  44#include <linux/hwmon-vid.h>
  45#include <linux/err.h>
  46#include <linux/init.h>
  47#include <linux/jiffies.h>
  48#include <linux/mutex.h>
  49#include "lm75.h"
  50
  51/* I2C addresses to scan */
  52static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
  53
  54/* Insmod parameters */
  55I2C_CLIENT_INSMOD_1(asb100);
  56
  57static unsigned short force_subclients[4];
  58module_param_array(force_subclients, short, NULL, 0);
  59MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
  60        "{bus, clientaddr, subclientaddr1, subclientaddr2}");
  61
  62/* Voltage IN registers 0-6 */
  63#define ASB100_REG_IN(nr)       (0x20 + (nr))
  64#define ASB100_REG_IN_MAX(nr)   (0x2b + (nr * 2))
  65#define ASB100_REG_IN_MIN(nr)   (0x2c + (nr * 2))
  66
  67/* FAN IN registers 1-3 */
  68#define ASB100_REG_FAN(nr)      (0x28 + (nr))
  69#define ASB100_REG_FAN_MIN(nr)  (0x3b + (nr))
  70
  71/* TEMPERATURE registers 1-4 */
  72static const u16 asb100_reg_temp[]      = {0, 0x27, 0x150, 0x250, 0x17};
  73static const u16 asb100_reg_temp_max[]  = {0, 0x39, 0x155, 0x255, 0x18};
  74static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
  75
  76#define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
  77#define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
  78#define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
  79
  80#define ASB100_REG_TEMP2_CONFIG 0x0152
  81#define ASB100_REG_TEMP3_CONFIG 0x0252
  82
  83
  84#define ASB100_REG_CONFIG       0x40
  85#define ASB100_REG_ALARM1       0x41
  86#define ASB100_REG_ALARM2       0x42
  87#define ASB100_REG_SMIM1        0x43
  88#define ASB100_REG_SMIM2        0x44
  89#define ASB100_REG_VID_FANDIV   0x47
  90#define ASB100_REG_I2C_ADDR     0x48
  91#define ASB100_REG_CHIPID       0x49
  92#define ASB100_REG_I2C_SUBADDR  0x4a
  93#define ASB100_REG_PIN          0x4b
  94#define ASB100_REG_IRQ          0x4c
  95#define ASB100_REG_BANK         0x4e
  96#define ASB100_REG_CHIPMAN      0x4f
  97
  98#define ASB100_REG_WCHIPID      0x58
  99
 100/* bit 7 -> enable, bits 0-3 -> duty cycle */
 101#define ASB100_REG_PWM1         0x59
 102
 103/* CONVERSIONS
 104   Rounding and limit checking is only done on the TO_REG variants. */
 105
 106/* These constants are a guess, consistent w/ w83781d */
 107#define ASB100_IN_MIN (   0)
 108#define ASB100_IN_MAX (4080)
 109
 110/* IN: 1/1000 V (0V to 4.08V)
 111   REG: 16mV/bit */
 112static u8 IN_TO_REG(unsigned val)
 113{
 114        unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
 115        return (nval + 8) / 16;
 116}
 117
 118static unsigned IN_FROM_REG(u8 reg)
 119{
 120        return reg * 16;
 121}
 122
 123static u8 FAN_TO_REG(long rpm, int div)
 124{
 125        if (rpm == -1)
 126                return 0;
 127        if (rpm == 0)
 128                return 255;
 129        rpm = SENSORS_LIMIT(rpm, 1, 1000000);
 130        return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
 131}
 132
 133static int FAN_FROM_REG(u8 val, int div)
 134{
 135        return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
 136}
 137
 138/* These constants are a guess, consistent w/ w83781d */
 139#define ASB100_TEMP_MIN (-128000)
 140#define ASB100_TEMP_MAX ( 127000)
 141
 142/* TEMP: 0.001C/bit (-128C to +127C)
 143   REG: 1C/bit, two's complement */
 144static u8 TEMP_TO_REG(long temp)
 145{
 146        int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
 147        ntemp += (ntemp<0 ? -500 : 500);
 148        return (u8)(ntemp / 1000);
 149}
 150
 151static int TEMP_FROM_REG(u8 reg)
 152{
 153        return (s8)reg * 1000;
 154}
 155
 156/* PWM: 0 - 255 per sensors documentation
 157   REG: (6.25% duty cycle per bit) */
 158static u8 ASB100_PWM_TO_REG(int pwm)
 159{
 160        pwm = SENSORS_LIMIT(pwm, 0, 255);
 161        return (u8)(pwm / 16);
 162}
 163
 164static int ASB100_PWM_FROM_REG(u8 reg)
 165{
 166        return reg * 16;
 167}
 168
 169#define DIV_FROM_REG(val) (1 << (val))
 170
 171/* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
 172   REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
 173static u8 DIV_TO_REG(long val)
 174{
 175        return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
 176}
 177
 178/* For each registered client, we need to keep some data in memory. That
 179   data is pointed to by client->data. The structure itself is
 180   dynamically allocated, at the same time the client itself is allocated. */
 181struct asb100_data {
 182        struct device *hwmon_dev;
 183        struct mutex lock;
 184
 185        struct mutex update_lock;
 186        unsigned long last_updated;     /* In jiffies */
 187
 188        /* array of 2 pointers to subclients */
 189        struct i2c_client *lm75[2];
 190
 191        char valid;             /* !=0 if following fields are valid */
 192        u8 in[7];               /* Register value */
 193        u8 in_max[7];           /* Register value */
 194        u8 in_min[7];           /* Register value */
 195        u8 fan[3];              /* Register value */
 196        u8 fan_min[3];          /* Register value */
 197        u16 temp[4];            /* Register value (0 and 3 are u8 only) */
 198        u16 temp_max[4];        /* Register value (0 and 3 are u8 only) */
 199        u16 temp_hyst[4];       /* Register value (0 and 3 are u8 only) */
 200        u8 fan_div[3];          /* Register encoding, right justified */
 201        u8 pwm;                 /* Register encoding */
 202        u8 vid;                 /* Register encoding, combined */
 203        u32 alarms;             /* Register encoding, combined */
 204        u8 vrm;
 205};
 206
 207static int asb100_read_value(struct i2c_client *client, u16 reg);
 208static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
 209
 210static int asb100_probe(struct i2c_client *client,
 211                        const struct i2c_device_id *id);
 212static int asb100_detect(struct i2c_client *client, int kind,
 213                         struct i2c_board_info *info);
 214static int asb100_remove(struct i2c_client *client);
 215static struct asb100_data *asb100_update_device(struct device *dev);
 216static void asb100_init_client(struct i2c_client *client);
 217
 218static const struct i2c_device_id asb100_id[] = {
 219        { "asb100", asb100 },
 220        { }
 221};
 222MODULE_DEVICE_TABLE(i2c, asb100_id);
 223
 224static struct i2c_driver asb100_driver = {
 225        .class          = I2C_CLASS_HWMON,
 226        .driver = {
 227                .name   = "asb100",
 228        },
 229        .probe          = asb100_probe,
 230        .remove         = asb100_remove,
 231        .id_table       = asb100_id,
 232        .detect         = asb100_detect,
 233        .address_data   = &addr_data,
 234};
 235
 236/* 7 Voltages */
 237#define show_in_reg(reg) \
 238static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 239                char *buf) \
 240{ \
 241        int nr = to_sensor_dev_attr(attr)->index; \
 242        struct asb100_data *data = asb100_update_device(dev); \
 243        return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
 244}
 245
 246show_in_reg(in)
 247show_in_reg(in_min)
 248show_in_reg(in_max)
 249
 250#define set_in_reg(REG, reg) \
 251static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
 252                const char *buf, size_t count) \
 253{ \
 254        int nr = to_sensor_dev_attr(attr)->index; \
 255        struct i2c_client *client = to_i2c_client(dev); \
 256        struct asb100_data *data = i2c_get_clientdata(client); \
 257        unsigned long val = simple_strtoul(buf, NULL, 10); \
 258 \
 259        mutex_lock(&data->update_lock); \
 260        data->in_##reg[nr] = IN_TO_REG(val); \
 261        asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
 262                data->in_##reg[nr]); \
 263        mutex_unlock(&data->update_lock); \
 264        return count; \
 265}
 266
 267set_in_reg(MIN, min)
 268set_in_reg(MAX, max)
 269
 270#define sysfs_in(offset) \
 271static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
 272                show_in, NULL, offset); \
 273static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
 274                show_in_min, set_in_min, offset); \
 275static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
 276                show_in_max, set_in_max, offset)
 277
 278sysfs_in(0);
 279sysfs_in(1);
 280sysfs_in(2);
 281sysfs_in(3);
 282sysfs_in(4);
 283sysfs_in(5);
 284sysfs_in(6);
 285
 286/* 3 Fans */
 287static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 288                char *buf)
 289{
 290        int nr = to_sensor_dev_attr(attr)->index;
 291        struct asb100_data *data = asb100_update_device(dev);
 292        return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
 293                DIV_FROM_REG(data->fan_div[nr])));
 294}
 295
 296static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 297                char *buf)
 298{
 299        int nr = to_sensor_dev_attr(attr)->index;
 300        struct asb100_data *data = asb100_update_device(dev);
 301        return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
 302                DIV_FROM_REG(data->fan_div[nr])));
 303}
 304
 305static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
 306                char *buf)
 307{
 308        int nr = to_sensor_dev_attr(attr)->index;
 309        struct asb100_data *data = asb100_update_device(dev);
 310        return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
 311}
 312
 313static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 314                const char *buf, size_t count)
 315{
 316        int nr = to_sensor_dev_attr(attr)->index;
 317        struct i2c_client *client = to_i2c_client(dev);
 318        struct asb100_data *data = i2c_get_clientdata(client);
 319        u32 val = simple_strtoul(buf, NULL, 10);
 320
 321        mutex_lock(&data->update_lock);
 322        data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
 323        asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
 324        mutex_unlock(&data->update_lock);
 325        return count;
 326}
 327
 328/* Note: we save and restore the fan minimum here, because its value is
 329   determined in part by the fan divisor.  This follows the principle of
 330   least surprise; the user doesn't expect the fan minimum to change just
 331   because the divisor changed. */
 332static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
 333                const char *buf, size_t count)
 334{
 335        int nr = to_sensor_dev_attr(attr)->index;
 336        struct i2c_client *client = to_i2c_client(dev);
 337        struct asb100_data *data = i2c_get_clientdata(client);
 338        unsigned long min;
 339        unsigned long val = simple_strtoul(buf, NULL, 10);
 340        int reg;
 341
 342        mutex_lock(&data->update_lock);
 343
 344        min = FAN_FROM_REG(data->fan_min[nr],
 345                        DIV_FROM_REG(data->fan_div[nr]));
 346        data->fan_div[nr] = DIV_TO_REG(val);
 347
 348        switch (nr) {
 349        case 0: /* fan 1 */
 350                reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
 351                reg = (reg & 0xcf) | (data->fan_div[0] << 4);
 352                asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
 353                break;
 354
 355        case 1: /* fan 2 */
 356                reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
 357                reg = (reg & 0x3f) | (data->fan_div[1] << 6);
 358                asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
 359                break;
 360
 361        case 2: /* fan 3 */
 362                reg = asb100_read_value(client, ASB100_REG_PIN);
 363                reg = (reg & 0x3f) | (data->fan_div[2] << 6);
 364                asb100_write_value(client, ASB100_REG_PIN, reg);
 365                break;
 366        }
 367
 368        data->fan_min[nr] =
 369                FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
 370        asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
 371
 372        mutex_unlock(&data->update_lock);
 373
 374        return count;
 375}
 376
 377#define sysfs_fan(offset) \
 378static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
 379                show_fan, NULL, offset - 1); \
 380static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
 381                show_fan_min, set_fan_min, offset - 1); \
 382static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
 383                show_fan_div, set_fan_div, offset - 1)
 384
 385sysfs_fan(1);
 386sysfs_fan(2);
 387sysfs_fan(3);
 388
 389/* 4 Temp. Sensors */
 390static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
 391{
 392        int ret = 0;
 393
 394        switch (nr) {
 395        case 1: case 2:
 396                ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
 397                break;
 398        case 0: case 3: default:
 399                ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
 400                break;
 401        }
 402        return ret;
 403}
 404
 405#define show_temp_reg(reg) \
 406static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
 407                char *buf) \
 408{ \
 409        int nr = to_sensor_dev_attr(attr)->index; \
 410        struct asb100_data *data = asb100_update_device(dev); \
 411        return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
 412}
 413
 414show_temp_reg(temp);
 415show_temp_reg(temp_max);
 416show_temp_reg(temp_hyst);
 417
 418#define set_temp_reg(REG, reg) \
 419static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
 420                const char *buf, size_t count) \
 421{ \
 422        int nr = to_sensor_dev_attr(attr)->index; \
 423        struct i2c_client *client = to_i2c_client(dev); \
 424        struct asb100_data *data = i2c_get_clientdata(client); \
 425        long val = simple_strtol(buf, NULL, 10); \
 426 \
 427        mutex_lock(&data->update_lock); \
 428        switch (nr) { \
 429        case 1: case 2: \
 430                data->reg[nr] = LM75_TEMP_TO_REG(val); \
 431                break; \
 432        case 0: case 3: default: \
 433                data->reg[nr] = TEMP_TO_REG(val); \
 434                break; \
 435        } \
 436        asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
 437                        data->reg[nr]); \
 438        mutex_unlock(&data->update_lock); \
 439        return count; \
 440}
 441
 442set_temp_reg(MAX, temp_max);
 443set_temp_reg(HYST, temp_hyst);
 444
 445#define sysfs_temp(num) \
 446static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
 447                show_temp, NULL, num - 1); \
 448static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
 449                show_temp_max, set_temp_max, num - 1); \
 450static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
 451                show_temp_hyst, set_temp_hyst, num - 1)
 452
 453sysfs_temp(1);
 454sysfs_temp(2);
 455sysfs_temp(3);
 456sysfs_temp(4);
 457
 458/* VID */
 459static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
 460                char *buf)
 461{
 462        struct asb100_data *data = asb100_update_device(dev);
 463        return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
 464}
 465
 466static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
 467
 468/* VRM */
 469static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
 470                char *buf)
 471{
 472        struct asb100_data *data = dev_get_drvdata(dev);
 473        return sprintf(buf, "%d\n", data->vrm);
 474}
 475
 476static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
 477                const char *buf, size_t count)
 478{
 479        struct asb100_data *data = dev_get_drvdata(dev);
 480        data->vrm = simple_strtoul(buf, NULL, 10);
 481        return count;
 482}
 483
 484/* Alarms */
 485static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
 486
 487static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
 488                char *buf)
 489{
 490        struct asb100_data *data = asb100_update_device(dev);
 491        return sprintf(buf, "%u\n", data->alarms);
 492}
 493
 494static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
 495
 496static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 497                char *buf)
 498{
 499        int bitnr = to_sensor_dev_attr(attr)->index;
 500        struct asb100_data *data = asb100_update_device(dev);
 501        return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
 502}
 503static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 504static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 505static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 506static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 507static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 508static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
 509static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
 510static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
 511static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 512static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 513static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
 514
 515/* 1 PWM */
 516static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
 517                char *buf)
 518{
 519        struct asb100_data *data = asb100_update_device(dev);
 520        return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
 521}
 522
 523static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
 524                const char *buf, size_t count)
 525{
 526        struct i2c_client *client = to_i2c_client(dev);
 527        struct asb100_data *data = i2c_get_clientdata(client);
 528        unsigned long val = simple_strtoul(buf, NULL, 10);
 529
 530        mutex_lock(&data->update_lock);
 531        data->pwm &= 0x80; /* keep the enable bit */
 532        data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
 533        asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
 534        mutex_unlock(&data->update_lock);
 535        return count;
 536}
 537
 538static ssize_t show_pwm_enable1(struct device *dev,
 539                struct device_attribute *attr, char *buf)
 540{
 541        struct asb100_data *data = asb100_update_device(dev);
 542        return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
 543}
 544
 545static ssize_t set_pwm_enable1(struct device *dev,
 546                struct device_attribute *attr, const char *buf, size_t count)
 547{
 548        struct i2c_client *client = to_i2c_client(dev);
 549        struct asb100_data *data = i2c_get_clientdata(client);
 550        unsigned long val = simple_strtoul(buf, NULL, 10);
 551
 552        mutex_lock(&data->update_lock);
 553        data->pwm &= 0x0f; /* keep the duty cycle bits */
 554        data->pwm |= (val ? 0x80 : 0x00);
 555        asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
 556        mutex_unlock(&data->update_lock);
 557        return count;
 558}
 559
 560static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
 561static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
 562                show_pwm_enable1, set_pwm_enable1);
 563
 564static struct attribute *asb100_attributes[] = {
 565        &sensor_dev_attr_in0_input.dev_attr.attr,
 566        &sensor_dev_attr_in0_min.dev_attr.attr,
 567        &sensor_dev_attr_in0_max.dev_attr.attr,
 568        &sensor_dev_attr_in1_input.dev_attr.attr,
 569        &sensor_dev_attr_in1_min.dev_attr.attr,
 570        &sensor_dev_attr_in1_max.dev_attr.attr,
 571        &sensor_dev_attr_in2_input.dev_attr.attr,
 572        &sensor_dev_attr_in2_min.dev_attr.attr,
 573        &sensor_dev_attr_in2_max.dev_attr.attr,
 574        &sensor_dev_attr_in3_input.dev_attr.attr,
 575        &sensor_dev_attr_in3_min.dev_attr.attr,
 576        &sensor_dev_attr_in3_max.dev_attr.attr,
 577        &sensor_dev_attr_in4_input.dev_attr.attr,
 578        &sensor_dev_attr_in4_min.dev_attr.attr,
 579        &sensor_dev_attr_in4_max.dev_attr.attr,
 580        &sensor_dev_attr_in5_input.dev_attr.attr,
 581        &sensor_dev_attr_in5_min.dev_attr.attr,
 582        &sensor_dev_attr_in5_max.dev_attr.attr,
 583        &sensor_dev_attr_in6_input.dev_attr.attr,
 584        &sensor_dev_attr_in6_min.dev_attr.attr,
 585        &sensor_dev_attr_in6_max.dev_attr.attr,
 586
 587        &sensor_dev_attr_fan1_input.dev_attr.attr,
 588        &sensor_dev_attr_fan1_min.dev_attr.attr,
 589        &sensor_dev_attr_fan1_div.dev_attr.attr,
 590        &sensor_dev_attr_fan2_input.dev_attr.attr,
 591        &sensor_dev_attr_fan2_min.dev_attr.attr,
 592        &sensor_dev_attr_fan2_div.dev_attr.attr,
 593        &sensor_dev_attr_fan3_input.dev_attr.attr,
 594        &sensor_dev_attr_fan3_min.dev_attr.attr,
 595        &sensor_dev_attr_fan3_div.dev_attr.attr,
 596
 597        &sensor_dev_attr_temp1_input.dev_attr.attr,
 598        &sensor_dev_attr_temp1_max.dev_attr.attr,
 599        &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
 600        &sensor_dev_attr_temp2_input.dev_attr.attr,
 601        &sensor_dev_attr_temp2_max.dev_attr.attr,
 602        &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
 603        &sensor_dev_attr_temp3_input.dev_attr.attr,
 604        &sensor_dev_attr_temp3_max.dev_attr.attr,
 605        &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
 606        &sensor_dev_attr_temp4_input.dev_attr.attr,
 607        &sensor_dev_attr_temp4_max.dev_attr.attr,
 608        &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
 609
 610        &sensor_dev_attr_in0_alarm.dev_attr.attr,
 611        &sensor_dev_attr_in1_alarm.dev_attr.attr,
 612        &sensor_dev_attr_in2_alarm.dev_attr.attr,
 613        &sensor_dev_attr_in3_alarm.dev_attr.attr,
 614        &sensor_dev_attr_in4_alarm.dev_attr.attr,
 615        &sensor_dev_attr_fan1_alarm.dev_attr.attr,
 616        &sensor_dev_attr_fan2_alarm.dev_attr.attr,
 617        &sensor_dev_attr_fan3_alarm.dev_attr.attr,
 618        &sensor_dev_attr_temp1_alarm.dev_attr.attr,
 619        &sensor_dev_attr_temp2_alarm.dev_attr.attr,
 620        &sensor_dev_attr_temp3_alarm.dev_attr.attr,
 621
 622        &dev_attr_cpu0_vid.attr,
 623        &dev_attr_vrm.attr,
 624        &dev_attr_alarms.attr,
 625        &dev_attr_pwm1.attr,
 626        &dev_attr_pwm1_enable.attr,
 627
 628        NULL
 629};
 630
 631static const struct attribute_group asb100_group = {
 632        .attrs = asb100_attributes,
 633};
 634
 635static int asb100_detect_subclients(struct i2c_client *client)
 636{
 637        int i, id, err;
 638        int address = client->addr;
 639        unsigned short sc_addr[2];
 640        struct asb100_data *data = i2c_get_clientdata(client);
 641        struct i2c_adapter *adapter = client->adapter;
 642
 643        id = i2c_adapter_id(adapter);
 644
 645        if (force_subclients[0] == id && force_subclients[1] == address) {
 646                for (i = 2; i <= 3; i++) {
 647                        if (force_subclients[i] < 0x48 ||
 648                            force_subclients[i] > 0x4f) {
 649                                dev_err(&client->dev, "invalid subclient "
 650                                        "address %d; must be 0x48-0x4f\n",
 651                                        force_subclients[i]);
 652                                err = -ENODEV;
 653                                goto ERROR_SC_2;
 654                        }
 655                }
 656                asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
 657                                        (force_subclients[2] & 0x07) |
 658                                        ((force_subclients[3] & 0x07) << 4));
 659                sc_addr[0] = force_subclients[2];
 660                sc_addr[1] = force_subclients[3];
 661        } else {
 662                int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
 663                sc_addr[0] = 0x48 + (val & 0x07);
 664                sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
 665        }
 666
 667        if (sc_addr[0] == sc_addr[1]) {
 668                dev_err(&client->dev, "duplicate addresses 0x%x "
 669                                "for subclients\n", sc_addr[0]);
 670                err = -ENODEV;
 671                goto ERROR_SC_2;
 672        }
 673
 674        data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
 675        if (!data->lm75[0]) {
 676                dev_err(&client->dev, "subclient %d registration "
 677                        "at address 0x%x failed.\n", 1, sc_addr[0]);
 678                err = -ENOMEM;
 679                goto ERROR_SC_2;
 680        }
 681
 682        data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
 683        if (!data->lm75[1]) {
 684                dev_err(&client->dev, "subclient %d registration "
 685                        "at address 0x%x failed.\n", 2, sc_addr[1]);
 686                err = -ENOMEM;
 687                goto ERROR_SC_3;
 688        }
 689
 690        return 0;
 691
 692/* Undo inits in case of errors */
 693ERROR_SC_3:
 694        i2c_unregister_device(data->lm75[0]);
 695ERROR_SC_2:
 696        return err;
 697}
 698
 699/* Return 0 if detection is successful, -ENODEV otherwise */
 700static int asb100_detect(struct i2c_client *client, int kind,
 701                         struct i2c_board_info *info)
 702{
 703        struct i2c_adapter *adapter = client->adapter;
 704
 705        if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
 706                pr_debug("asb100.o: detect failed, "
 707                                "smbus byte data not supported!\n");
 708                return -ENODEV;
 709        }
 710
 711        /* The chip may be stuck in some other bank than bank 0. This may
 712           make reading other information impossible. Specify a force=... or
 713           force_*=... parameter, and the chip will be reset to the right
 714           bank. */
 715        if (kind < 0) {
 716
 717                int val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
 718                int val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
 719
 720                /* If we're in bank 0 */
 721                if ((!(val1 & 0x07)) &&
 722                                /* Check for ASB100 ID (low byte) */
 723                                (((!(val1 & 0x80)) && (val2 != 0x94)) ||
 724                                /* Check for ASB100 ID (high byte ) */
 725                                ((val1 & 0x80) && (val2 != 0x06)))) {
 726                        pr_debug("asb100.o: detect failed, "
 727                                        "bad chip id 0x%02x!\n", val2);
 728                        return -ENODEV;
 729                }
 730
 731        } /* kind < 0 */
 732
 733        /* We have either had a force parameter, or we have already detected
 734           Winbond. Put it now into bank 0 and Vendor ID High Byte */
 735        i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
 736                (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
 737                | 0x80);
 738
 739        /* Determine the chip type. */
 740        if (kind <= 0) {
 741                int val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
 742                int val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
 743
 744                if ((val1 == 0x31) && (val2 == 0x06))
 745                        kind = asb100;
 746                else {
 747                        if (kind == 0)
 748                                dev_warn(&adapter->dev, "ignoring "
 749                                        "'force' parameter for unknown chip "
 750                                        "at adapter %d, address 0x%02x.\n",
 751                                        i2c_adapter_id(adapter), client->addr);
 752                        return -ENODEV;
 753                }
 754        }
 755
 756        strlcpy(info->type, "asb100", I2C_NAME_SIZE);
 757
 758        return 0;
 759}
 760
 761static int asb100_probe(struct i2c_client *client,
 762                        const struct i2c_device_id *id)
 763{
 764        int err;
 765        struct asb100_data *data;
 766
 767        data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL);
 768        if (!data) {
 769                pr_debug("asb100.o: probe failed, kzalloc failed!\n");
 770                err = -ENOMEM;
 771                goto ERROR0;
 772        }
 773
 774        i2c_set_clientdata(client, data);
 775        mutex_init(&data->lock);
 776        mutex_init(&data->update_lock);
 777
 778        /* Attach secondary lm75 clients */
 779        err = asb100_detect_subclients(client);
 780        if (err)
 781                goto ERROR1;
 782
 783        /* Initialize the chip */
 784        asb100_init_client(client);
 785
 786        /* A few vars need to be filled upon startup */
 787        data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
 788        data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
 789        data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
 790
 791        /* Register sysfs hooks */
 792        if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
 793                goto ERROR3;
 794
 795        data->hwmon_dev = hwmon_device_register(&client->dev);
 796        if (IS_ERR(data->hwmon_dev)) {
 797                err = PTR_ERR(data->hwmon_dev);
 798                goto ERROR4;
 799        }
 800
 801        return 0;
 802
 803ERROR4:
 804        sysfs_remove_group(&client->dev.kobj, &asb100_group);
 805ERROR3:
 806        i2c_unregister_device(data->lm75[1]);
 807        i2c_unregister_device(data->lm75[0]);
 808ERROR1:
 809        kfree(data);
 810ERROR0:
 811        return err;
 812}
 813
 814static int asb100_remove(struct i2c_client *client)
 815{
 816        struct asb100_data *data = i2c_get_clientdata(client);
 817
 818        hwmon_device_unregister(data->hwmon_dev);
 819        sysfs_remove_group(&client->dev.kobj, &asb100_group);
 820
 821        i2c_unregister_device(data->lm75[1]);
 822        i2c_unregister_device(data->lm75[0]);
 823
 824        kfree(data);
 825
 826        return 0;
 827}
 828
 829/* The SMBus locks itself, usually, but nothing may access the chip between
 830   bank switches. */
 831static int asb100_read_value(struct i2c_client *client, u16 reg)
 832{
 833        struct asb100_data *data = i2c_get_clientdata(client);
 834        struct i2c_client *cl;
 835        int res, bank;
 836
 837        mutex_lock(&data->lock);
 838
 839        bank = (reg >> 8) & 0x0f;
 840        if (bank > 2)
 841                /* switch banks */
 842                i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
 843
 844        if (bank == 0 || bank > 2) {
 845                res = i2c_smbus_read_byte_data(client, reg & 0xff);
 846        } else {
 847                /* switch to subclient */
 848                cl = data->lm75[bank - 1];
 849
 850                /* convert from ISA to LM75 I2C addresses */
 851                switch (reg & 0xff) {
 852                case 0x50: /* TEMP */
 853                        res = swab16(i2c_smbus_read_word_data(cl, 0));
 854                        break;
 855                case 0x52: /* CONFIG */
 856                        res = i2c_smbus_read_byte_data(cl, 1);
 857                        break;
 858                case 0x53: /* HYST */
 859                        res = swab16(i2c_smbus_read_word_data(cl, 2));
 860                        break;
 861                case 0x55: /* MAX */
 862                default:
 863                        res = swab16(i2c_smbus_read_word_data(cl, 3));
 864                        break;
 865                }
 866        }
 867
 868        if (bank > 2)
 869                i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
 870
 871        mutex_unlock(&data->lock);
 872
 873        return res;
 874}
 875
 876static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
 877{
 878        struct asb100_data *data = i2c_get_clientdata(client);
 879        struct i2c_client *cl;
 880        int bank;
 881
 882        mutex_lock(&data->lock);
 883
 884        bank = (reg >> 8) & 0x0f;
 885        if (bank > 2)
 886                /* switch banks */
 887                i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
 888
 889        if (bank == 0 || bank > 2) {
 890                i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
 891        } else {
 892                /* switch to subclient */
 893                cl = data->lm75[bank - 1];
 894
 895                /* convert from ISA to LM75 I2C addresses */
 896                switch (reg & 0xff) {
 897                case 0x52: /* CONFIG */
 898                        i2c_smbus_write_byte_data(cl, 1, value & 0xff);
 899                        break;
 900                case 0x53: /* HYST */
 901                        i2c_smbus_write_word_data(cl, 2, swab16(value));
 902                        break;
 903                case 0x55: /* MAX */
 904                        i2c_smbus_write_word_data(cl, 3, swab16(value));
 905                        break;
 906                }
 907        }
 908
 909        if (bank > 2)
 910                i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
 911
 912        mutex_unlock(&data->lock);
 913}
 914
 915static void asb100_init_client(struct i2c_client *client)
 916{
 917        struct asb100_data *data = i2c_get_clientdata(client);
 918
 919        data->vrm = vid_which_vrm();
 920
 921        /* Start monitoring */
 922        asb100_write_value(client, ASB100_REG_CONFIG,
 923                (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
 924}
 925
 926static struct asb100_data *asb100_update_device(struct device *dev)
 927{
 928        struct i2c_client *client = to_i2c_client(dev);
 929        struct asb100_data *data = i2c_get_clientdata(client);
 930        int i;
 931
 932        mutex_lock(&data->update_lock);
 933
 934        if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
 935                || !data->valid) {
 936
 937                dev_dbg(&client->dev, "starting device update...\n");
 938
 939                /* 7 voltage inputs */
 940                for (i = 0; i < 7; i++) {
 941                        data->in[i] = asb100_read_value(client,
 942                                ASB100_REG_IN(i));
 943                        data->in_min[i] = asb100_read_value(client,
 944                                ASB100_REG_IN_MIN(i));
 945                        data->in_max[i] = asb100_read_value(client,
 946                                ASB100_REG_IN_MAX(i));
 947                }
 948
 949                /* 3 fan inputs */
 950                for (i = 0; i < 3; i++) {
 951                        data->fan[i] = asb100_read_value(client,
 952                                        ASB100_REG_FAN(i));
 953                        data->fan_min[i] = asb100_read_value(client,
 954                                        ASB100_REG_FAN_MIN(i));
 955                }
 956
 957                /* 4 temperature inputs */
 958                for (i = 1; i <= 4; i++) {
 959                        data->temp[i-1] = asb100_read_value(client,
 960                                        ASB100_REG_TEMP(i));
 961                        data->temp_max[i-1] = asb100_read_value(client,
 962                                        ASB100_REG_TEMP_MAX(i));
 963                        data->temp_hyst[i-1] = asb100_read_value(client,
 964                                        ASB100_REG_TEMP_HYST(i));
 965                }
 966
 967                /* VID and fan divisors */
 968                i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
 969                data->vid = i & 0x0f;
 970                data->vid |= (asb100_read_value(client,
 971                                ASB100_REG_CHIPID) & 0x01) << 4;
 972                data->fan_div[0] = (i >> 4) & 0x03;
 973                data->fan_div[1] = (i >> 6) & 0x03;
 974                data->fan_div[2] = (asb100_read_value(client,
 975                                ASB100_REG_PIN) >> 6) & 0x03;
 976
 977                /* PWM */
 978                data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
 979
 980                /* alarms */
 981                data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
 982                        (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
 983
 984                data->last_updated = jiffies;
 985                data->valid = 1;
 986
 987                dev_dbg(&client->dev, "... device update complete\n");
 988        }
 989
 990        mutex_unlock(&data->update_lock);
 991
 992        return data;
 993}
 994
 995static int __init asb100_init(void)
 996{
 997        return i2c_add_driver(&asb100_driver);
 998}
 999
1000static void __exit asb100_exit(void)
1001{
1002        i2c_del_driver(&asb100_driver);
1003}
1004
1005MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1006MODULE_DESCRIPTION("ASB100 Bach driver");
1007MODULE_LICENSE("GPL");
1008
1009module_init(asb100_init);
1010module_exit(asb100_exit);
1011