linux/drivers/ieee1394/ieee1394_core.c
<<
>>
Prefs
   1/*
   2 * IEEE 1394 for Linux
   3 *
   4 * Core support: hpsb_packet management, packet handling and forwarding to
   5 *               highlevel or lowlevel code
   6 *
   7 * Copyright (C) 1999, 2000 Andreas E. Bombe
   8 *                     2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
   9 *
  10 * This code is licensed under the GPL.  See the file COPYING in the root
  11 * directory of the kernel sources for details.
  12 *
  13 *
  14 * Contributions:
  15 *
  16 * Manfred Weihs <weihs@ict.tuwien.ac.at>
  17 *        loopback functionality in hpsb_send_packet
  18 *        allow highlevel drivers to disable automatic response generation
  19 *              and to generate responses themselves (deferred)
  20 *
  21 */
  22
  23#include <linux/kernel.h>
  24#include <linux/list.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/slab.h>
  28#include <linux/interrupt.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/bitops.h>
  32#include <linux/kdev_t.h>
  33#include <linux/freezer.h>
  34#include <linux/suspend.h>
  35#include <linux/kthread.h>
  36#include <linux/preempt.h>
  37#include <linux/time.h>
  38
  39#include <asm/system.h>
  40#include <asm/byteorder.h>
  41
  42#include "ieee1394_types.h"
  43#include "ieee1394.h"
  44#include "hosts.h"
  45#include "ieee1394_core.h"
  46#include "highlevel.h"
  47#include "ieee1394_transactions.h"
  48#include "csr.h"
  49#include "nodemgr.h"
  50#include "dma.h"
  51#include "iso.h"
  52#include "config_roms.h"
  53
  54/*
  55 * Disable the nodemgr detection and config rom reading functionality.
  56 */
  57static int disable_nodemgr;
  58module_param(disable_nodemgr, int, 0444);
  59MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
  60
  61/* Disable Isochronous Resource Manager functionality */
  62int hpsb_disable_irm = 0;
  63module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
  64MODULE_PARM_DESC(disable_irm,
  65                 "Disable Isochronous Resource Manager functionality.");
  66
  67/* We are GPL, so treat us special */
  68MODULE_LICENSE("GPL");
  69
  70/* Some globals used */
  71const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
  72struct class *hpsb_protocol_class;
  73
  74#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
  75static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
  76{
  77        int i;
  78
  79        size /= 4;
  80        size = (size > 4 ? 4 : size);
  81
  82        printk(KERN_DEBUG "ieee1394: %s", text);
  83        if (speed > -1 && speed < 6)
  84                printk(" at %s", hpsb_speedto_str[speed]);
  85        printk(":");
  86        for (i = 0; i < size; i++)
  87                printk(" %08x", data[i]);
  88        printk("\n");
  89}
  90#else
  91#define dump_packet(a,b,c,d) do {} while (0)
  92#endif
  93
  94static void abort_requests(struct hpsb_host *host);
  95static void queue_packet_complete(struct hpsb_packet *packet);
  96
  97
  98/**
  99 * hpsb_set_packet_complete_task - set task that runs when a packet completes
 100 * @packet: the packet whose completion we want the task added to
 101 * @routine: function to call
 102 * @data: data (if any) to pass to the above function
 103 *
 104 * Set the task that runs when a packet completes. You cannot call this more
 105 * than once on a single packet before it is sent.
 106 *
 107 * Typically, the complete @routine is responsible to call hpsb_free_packet().
 108 */
 109void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
 110                                   void (*routine)(void *), void *data)
 111{
 112        WARN_ON(packet->complete_routine != NULL);
 113        packet->complete_routine = routine;
 114        packet->complete_data = data;
 115        return;
 116}
 117
 118/**
 119 * hpsb_alloc_packet - allocate new packet structure
 120 * @data_size: size of the data block to be allocated, in bytes
 121 *
 122 * This function allocates, initializes and returns a new &struct hpsb_packet.
 123 * It can be used in interrupt context.  A header block is always included and
 124 * initialized with zeros.  Its size is big enough to contain all possible 1394
 125 * headers.  The data block is only allocated if @data_size is not zero.
 126 *
 127 * For packets for which responses will be received the @data_size has to be big
 128 * enough to contain the response's data block since no further allocation
 129 * occurs at response matching time.
 130 *
 131 * The packet's generation value will be set to the current generation number
 132 * for ease of use.  Remember to overwrite it with your own recorded generation
 133 * number if you can not be sure that your code will not race with a bus reset.
 134 *
 135 * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
 136 * failure.
 137 */
 138struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
 139{
 140        struct hpsb_packet *packet;
 141
 142        data_size = ((data_size + 3) & ~3);
 143
 144        packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC);
 145        if (!packet)
 146                return NULL;
 147
 148        packet->state = hpsb_unused;
 149        packet->generation = -1;
 150        INIT_LIST_HEAD(&packet->driver_list);
 151        INIT_LIST_HEAD(&packet->queue);
 152        atomic_set(&packet->refcnt, 1);
 153
 154        if (data_size) {
 155                packet->data = packet->embedded_data;
 156                packet->allocated_data_size = data_size;
 157        }
 158        return packet;
 159}
 160
 161/**
 162 * hpsb_free_packet - free packet and data associated with it
 163 * @packet: packet to free (is NULL safe)
 164 *
 165 * Frees @packet->data only if it was allocated through hpsb_alloc_packet().
 166 */
 167void hpsb_free_packet(struct hpsb_packet *packet)
 168{
 169        if (packet && atomic_dec_and_test(&packet->refcnt)) {
 170                BUG_ON(!list_empty(&packet->driver_list) ||
 171                       !list_empty(&packet->queue));
 172                kfree(packet);
 173        }
 174}
 175
 176/**
 177 * hpsb_reset_bus - initiate bus reset on the given host
 178 * @host: host controller whose bus to reset
 179 * @type: one of enum reset_types
 180 *
 181 * Returns 1 if bus reset already in progress, 0 otherwise.
 182 */
 183int hpsb_reset_bus(struct hpsb_host *host, int type)
 184{
 185        if (!host->in_bus_reset) {
 186                host->driver->devctl(host, RESET_BUS, type);
 187                return 0;
 188        } else {
 189                return 1;
 190        }
 191}
 192
 193/**
 194 * hpsb_read_cycle_timer - read cycle timer register and system time
 195 * @host: host whose isochronous cycle timer register is read
 196 * @cycle_timer: address of bitfield to return the register contents
 197 * @local_time: address to return the system time
 198 *
 199 * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
 200 * format is also read from non-OHCI controllers. * @local_time contains the
 201 * system time in microseconds since the Epoch, read at the moment when the
 202 * cycle timer was read.
 203 *
 204 * Return value: 0 for success or error number otherwise.
 205 */
 206int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
 207                          u64 *local_time)
 208{
 209        int ctr;
 210        struct timeval tv;
 211        unsigned long flags;
 212
 213        if (!host || !cycle_timer || !local_time)
 214                return -EINVAL;
 215
 216        preempt_disable();
 217        local_irq_save(flags);
 218
 219        ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
 220        if (ctr)
 221                do_gettimeofday(&tv);
 222
 223        local_irq_restore(flags);
 224        preempt_enable();
 225
 226        if (!ctr)
 227                return -EIO;
 228        *cycle_timer = ctr;
 229        *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
 230        return 0;
 231}
 232
 233/**
 234 * hpsb_bus_reset - notify a bus reset to the core
 235 *
 236 * For host driver module usage.  Safe to use in interrupt context, although
 237 * quite complex; so you may want to run it in the bottom rather than top half.
 238 *
 239 * Returns 1 if bus reset already in progress, 0 otherwise.
 240 */
 241int hpsb_bus_reset(struct hpsb_host *host)
 242{
 243        if (host->in_bus_reset) {
 244                HPSB_NOTICE("%s called while bus reset already in progress",
 245                            __func__);
 246                return 1;
 247        }
 248
 249        abort_requests(host);
 250        host->in_bus_reset = 1;
 251        host->irm_id = -1;
 252        host->is_irm = 0;
 253        host->busmgr_id = -1;
 254        host->is_busmgr = 0;
 255        host->is_cycmst = 0;
 256        host->node_count = 0;
 257        host->selfid_count = 0;
 258
 259        return 0;
 260}
 261
 262
 263/*
 264 * Verify num_of_selfids SelfIDs and return number of nodes.  Return zero in
 265 * case verification failed.
 266 */
 267static int check_selfids(struct hpsb_host *host)
 268{
 269        int nodeid = -1;
 270        int rest_of_selfids = host->selfid_count;
 271        struct selfid *sid = (struct selfid *)host->topology_map;
 272        struct ext_selfid *esid;
 273        int esid_seq = 23;
 274
 275        host->nodes_active = 0;
 276
 277        while (rest_of_selfids--) {
 278                if (!sid->extended) {
 279                        nodeid++;
 280                        esid_seq = 0;
 281
 282                        if (sid->phy_id != nodeid) {
 283                                HPSB_INFO("SelfIDs failed monotony check with "
 284                                          "%d", sid->phy_id);
 285                                return 0;
 286                        }
 287
 288                        if (sid->link_active) {
 289                                host->nodes_active++;
 290                                if (sid->contender)
 291                                        host->irm_id = LOCAL_BUS | sid->phy_id;
 292                        }
 293                } else {
 294                        esid = (struct ext_selfid *)sid;
 295
 296                        if ((esid->phy_id != nodeid)
 297                            || (esid->seq_nr != esid_seq)) {
 298                                HPSB_INFO("SelfIDs failed monotony check with "
 299                                          "%d/%d", esid->phy_id, esid->seq_nr);
 300                                return 0;
 301                        }
 302                        esid_seq++;
 303                }
 304                sid++;
 305        }
 306
 307        esid = (struct ext_selfid *)(sid - 1);
 308        while (esid->extended) {
 309                if ((esid->porta == SELFID_PORT_PARENT) ||
 310                    (esid->portb == SELFID_PORT_PARENT) ||
 311                    (esid->portc == SELFID_PORT_PARENT) ||
 312                    (esid->portd == SELFID_PORT_PARENT) ||
 313                    (esid->porte == SELFID_PORT_PARENT) ||
 314                    (esid->portf == SELFID_PORT_PARENT) ||
 315                    (esid->portg == SELFID_PORT_PARENT) ||
 316                    (esid->porth == SELFID_PORT_PARENT)) {
 317                        HPSB_INFO("SelfIDs failed root check on "
 318                                  "extended SelfID");
 319                        return 0;
 320                }
 321                esid--;
 322        }
 323
 324        sid = (struct selfid *)esid;
 325        if ((sid->port0 == SELFID_PORT_PARENT) ||
 326            (sid->port1 == SELFID_PORT_PARENT) ||
 327            (sid->port2 == SELFID_PORT_PARENT)) {
 328                HPSB_INFO("SelfIDs failed root check");
 329                return 0;
 330        }
 331
 332        host->node_count = nodeid + 1;
 333        return 1;
 334}
 335
 336static void build_speed_map(struct hpsb_host *host, int nodecount)
 337{
 338        u8 cldcnt[nodecount];
 339        u8 *map = host->speed_map;
 340        u8 *speedcap = host->speed;
 341        u8 local_link_speed = host->csr.lnk_spd;
 342        struct selfid *sid;
 343        struct ext_selfid *esid;
 344        int i, j, n;
 345
 346        for (i = 0; i < (nodecount * 64); i += 64) {
 347                for (j = 0; j < nodecount; j++) {
 348                        map[i+j] = IEEE1394_SPEED_MAX;
 349                }
 350        }
 351
 352        for (i = 0; i < nodecount; i++) {
 353                cldcnt[i] = 0;
 354        }
 355
 356        /* find direct children count and speed */
 357        for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
 358                     n = nodecount - 1;
 359             (void *)sid >= (void *)host->topology_map; sid--) {
 360                if (sid->extended) {
 361                        esid = (struct ext_selfid *)sid;
 362
 363                        if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
 364                        if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
 365                        if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
 366                        if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
 367                        if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
 368                        if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
 369                        if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
 370                        if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
 371                } else {
 372                        if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
 373                        if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
 374                        if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
 375
 376                        speedcap[n] = sid->speed;
 377                        if (speedcap[n] > local_link_speed)
 378                                speedcap[n] = local_link_speed;
 379                        n--;
 380                }
 381        }
 382
 383        /* set self mapping */
 384        for (i = 0; i < nodecount; i++) {
 385                map[64*i + i] = speedcap[i];
 386        }
 387
 388        /* fix up direct children count to total children count;
 389         * also fix up speedcaps for sibling and parent communication */
 390        for (i = 1; i < nodecount; i++) {
 391                for (j = cldcnt[i], n = i - 1; j > 0; j--) {
 392                        cldcnt[i] += cldcnt[n];
 393                        speedcap[n] = min(speedcap[n], speedcap[i]);
 394                        n -= cldcnt[n] + 1;
 395                }
 396        }
 397
 398        for (n = 0; n < nodecount; n++) {
 399                for (i = n - cldcnt[n]; i <= n; i++) {
 400                        for (j = 0; j < (n - cldcnt[n]); j++) {
 401                                map[j*64 + i] = map[i*64 + j] =
 402                                        min(map[i*64 + j], speedcap[n]);
 403                        }
 404                        for (j = n + 1; j < nodecount; j++) {
 405                                map[j*64 + i] = map[i*64 + j] =
 406                                        min(map[i*64 + j], speedcap[n]);
 407                        }
 408                }
 409        }
 410
 411        /* assume a maximum speed for 1394b PHYs, nodemgr will correct it */
 412        if (local_link_speed > SELFID_SPEED_UNKNOWN)
 413                for (i = 0; i < nodecount; i++)
 414                        if (speedcap[i] == SELFID_SPEED_UNKNOWN)
 415                                speedcap[i] = local_link_speed;
 416}
 417
 418
 419/**
 420 * hpsb_selfid_received - hand over received selfid packet to the core
 421 *
 422 * For host driver module usage.  Safe to use in interrupt context.
 423 *
 424 * The host driver should have done a successful complement check (second
 425 * quadlet is complement of first) beforehand.
 426 */
 427void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
 428{
 429        if (host->in_bus_reset) {
 430                HPSB_VERBOSE("Including SelfID 0x%x", sid);
 431                host->topology_map[host->selfid_count++] = sid;
 432        } else {
 433                HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
 434                            sid, NODEID_TO_BUS(host->node_id));
 435        }
 436}
 437
 438/**
 439 * hpsb_selfid_complete - notify completion of SelfID stage to the core
 440 *
 441 * For host driver module usage.  Safe to use in interrupt context, although
 442 * quite complex; so you may want to run it in the bottom rather than top half.
 443 *
 444 * Notify completion of SelfID stage to the core and report new physical ID
 445 * and whether host is root now.
 446 */
 447void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
 448{
 449        if (!host->in_bus_reset)
 450                HPSB_NOTICE("SelfID completion called outside of bus reset!");
 451
 452        host->node_id = LOCAL_BUS | phyid;
 453        host->is_root = isroot;
 454
 455        if (!check_selfids(host)) {
 456                if (host->reset_retries++ < 20) {
 457                        /* selfid stage did not complete without error */
 458                        HPSB_NOTICE("Error in SelfID stage, resetting");
 459                        host->in_bus_reset = 0;
 460                        /* this should work from ohci1394 now... */
 461                        hpsb_reset_bus(host, LONG_RESET);
 462                        return;
 463                } else {
 464                        HPSB_NOTICE("Stopping out-of-control reset loop");
 465                        HPSB_NOTICE("Warning - topology map and speed map will not be valid");
 466                        host->reset_retries = 0;
 467                }
 468        } else {
 469                host->reset_retries = 0;
 470                build_speed_map(host, host->node_count);
 471        }
 472
 473        HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
 474                     "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
 475
 476        /* irm_id is kept up to date by check_selfids() */
 477        if (host->irm_id == host->node_id) {
 478                host->is_irm = 1;
 479        } else {
 480                host->is_busmgr = 0;
 481                host->is_irm = 0;
 482        }
 483
 484        if (isroot) {
 485                host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
 486                host->is_cycmst = 1;
 487        }
 488        atomic_inc(&host->generation);
 489        host->in_bus_reset = 0;
 490        highlevel_host_reset(host);
 491}
 492
 493static DEFINE_SPINLOCK(pending_packets_lock);
 494
 495/**
 496 * hpsb_packet_sent - notify core of sending a packet
 497 *
 498 * For host driver module usage.  Safe to call from within a transmit packet
 499 * routine.
 500 *
 501 * Notify core of sending a packet.  Ackcode is the ack code returned for async
 502 * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
 503 * for other cases (internal errors that don't justify a panic).
 504 */
 505void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
 506                      int ackcode)
 507{
 508        unsigned long flags;
 509
 510        spin_lock_irqsave(&pending_packets_lock, flags);
 511
 512        packet->ack_code = ackcode;
 513
 514        if (packet->no_waiter || packet->state == hpsb_complete) {
 515                /* if packet->no_waiter, must not have a tlabel allocated */
 516                spin_unlock_irqrestore(&pending_packets_lock, flags);
 517                hpsb_free_packet(packet);
 518                return;
 519        }
 520
 521        atomic_dec(&packet->refcnt);    /* drop HC's reference */
 522        /* here the packet must be on the host->pending_packets queue */
 523
 524        if (ackcode != ACK_PENDING || !packet->expect_response) {
 525                packet->state = hpsb_complete;
 526                list_del_init(&packet->queue);
 527                spin_unlock_irqrestore(&pending_packets_lock, flags);
 528                queue_packet_complete(packet);
 529                return;
 530        }
 531
 532        packet->state = hpsb_pending;
 533        packet->sendtime = jiffies;
 534
 535        spin_unlock_irqrestore(&pending_packets_lock, flags);
 536
 537        mod_timer(&host->timeout, jiffies + host->timeout_interval);
 538}
 539
 540/**
 541 * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
 542 * @host: host that PHY config packet gets sent through
 543 * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
 544 * @gapcnt: gap count value to set (-1 = don't set gap count)
 545 *
 546 * This function sends a PHY config packet on the bus through the specified
 547 * host.
 548 *
 549 * Return value: 0 for success or negative error number otherwise.
 550 */
 551int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
 552{
 553        struct hpsb_packet *packet;
 554        quadlet_t d = 0;
 555        int retval = 0;
 556
 557        if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
 558           (rootid == -1 && gapcnt == -1)) {
 559                HPSB_DEBUG("Invalid Parameter: rootid = %d   gapcnt = %d",
 560                           rootid, gapcnt);
 561                return -EINVAL;
 562        }
 563
 564        if (rootid != -1)
 565                d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
 566        if (gapcnt != -1)
 567                d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
 568
 569        packet = hpsb_make_phypacket(host, d);
 570        if (!packet)
 571                return -ENOMEM;
 572
 573        packet->generation = get_hpsb_generation(host);
 574        retval = hpsb_send_packet_and_wait(packet);
 575        hpsb_free_packet(packet);
 576
 577        return retval;
 578}
 579
 580/**
 581 * hpsb_send_packet - transmit a packet on the bus
 582 * @packet: packet to send
 583 *
 584 * The packet is sent through the host specified in the packet->host field.
 585 * Before sending, the packet's transmit speed is automatically determined
 586 * using the local speed map when it is an async, non-broadcast packet.
 587 *
 588 * Possibilities for failure are that host is either not initialized, in bus
 589 * reset, the packet's generation number doesn't match the current generation
 590 * number or the host reports a transmit error.
 591 *
 592 * Return value: 0 on success, negative errno on failure.
 593 */
 594int hpsb_send_packet(struct hpsb_packet *packet)
 595{
 596        struct hpsb_host *host = packet->host;
 597
 598        if (host->is_shutdown)
 599                return -EINVAL;
 600        if (host->in_bus_reset ||
 601            (packet->generation != get_hpsb_generation(host)))
 602                return -EAGAIN;
 603
 604        packet->state = hpsb_queued;
 605
 606        /* This just seems silly to me */
 607        WARN_ON(packet->no_waiter && packet->expect_response);
 608
 609        if (!packet->no_waiter || packet->expect_response) {
 610                unsigned long flags;
 611
 612                atomic_inc(&packet->refcnt);
 613                /* Set the initial "sendtime" to 10 seconds from now, to
 614                   prevent premature expiry.  If a packet takes more than
 615                   10 seconds to hit the wire, we have bigger problems :) */
 616                packet->sendtime = jiffies + 10 * HZ;
 617                spin_lock_irqsave(&pending_packets_lock, flags);
 618                list_add_tail(&packet->queue, &host->pending_packets);
 619                spin_unlock_irqrestore(&pending_packets_lock, flags);
 620        }
 621
 622        if (packet->node_id == host->node_id) {
 623                /* it is a local request, so handle it locally */
 624
 625                quadlet_t *data;
 626                size_t size = packet->data_size + packet->header_size;
 627
 628                data = kmalloc(size, GFP_ATOMIC);
 629                if (!data) {
 630                        HPSB_ERR("unable to allocate memory for concatenating header and data");
 631                        return -ENOMEM;
 632                }
 633
 634                memcpy(data, packet->header, packet->header_size);
 635
 636                if (packet->data_size)
 637                        memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
 638
 639                dump_packet("send packet local", packet->header, packet->header_size, -1);
 640
 641                hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
 642                hpsb_packet_received(host, data, size, 0);
 643
 644                kfree(data);
 645
 646                return 0;
 647        }
 648
 649        if (packet->type == hpsb_async &&
 650            NODEID_TO_NODE(packet->node_id) != ALL_NODES)
 651                packet->speed_code =
 652                        host->speed[NODEID_TO_NODE(packet->node_id)];
 653
 654        dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
 655
 656        return host->driver->transmit_packet(host, packet);
 657}
 658
 659/* We could just use complete() directly as the packet complete
 660 * callback, but this is more typesafe, in the sense that we get a
 661 * compiler error if the prototype for complete() changes. */
 662
 663static void complete_packet(void *data)
 664{
 665        complete((struct completion *) data);
 666}
 667
 668/**
 669 * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
 670 * @packet: packet to send
 671 *
 672 * Return value: 0 on success, negative errno on failure.
 673 */
 674int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
 675{
 676        struct completion done;
 677        int retval;
 678
 679        init_completion(&done);
 680        hpsb_set_packet_complete_task(packet, complete_packet, &done);
 681        retval = hpsb_send_packet(packet);
 682        if (retval == 0)
 683                wait_for_completion(&done);
 684
 685        return retval;
 686}
 687
 688static void send_packet_nocare(struct hpsb_packet *packet)
 689{
 690        if (hpsb_send_packet(packet) < 0) {
 691                hpsb_free_packet(packet);
 692        }
 693}
 694
 695static size_t packet_size_to_data_size(size_t packet_size, size_t header_size,
 696                                       size_t buffer_size, int tcode)
 697{
 698        size_t ret = packet_size <= header_size ? 0 : packet_size - header_size;
 699
 700        if (unlikely(ret > buffer_size))
 701                ret = buffer_size;
 702
 703        if (unlikely(ret + header_size != packet_size))
 704                HPSB_ERR("unexpected packet size %zd (tcode %d), bug?",
 705                         packet_size, tcode);
 706        return ret;
 707}
 708
 709static void handle_packet_response(struct hpsb_host *host, int tcode,
 710                                   quadlet_t *data, size_t size)
 711{
 712        struct hpsb_packet *packet;
 713        int tlabel = (data[0] >> 10) & 0x3f;
 714        size_t header_size;
 715        unsigned long flags;
 716
 717        spin_lock_irqsave(&pending_packets_lock, flags);
 718
 719        list_for_each_entry(packet, &host->pending_packets, queue)
 720                if (packet->tlabel == tlabel &&
 721                    packet->node_id == (data[1] >> 16))
 722                        goto found;
 723
 724        spin_unlock_irqrestore(&pending_packets_lock, flags);
 725        HPSB_DEBUG("unsolicited response packet received - %s",
 726                   "no tlabel match");
 727        dump_packet("contents", data, 16, -1);
 728        return;
 729
 730found:
 731        switch (packet->tcode) {
 732        case TCODE_WRITEQ:
 733        case TCODE_WRITEB:
 734                if (unlikely(tcode != TCODE_WRITE_RESPONSE))
 735                        break;
 736                header_size = 12;
 737                size = 0;
 738                goto dequeue;
 739
 740        case TCODE_READQ:
 741                if (unlikely(tcode != TCODE_READQ_RESPONSE))
 742                        break;
 743                header_size = 16;
 744                size = 0;
 745                goto dequeue;
 746
 747        case TCODE_READB:
 748                if (unlikely(tcode != TCODE_READB_RESPONSE))
 749                        break;
 750                header_size = 16;
 751                size = packet_size_to_data_size(size, header_size,
 752                                                packet->allocated_data_size,
 753                                                tcode);
 754                goto dequeue;
 755
 756        case TCODE_LOCK_REQUEST:
 757                if (unlikely(tcode != TCODE_LOCK_RESPONSE))
 758                        break;
 759                header_size = 16;
 760                size = packet_size_to_data_size(min(size, (size_t)(16 + 8)),
 761                                                header_size,
 762                                                packet->allocated_data_size,
 763                                                tcode);
 764                goto dequeue;
 765        }
 766
 767        spin_unlock_irqrestore(&pending_packets_lock, flags);
 768        HPSB_DEBUG("unsolicited response packet received - %s",
 769                   "tcode mismatch");
 770        dump_packet("contents", data, 16, -1);
 771        return;
 772
 773dequeue:
 774        list_del_init(&packet->queue);
 775        spin_unlock_irqrestore(&pending_packets_lock, flags);
 776
 777        if (packet->state == hpsb_queued) {
 778                packet->sendtime = jiffies;
 779                packet->ack_code = ACK_PENDING;
 780        }
 781        packet->state = hpsb_complete;
 782
 783        memcpy(packet->header, data, header_size);
 784        if (size)
 785                memcpy(packet->data, data + 4, size);
 786
 787        queue_packet_complete(packet);
 788}
 789
 790
 791static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
 792                                               quadlet_t *data, size_t dsize)
 793{
 794        struct hpsb_packet *p;
 795
 796        p = hpsb_alloc_packet(dsize);
 797        if (unlikely(p == NULL)) {
 798                /* FIXME - send data_error response */
 799                HPSB_ERR("out of memory, cannot send response packet");
 800                return NULL;
 801        }
 802
 803        p->type = hpsb_async;
 804        p->state = hpsb_unused;
 805        p->host = host;
 806        p->node_id = data[1] >> 16;
 807        p->tlabel = (data[0] >> 10) & 0x3f;
 808        p->no_waiter = 1;
 809
 810        p->generation = get_hpsb_generation(host);
 811
 812        if (dsize % 4)
 813                p->data[dsize / 4] = 0;
 814
 815        return p;
 816}
 817
 818#define PREP_ASYNC_HEAD_RCODE(tc) \
 819        packet->tcode = tc; \
 820        packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
 821                | (1 << 8) | (tc << 4); \
 822        packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
 823        packet->header[2] = 0
 824
 825static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
 826                              quadlet_t data)
 827{
 828        PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
 829        packet->header[3] = data;
 830        packet->header_size = 16;
 831        packet->data_size = 0;
 832}
 833
 834static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
 835                               int length)
 836{
 837        if (rcode != RCODE_COMPLETE)
 838                length = 0;
 839
 840        PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
 841        packet->header[3] = length << 16;
 842        packet->header_size = 16;
 843        packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
 844}
 845
 846static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
 847{
 848        PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
 849        packet->header_size = 12;
 850        packet->data_size = 0;
 851}
 852
 853static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
 854                          int length)
 855{
 856        if (rcode != RCODE_COMPLETE)
 857                length = 0;
 858
 859        PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
 860        packet->header[3] = (length << 16) | extcode;
 861        packet->header_size = 16;
 862        packet->data_size = length;
 863}
 864
 865static void handle_incoming_packet(struct hpsb_host *host, int tcode,
 866                                   quadlet_t *data, size_t size,
 867                                   int write_acked)
 868{
 869        struct hpsb_packet *packet;
 870        int length, rcode, extcode;
 871        quadlet_t buffer;
 872        nodeid_t source = data[1] >> 16;
 873        nodeid_t dest = data[0] >> 16;
 874        u16 flags = (u16) data[0];
 875        u64 addr;
 876
 877        /* FIXME?
 878         * Out-of-bounds lengths are left for highlevel_read|write to cap. */
 879
 880        switch (tcode) {
 881        case TCODE_WRITEQ:
 882                addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
 883                rcode = highlevel_write(host, source, dest, data + 3,
 884                                        addr, 4, flags);
 885                goto handle_write_request;
 886
 887        case TCODE_WRITEB:
 888                addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
 889                rcode = highlevel_write(host, source, dest, data + 4,
 890                                        addr, data[3] >> 16, flags);
 891handle_write_request:
 892                if (rcode < 0 || write_acked ||
 893                    NODEID_TO_NODE(data[0] >> 16) == NODE_MASK)
 894                        return;
 895                /* not a broadcast write, reply */
 896                packet = create_reply_packet(host, data, 0);
 897                if (packet) {
 898                        fill_async_write_resp(packet, rcode);
 899                        send_packet_nocare(packet);
 900                }
 901                return;
 902
 903        case TCODE_READQ:
 904                addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
 905                rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
 906                if (rcode < 0)
 907                        return;
 908
 909                packet = create_reply_packet(host, data, 0);
 910                if (packet) {
 911                        fill_async_readquad_resp(packet, rcode, buffer);
 912                        send_packet_nocare(packet);
 913                }
 914                return;
 915
 916        case TCODE_READB:
 917                length = data[3] >> 16;
 918                packet = create_reply_packet(host, data, length);
 919                if (!packet)
 920                        return;
 921
 922                addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
 923                rcode = highlevel_read(host, source, packet->data, addr,
 924                                       length, flags);
 925                if (rcode < 0) {
 926                        hpsb_free_packet(packet);
 927                        return;
 928                }
 929                fill_async_readblock_resp(packet, rcode, length);
 930                send_packet_nocare(packet);
 931                return;
 932
 933        case TCODE_LOCK_REQUEST:
 934                length = data[3] >> 16;
 935                extcode = data[3] & 0xffff;
 936                addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
 937
 938                packet = create_reply_packet(host, data, 8);
 939                if (!packet)
 940                        return;
 941
 942                if (extcode == 0 || extcode >= 7) {
 943                        /* let switch default handle error */
 944                        length = 0;
 945                }
 946
 947                switch (length) {
 948                case 4:
 949                        rcode = highlevel_lock(host, source, packet->data, addr,
 950                                               data[4], 0, extcode, flags);
 951                        fill_async_lock_resp(packet, rcode, extcode, 4);
 952                        break;
 953                case 8:
 954                        if (extcode != EXTCODE_FETCH_ADD &&
 955                            extcode != EXTCODE_LITTLE_ADD) {
 956                                rcode = highlevel_lock(host, source,
 957                                                       packet->data, addr,
 958                                                       data[5], data[4],
 959                                                       extcode, flags);
 960                                fill_async_lock_resp(packet, rcode, extcode, 4);
 961                        } else {
 962                                rcode = highlevel_lock64(host, source,
 963                                             (octlet_t *)packet->data, addr,
 964                                             *(octlet_t *)(data + 4), 0ULL,
 965                                             extcode, flags);
 966                                fill_async_lock_resp(packet, rcode, extcode, 8);
 967                        }
 968                        break;
 969                case 16:
 970                        rcode = highlevel_lock64(host, source,
 971                                                 (octlet_t *)packet->data, addr,
 972                                                 *(octlet_t *)(data + 6),
 973                                                 *(octlet_t *)(data + 4),
 974                                                 extcode, flags);
 975                        fill_async_lock_resp(packet, rcode, extcode, 8);
 976                        break;
 977                default:
 978                        rcode = RCODE_TYPE_ERROR;
 979                        fill_async_lock_resp(packet, rcode, extcode, 0);
 980                }
 981
 982                if (rcode < 0)
 983                        hpsb_free_packet(packet);
 984                else
 985                        send_packet_nocare(packet);
 986                return;
 987        }
 988}
 989
 990/**
 991 * hpsb_packet_received - hand over received packet to the core
 992 *
 993 * For host driver module usage.
 994 *
 995 * The contents of data are expected to be the full packet but with the CRCs
 996 * left out (data block follows header immediately), with the header (i.e. the
 997 * first four quadlets) in machine byte order and the data block in big endian.
 998 * *@data can be safely overwritten after this call.
 999 *
1000 * If the packet is a write request, @write_acked is to be set to true if it was
1001 * ack_complete'd already, false otherwise.  This argument is ignored for any
1002 * other packet type.
1003 */
1004void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
1005                          int write_acked)
1006{
1007        int tcode;
1008
1009        if (unlikely(host->in_bus_reset)) {
1010                HPSB_DEBUG("received packet during reset; ignoring");
1011                return;
1012        }
1013
1014        dump_packet("received packet", data, size, -1);
1015
1016        tcode = (data[0] >> 4) & 0xf;
1017
1018        switch (tcode) {
1019        case TCODE_WRITE_RESPONSE:
1020        case TCODE_READQ_RESPONSE:
1021        case TCODE_READB_RESPONSE:
1022        case TCODE_LOCK_RESPONSE:
1023                handle_packet_response(host, tcode, data, size);
1024                break;
1025
1026        case TCODE_WRITEQ:
1027        case TCODE_WRITEB:
1028        case TCODE_READQ:
1029        case TCODE_READB:
1030        case TCODE_LOCK_REQUEST:
1031                handle_incoming_packet(host, tcode, data, size, write_acked);
1032                break;
1033
1034        case TCODE_CYCLE_START:
1035                /* simply ignore this packet if it is passed on */
1036                break;
1037
1038        default:
1039                HPSB_DEBUG("received packet with bogus transaction code %d",
1040                           tcode);
1041                break;
1042        }
1043}
1044
1045static void abort_requests(struct hpsb_host *host)
1046{
1047        struct hpsb_packet *packet, *p;
1048        struct list_head tmp;
1049        unsigned long flags;
1050
1051        host->driver->devctl(host, CANCEL_REQUESTS, 0);
1052
1053        INIT_LIST_HEAD(&tmp);
1054        spin_lock_irqsave(&pending_packets_lock, flags);
1055        list_splice_init(&host->pending_packets, &tmp);
1056        spin_unlock_irqrestore(&pending_packets_lock, flags);
1057
1058        list_for_each_entry_safe(packet, p, &tmp, queue) {
1059                list_del_init(&packet->queue);
1060                packet->state = hpsb_complete;
1061                packet->ack_code = ACKX_ABORTED;
1062                queue_packet_complete(packet);
1063        }
1064}
1065
1066void abort_timedouts(unsigned long __opaque)
1067{
1068        struct hpsb_host *host = (struct hpsb_host *)__opaque;
1069        struct hpsb_packet *packet, *p;
1070        struct list_head tmp;
1071        unsigned long flags, expire, j;
1072
1073        spin_lock_irqsave(&host->csr.lock, flags);
1074        expire = host->csr.expire;
1075        spin_unlock_irqrestore(&host->csr.lock, flags);
1076
1077        j = jiffies;
1078        INIT_LIST_HEAD(&tmp);
1079        spin_lock_irqsave(&pending_packets_lock, flags);
1080
1081        list_for_each_entry_safe(packet, p, &host->pending_packets, queue) {
1082                if (time_before(packet->sendtime + expire, j))
1083                        list_move_tail(&packet->queue, &tmp);
1084                else
1085                        /* Since packets are added to the tail, the oldest
1086                         * ones are first, always. When we get to one that
1087                         * isn't timed out, the rest aren't either. */
1088                        break;
1089        }
1090        if (!list_empty(&host->pending_packets))
1091                mod_timer(&host->timeout, j + host->timeout_interval);
1092
1093        spin_unlock_irqrestore(&pending_packets_lock, flags);
1094
1095        list_for_each_entry_safe(packet, p, &tmp, queue) {
1096                list_del_init(&packet->queue);
1097                packet->state = hpsb_complete;
1098                packet->ack_code = ACKX_TIMEOUT;
1099                queue_packet_complete(packet);
1100        }
1101}
1102
1103static struct task_struct *khpsbpkt_thread;
1104static LIST_HEAD(hpsbpkt_queue);
1105
1106static void queue_packet_complete(struct hpsb_packet *packet)
1107{
1108        unsigned long flags;
1109
1110        if (packet->no_waiter) {
1111                hpsb_free_packet(packet);
1112                return;
1113        }
1114        if (packet->complete_routine != NULL) {
1115                spin_lock_irqsave(&pending_packets_lock, flags);
1116                list_add_tail(&packet->queue, &hpsbpkt_queue);
1117                spin_unlock_irqrestore(&pending_packets_lock, flags);
1118                wake_up_process(khpsbpkt_thread);
1119        }
1120        return;
1121}
1122
1123/*
1124 * Kernel thread which handles packets that are completed.  This way the
1125 * packet's "complete" function is asynchronously run in process context.
1126 * Only packets which have a "complete" function may be sent here.
1127 */
1128static int hpsbpkt_thread(void *__hi)
1129{
1130        struct hpsb_packet *packet, *p;
1131        struct list_head tmp;
1132        int may_schedule;
1133
1134        while (!kthread_should_stop()) {
1135
1136                INIT_LIST_HEAD(&tmp);
1137                spin_lock_irq(&pending_packets_lock);
1138                list_splice_init(&hpsbpkt_queue, &tmp);
1139                spin_unlock_irq(&pending_packets_lock);
1140
1141                list_for_each_entry_safe(packet, p, &tmp, queue) {
1142                        list_del_init(&packet->queue);
1143                        packet->complete_routine(packet->complete_data);
1144                }
1145
1146                set_current_state(TASK_INTERRUPTIBLE);
1147                spin_lock_irq(&pending_packets_lock);
1148                may_schedule = list_empty(&hpsbpkt_queue);
1149                spin_unlock_irq(&pending_packets_lock);
1150                if (may_schedule)
1151                        schedule();
1152                __set_current_state(TASK_RUNNING);
1153        }
1154        return 0;
1155}
1156
1157static int __init ieee1394_init(void)
1158{
1159        int i, ret;
1160
1161        /* non-fatal error */
1162        if (hpsb_init_config_roms()) {
1163                HPSB_ERR("Failed to initialize some config rom entries.\n");
1164                HPSB_ERR("Some features may not be available\n");
1165        }
1166
1167        khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
1168        if (IS_ERR(khpsbpkt_thread)) {
1169                HPSB_ERR("Failed to start hpsbpkt thread!\n");
1170                ret = PTR_ERR(khpsbpkt_thread);
1171                goto exit_cleanup_config_roms;
1172        }
1173
1174        if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
1175                HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
1176                ret = -ENODEV;
1177                goto exit_release_kernel_thread;
1178        }
1179
1180        ret = bus_register(&ieee1394_bus_type);
1181        if (ret < 0) {
1182                HPSB_INFO("bus register failed");
1183                goto release_chrdev;
1184        }
1185
1186        for (i = 0; fw_bus_attrs[i]; i++) {
1187                ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1188                if (ret < 0) {
1189                        while (i >= 0) {
1190                                bus_remove_file(&ieee1394_bus_type,
1191                                                fw_bus_attrs[i--]);
1192                        }
1193                        bus_unregister(&ieee1394_bus_type);
1194                        goto release_chrdev;
1195                }
1196        }
1197
1198        ret = class_register(&hpsb_host_class);
1199        if (ret < 0)
1200                goto release_all_bus;
1201
1202        hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
1203        if (IS_ERR(hpsb_protocol_class)) {
1204                ret = PTR_ERR(hpsb_protocol_class);
1205                goto release_class_host;
1206        }
1207
1208        ret = init_csr();
1209        if (ret) {
1210                HPSB_INFO("init csr failed");
1211                ret = -ENOMEM;
1212                goto release_class_protocol;
1213        }
1214
1215        if (disable_nodemgr) {
1216                HPSB_INFO("nodemgr and IRM functionality disabled");
1217                /* We shouldn't contend for IRM with nodemgr disabled, since
1218                   nodemgr implements functionality required of ieee1394a-2000
1219                   IRMs */
1220                hpsb_disable_irm = 1;
1221
1222                return 0;
1223        }
1224
1225        if (hpsb_disable_irm) {
1226                HPSB_INFO("IRM functionality disabled");
1227        }
1228
1229        ret = init_ieee1394_nodemgr();
1230        if (ret < 0) {
1231                HPSB_INFO("init nodemgr failed");
1232                goto cleanup_csr;
1233        }
1234
1235        return 0;
1236
1237cleanup_csr:
1238        cleanup_csr();
1239release_class_protocol:
1240        class_destroy(hpsb_protocol_class);
1241release_class_host:
1242        class_unregister(&hpsb_host_class);
1243release_all_bus:
1244        for (i = 0; fw_bus_attrs[i]; i++)
1245                bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1246        bus_unregister(&ieee1394_bus_type);
1247release_chrdev:
1248        unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1249exit_release_kernel_thread:
1250        kthread_stop(khpsbpkt_thread);
1251exit_cleanup_config_roms:
1252        hpsb_cleanup_config_roms();
1253        return ret;
1254}
1255
1256static void __exit ieee1394_cleanup(void)
1257{
1258        int i;
1259
1260        if (!disable_nodemgr)
1261                cleanup_ieee1394_nodemgr();
1262
1263        cleanup_csr();
1264
1265        class_destroy(hpsb_protocol_class);
1266        class_unregister(&hpsb_host_class);
1267        for (i = 0; fw_bus_attrs[i]; i++)
1268                bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1269        bus_unregister(&ieee1394_bus_type);
1270
1271        kthread_stop(khpsbpkt_thread);
1272
1273        hpsb_cleanup_config_roms();
1274
1275        unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1276}
1277
1278fs_initcall(ieee1394_init);
1279module_exit(ieee1394_cleanup);
1280
1281/* Exported symbols */
1282
1283/** hosts.c **/
1284EXPORT_SYMBOL(hpsb_alloc_host);
1285EXPORT_SYMBOL(hpsb_add_host);
1286EXPORT_SYMBOL(hpsb_resume_host);
1287EXPORT_SYMBOL(hpsb_remove_host);
1288EXPORT_SYMBOL(hpsb_update_config_rom_image);
1289
1290/** ieee1394_core.c **/
1291EXPORT_SYMBOL(hpsb_speedto_str);
1292EXPORT_SYMBOL(hpsb_protocol_class);
1293EXPORT_SYMBOL(hpsb_set_packet_complete_task);
1294EXPORT_SYMBOL(hpsb_alloc_packet);
1295EXPORT_SYMBOL(hpsb_free_packet);
1296EXPORT_SYMBOL(hpsb_send_packet);
1297EXPORT_SYMBOL(hpsb_reset_bus);
1298EXPORT_SYMBOL(hpsb_read_cycle_timer);
1299EXPORT_SYMBOL(hpsb_bus_reset);
1300EXPORT_SYMBOL(hpsb_selfid_received);
1301EXPORT_SYMBOL(hpsb_selfid_complete);
1302EXPORT_SYMBOL(hpsb_packet_sent);
1303EXPORT_SYMBOL(hpsb_packet_received);
1304EXPORT_SYMBOL_GPL(hpsb_disable_irm);
1305
1306/** ieee1394_transactions.c **/
1307EXPORT_SYMBOL(hpsb_get_tlabel);
1308EXPORT_SYMBOL(hpsb_free_tlabel);
1309EXPORT_SYMBOL(hpsb_make_readpacket);
1310EXPORT_SYMBOL(hpsb_make_writepacket);
1311EXPORT_SYMBOL(hpsb_make_streampacket);
1312EXPORT_SYMBOL(hpsb_make_lockpacket);
1313EXPORT_SYMBOL(hpsb_make_lock64packet);
1314EXPORT_SYMBOL(hpsb_make_phypacket);
1315EXPORT_SYMBOL(hpsb_read);
1316EXPORT_SYMBOL(hpsb_write);
1317EXPORT_SYMBOL(hpsb_lock);
1318EXPORT_SYMBOL(hpsb_packet_success);
1319
1320/** highlevel.c **/
1321EXPORT_SYMBOL(hpsb_register_highlevel);
1322EXPORT_SYMBOL(hpsb_unregister_highlevel);
1323EXPORT_SYMBOL(hpsb_register_addrspace);
1324EXPORT_SYMBOL(hpsb_unregister_addrspace);
1325EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
1326EXPORT_SYMBOL(hpsb_get_hostinfo);
1327EXPORT_SYMBOL(hpsb_create_hostinfo);
1328EXPORT_SYMBOL(hpsb_destroy_hostinfo);
1329EXPORT_SYMBOL(hpsb_set_hostinfo_key);
1330EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
1331EXPORT_SYMBOL(hpsb_set_hostinfo);
1332
1333/** nodemgr.c **/
1334EXPORT_SYMBOL(hpsb_node_fill_packet);
1335EXPORT_SYMBOL(hpsb_node_write);
1336EXPORT_SYMBOL(__hpsb_register_protocol);
1337EXPORT_SYMBOL(hpsb_unregister_protocol);
1338
1339/** csr.c **/
1340EXPORT_SYMBOL(hpsb_update_config_rom);
1341
1342/** dma.c **/
1343EXPORT_SYMBOL(dma_prog_region_init);
1344EXPORT_SYMBOL(dma_prog_region_alloc);
1345EXPORT_SYMBOL(dma_prog_region_free);
1346EXPORT_SYMBOL(dma_region_init);
1347EXPORT_SYMBOL(dma_region_alloc);
1348EXPORT_SYMBOL(dma_region_free);
1349EXPORT_SYMBOL(dma_region_sync_for_cpu);
1350EXPORT_SYMBOL(dma_region_sync_for_device);
1351EXPORT_SYMBOL(dma_region_mmap);
1352EXPORT_SYMBOL(dma_region_offset_to_bus);
1353
1354/** iso.c **/
1355EXPORT_SYMBOL(hpsb_iso_xmit_init);
1356EXPORT_SYMBOL(hpsb_iso_recv_init);
1357EXPORT_SYMBOL(hpsb_iso_xmit_start);
1358EXPORT_SYMBOL(hpsb_iso_recv_start);
1359EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
1360EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
1361EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
1362EXPORT_SYMBOL(hpsb_iso_stop);
1363EXPORT_SYMBOL(hpsb_iso_shutdown);
1364EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
1365EXPORT_SYMBOL(hpsb_iso_xmit_sync);
1366EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
1367EXPORT_SYMBOL(hpsb_iso_n_ready);
1368EXPORT_SYMBOL(hpsb_iso_packet_sent);
1369EXPORT_SYMBOL(hpsb_iso_packet_received);
1370EXPORT_SYMBOL(hpsb_iso_wake);
1371EXPORT_SYMBOL(hpsb_iso_recv_flush);
1372
1373/** csr1212.c **/
1374EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
1375EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
1376EXPORT_SYMBOL(csr1212_get_keyval);
1377EXPORT_SYMBOL(csr1212_new_directory);
1378EXPORT_SYMBOL(csr1212_parse_keyval);
1379EXPORT_SYMBOL(csr1212_read);
1380EXPORT_SYMBOL(csr1212_release_keyval);
1381