linux/drivers/input/input.c
<<
>>
Prefs
   1/*
   2 * The input core
   3 *
   4 * Copyright (c) 1999-2002 Vojtech Pavlik
   5 */
   6
   7/*
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License version 2 as published by
  10 * the Free Software Foundation.
  11 */
  12
  13#include <linux/init.h>
  14#include <linux/types.h>
  15#include <linux/input.h>
  16#include <linux/module.h>
  17#include <linux/random.h>
  18#include <linux/major.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/poll.h>
  23#include <linux/device.h>
  24#include <linux/mutex.h>
  25#include <linux/rcupdate.h>
  26#include <linux/smp_lock.h>
  27
  28MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  29MODULE_DESCRIPTION("Input core");
  30MODULE_LICENSE("GPL");
  31
  32#define INPUT_DEVICES   256
  33
  34/*
  35 * EV_ABS events which should not be cached are listed here.
  36 */
  37static unsigned int input_abs_bypass_init_data[] __initdata = {
  38        ABS_MT_TOUCH_MAJOR,
  39        ABS_MT_TOUCH_MINOR,
  40        ABS_MT_WIDTH_MAJOR,
  41        ABS_MT_WIDTH_MINOR,
  42        ABS_MT_ORIENTATION,
  43        ABS_MT_POSITION_X,
  44        ABS_MT_POSITION_Y,
  45        ABS_MT_TOOL_TYPE,
  46        ABS_MT_BLOB_ID,
  47        ABS_MT_TRACKING_ID,
  48        0
  49};
  50static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  51
  52static LIST_HEAD(input_dev_list);
  53static LIST_HEAD(input_handler_list);
  54
  55/*
  56 * input_mutex protects access to both input_dev_list and input_handler_list.
  57 * This also causes input_[un]register_device and input_[un]register_handler
  58 * be mutually exclusive which simplifies locking in drivers implementing
  59 * input handlers.
  60 */
  61static DEFINE_MUTEX(input_mutex);
  62
  63static struct input_handler *input_table[8];
  64
  65static inline int is_event_supported(unsigned int code,
  66                                     unsigned long *bm, unsigned int max)
  67{
  68        return code <= max && test_bit(code, bm);
  69}
  70
  71static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  72{
  73        if (fuzz) {
  74                if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  75                        return old_val;
  76
  77                if (value > old_val - fuzz && value < old_val + fuzz)
  78                        return (old_val * 3 + value) / 4;
  79
  80                if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  81                        return (old_val + value) / 2;
  82        }
  83
  84        return value;
  85}
  86
  87/*
  88 * Pass event through all open handles. This function is called with
  89 * dev->event_lock held and interrupts disabled.
  90 */
  91static void input_pass_event(struct input_dev *dev,
  92                             unsigned int type, unsigned int code, int value)
  93{
  94        struct input_handle *handle;
  95
  96        rcu_read_lock();
  97
  98        handle = rcu_dereference(dev->grab);
  99        if (handle)
 100                handle->handler->event(handle, type, code, value);
 101        else
 102                list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 103                        if (handle->open)
 104                                handle->handler->event(handle,
 105                                                        type, code, value);
 106        rcu_read_unlock();
 107}
 108
 109/*
 110 * Generate software autorepeat event. Note that we take
 111 * dev->event_lock here to avoid racing with input_event
 112 * which may cause keys get "stuck".
 113 */
 114static void input_repeat_key(unsigned long data)
 115{
 116        struct input_dev *dev = (void *) data;
 117        unsigned long flags;
 118
 119        spin_lock_irqsave(&dev->event_lock, flags);
 120
 121        if (test_bit(dev->repeat_key, dev->key) &&
 122            is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 123
 124                input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
 125
 126                if (dev->sync) {
 127                        /*
 128                         * Only send SYN_REPORT if we are not in a middle
 129                         * of driver parsing a new hardware packet.
 130                         * Otherwise assume that the driver will send
 131                         * SYN_REPORT once it's done.
 132                         */
 133                        input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 134                }
 135
 136                if (dev->rep[REP_PERIOD])
 137                        mod_timer(&dev->timer, jiffies +
 138                                        msecs_to_jiffies(dev->rep[REP_PERIOD]));
 139        }
 140
 141        spin_unlock_irqrestore(&dev->event_lock, flags);
 142}
 143
 144static void input_start_autorepeat(struct input_dev *dev, int code)
 145{
 146        if (test_bit(EV_REP, dev->evbit) &&
 147            dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
 148            dev->timer.data) {
 149                dev->repeat_key = code;
 150                mod_timer(&dev->timer,
 151                          jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
 152        }
 153}
 154
 155static void input_stop_autorepeat(struct input_dev *dev)
 156{
 157        del_timer(&dev->timer);
 158}
 159
 160#define INPUT_IGNORE_EVENT      0
 161#define INPUT_PASS_TO_HANDLERS  1
 162#define INPUT_PASS_TO_DEVICE    2
 163#define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 164
 165static void input_handle_event(struct input_dev *dev,
 166                               unsigned int type, unsigned int code, int value)
 167{
 168        int disposition = INPUT_IGNORE_EVENT;
 169
 170        switch (type) {
 171
 172        case EV_SYN:
 173                switch (code) {
 174                case SYN_CONFIG:
 175                        disposition = INPUT_PASS_TO_ALL;
 176                        break;
 177
 178                case SYN_REPORT:
 179                        if (!dev->sync) {
 180                                dev->sync = 1;
 181                                disposition = INPUT_PASS_TO_HANDLERS;
 182                        }
 183                        break;
 184                case SYN_MT_REPORT:
 185                        dev->sync = 0;
 186                        disposition = INPUT_PASS_TO_HANDLERS;
 187                        break;
 188                }
 189                break;
 190
 191        case EV_KEY:
 192                if (is_event_supported(code, dev->keybit, KEY_MAX) &&
 193                    !!test_bit(code, dev->key) != value) {
 194
 195                        if (value != 2) {
 196                                __change_bit(code, dev->key);
 197                                if (value)
 198                                        input_start_autorepeat(dev, code);
 199                                else
 200                                        input_stop_autorepeat(dev);
 201                        }
 202
 203                        disposition = INPUT_PASS_TO_HANDLERS;
 204                }
 205                break;
 206
 207        case EV_SW:
 208                if (is_event_supported(code, dev->swbit, SW_MAX) &&
 209                    !!test_bit(code, dev->sw) != value) {
 210
 211                        __change_bit(code, dev->sw);
 212                        disposition = INPUT_PASS_TO_HANDLERS;
 213                }
 214                break;
 215
 216        case EV_ABS:
 217                if (is_event_supported(code, dev->absbit, ABS_MAX)) {
 218
 219                        if (test_bit(code, input_abs_bypass)) {
 220                                disposition = INPUT_PASS_TO_HANDLERS;
 221                                break;
 222                        }
 223
 224                        value = input_defuzz_abs_event(value,
 225                                        dev->abs[code], dev->absfuzz[code]);
 226
 227                        if (dev->abs[code] != value) {
 228                                dev->abs[code] = value;
 229                                disposition = INPUT_PASS_TO_HANDLERS;
 230                        }
 231                }
 232                break;
 233
 234        case EV_REL:
 235                if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 236                        disposition = INPUT_PASS_TO_HANDLERS;
 237
 238                break;
 239
 240        case EV_MSC:
 241                if (is_event_supported(code, dev->mscbit, MSC_MAX))
 242                        disposition = INPUT_PASS_TO_ALL;
 243
 244                break;
 245
 246        case EV_LED:
 247                if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 248                    !!test_bit(code, dev->led) != value) {
 249
 250                        __change_bit(code, dev->led);
 251                        disposition = INPUT_PASS_TO_ALL;
 252                }
 253                break;
 254
 255        case EV_SND:
 256                if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 257
 258                        if (!!test_bit(code, dev->snd) != !!value)
 259                                __change_bit(code, dev->snd);
 260                        disposition = INPUT_PASS_TO_ALL;
 261                }
 262                break;
 263
 264        case EV_REP:
 265                if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 266                        dev->rep[code] = value;
 267                        disposition = INPUT_PASS_TO_ALL;
 268                }
 269                break;
 270
 271        case EV_FF:
 272                if (value >= 0)
 273                        disposition = INPUT_PASS_TO_ALL;
 274                break;
 275
 276        case EV_PWR:
 277                disposition = INPUT_PASS_TO_ALL;
 278                break;
 279        }
 280
 281        if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
 282                dev->sync = 0;
 283
 284        if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 285                dev->event(dev, type, code, value);
 286
 287        if (disposition & INPUT_PASS_TO_HANDLERS)
 288                input_pass_event(dev, type, code, value);
 289}
 290
 291/**
 292 * input_event() - report new input event
 293 * @dev: device that generated the event
 294 * @type: type of the event
 295 * @code: event code
 296 * @value: value of the event
 297 *
 298 * This function should be used by drivers implementing various input
 299 * devices. See also input_inject_event().
 300 */
 301
 302void input_event(struct input_dev *dev,
 303                 unsigned int type, unsigned int code, int value)
 304{
 305        unsigned long flags;
 306
 307        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 308
 309                spin_lock_irqsave(&dev->event_lock, flags);
 310                add_input_randomness(type, code, value);
 311                input_handle_event(dev, type, code, value);
 312                spin_unlock_irqrestore(&dev->event_lock, flags);
 313        }
 314}
 315EXPORT_SYMBOL(input_event);
 316
 317/**
 318 * input_inject_event() - send input event from input handler
 319 * @handle: input handle to send event through
 320 * @type: type of the event
 321 * @code: event code
 322 * @value: value of the event
 323 *
 324 * Similar to input_event() but will ignore event if device is
 325 * "grabbed" and handle injecting event is not the one that owns
 326 * the device.
 327 */
 328void input_inject_event(struct input_handle *handle,
 329                        unsigned int type, unsigned int code, int value)
 330{
 331        struct input_dev *dev = handle->dev;
 332        struct input_handle *grab;
 333        unsigned long flags;
 334
 335        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 336                spin_lock_irqsave(&dev->event_lock, flags);
 337
 338                rcu_read_lock();
 339                grab = rcu_dereference(dev->grab);
 340                if (!grab || grab == handle)
 341                        input_handle_event(dev, type, code, value);
 342                rcu_read_unlock();
 343
 344                spin_unlock_irqrestore(&dev->event_lock, flags);
 345        }
 346}
 347EXPORT_SYMBOL(input_inject_event);
 348
 349/**
 350 * input_grab_device - grabs device for exclusive use
 351 * @handle: input handle that wants to own the device
 352 *
 353 * When a device is grabbed by an input handle all events generated by
 354 * the device are delivered only to this handle. Also events injected
 355 * by other input handles are ignored while device is grabbed.
 356 */
 357int input_grab_device(struct input_handle *handle)
 358{
 359        struct input_dev *dev = handle->dev;
 360        int retval;
 361
 362        retval = mutex_lock_interruptible(&dev->mutex);
 363        if (retval)
 364                return retval;
 365
 366        if (dev->grab) {
 367                retval = -EBUSY;
 368                goto out;
 369        }
 370
 371        rcu_assign_pointer(dev->grab, handle);
 372        synchronize_rcu();
 373
 374 out:
 375        mutex_unlock(&dev->mutex);
 376        return retval;
 377}
 378EXPORT_SYMBOL(input_grab_device);
 379
 380static void __input_release_device(struct input_handle *handle)
 381{
 382        struct input_dev *dev = handle->dev;
 383
 384        if (dev->grab == handle) {
 385                rcu_assign_pointer(dev->grab, NULL);
 386                /* Make sure input_pass_event() notices that grab is gone */
 387                synchronize_rcu();
 388
 389                list_for_each_entry(handle, &dev->h_list, d_node)
 390                        if (handle->open && handle->handler->start)
 391                                handle->handler->start(handle);
 392        }
 393}
 394
 395/**
 396 * input_release_device - release previously grabbed device
 397 * @handle: input handle that owns the device
 398 *
 399 * Releases previously grabbed device so that other input handles can
 400 * start receiving input events. Upon release all handlers attached
 401 * to the device have their start() method called so they have a change
 402 * to synchronize device state with the rest of the system.
 403 */
 404void input_release_device(struct input_handle *handle)
 405{
 406        struct input_dev *dev = handle->dev;
 407
 408        mutex_lock(&dev->mutex);
 409        __input_release_device(handle);
 410        mutex_unlock(&dev->mutex);
 411}
 412EXPORT_SYMBOL(input_release_device);
 413
 414/**
 415 * input_open_device - open input device
 416 * @handle: handle through which device is being accessed
 417 *
 418 * This function should be called by input handlers when they
 419 * want to start receive events from given input device.
 420 */
 421int input_open_device(struct input_handle *handle)
 422{
 423        struct input_dev *dev = handle->dev;
 424        int retval;
 425
 426        retval = mutex_lock_interruptible(&dev->mutex);
 427        if (retval)
 428                return retval;
 429
 430        if (dev->going_away) {
 431                retval = -ENODEV;
 432                goto out;
 433        }
 434
 435        handle->open++;
 436
 437        if (!dev->users++ && dev->open)
 438                retval = dev->open(dev);
 439
 440        if (retval) {
 441                dev->users--;
 442                if (!--handle->open) {
 443                        /*
 444                         * Make sure we are not delivering any more events
 445                         * through this handle
 446                         */
 447                        synchronize_rcu();
 448                }
 449        }
 450
 451 out:
 452        mutex_unlock(&dev->mutex);
 453        return retval;
 454}
 455EXPORT_SYMBOL(input_open_device);
 456
 457int input_flush_device(struct input_handle *handle, struct file *file)
 458{
 459        struct input_dev *dev = handle->dev;
 460        int retval;
 461
 462        retval = mutex_lock_interruptible(&dev->mutex);
 463        if (retval)
 464                return retval;
 465
 466        if (dev->flush)
 467                retval = dev->flush(dev, file);
 468
 469        mutex_unlock(&dev->mutex);
 470        return retval;
 471}
 472EXPORT_SYMBOL(input_flush_device);
 473
 474/**
 475 * input_close_device - close input device
 476 * @handle: handle through which device is being accessed
 477 *
 478 * This function should be called by input handlers when they
 479 * want to stop receive events from given input device.
 480 */
 481void input_close_device(struct input_handle *handle)
 482{
 483        struct input_dev *dev = handle->dev;
 484
 485        mutex_lock(&dev->mutex);
 486
 487        __input_release_device(handle);
 488
 489        if (!--dev->users && dev->close)
 490                dev->close(dev);
 491
 492        if (!--handle->open) {
 493                /*
 494                 * synchronize_rcu() makes sure that input_pass_event()
 495                 * completed and that no more input events are delivered
 496                 * through this handle
 497                 */
 498                synchronize_rcu();
 499        }
 500
 501        mutex_unlock(&dev->mutex);
 502}
 503EXPORT_SYMBOL(input_close_device);
 504
 505/*
 506 * Prepare device for unregistering
 507 */
 508static void input_disconnect_device(struct input_dev *dev)
 509{
 510        struct input_handle *handle;
 511        int code;
 512
 513        /*
 514         * Mark device as going away. Note that we take dev->mutex here
 515         * not to protect access to dev->going_away but rather to ensure
 516         * that there are no threads in the middle of input_open_device()
 517         */
 518        mutex_lock(&dev->mutex);
 519        dev->going_away = true;
 520        mutex_unlock(&dev->mutex);
 521
 522        spin_lock_irq(&dev->event_lock);
 523
 524        /*
 525         * Simulate keyup events for all pressed keys so that handlers
 526         * are not left with "stuck" keys. The driver may continue
 527         * generate events even after we done here but they will not
 528         * reach any handlers.
 529         */
 530        if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 531                for (code = 0; code <= KEY_MAX; code++) {
 532                        if (is_event_supported(code, dev->keybit, KEY_MAX) &&
 533                            __test_and_clear_bit(code, dev->key)) {
 534                                input_pass_event(dev, EV_KEY, code, 0);
 535                        }
 536                }
 537                input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 538        }
 539
 540        list_for_each_entry(handle, &dev->h_list, d_node)
 541                handle->open = 0;
 542
 543        spin_unlock_irq(&dev->event_lock);
 544}
 545
 546static int input_fetch_keycode(struct input_dev *dev, int scancode)
 547{
 548        switch (dev->keycodesize) {
 549                case 1:
 550                        return ((u8 *)dev->keycode)[scancode];
 551
 552                case 2:
 553                        return ((u16 *)dev->keycode)[scancode];
 554
 555                default:
 556                        return ((u32 *)dev->keycode)[scancode];
 557        }
 558}
 559
 560static int input_default_getkeycode(struct input_dev *dev,
 561                                    int scancode, int *keycode)
 562{
 563        if (!dev->keycodesize)
 564                return -EINVAL;
 565
 566        if (scancode >= dev->keycodemax)
 567                return -EINVAL;
 568
 569        *keycode = input_fetch_keycode(dev, scancode);
 570
 571        return 0;
 572}
 573
 574static int input_default_setkeycode(struct input_dev *dev,
 575                                    int scancode, int keycode)
 576{
 577        int old_keycode;
 578        int i;
 579
 580        if (scancode >= dev->keycodemax)
 581                return -EINVAL;
 582
 583        if (!dev->keycodesize)
 584                return -EINVAL;
 585
 586        if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
 587                return -EINVAL;
 588
 589        switch (dev->keycodesize) {
 590                case 1: {
 591                        u8 *k = (u8 *)dev->keycode;
 592                        old_keycode = k[scancode];
 593                        k[scancode] = keycode;
 594                        break;
 595                }
 596                case 2: {
 597                        u16 *k = (u16 *)dev->keycode;
 598                        old_keycode = k[scancode];
 599                        k[scancode] = keycode;
 600                        break;
 601                }
 602                default: {
 603                        u32 *k = (u32 *)dev->keycode;
 604                        old_keycode = k[scancode];
 605                        k[scancode] = keycode;
 606                        break;
 607                }
 608        }
 609
 610        clear_bit(old_keycode, dev->keybit);
 611        set_bit(keycode, dev->keybit);
 612
 613        for (i = 0; i < dev->keycodemax; i++) {
 614                if (input_fetch_keycode(dev, i) == old_keycode) {
 615                        set_bit(old_keycode, dev->keybit);
 616                        break; /* Setting the bit twice is useless, so break */
 617                }
 618        }
 619
 620        return 0;
 621}
 622
 623/**
 624 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 625 * @dev: input device which keymap is being queried
 626 * @scancode: scancode (or its equivalent for device in question) for which
 627 *      keycode is needed
 628 * @keycode: result
 629 *
 630 * This function should be called by anyone interested in retrieving current
 631 * keymap. Presently keyboard and evdev handlers use it.
 632 */
 633int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
 634{
 635        if (scancode < 0)
 636                return -EINVAL;
 637
 638        return dev->getkeycode(dev, scancode, keycode);
 639}
 640EXPORT_SYMBOL(input_get_keycode);
 641
 642/**
 643 * input_get_keycode - assign new keycode to a given scancode
 644 * @dev: input device which keymap is being updated
 645 * @scancode: scancode (or its equivalent for device in question)
 646 * @keycode: new keycode to be assigned to the scancode
 647 *
 648 * This function should be called by anyone needing to update current
 649 * keymap. Presently keyboard and evdev handlers use it.
 650 */
 651int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
 652{
 653        unsigned long flags;
 654        int old_keycode;
 655        int retval;
 656
 657        if (scancode < 0)
 658                return -EINVAL;
 659
 660        if (keycode < 0 || keycode > KEY_MAX)
 661                return -EINVAL;
 662
 663        spin_lock_irqsave(&dev->event_lock, flags);
 664
 665        retval = dev->getkeycode(dev, scancode, &old_keycode);
 666        if (retval)
 667                goto out;
 668
 669        retval = dev->setkeycode(dev, scancode, keycode);
 670        if (retval)
 671                goto out;
 672
 673        /*
 674         * Simulate keyup event if keycode is not present
 675         * in the keymap anymore
 676         */
 677        if (test_bit(EV_KEY, dev->evbit) &&
 678            !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 679            __test_and_clear_bit(old_keycode, dev->key)) {
 680
 681                input_pass_event(dev, EV_KEY, old_keycode, 0);
 682                if (dev->sync)
 683                        input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 684        }
 685
 686 out:
 687        spin_unlock_irqrestore(&dev->event_lock, flags);
 688
 689        return retval;
 690}
 691EXPORT_SYMBOL(input_set_keycode);
 692
 693#define MATCH_BIT(bit, max) \
 694                for (i = 0; i < BITS_TO_LONGS(max); i++) \
 695                        if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
 696                                break; \
 697                if (i != BITS_TO_LONGS(max)) \
 698                        continue;
 699
 700static const struct input_device_id *input_match_device(const struct input_device_id *id,
 701                                                        struct input_dev *dev)
 702{
 703        int i;
 704
 705        for (; id->flags || id->driver_info; id++) {
 706
 707                if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 708                        if (id->bustype != dev->id.bustype)
 709                                continue;
 710
 711                if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 712                        if (id->vendor != dev->id.vendor)
 713                                continue;
 714
 715                if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 716                        if (id->product != dev->id.product)
 717                                continue;
 718
 719                if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 720                        if (id->version != dev->id.version)
 721                                continue;
 722
 723                MATCH_BIT(evbit,  EV_MAX);
 724                MATCH_BIT(keybit, KEY_MAX);
 725                MATCH_BIT(relbit, REL_MAX);
 726                MATCH_BIT(absbit, ABS_MAX);
 727                MATCH_BIT(mscbit, MSC_MAX);
 728                MATCH_BIT(ledbit, LED_MAX);
 729                MATCH_BIT(sndbit, SND_MAX);
 730                MATCH_BIT(ffbit,  FF_MAX);
 731                MATCH_BIT(swbit,  SW_MAX);
 732
 733                return id;
 734        }
 735
 736        return NULL;
 737}
 738
 739static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
 740{
 741        const struct input_device_id *id;
 742        int error;
 743
 744        if (handler->blacklist && input_match_device(handler->blacklist, dev))
 745                return -ENODEV;
 746
 747        id = input_match_device(handler->id_table, dev);
 748        if (!id)
 749                return -ENODEV;
 750
 751        error = handler->connect(handler, dev, id);
 752        if (error && error != -ENODEV)
 753                printk(KERN_ERR
 754                        "input: failed to attach handler %s to device %s, "
 755                        "error: %d\n",
 756                        handler->name, kobject_name(&dev->dev.kobj), error);
 757
 758        return error;
 759}
 760
 761
 762#ifdef CONFIG_PROC_FS
 763
 764static struct proc_dir_entry *proc_bus_input_dir;
 765static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
 766static int input_devices_state;
 767
 768static inline void input_wakeup_procfs_readers(void)
 769{
 770        input_devices_state++;
 771        wake_up(&input_devices_poll_wait);
 772}
 773
 774static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
 775{
 776        poll_wait(file, &input_devices_poll_wait, wait);
 777        if (file->f_version != input_devices_state) {
 778                file->f_version = input_devices_state;
 779                return POLLIN | POLLRDNORM;
 780        }
 781
 782        return 0;
 783}
 784
 785union input_seq_state {
 786        struct {
 787                unsigned short pos;
 788                bool mutex_acquired;
 789        };
 790        void *p;
 791};
 792
 793static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
 794{
 795        union input_seq_state *state = (union input_seq_state *)&seq->private;
 796        int error;
 797
 798        /* We need to fit into seq->private pointer */
 799        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
 800
 801        error = mutex_lock_interruptible(&input_mutex);
 802        if (error) {
 803                state->mutex_acquired = false;
 804                return ERR_PTR(error);
 805        }
 806
 807        state->mutex_acquired = true;
 808
 809        return seq_list_start(&input_dev_list, *pos);
 810}
 811
 812static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 813{
 814        return seq_list_next(v, &input_dev_list, pos);
 815}
 816
 817static void input_seq_stop(struct seq_file *seq, void *v)
 818{
 819        union input_seq_state *state = (union input_seq_state *)&seq->private;
 820
 821        if (state->mutex_acquired)
 822                mutex_unlock(&input_mutex);
 823}
 824
 825static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
 826                                   unsigned long *bitmap, int max)
 827{
 828        int i;
 829
 830        for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
 831                if (bitmap[i])
 832                        break;
 833
 834        seq_printf(seq, "B: %s=", name);
 835        for (; i >= 0; i--)
 836                seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
 837        seq_putc(seq, '\n');
 838}
 839
 840static int input_devices_seq_show(struct seq_file *seq, void *v)
 841{
 842        struct input_dev *dev = container_of(v, struct input_dev, node);
 843        const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
 844        struct input_handle *handle;
 845
 846        seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
 847                   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
 848
 849        seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
 850        seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
 851        seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
 852        seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
 853        seq_printf(seq, "H: Handlers=");
 854
 855        list_for_each_entry(handle, &dev->h_list, d_node)
 856                seq_printf(seq, "%s ", handle->name);
 857        seq_putc(seq, '\n');
 858
 859        input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
 860        if (test_bit(EV_KEY, dev->evbit))
 861                input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
 862        if (test_bit(EV_REL, dev->evbit))
 863                input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
 864        if (test_bit(EV_ABS, dev->evbit))
 865                input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
 866        if (test_bit(EV_MSC, dev->evbit))
 867                input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
 868        if (test_bit(EV_LED, dev->evbit))
 869                input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
 870        if (test_bit(EV_SND, dev->evbit))
 871                input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
 872        if (test_bit(EV_FF, dev->evbit))
 873                input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
 874        if (test_bit(EV_SW, dev->evbit))
 875                input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
 876
 877        seq_putc(seq, '\n');
 878
 879        kfree(path);
 880        return 0;
 881}
 882
 883static const struct seq_operations input_devices_seq_ops = {
 884        .start  = input_devices_seq_start,
 885        .next   = input_devices_seq_next,
 886        .stop   = input_seq_stop,
 887        .show   = input_devices_seq_show,
 888};
 889
 890static int input_proc_devices_open(struct inode *inode, struct file *file)
 891{
 892        return seq_open(file, &input_devices_seq_ops);
 893}
 894
 895static const struct file_operations input_devices_fileops = {
 896        .owner          = THIS_MODULE,
 897        .open           = input_proc_devices_open,
 898        .poll           = input_proc_devices_poll,
 899        .read           = seq_read,
 900        .llseek         = seq_lseek,
 901        .release        = seq_release,
 902};
 903
 904static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
 905{
 906        union input_seq_state *state = (union input_seq_state *)&seq->private;
 907        int error;
 908
 909        /* We need to fit into seq->private pointer */
 910        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
 911
 912        error = mutex_lock_interruptible(&input_mutex);
 913        if (error) {
 914                state->mutex_acquired = false;
 915                return ERR_PTR(error);
 916        }
 917
 918        state->mutex_acquired = true;
 919        state->pos = *pos;
 920
 921        return seq_list_start(&input_handler_list, *pos);
 922}
 923
 924static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 925{
 926        union input_seq_state *state = (union input_seq_state *)&seq->private;
 927
 928        state->pos = *pos + 1;
 929        return seq_list_next(v, &input_handler_list, pos);
 930}
 931
 932static int input_handlers_seq_show(struct seq_file *seq, void *v)
 933{
 934        struct input_handler *handler = container_of(v, struct input_handler, node);
 935        union input_seq_state *state = (union input_seq_state *)&seq->private;
 936
 937        seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
 938        if (handler->fops)
 939                seq_printf(seq, " Minor=%d", handler->minor);
 940        seq_putc(seq, '\n');
 941
 942        return 0;
 943}
 944
 945static const struct seq_operations input_handlers_seq_ops = {
 946        .start  = input_handlers_seq_start,
 947        .next   = input_handlers_seq_next,
 948        .stop   = input_seq_stop,
 949        .show   = input_handlers_seq_show,
 950};
 951
 952static int input_proc_handlers_open(struct inode *inode, struct file *file)
 953{
 954        return seq_open(file, &input_handlers_seq_ops);
 955}
 956
 957static const struct file_operations input_handlers_fileops = {
 958        .owner          = THIS_MODULE,
 959        .open           = input_proc_handlers_open,
 960        .read           = seq_read,
 961        .llseek         = seq_lseek,
 962        .release        = seq_release,
 963};
 964
 965static int __init input_proc_init(void)
 966{
 967        struct proc_dir_entry *entry;
 968
 969        proc_bus_input_dir = proc_mkdir("bus/input", NULL);
 970        if (!proc_bus_input_dir)
 971                return -ENOMEM;
 972
 973        entry = proc_create("devices", 0, proc_bus_input_dir,
 974                            &input_devices_fileops);
 975        if (!entry)
 976                goto fail1;
 977
 978        entry = proc_create("handlers", 0, proc_bus_input_dir,
 979                            &input_handlers_fileops);
 980        if (!entry)
 981                goto fail2;
 982
 983        return 0;
 984
 985 fail2: remove_proc_entry("devices", proc_bus_input_dir);
 986 fail1: remove_proc_entry("bus/input", NULL);
 987        return -ENOMEM;
 988}
 989
 990static void input_proc_exit(void)
 991{
 992        remove_proc_entry("devices", proc_bus_input_dir);
 993        remove_proc_entry("handlers", proc_bus_input_dir);
 994        remove_proc_entry("bus/input", NULL);
 995}
 996
 997#else /* !CONFIG_PROC_FS */
 998static inline void input_wakeup_procfs_readers(void) { }
 999static inline int input_proc_init(void) { return 0; }
1000static inline void input_proc_exit(void) { }
1001#endif
1002
1003#define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
1004static ssize_t input_dev_show_##name(struct device *dev,                \
1005                                     struct device_attribute *attr,     \
1006                                     char *buf)                         \
1007{                                                                       \
1008        struct input_dev *input_dev = to_input_dev(dev);                \
1009                                                                        \
1010        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1011                         input_dev->name ? input_dev->name : "");       \
1012}                                                                       \
1013static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1014
1015INPUT_DEV_STRING_ATTR_SHOW(name);
1016INPUT_DEV_STRING_ATTR_SHOW(phys);
1017INPUT_DEV_STRING_ATTR_SHOW(uniq);
1018
1019static int input_print_modalias_bits(char *buf, int size,
1020                                     char name, unsigned long *bm,
1021                                     unsigned int min_bit, unsigned int max_bit)
1022{
1023        int len = 0, i;
1024
1025        len += snprintf(buf, max(size, 0), "%c", name);
1026        for (i = min_bit; i < max_bit; i++)
1027                if (bm[BIT_WORD(i)] & BIT_MASK(i))
1028                        len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1029        return len;
1030}
1031
1032static int input_print_modalias(char *buf, int size, struct input_dev *id,
1033                                int add_cr)
1034{
1035        int len;
1036
1037        len = snprintf(buf, max(size, 0),
1038                       "input:b%04Xv%04Xp%04Xe%04X-",
1039                       id->id.bustype, id->id.vendor,
1040                       id->id.product, id->id.version);
1041
1042        len += input_print_modalias_bits(buf + len, size - len,
1043                                'e', id->evbit, 0, EV_MAX);
1044        len += input_print_modalias_bits(buf + len, size - len,
1045                                'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1046        len += input_print_modalias_bits(buf + len, size - len,
1047                                'r', id->relbit, 0, REL_MAX);
1048        len += input_print_modalias_bits(buf + len, size - len,
1049                                'a', id->absbit, 0, ABS_MAX);
1050        len += input_print_modalias_bits(buf + len, size - len,
1051                                'm', id->mscbit, 0, MSC_MAX);
1052        len += input_print_modalias_bits(buf + len, size - len,
1053                                'l', id->ledbit, 0, LED_MAX);
1054        len += input_print_modalias_bits(buf + len, size - len,
1055                                's', id->sndbit, 0, SND_MAX);
1056        len += input_print_modalias_bits(buf + len, size - len,
1057                                'f', id->ffbit, 0, FF_MAX);
1058        len += input_print_modalias_bits(buf + len, size - len,
1059                                'w', id->swbit, 0, SW_MAX);
1060
1061        if (add_cr)
1062                len += snprintf(buf + len, max(size - len, 0), "\n");
1063
1064        return len;
1065}
1066
1067static ssize_t input_dev_show_modalias(struct device *dev,
1068                                       struct device_attribute *attr,
1069                                       char *buf)
1070{
1071        struct input_dev *id = to_input_dev(dev);
1072        ssize_t len;
1073
1074        len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1075
1076        return min_t(int, len, PAGE_SIZE);
1077}
1078static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1079
1080static struct attribute *input_dev_attrs[] = {
1081        &dev_attr_name.attr,
1082        &dev_attr_phys.attr,
1083        &dev_attr_uniq.attr,
1084        &dev_attr_modalias.attr,
1085        NULL
1086};
1087
1088static struct attribute_group input_dev_attr_group = {
1089        .attrs  = input_dev_attrs,
1090};
1091
1092#define INPUT_DEV_ID_ATTR(name)                                         \
1093static ssize_t input_dev_show_id_##name(struct device *dev,             \
1094                                        struct device_attribute *attr,  \
1095                                        char *buf)                      \
1096{                                                                       \
1097        struct input_dev *input_dev = to_input_dev(dev);                \
1098        return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1099}                                                                       \
1100static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1101
1102INPUT_DEV_ID_ATTR(bustype);
1103INPUT_DEV_ID_ATTR(vendor);
1104INPUT_DEV_ID_ATTR(product);
1105INPUT_DEV_ID_ATTR(version);
1106
1107static struct attribute *input_dev_id_attrs[] = {
1108        &dev_attr_bustype.attr,
1109        &dev_attr_vendor.attr,
1110        &dev_attr_product.attr,
1111        &dev_attr_version.attr,
1112        NULL
1113};
1114
1115static struct attribute_group input_dev_id_attr_group = {
1116        .name   = "id",
1117        .attrs  = input_dev_id_attrs,
1118};
1119
1120static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1121                              int max, int add_cr)
1122{
1123        int i;
1124        int len = 0;
1125
1126        for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1127                if (bitmap[i])
1128                        break;
1129
1130        for (; i >= 0; i--)
1131                len += snprintf(buf + len, max(buf_size - len, 0),
1132                                "%lx%s", bitmap[i], i > 0 ? " " : "");
1133
1134        if (add_cr)
1135                len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1136
1137        return len;
1138}
1139
1140#define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
1141static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
1142                                       struct device_attribute *attr,   \
1143                                       char *buf)                       \
1144{                                                                       \
1145        struct input_dev *input_dev = to_input_dev(dev);                \
1146        int len = input_print_bitmap(buf, PAGE_SIZE,                    \
1147                                     input_dev->bm##bit, ev##_MAX, 1);  \
1148        return min_t(int, len, PAGE_SIZE);                              \
1149}                                                                       \
1150static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1151
1152INPUT_DEV_CAP_ATTR(EV, ev);
1153INPUT_DEV_CAP_ATTR(KEY, key);
1154INPUT_DEV_CAP_ATTR(REL, rel);
1155INPUT_DEV_CAP_ATTR(ABS, abs);
1156INPUT_DEV_CAP_ATTR(MSC, msc);
1157INPUT_DEV_CAP_ATTR(LED, led);
1158INPUT_DEV_CAP_ATTR(SND, snd);
1159INPUT_DEV_CAP_ATTR(FF, ff);
1160INPUT_DEV_CAP_ATTR(SW, sw);
1161
1162static struct attribute *input_dev_caps_attrs[] = {
1163        &dev_attr_ev.attr,
1164        &dev_attr_key.attr,
1165        &dev_attr_rel.attr,
1166        &dev_attr_abs.attr,
1167        &dev_attr_msc.attr,
1168        &dev_attr_led.attr,
1169        &dev_attr_snd.attr,
1170        &dev_attr_ff.attr,
1171        &dev_attr_sw.attr,
1172        NULL
1173};
1174
1175static struct attribute_group input_dev_caps_attr_group = {
1176        .name   = "capabilities",
1177        .attrs  = input_dev_caps_attrs,
1178};
1179
1180static const struct attribute_group *input_dev_attr_groups[] = {
1181        &input_dev_attr_group,
1182        &input_dev_id_attr_group,
1183        &input_dev_caps_attr_group,
1184        NULL
1185};
1186
1187static void input_dev_release(struct device *device)
1188{
1189        struct input_dev *dev = to_input_dev(device);
1190
1191        input_ff_destroy(dev);
1192        kfree(dev);
1193
1194        module_put(THIS_MODULE);
1195}
1196
1197/*
1198 * Input uevent interface - loading event handlers based on
1199 * device bitfields.
1200 */
1201static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1202                                   const char *name, unsigned long *bitmap, int max)
1203{
1204        int len;
1205
1206        if (add_uevent_var(env, "%s=", name))
1207                return -ENOMEM;
1208
1209        len = input_print_bitmap(&env->buf[env->buflen - 1],
1210                                 sizeof(env->buf) - env->buflen,
1211                                 bitmap, max, 0);
1212        if (len >= (sizeof(env->buf) - env->buflen))
1213                return -ENOMEM;
1214
1215        env->buflen += len;
1216        return 0;
1217}
1218
1219static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1220                                         struct input_dev *dev)
1221{
1222        int len;
1223
1224        if (add_uevent_var(env, "MODALIAS="))
1225                return -ENOMEM;
1226
1227        len = input_print_modalias(&env->buf[env->buflen - 1],
1228                                   sizeof(env->buf) - env->buflen,
1229                                   dev, 0);
1230        if (len >= (sizeof(env->buf) - env->buflen))
1231                return -ENOMEM;
1232
1233        env->buflen += len;
1234        return 0;
1235}
1236
1237#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
1238        do {                                                            \
1239                int err = add_uevent_var(env, fmt, val);                \
1240                if (err)                                                \
1241                        return err;                                     \
1242        } while (0)
1243
1244#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
1245        do {                                                            \
1246                int err = input_add_uevent_bm_var(env, name, bm, max);  \
1247                if (err)                                                \
1248                        return err;                                     \
1249        } while (0)
1250
1251#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
1252        do {                                                            \
1253                int err = input_add_uevent_modalias_var(env, dev);      \
1254                if (err)                                                \
1255                        return err;                                     \
1256        } while (0)
1257
1258static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1259{
1260        struct input_dev *dev = to_input_dev(device);
1261
1262        INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1263                                dev->id.bustype, dev->id.vendor,
1264                                dev->id.product, dev->id.version);
1265        if (dev->name)
1266                INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1267        if (dev->phys)
1268                INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1269        if (dev->uniq)
1270                INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1271
1272        INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1273        if (test_bit(EV_KEY, dev->evbit))
1274                INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1275        if (test_bit(EV_REL, dev->evbit))
1276                INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1277        if (test_bit(EV_ABS, dev->evbit))
1278                INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1279        if (test_bit(EV_MSC, dev->evbit))
1280                INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1281        if (test_bit(EV_LED, dev->evbit))
1282                INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1283        if (test_bit(EV_SND, dev->evbit))
1284                INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1285        if (test_bit(EV_FF, dev->evbit))
1286                INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1287        if (test_bit(EV_SW, dev->evbit))
1288                INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1289
1290        INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1291
1292        return 0;
1293}
1294
1295#define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
1296        do {                                                            \
1297                int i;                                                  \
1298                bool active;                                            \
1299                                                                        \
1300                if (!test_bit(EV_##type, dev->evbit))                   \
1301                        break;                                          \
1302                                                                        \
1303                for (i = 0; i < type##_MAX; i++) {                      \
1304                        if (!test_bit(i, dev->bits##bit))               \
1305                                continue;                               \
1306                                                                        \
1307                        active = test_bit(i, dev->bits);                \
1308                        if (!active && !on)                             \
1309                                continue;                               \
1310                                                                        \
1311                        dev->event(dev, EV_##type, i, on ? active : 0); \
1312                }                                                       \
1313        } while (0)
1314
1315#ifdef CONFIG_PM
1316static void input_dev_reset(struct input_dev *dev, bool activate)
1317{
1318        if (!dev->event)
1319                return;
1320
1321        INPUT_DO_TOGGLE(dev, LED, led, activate);
1322        INPUT_DO_TOGGLE(dev, SND, snd, activate);
1323
1324        if (activate && test_bit(EV_REP, dev->evbit)) {
1325                dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1326                dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1327        }
1328}
1329
1330static int input_dev_suspend(struct device *dev)
1331{
1332        struct input_dev *input_dev = to_input_dev(dev);
1333
1334        mutex_lock(&input_dev->mutex);
1335        input_dev_reset(input_dev, false);
1336        mutex_unlock(&input_dev->mutex);
1337
1338        return 0;
1339}
1340
1341static int input_dev_resume(struct device *dev)
1342{
1343        struct input_dev *input_dev = to_input_dev(dev);
1344
1345        mutex_lock(&input_dev->mutex);
1346        input_dev_reset(input_dev, true);
1347        mutex_unlock(&input_dev->mutex);
1348
1349        return 0;
1350}
1351
1352static const struct dev_pm_ops input_dev_pm_ops = {
1353        .suspend        = input_dev_suspend,
1354        .resume         = input_dev_resume,
1355        .poweroff       = input_dev_suspend,
1356        .restore        = input_dev_resume,
1357};
1358#endif /* CONFIG_PM */
1359
1360static struct device_type input_dev_type = {
1361        .groups         = input_dev_attr_groups,
1362        .release        = input_dev_release,
1363        .uevent         = input_dev_uevent,
1364#ifdef CONFIG_PM
1365        .pm             = &input_dev_pm_ops,
1366#endif
1367};
1368
1369static char *input_devnode(struct device *dev, mode_t *mode)
1370{
1371        return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1372}
1373
1374struct class input_class = {
1375        .name           = "input",
1376        .devnode        = input_devnode,
1377};
1378EXPORT_SYMBOL_GPL(input_class);
1379
1380/**
1381 * input_allocate_device - allocate memory for new input device
1382 *
1383 * Returns prepared struct input_dev or NULL.
1384 *
1385 * NOTE: Use input_free_device() to free devices that have not been
1386 * registered; input_unregister_device() should be used for already
1387 * registered devices.
1388 */
1389struct input_dev *input_allocate_device(void)
1390{
1391        struct input_dev *dev;
1392
1393        dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1394        if (dev) {
1395                dev->dev.type = &input_dev_type;
1396                dev->dev.class = &input_class;
1397                device_initialize(&dev->dev);
1398                mutex_init(&dev->mutex);
1399                spin_lock_init(&dev->event_lock);
1400                INIT_LIST_HEAD(&dev->h_list);
1401                INIT_LIST_HEAD(&dev->node);
1402
1403                __module_get(THIS_MODULE);
1404        }
1405
1406        return dev;
1407}
1408EXPORT_SYMBOL(input_allocate_device);
1409
1410/**
1411 * input_free_device - free memory occupied by input_dev structure
1412 * @dev: input device to free
1413 *
1414 * This function should only be used if input_register_device()
1415 * was not called yet or if it failed. Once device was registered
1416 * use input_unregister_device() and memory will be freed once last
1417 * reference to the device is dropped.
1418 *
1419 * Device should be allocated by input_allocate_device().
1420 *
1421 * NOTE: If there are references to the input device then memory
1422 * will not be freed until last reference is dropped.
1423 */
1424void input_free_device(struct input_dev *dev)
1425{
1426        if (dev)
1427                input_put_device(dev);
1428}
1429EXPORT_SYMBOL(input_free_device);
1430
1431/**
1432 * input_set_capability - mark device as capable of a certain event
1433 * @dev: device that is capable of emitting or accepting event
1434 * @type: type of the event (EV_KEY, EV_REL, etc...)
1435 * @code: event code
1436 *
1437 * In addition to setting up corresponding bit in appropriate capability
1438 * bitmap the function also adjusts dev->evbit.
1439 */
1440void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1441{
1442        switch (type) {
1443        case EV_KEY:
1444                __set_bit(code, dev->keybit);
1445                break;
1446
1447        case EV_REL:
1448                __set_bit(code, dev->relbit);
1449                break;
1450
1451        case EV_ABS:
1452                __set_bit(code, dev->absbit);
1453                break;
1454
1455        case EV_MSC:
1456                __set_bit(code, dev->mscbit);
1457                break;
1458
1459        case EV_SW:
1460                __set_bit(code, dev->swbit);
1461                break;
1462
1463        case EV_LED:
1464                __set_bit(code, dev->ledbit);
1465                break;
1466
1467        case EV_SND:
1468                __set_bit(code, dev->sndbit);
1469                break;
1470
1471        case EV_FF:
1472                __set_bit(code, dev->ffbit);
1473                break;
1474
1475        case EV_PWR:
1476                /* do nothing */
1477                break;
1478
1479        default:
1480                printk(KERN_ERR
1481                        "input_set_capability: unknown type %u (code %u)\n",
1482                        type, code);
1483                dump_stack();
1484                return;
1485        }
1486
1487        __set_bit(type, dev->evbit);
1488}
1489EXPORT_SYMBOL(input_set_capability);
1490
1491/**
1492 * input_register_device - register device with input core
1493 * @dev: device to be registered
1494 *
1495 * This function registers device with input core. The device must be
1496 * allocated with input_allocate_device() and all it's capabilities
1497 * set up before registering.
1498 * If function fails the device must be freed with input_free_device().
1499 * Once device has been successfully registered it can be unregistered
1500 * with input_unregister_device(); input_free_device() should not be
1501 * called in this case.
1502 */
1503int input_register_device(struct input_dev *dev)
1504{
1505        static atomic_t input_no = ATOMIC_INIT(0);
1506        struct input_handler *handler;
1507        const char *path;
1508        int error;
1509
1510        __set_bit(EV_SYN, dev->evbit);
1511
1512        /*
1513         * If delay and period are pre-set by the driver, then autorepeating
1514         * is handled by the driver itself and we don't do it in input.c.
1515         */
1516
1517        init_timer(&dev->timer);
1518        if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1519                dev->timer.data = (long) dev;
1520                dev->timer.function = input_repeat_key;
1521                dev->rep[REP_DELAY] = 250;
1522                dev->rep[REP_PERIOD] = 33;
1523        }
1524
1525        if (!dev->getkeycode)
1526                dev->getkeycode = input_default_getkeycode;
1527
1528        if (!dev->setkeycode)
1529                dev->setkeycode = input_default_setkeycode;
1530
1531        dev_set_name(&dev->dev, "input%ld",
1532                     (unsigned long) atomic_inc_return(&input_no) - 1);
1533
1534        error = device_add(&dev->dev);
1535        if (error)
1536                return error;
1537
1538        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1539        printk(KERN_INFO "input: %s as %s\n",
1540                dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1541        kfree(path);
1542
1543        error = mutex_lock_interruptible(&input_mutex);
1544        if (error) {
1545                device_del(&dev->dev);
1546                return error;
1547        }
1548
1549        list_add_tail(&dev->node, &input_dev_list);
1550
1551        list_for_each_entry(handler, &input_handler_list, node)
1552                input_attach_handler(dev, handler);
1553
1554        input_wakeup_procfs_readers();
1555
1556        mutex_unlock(&input_mutex);
1557
1558        return 0;
1559}
1560EXPORT_SYMBOL(input_register_device);
1561
1562/**
1563 * input_unregister_device - unregister previously registered device
1564 * @dev: device to be unregistered
1565 *
1566 * This function unregisters an input device. Once device is unregistered
1567 * the caller should not try to access it as it may get freed at any moment.
1568 */
1569void input_unregister_device(struct input_dev *dev)
1570{
1571        struct input_handle *handle, *next;
1572
1573        input_disconnect_device(dev);
1574
1575        mutex_lock(&input_mutex);
1576
1577        list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1578                handle->handler->disconnect(handle);
1579        WARN_ON(!list_empty(&dev->h_list));
1580
1581        del_timer_sync(&dev->timer);
1582        list_del_init(&dev->node);
1583
1584        input_wakeup_procfs_readers();
1585
1586        mutex_unlock(&input_mutex);
1587
1588        device_unregister(&dev->dev);
1589}
1590EXPORT_SYMBOL(input_unregister_device);
1591
1592/**
1593 * input_register_handler - register a new input handler
1594 * @handler: handler to be registered
1595 *
1596 * This function registers a new input handler (interface) for input
1597 * devices in the system and attaches it to all input devices that
1598 * are compatible with the handler.
1599 */
1600int input_register_handler(struct input_handler *handler)
1601{
1602        struct input_dev *dev;
1603        int retval;
1604
1605        retval = mutex_lock_interruptible(&input_mutex);
1606        if (retval)
1607                return retval;
1608
1609        INIT_LIST_HEAD(&handler->h_list);
1610
1611        if (handler->fops != NULL) {
1612                if (input_table[handler->minor >> 5]) {
1613                        retval = -EBUSY;
1614                        goto out;
1615                }
1616                input_table[handler->minor >> 5] = handler;
1617        }
1618
1619        list_add_tail(&handler->node, &input_handler_list);
1620
1621        list_for_each_entry(dev, &input_dev_list, node)
1622                input_attach_handler(dev, handler);
1623
1624        input_wakeup_procfs_readers();
1625
1626 out:
1627        mutex_unlock(&input_mutex);
1628        return retval;
1629}
1630EXPORT_SYMBOL(input_register_handler);
1631
1632/**
1633 * input_unregister_handler - unregisters an input handler
1634 * @handler: handler to be unregistered
1635 *
1636 * This function disconnects a handler from its input devices and
1637 * removes it from lists of known handlers.
1638 */
1639void input_unregister_handler(struct input_handler *handler)
1640{
1641        struct input_handle *handle, *next;
1642
1643        mutex_lock(&input_mutex);
1644
1645        list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1646                handler->disconnect(handle);
1647        WARN_ON(!list_empty(&handler->h_list));
1648
1649        list_del_init(&handler->node);
1650
1651        if (handler->fops != NULL)
1652                input_table[handler->minor >> 5] = NULL;
1653
1654        input_wakeup_procfs_readers();
1655
1656        mutex_unlock(&input_mutex);
1657}
1658EXPORT_SYMBOL(input_unregister_handler);
1659
1660/**
1661 * input_register_handle - register a new input handle
1662 * @handle: handle to register
1663 *
1664 * This function puts a new input handle onto device's
1665 * and handler's lists so that events can flow through
1666 * it once it is opened using input_open_device().
1667 *
1668 * This function is supposed to be called from handler's
1669 * connect() method.
1670 */
1671int input_register_handle(struct input_handle *handle)
1672{
1673        struct input_handler *handler = handle->handler;
1674        struct input_dev *dev = handle->dev;
1675        int error;
1676
1677        /*
1678         * We take dev->mutex here to prevent race with
1679         * input_release_device().
1680         */
1681        error = mutex_lock_interruptible(&dev->mutex);
1682        if (error)
1683                return error;
1684        list_add_tail_rcu(&handle->d_node, &dev->h_list);
1685        mutex_unlock(&dev->mutex);
1686
1687        /*
1688         * Since we are supposed to be called from ->connect()
1689         * which is mutually exclusive with ->disconnect()
1690         * we can't be racing with input_unregister_handle()
1691         * and so separate lock is not needed here.
1692         */
1693        list_add_tail(&handle->h_node, &handler->h_list);
1694
1695        if (handler->start)
1696                handler->start(handle);
1697
1698        return 0;
1699}
1700EXPORT_SYMBOL(input_register_handle);
1701
1702/**
1703 * input_unregister_handle - unregister an input handle
1704 * @handle: handle to unregister
1705 *
1706 * This function removes input handle from device's
1707 * and handler's lists.
1708 *
1709 * This function is supposed to be called from handler's
1710 * disconnect() method.
1711 */
1712void input_unregister_handle(struct input_handle *handle)
1713{
1714        struct input_dev *dev = handle->dev;
1715
1716        list_del_init(&handle->h_node);
1717
1718        /*
1719         * Take dev->mutex to prevent race with input_release_device().
1720         */
1721        mutex_lock(&dev->mutex);
1722        list_del_rcu(&handle->d_node);
1723        mutex_unlock(&dev->mutex);
1724        synchronize_rcu();
1725}
1726EXPORT_SYMBOL(input_unregister_handle);
1727
1728static int input_open_file(struct inode *inode, struct file *file)
1729{
1730        struct input_handler *handler;
1731        const struct file_operations *old_fops, *new_fops = NULL;
1732        int err;
1733
1734        lock_kernel();
1735        /* No load-on-demand here? */
1736        handler = input_table[iminor(inode) >> 5];
1737        if (!handler || !(new_fops = fops_get(handler->fops))) {
1738                err = -ENODEV;
1739                goto out;
1740        }
1741
1742        /*
1743         * That's _really_ odd. Usually NULL ->open means "nothing special",
1744         * not "no device". Oh, well...
1745         */
1746        if (!new_fops->open) {
1747                fops_put(new_fops);
1748                err = -ENODEV;
1749                goto out;
1750        }
1751        old_fops = file->f_op;
1752        file->f_op = new_fops;
1753
1754        err = new_fops->open(inode, file);
1755
1756        if (err) {
1757                fops_put(file->f_op);
1758                file->f_op = fops_get(old_fops);
1759        }
1760        fops_put(old_fops);
1761out:
1762        unlock_kernel();
1763        return err;
1764}
1765
1766static const struct file_operations input_fops = {
1767        .owner = THIS_MODULE,
1768        .open = input_open_file,
1769};
1770
1771static void __init input_init_abs_bypass(void)
1772{
1773        const unsigned int *p;
1774
1775        for (p = input_abs_bypass_init_data; *p; p++)
1776                input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1777}
1778
1779static int __init input_init(void)
1780{
1781        int err;
1782
1783        input_init_abs_bypass();
1784
1785        err = class_register(&input_class);
1786        if (err) {
1787                printk(KERN_ERR "input: unable to register input_dev class\n");
1788                return err;
1789        }
1790
1791        err = input_proc_init();
1792        if (err)
1793                goto fail1;
1794
1795        err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1796        if (err) {
1797                printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1798                goto fail2;
1799        }
1800
1801        return 0;
1802
1803 fail2: input_proc_exit();
1804 fail1: class_unregister(&input_class);
1805        return err;
1806}
1807
1808static void __exit input_exit(void)
1809{
1810        input_proc_exit();
1811        unregister_chrdev(INPUT_MAJOR, "input");
1812        class_unregister(&input_class);
1813}
1814
1815subsys_initcall(input_init);
1816module_exit(input_exit);
1817