linux/drivers/lguest/page_tables.c
<<
>>
Prefs
   1/*P:700
   2 * The pagetable code, on the other hand, still shows the scars of
   3 * previous encounters.  It's functional, and as neat as it can be in the
   4 * circumstances, but be wary, for these things are subtle and break easily.
   5 * The Guest provides a virtual to physical mapping, but we can neither trust
   6 * it nor use it: we verify and convert it here then point the CPU to the
   7 * converted Guest pages when running the Guest.
   8:*/
   9
  10/* Copyright (C) Rusty Russell IBM Corporation 2006.
  11 * GPL v2 and any later version */
  12#include <linux/mm.h>
  13#include <linux/types.h>
  14#include <linux/spinlock.h>
  15#include <linux/random.h>
  16#include <linux/percpu.h>
  17#include <asm/tlbflush.h>
  18#include <asm/uaccess.h>
  19#include <asm/bootparam.h>
  20#include "lg.h"
  21
  22/*M:008
  23 * We hold reference to pages, which prevents them from being swapped.
  24 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
  25 * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
  26 * could probably consider launching Guests as non-root.
  27:*/
  28
  29/*H:300
  30 * The Page Table Code
  31 *
  32 * We use two-level page tables for the Guest, or three-level with PAE.  If
  33 * you're not entirely comfortable with virtual addresses, physical addresses
  34 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
  35 * Table Handling" (with diagrams!).
  36 *
  37 * The Guest keeps page tables, but we maintain the actual ones here: these are
  38 * called "shadow" page tables.  Which is a very Guest-centric name: these are
  39 * the real page tables the CPU uses, although we keep them up to date to
  40 * reflect the Guest's.  (See what I mean about weird naming?  Since when do
  41 * shadows reflect anything?)
  42 *
  43 * Anyway, this is the most complicated part of the Host code.  There are seven
  44 * parts to this:
  45 *  (i) Looking up a page table entry when the Guest faults,
  46 *  (ii) Making sure the Guest stack is mapped,
  47 *  (iii) Setting up a page table entry when the Guest tells us one has changed,
  48 *  (iv) Switching page tables,
  49 *  (v) Flushing (throwing away) page tables,
  50 *  (vi) Mapping the Switcher when the Guest is about to run,
  51 *  (vii) Setting up the page tables initially.
  52:*/
  53
  54/*
  55 * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
  56 * or 512 PTE entries with PAE (2MB).
  57 */
  58#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
  59
  60/*
  61 * For PAE we need the PMD index as well. We use the last 2MB, so we
  62 * will need the last pmd entry of the last pmd page.
  63 */
  64#ifdef CONFIG_X86_PAE
  65#define SWITCHER_PMD_INDEX      (PTRS_PER_PMD - 1)
  66#define RESERVE_MEM             2U
  67#define CHECK_GPGD_MASK         _PAGE_PRESENT
  68#else
  69#define RESERVE_MEM             4U
  70#define CHECK_GPGD_MASK         _PAGE_TABLE
  71#endif
  72
  73/*
  74 * We actually need a separate PTE page for each CPU.  Remember that after the
  75 * Switcher code itself comes two pages for each CPU, and we don't want this
  76 * CPU's guest to see the pages of any other CPU.
  77 */
  78static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
  79#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
  80
  81/*H:320
  82 * The page table code is curly enough to need helper functions to keep it
  83 * clear and clean.  The kernel itself provides many of them; one advantage
  84 * of insisting that the Guest and Host use the same CONFIG_PAE setting.
  85 *
  86 * There are two functions which return pointers to the shadow (aka "real")
  87 * page tables.
  88 *
  89 * spgd_addr() takes the virtual address and returns a pointer to the top-level
  90 * page directory entry (PGD) for that address.  Since we keep track of several
  91 * page tables, the "i" argument tells us which one we're interested in (it's
  92 * usually the current one).
  93 */
  94static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
  95{
  96        unsigned int index = pgd_index(vaddr);
  97
  98#ifndef CONFIG_X86_PAE
  99        /* We kill any Guest trying to touch the Switcher addresses. */
 100        if (index >= SWITCHER_PGD_INDEX) {
 101                kill_guest(cpu, "attempt to access switcher pages");
 102                index = 0;
 103        }
 104#endif
 105        /* Return a pointer index'th pgd entry for the i'th page table. */
 106        return &cpu->lg->pgdirs[i].pgdir[index];
 107}
 108
 109#ifdef CONFIG_X86_PAE
 110/*
 111 * This routine then takes the PGD entry given above, which contains the
 112 * address of the PMD page.  It then returns a pointer to the PMD entry for the
 113 * given address.
 114 */
 115static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
 116{
 117        unsigned int index = pmd_index(vaddr);
 118        pmd_t *page;
 119
 120        /* We kill any Guest trying to touch the Switcher addresses. */
 121        if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
 122                                        index >= SWITCHER_PMD_INDEX) {
 123                kill_guest(cpu, "attempt to access switcher pages");
 124                index = 0;
 125        }
 126
 127        /* You should never call this if the PGD entry wasn't valid */
 128        BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
 129        page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
 130
 131        return &page[index];
 132}
 133#endif
 134
 135/*
 136 * This routine then takes the page directory entry returned above, which
 137 * contains the address of the page table entry (PTE) page.  It then returns a
 138 * pointer to the PTE entry for the given address.
 139 */
 140static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
 141{
 142#ifdef CONFIG_X86_PAE
 143        pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
 144        pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
 145
 146        /* You should never call this if the PMD entry wasn't valid */
 147        BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
 148#else
 149        pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
 150        /* You should never call this if the PGD entry wasn't valid */
 151        BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
 152#endif
 153
 154        return &page[pte_index(vaddr)];
 155}
 156
 157/*
 158 * These functions are just like the above two, except they access the Guest
 159 * page tables.  Hence they return a Guest address.
 160 */
 161static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
 162{
 163        unsigned int index = vaddr >> (PGDIR_SHIFT);
 164        return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
 165}
 166
 167#ifdef CONFIG_X86_PAE
 168/* Follow the PGD to the PMD. */
 169static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
 170{
 171        unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
 172        BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
 173        return gpage + pmd_index(vaddr) * sizeof(pmd_t);
 174}
 175
 176/* Follow the PMD to the PTE. */
 177static unsigned long gpte_addr(struct lg_cpu *cpu,
 178                               pmd_t gpmd, unsigned long vaddr)
 179{
 180        unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
 181
 182        BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
 183        return gpage + pte_index(vaddr) * sizeof(pte_t);
 184}
 185#else
 186/* Follow the PGD to the PTE (no mid-level for !PAE). */
 187static unsigned long gpte_addr(struct lg_cpu *cpu,
 188                                pgd_t gpgd, unsigned long vaddr)
 189{
 190        unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
 191
 192        BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
 193        return gpage + pte_index(vaddr) * sizeof(pte_t);
 194}
 195#endif
 196/*:*/
 197
 198/*M:014
 199 * get_pfn is slow: we could probably try to grab batches of pages here as
 200 * an optimization (ie. pre-faulting).
 201:*/
 202
 203/*H:350
 204 * This routine takes a page number given by the Guest and converts it to
 205 * an actual, physical page number.  It can fail for several reasons: the
 206 * virtual address might not be mapped by the Launcher, the write flag is set
 207 * and the page is read-only, or the write flag was set and the page was
 208 * shared so had to be copied, but we ran out of memory.
 209 *
 210 * This holds a reference to the page, so release_pte() is careful to put that
 211 * back.
 212 */
 213static unsigned long get_pfn(unsigned long virtpfn, int write)
 214{
 215        struct page *page;
 216
 217        /* gup me one page at this address please! */
 218        if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
 219                return page_to_pfn(page);
 220
 221        /* This value indicates failure. */
 222        return -1UL;
 223}
 224
 225/*H:340
 226 * Converting a Guest page table entry to a shadow (ie. real) page table
 227 * entry can be a little tricky.  The flags are (almost) the same, but the
 228 * Guest PTE contains a virtual page number: the CPU needs the real page
 229 * number.
 230 */
 231static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
 232{
 233        unsigned long pfn, base, flags;
 234
 235        /*
 236         * The Guest sets the global flag, because it thinks that it is using
 237         * PGE.  We only told it to use PGE so it would tell us whether it was
 238         * flushing a kernel mapping or a userspace mapping.  We don't actually
 239         * use the global bit, so throw it away.
 240         */
 241        flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
 242
 243        /* The Guest's pages are offset inside the Launcher. */
 244        base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
 245
 246        /*
 247         * We need a temporary "unsigned long" variable to hold the answer from
 248         * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
 249         * fit in spte.pfn.  get_pfn() finds the real physical number of the
 250         * page, given the virtual number.
 251         */
 252        pfn = get_pfn(base + pte_pfn(gpte), write);
 253        if (pfn == -1UL) {
 254                kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
 255                /*
 256                 * When we destroy the Guest, we'll go through the shadow page
 257                 * tables and release_pte() them.  Make sure we don't think
 258                 * this one is valid!
 259                 */
 260                flags = 0;
 261        }
 262        /* Now we assemble our shadow PTE from the page number and flags. */
 263        return pfn_pte(pfn, __pgprot(flags));
 264}
 265
 266/*H:460 And to complete the chain, release_pte() looks like this: */
 267static void release_pte(pte_t pte)
 268{
 269        /*
 270         * Remember that get_user_pages_fast() took a reference to the page, in
 271         * get_pfn()?  We have to put it back now.
 272         */
 273        if (pte_flags(pte) & _PAGE_PRESENT)
 274                put_page(pte_page(pte));
 275}
 276/*:*/
 277
 278static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
 279{
 280        if ((pte_flags(gpte) & _PAGE_PSE) ||
 281            pte_pfn(gpte) >= cpu->lg->pfn_limit)
 282                kill_guest(cpu, "bad page table entry");
 283}
 284
 285static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
 286{
 287        if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
 288           (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
 289                kill_guest(cpu, "bad page directory entry");
 290}
 291
 292#ifdef CONFIG_X86_PAE
 293static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
 294{
 295        if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
 296           (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
 297                kill_guest(cpu, "bad page middle directory entry");
 298}
 299#endif
 300
 301/*H:330
 302 * (i) Looking up a page table entry when the Guest faults.
 303 *
 304 * We saw this call in run_guest(): when we see a page fault in the Guest, we
 305 * come here.  That's because we only set up the shadow page tables lazily as
 306 * they're needed, so we get page faults all the time and quietly fix them up
 307 * and return to the Guest without it knowing.
 308 *
 309 * If we fixed up the fault (ie. we mapped the address), this routine returns
 310 * true.  Otherwise, it was a real fault and we need to tell the Guest.
 311 */
 312bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
 313{
 314        pgd_t gpgd;
 315        pgd_t *spgd;
 316        unsigned long gpte_ptr;
 317        pte_t gpte;
 318        pte_t *spte;
 319
 320        /* Mid level for PAE. */
 321#ifdef CONFIG_X86_PAE
 322        pmd_t *spmd;
 323        pmd_t gpmd;
 324#endif
 325
 326        /* First step: get the top-level Guest page table entry. */
 327        gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
 328        /* Toplevel not present?  We can't map it in. */
 329        if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
 330                return false;
 331
 332        /* Now look at the matching shadow entry. */
 333        spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
 334        if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
 335                /* No shadow entry: allocate a new shadow PTE page. */
 336                unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
 337                /*
 338                 * This is not really the Guest's fault, but killing it is
 339                 * simple for this corner case.
 340                 */
 341                if (!ptepage) {
 342                        kill_guest(cpu, "out of memory allocating pte page");
 343                        return false;
 344                }
 345                /* We check that the Guest pgd is OK. */
 346                check_gpgd(cpu, gpgd);
 347                /*
 348                 * And we copy the flags to the shadow PGD entry.  The page
 349                 * number in the shadow PGD is the page we just allocated.
 350                 */
 351                set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
 352        }
 353
 354#ifdef CONFIG_X86_PAE
 355        gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
 356        /* Middle level not present?  We can't map it in. */
 357        if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
 358                return false;
 359
 360        /* Now look at the matching shadow entry. */
 361        spmd = spmd_addr(cpu, *spgd, vaddr);
 362
 363        if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
 364                /* No shadow entry: allocate a new shadow PTE page. */
 365                unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
 366
 367                /*
 368                 * This is not really the Guest's fault, but killing it is
 369                 * simple for this corner case.
 370                 */
 371                if (!ptepage) {
 372                        kill_guest(cpu, "out of memory allocating pte page");
 373                        return false;
 374                }
 375
 376                /* We check that the Guest pmd is OK. */
 377                check_gpmd(cpu, gpmd);
 378
 379                /*
 380                 * And we copy the flags to the shadow PMD entry.  The page
 381                 * number in the shadow PMD is the page we just allocated.
 382                 */
 383                set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
 384        }
 385
 386        /*
 387         * OK, now we look at the lower level in the Guest page table: keep its
 388         * address, because we might update it later.
 389         */
 390        gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
 391#else
 392        /*
 393         * OK, now we look at the lower level in the Guest page table: keep its
 394         * address, because we might update it later.
 395         */
 396        gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
 397#endif
 398
 399        /* Read the actual PTE value. */
 400        gpte = lgread(cpu, gpte_ptr, pte_t);
 401
 402        /* If this page isn't in the Guest page tables, we can't page it in. */
 403        if (!(pte_flags(gpte) & _PAGE_PRESENT))
 404                return false;
 405
 406        /*
 407         * Check they're not trying to write to a page the Guest wants
 408         * read-only (bit 2 of errcode == write).
 409         */
 410        if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
 411                return false;
 412
 413        /* User access to a kernel-only page? (bit 3 == user access) */
 414        if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
 415                return false;
 416
 417        /*
 418         * Check that the Guest PTE flags are OK, and the page number is below
 419         * the pfn_limit (ie. not mapping the Launcher binary).
 420         */
 421        check_gpte(cpu, gpte);
 422
 423        /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
 424        gpte = pte_mkyoung(gpte);
 425        if (errcode & 2)
 426                gpte = pte_mkdirty(gpte);
 427
 428        /* Get the pointer to the shadow PTE entry we're going to set. */
 429        spte = spte_addr(cpu, *spgd, vaddr);
 430
 431        /*
 432         * If there was a valid shadow PTE entry here before, we release it.
 433         * This can happen with a write to a previously read-only entry.
 434         */
 435        release_pte(*spte);
 436
 437        /*
 438         * If this is a write, we insist that the Guest page is writable (the
 439         * final arg to gpte_to_spte()).
 440         */
 441        if (pte_dirty(gpte))
 442                *spte = gpte_to_spte(cpu, gpte, 1);
 443        else
 444                /*
 445                 * If this is a read, don't set the "writable" bit in the page
 446                 * table entry, even if the Guest says it's writable.  That way
 447                 * we will come back here when a write does actually occur, so
 448                 * we can update the Guest's _PAGE_DIRTY flag.
 449                 */
 450                set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
 451
 452        /*
 453         * Finally, we write the Guest PTE entry back: we've set the
 454         * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
 455         */
 456        lgwrite(cpu, gpte_ptr, pte_t, gpte);
 457
 458        /*
 459         * The fault is fixed, the page table is populated, the mapping
 460         * manipulated, the result returned and the code complete.  A small
 461         * delay and a trace of alliteration are the only indications the Guest
 462         * has that a page fault occurred at all.
 463         */
 464        return true;
 465}
 466
 467/*H:360
 468 * (ii) Making sure the Guest stack is mapped.
 469 *
 470 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
 471 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
 472 * we've seen that logic is quite long, and usually the stack pages are already
 473 * mapped, so it's overkill.
 474 *
 475 * This is a quick version which answers the question: is this virtual address
 476 * mapped by the shadow page tables, and is it writable?
 477 */
 478static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
 479{
 480        pgd_t *spgd;
 481        unsigned long flags;
 482
 483#ifdef CONFIG_X86_PAE
 484        pmd_t *spmd;
 485#endif
 486        /* Look at the current top level entry: is it present? */
 487        spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
 488        if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
 489                return false;
 490
 491#ifdef CONFIG_X86_PAE
 492        spmd = spmd_addr(cpu, *spgd, vaddr);
 493        if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
 494                return false;
 495#endif
 496
 497        /*
 498         * Check the flags on the pte entry itself: it must be present and
 499         * writable.
 500         */
 501        flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
 502
 503        return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
 504}
 505
 506/*
 507 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
 508 * in the page tables, and if not, we call demand_page() with error code 2
 509 * (meaning "write").
 510 */
 511void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
 512{
 513        if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
 514                kill_guest(cpu, "bad stack page %#lx", vaddr);
 515}
 516/*:*/
 517
 518#ifdef CONFIG_X86_PAE
 519static void release_pmd(pmd_t *spmd)
 520{
 521        /* If the entry's not present, there's nothing to release. */
 522        if (pmd_flags(*spmd) & _PAGE_PRESENT) {
 523                unsigned int i;
 524                pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
 525                /* For each entry in the page, we might need to release it. */
 526                for (i = 0; i < PTRS_PER_PTE; i++)
 527                        release_pte(ptepage[i]);
 528                /* Now we can free the page of PTEs */
 529                free_page((long)ptepage);
 530                /* And zero out the PMD entry so we never release it twice. */
 531                set_pmd(spmd, __pmd(0));
 532        }
 533}
 534
 535static void release_pgd(pgd_t *spgd)
 536{
 537        /* If the entry's not present, there's nothing to release. */
 538        if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 539                unsigned int i;
 540                pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 541
 542                for (i = 0; i < PTRS_PER_PMD; i++)
 543                        release_pmd(&pmdpage[i]);
 544
 545                /* Now we can free the page of PMDs */
 546                free_page((long)pmdpage);
 547                /* And zero out the PGD entry so we never release it twice. */
 548                set_pgd(spgd, __pgd(0));
 549        }
 550}
 551
 552#else /* !CONFIG_X86_PAE */
 553/*H:450
 554 * If we chase down the release_pgd() code, the non-PAE version looks like
 555 * this.  The PAE version is almost identical, but instead of calling
 556 * release_pte it calls release_pmd(), which looks much like this.
 557 */
 558static void release_pgd(pgd_t *spgd)
 559{
 560        /* If the entry's not present, there's nothing to release. */
 561        if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 562                unsigned int i;
 563                /*
 564                 * Converting the pfn to find the actual PTE page is easy: turn
 565                 * the page number into a physical address, then convert to a
 566                 * virtual address (easy for kernel pages like this one).
 567                 */
 568                pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 569                /* For each entry in the page, we might need to release it. */
 570                for (i = 0; i < PTRS_PER_PTE; i++)
 571                        release_pte(ptepage[i]);
 572                /* Now we can free the page of PTEs */
 573                free_page((long)ptepage);
 574                /* And zero out the PGD entry so we never release it twice. */
 575                *spgd = __pgd(0);
 576        }
 577}
 578#endif
 579
 580/*H:445
 581 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
 582 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
 583 * It simply releases every PTE page from 0 up to the Guest's kernel address.
 584 */
 585static void flush_user_mappings(struct lguest *lg, int idx)
 586{
 587        unsigned int i;
 588        /* Release every pgd entry up to the kernel's address. */
 589        for (i = 0; i < pgd_index(lg->kernel_address); i++)
 590                release_pgd(lg->pgdirs[idx].pgdir + i);
 591}
 592
 593/*H:440
 594 * (v) Flushing (throwing away) page tables,
 595 *
 596 * The Guest has a hypercall to throw away the page tables: it's used when a
 597 * large number of mappings have been changed.
 598 */
 599void guest_pagetable_flush_user(struct lg_cpu *cpu)
 600{
 601        /* Drop the userspace part of the current page table. */
 602        flush_user_mappings(cpu->lg, cpu->cpu_pgd);
 603}
 604/*:*/
 605
 606/* We walk down the guest page tables to get a guest-physical address */
 607unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
 608{
 609        pgd_t gpgd;
 610        pte_t gpte;
 611#ifdef CONFIG_X86_PAE
 612        pmd_t gpmd;
 613#endif
 614        /* First step: get the top-level Guest page table entry. */
 615        gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
 616        /* Toplevel not present?  We can't map it in. */
 617        if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
 618                kill_guest(cpu, "Bad address %#lx", vaddr);
 619                return -1UL;
 620        }
 621
 622#ifdef CONFIG_X86_PAE
 623        gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
 624        if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
 625                kill_guest(cpu, "Bad address %#lx", vaddr);
 626        gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
 627#else
 628        gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
 629#endif
 630        if (!(pte_flags(gpte) & _PAGE_PRESENT))
 631                kill_guest(cpu, "Bad address %#lx", vaddr);
 632
 633        return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
 634}
 635
 636/*
 637 * We keep several page tables.  This is a simple routine to find the page
 638 * table (if any) corresponding to this top-level address the Guest has given
 639 * us.
 640 */
 641static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
 642{
 643        unsigned int i;
 644        for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
 645                if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
 646                        break;
 647        return i;
 648}
 649
 650/*H:435
 651 * And this is us, creating the new page directory.  If we really do
 652 * allocate a new one (and so the kernel parts are not there), we set
 653 * blank_pgdir.
 654 */
 655static unsigned int new_pgdir(struct lg_cpu *cpu,
 656                              unsigned long gpgdir,
 657                              int *blank_pgdir)
 658{
 659        unsigned int next;
 660#ifdef CONFIG_X86_PAE
 661        pmd_t *pmd_table;
 662#endif
 663
 664        /*
 665         * We pick one entry at random to throw out.  Choosing the Least
 666         * Recently Used might be better, but this is easy.
 667         */
 668        next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
 669        /* If it's never been allocated at all before, try now. */
 670        if (!cpu->lg->pgdirs[next].pgdir) {
 671                cpu->lg->pgdirs[next].pgdir =
 672                                        (pgd_t *)get_zeroed_page(GFP_KERNEL);
 673                /* If the allocation fails, just keep using the one we have */
 674                if (!cpu->lg->pgdirs[next].pgdir)
 675                        next = cpu->cpu_pgd;
 676                else {
 677#ifdef CONFIG_X86_PAE
 678                        /*
 679                         * In PAE mode, allocate a pmd page and populate the
 680                         * last pgd entry.
 681                         */
 682                        pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 683                        if (!pmd_table) {
 684                                free_page((long)cpu->lg->pgdirs[next].pgdir);
 685                                set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
 686                                next = cpu->cpu_pgd;
 687                        } else {
 688                                set_pgd(cpu->lg->pgdirs[next].pgdir +
 689                                        SWITCHER_PGD_INDEX,
 690                                        __pgd(__pa(pmd_table) | _PAGE_PRESENT));
 691                                /*
 692                                 * This is a blank page, so there are no kernel
 693                                 * mappings: caller must map the stack!
 694                                 */
 695                                *blank_pgdir = 1;
 696                        }
 697#else
 698                        *blank_pgdir = 1;
 699#endif
 700                }
 701        }
 702        /* Record which Guest toplevel this shadows. */
 703        cpu->lg->pgdirs[next].gpgdir = gpgdir;
 704        /* Release all the non-kernel mappings. */
 705        flush_user_mappings(cpu->lg, next);
 706
 707        return next;
 708}
 709
 710/*H:430
 711 * (iv) Switching page tables
 712 *
 713 * Now we've seen all the page table setting and manipulation, let's see
 714 * what happens when the Guest changes page tables (ie. changes the top-level
 715 * pgdir).  This occurs on almost every context switch.
 716 */
 717void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
 718{
 719        int newpgdir, repin = 0;
 720
 721        /* Look to see if we have this one already. */
 722        newpgdir = find_pgdir(cpu->lg, pgtable);
 723        /*
 724         * If not, we allocate or mug an existing one: if it's a fresh one,
 725         * repin gets set to 1.
 726         */
 727        if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
 728                newpgdir = new_pgdir(cpu, pgtable, &repin);
 729        /* Change the current pgd index to the new one. */
 730        cpu->cpu_pgd = newpgdir;
 731        /* If it was completely blank, we map in the Guest kernel stack */
 732        if (repin)
 733                pin_stack_pages(cpu);
 734}
 735
 736/*H:470
 737 * Finally, a routine which throws away everything: all PGD entries in all
 738 * the shadow page tables, including the Guest's kernel mappings.  This is used
 739 * when we destroy the Guest.
 740 */
 741static void release_all_pagetables(struct lguest *lg)
 742{
 743        unsigned int i, j;
 744
 745        /* Every shadow pagetable this Guest has */
 746        for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
 747                if (lg->pgdirs[i].pgdir) {
 748#ifdef CONFIG_X86_PAE
 749                        pgd_t *spgd;
 750                        pmd_t *pmdpage;
 751                        unsigned int k;
 752
 753                        /* Get the last pmd page. */
 754                        spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
 755                        pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
 756
 757                        /*
 758                         * And release the pmd entries of that pmd page,
 759                         * except for the switcher pmd.
 760                         */
 761                        for (k = 0; k < SWITCHER_PMD_INDEX; k++)
 762                                release_pmd(&pmdpage[k]);
 763#endif
 764                        /* Every PGD entry except the Switcher at the top */
 765                        for (j = 0; j < SWITCHER_PGD_INDEX; j++)
 766                                release_pgd(lg->pgdirs[i].pgdir + j);
 767                }
 768}
 769
 770/*
 771 * We also throw away everything when a Guest tells us it's changed a kernel
 772 * mapping.  Since kernel mappings are in every page table, it's easiest to
 773 * throw them all away.  This traps the Guest in amber for a while as
 774 * everything faults back in, but it's rare.
 775 */
 776void guest_pagetable_clear_all(struct lg_cpu *cpu)
 777{
 778        release_all_pagetables(cpu->lg);
 779        /* We need the Guest kernel stack mapped again. */
 780        pin_stack_pages(cpu);
 781}
 782/*:*/
 783
 784/*M:009
 785 * Since we throw away all mappings when a kernel mapping changes, our
 786 * performance sucks for guests using highmem.  In fact, a guest with
 787 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
 788 * usually slower than a Guest with less memory.
 789 *
 790 * This, of course, cannot be fixed.  It would take some kind of... well, I
 791 * don't know, but the term "puissant code-fu" comes to mind.
 792:*/
 793
 794/*H:420
 795 * This is the routine which actually sets the page table entry for then
 796 * "idx"'th shadow page table.
 797 *
 798 * Normally, we can just throw out the old entry and replace it with 0: if they
 799 * use it demand_page() will put the new entry in.  We need to do this anyway:
 800 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
 801 * is read from, and _PAGE_DIRTY when it's written to.
 802 *
 803 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
 804 * these bits on PTEs immediately anyway.  This is done to save the CPU from
 805 * having to update them, but it helps us the same way: if they set
 806 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
 807 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
 808 */
 809static void do_set_pte(struct lg_cpu *cpu, int idx,
 810                       unsigned long vaddr, pte_t gpte)
 811{
 812        /* Look up the matching shadow page directory entry. */
 813        pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
 814#ifdef CONFIG_X86_PAE
 815        pmd_t *spmd;
 816#endif
 817
 818        /* If the top level isn't present, there's no entry to update. */
 819        if (pgd_flags(*spgd) & _PAGE_PRESENT) {
 820#ifdef CONFIG_X86_PAE
 821                spmd = spmd_addr(cpu, *spgd, vaddr);
 822                if (pmd_flags(*spmd) & _PAGE_PRESENT) {
 823#endif
 824                        /* Otherwise, start by releasing the existing entry. */
 825                        pte_t *spte = spte_addr(cpu, *spgd, vaddr);
 826                        release_pte(*spte);
 827
 828                        /*
 829                         * If they're setting this entry as dirty or accessed,
 830                         * we might as well put that entry they've given us in
 831                         * now.  This shaves 10% off a copy-on-write
 832                         * micro-benchmark.
 833                         */
 834                        if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
 835                                check_gpte(cpu, gpte);
 836                                set_pte(spte,
 837                                        gpte_to_spte(cpu, gpte,
 838                                                pte_flags(gpte) & _PAGE_DIRTY));
 839                        } else {
 840                                /*
 841                                 * Otherwise kill it and we can demand_page()
 842                                 * it in later.
 843                                 */
 844                                set_pte(spte, __pte(0));
 845                        }
 846#ifdef CONFIG_X86_PAE
 847                }
 848#endif
 849        }
 850}
 851
 852/*H:410
 853 * Updating a PTE entry is a little trickier.
 854 *
 855 * We keep track of several different page tables (the Guest uses one for each
 856 * process, so it makes sense to cache at least a few).  Each of these have
 857 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
 858 * all processes.  So when the page table above that address changes, we update
 859 * all the page tables, not just the current one.  This is rare.
 860 *
 861 * The benefit is that when we have to track a new page table, we can keep all
 862 * the kernel mappings.  This speeds up context switch immensely.
 863 */
 864void guest_set_pte(struct lg_cpu *cpu,
 865                   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
 866{
 867        /*
 868         * Kernel mappings must be changed on all top levels.  Slow, but doesn't
 869         * happen often.
 870         */
 871        if (vaddr >= cpu->lg->kernel_address) {
 872                unsigned int i;
 873                for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
 874                        if (cpu->lg->pgdirs[i].pgdir)
 875                                do_set_pte(cpu, i, vaddr, gpte);
 876        } else {
 877                /* Is this page table one we have a shadow for? */
 878                int pgdir = find_pgdir(cpu->lg, gpgdir);
 879                if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
 880                        /* If so, do the update. */
 881                        do_set_pte(cpu, pgdir, vaddr, gpte);
 882        }
 883}
 884
 885/*H:400
 886 * (iii) Setting up a page table entry when the Guest tells us one has changed.
 887 *
 888 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
 889 * with the other side of page tables while we're here: what happens when the
 890 * Guest asks for a page table to be updated?
 891 *
 892 * We already saw that demand_page() will fill in the shadow page tables when
 893 * needed, so we can simply remove shadow page table entries whenever the Guest
 894 * tells us they've changed.  When the Guest tries to use the new entry it will
 895 * fault and demand_page() will fix it up.
 896 *
 897 * So with that in mind here's our code to update a (top-level) PGD entry:
 898 */
 899void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
 900{
 901        int pgdir;
 902
 903        if (idx >= SWITCHER_PGD_INDEX)
 904                return;
 905
 906        /* If they're talking about a page table we have a shadow for... */
 907        pgdir = find_pgdir(lg, gpgdir);
 908        if (pgdir < ARRAY_SIZE(lg->pgdirs))
 909                /* ... throw it away. */
 910                release_pgd(lg->pgdirs[pgdir].pgdir + idx);
 911}
 912
 913#ifdef CONFIG_X86_PAE
 914/* For setting a mid-level, we just throw everything away.  It's easy. */
 915void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
 916{
 917        guest_pagetable_clear_all(&lg->cpus[0]);
 918}
 919#endif
 920
 921/*H:505
 922 * To get through boot, we construct simple identity page mappings (which
 923 * set virtual == physical) and linear mappings which will get the Guest far
 924 * enough into the boot to create its own.  The linear mapping means we
 925 * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
 926 * as you'll see.
 927 *
 928 * We lay them out of the way, just below the initrd (which is why we need to
 929 * know its size here).
 930 */
 931static unsigned long setup_pagetables(struct lguest *lg,
 932                                      unsigned long mem,
 933                                      unsigned long initrd_size)
 934{
 935        pgd_t __user *pgdir;
 936        pte_t __user *linear;
 937        unsigned long mem_base = (unsigned long)lg->mem_base;
 938        unsigned int mapped_pages, i, linear_pages;
 939#ifdef CONFIG_X86_PAE
 940        pmd_t __user *pmds;
 941        unsigned int j;
 942        pgd_t pgd;
 943        pmd_t pmd;
 944#else
 945        unsigned int phys_linear;
 946#endif
 947
 948        /*
 949         * We have mapped_pages frames to map, so we need linear_pages page
 950         * tables to map them.
 951         */
 952        mapped_pages = mem / PAGE_SIZE;
 953        linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
 954
 955        /* We put the toplevel page directory page at the top of memory. */
 956        pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
 957
 958        /* Now we use the next linear_pages pages as pte pages */
 959        linear = (void *)pgdir - linear_pages * PAGE_SIZE;
 960
 961#ifdef CONFIG_X86_PAE
 962        /*
 963         * And the single mid page goes below that.  We only use one, but
 964         * that's enough to map 1G, which definitely gets us through boot.
 965         */
 966        pmds = (void *)linear - PAGE_SIZE;
 967#endif
 968        /*
 969         * Linear mapping is easy: put every page's address into the
 970         * mapping in order.
 971         */
 972        for (i = 0; i < mapped_pages; i++) {
 973                pte_t pte;
 974                pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
 975                if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
 976                        return -EFAULT;
 977        }
 978
 979#ifdef CONFIG_X86_PAE
 980        /*
 981         * Make the Guest PMD entries point to the corresponding place in the
 982         * linear mapping (up to one page worth of PMD).
 983         */
 984        for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
 985             i += PTRS_PER_PTE, j++) {
 986                pmd = pfn_pmd(((unsigned long)&linear[i] - mem_base)/PAGE_SIZE,
 987                              __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
 988
 989                if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
 990                        return -EFAULT;
 991        }
 992
 993        /* One PGD entry, pointing to that PMD page. */
 994        pgd = __pgd(((unsigned long)pmds - mem_base) | _PAGE_PRESENT);
 995        /* Copy it in as the first PGD entry (ie. addresses 0-1G). */
 996        if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
 997                return -EFAULT;
 998        /*
 999         * And the other PGD entry to make the linear mapping at PAGE_OFFSET
1000         */
1001        if (copy_to_user(&pgdir[KERNEL_PGD_BOUNDARY], &pgd, sizeof(pgd)))
1002                return -EFAULT;
1003#else
1004        /*
1005         * The top level points to the linear page table pages above.
1006         * We setup the identity and linear mappings here.
1007         */
1008        phys_linear = (unsigned long)linear - mem_base;
1009        for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
1010                pgd_t pgd;
1011                /*
1012                 * Create a PGD entry which points to the right part of the
1013                 * linear PTE pages.
1014                 */
1015                pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
1016                            (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
1017
1018                /*
1019                 * Copy it into the PGD page at 0 and PAGE_OFFSET.
1020                 */
1021                if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
1022                    || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
1023                                           + i / PTRS_PER_PTE],
1024                                    &pgd, sizeof(pgd)))
1025                        return -EFAULT;
1026        }
1027#endif
1028
1029        /*
1030         * We return the top level (guest-physical) address: we remember where
1031         * this is to write it into lguest_data when the Guest initializes.
1032         */
1033        return (unsigned long)pgdir - mem_base;
1034}
1035
1036/*H:500
1037 * (vii) Setting up the page tables initially.
1038 *
1039 * When a Guest is first created, the Launcher tells us where the toplevel of
1040 * its first page table is.  We set some things up here:
1041 */
1042int init_guest_pagetable(struct lguest *lg)
1043{
1044        u64 mem;
1045        u32 initrd_size;
1046        struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
1047#ifdef CONFIG_X86_PAE
1048        pgd_t *pgd;
1049        pmd_t *pmd_table;
1050#endif
1051        /*
1052         * Get the Guest memory size and the ramdisk size from the boot header
1053         * located at lg->mem_base (Guest address 0).
1054         */
1055        if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
1056            || get_user(initrd_size, &boot->hdr.ramdisk_size))
1057                return -EFAULT;
1058
1059        /*
1060         * We start on the first shadow page table, and give it a blank PGD
1061         * page.
1062         */
1063        lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
1064        if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
1065                return lg->pgdirs[0].gpgdir;
1066        lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
1067        if (!lg->pgdirs[0].pgdir)
1068                return -ENOMEM;
1069
1070#ifdef CONFIG_X86_PAE
1071        /* For PAE, we also create the initial mid-level. */
1072        pgd = lg->pgdirs[0].pgdir;
1073        pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
1074        if (!pmd_table)
1075                return -ENOMEM;
1076
1077        set_pgd(pgd + SWITCHER_PGD_INDEX,
1078                __pgd(__pa(pmd_table) | _PAGE_PRESENT));
1079#endif
1080
1081        /* This is the current page table. */
1082        lg->cpus[0].cpu_pgd = 0;
1083        return 0;
1084}
1085
1086/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
1087void page_table_guest_data_init(struct lg_cpu *cpu)
1088{
1089        /* We get the kernel address: above this is all kernel memory. */
1090        if (get_user(cpu->lg->kernel_address,
1091                &cpu->lg->lguest_data->kernel_address)
1092                /*
1093                 * We tell the Guest that it can't use the top 2 or 4 MB
1094                 * of virtual addresses used by the Switcher.
1095                 */
1096                || put_user(RESERVE_MEM * 1024 * 1024,
1097                        &cpu->lg->lguest_data->reserve_mem)
1098                || put_user(cpu->lg->pgdirs[0].gpgdir,
1099                        &cpu->lg->lguest_data->pgdir))
1100                kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1101
1102        /*
1103         * In flush_user_mappings() we loop from 0 to
1104         * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
1105         * Switcher mappings, so check that now.
1106         */
1107#ifdef CONFIG_X86_PAE
1108        if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
1109                pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
1110#else
1111        if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
1112#endif
1113                kill_guest(cpu, "bad kernel address %#lx",
1114                                 cpu->lg->kernel_address);
1115}
1116
1117/* When a Guest dies, our cleanup is fairly simple. */
1118void free_guest_pagetable(struct lguest *lg)
1119{
1120        unsigned int i;
1121
1122        /* Throw away all page table pages. */
1123        release_all_pagetables(lg);
1124        /* Now free the top levels: free_page() can handle 0 just fine. */
1125        for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1126                free_page((long)lg->pgdirs[i].pgdir);
1127}
1128
1129/*H:480
1130 * (vi) Mapping the Switcher when the Guest is about to run.
1131 *
1132 * The Switcher and the two pages for this CPU need to be visible in the
1133 * Guest (and not the pages for other CPUs).  We have the appropriate PTE pages
1134 * for each CPU already set up, we just need to hook them in now we know which
1135 * Guest is about to run on this CPU.
1136 */
1137void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1138{
1139        pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
1140        pte_t regs_pte;
1141
1142#ifdef CONFIG_X86_PAE
1143        pmd_t switcher_pmd;
1144        pmd_t *pmd_table;
1145
1146        switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
1147                               PAGE_KERNEL_EXEC);
1148
1149        /* Figure out where the pmd page is, by reading the PGD, and converting
1150         * it to a virtual address. */
1151        pmd_table = __va(pgd_pfn(cpu->lg->
1152                        pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
1153                                                                << PAGE_SHIFT);
1154        /* Now write it into the shadow page table. */
1155        set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
1156#else
1157        pgd_t switcher_pgd;
1158
1159        /*
1160         * Make the last PGD entry for this Guest point to the Switcher's PTE
1161         * page for this CPU (with appropriate flags).
1162         */
1163        switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
1164
1165        cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
1166
1167#endif
1168        /*
1169         * We also change the Switcher PTE page.  When we're running the Guest,
1170         * we want the Guest's "regs" page to appear where the first Switcher
1171         * page for this CPU is.  This is an optimization: when the Switcher
1172         * saves the Guest registers, it saves them into the first page of this
1173         * CPU's "struct lguest_pages": if we make sure the Guest's register
1174         * page is already mapped there, we don't have to copy them out
1175         * again.
1176         */
1177        regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
1178        set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
1179}
1180/*:*/
1181
1182static void free_switcher_pte_pages(void)
1183{
1184        unsigned int i;
1185
1186        for_each_possible_cpu(i)
1187                free_page((long)switcher_pte_page(i));
1188}
1189
1190/*H:520
1191 * Setting up the Switcher PTE page for given CPU is fairly easy, given
1192 * the CPU number and the "struct page"s for the Switcher code itself.
1193 *
1194 * Currently the Switcher is less than a page long, so "pages" is always 1.
1195 */
1196static __init void populate_switcher_pte_page(unsigned int cpu,
1197                                              struct page *switcher_page[],
1198                                              unsigned int pages)
1199{
1200        unsigned int i;
1201        pte_t *pte = switcher_pte_page(cpu);
1202
1203        /* The first entries are easy: they map the Switcher code. */
1204        for (i = 0; i < pages; i++) {
1205                set_pte(&pte[i], mk_pte(switcher_page[i],
1206                                __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1207        }
1208
1209        /* The only other thing we map is this CPU's pair of pages. */
1210        i = pages + cpu*2;
1211
1212        /* First page (Guest registers) is writable from the Guest */
1213        set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
1214                         __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
1215
1216        /*
1217         * The second page contains the "struct lguest_ro_state", and is
1218         * read-only.
1219         */
1220        set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
1221                           __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
1222}
1223
1224/*
1225 * We've made it through the page table code.  Perhaps our tired brains are
1226 * still processing the details, or perhaps we're simply glad it's over.
1227 *
1228 * If nothing else, note that all this complexity in juggling shadow page tables
1229 * in sync with the Guest's page tables is for one reason: for most Guests this
1230 * page table dance determines how bad performance will be.  This is why Xen
1231 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1232 * have implemented shadow page table support directly into hardware.
1233 *
1234 * There is just one file remaining in the Host.
1235 */
1236
1237/*H:510
1238 * At boot or module load time, init_pagetables() allocates and populates
1239 * the Switcher PTE page for each CPU.
1240 */
1241__init int init_pagetables(struct page **switcher_page, unsigned int pages)
1242{
1243        unsigned int i;
1244
1245        for_each_possible_cpu(i) {
1246                switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
1247                if (!switcher_pte_page(i)) {
1248                        free_switcher_pte_pages();
1249                        return -ENOMEM;
1250                }
1251                populate_switcher_pte_page(i, switcher_page, pages);
1252        }
1253        return 0;
1254}
1255/*:*/
1256
1257/* Cleaning up simply involves freeing the PTE page for each CPU. */
1258void free_pagetables(void)
1259{
1260        free_switcher_pte_pages();
1261}
1262