linux/drivers/macintosh/therm_pm72.c
<<
>>
Prefs
   1/*
   2 * Device driver for the thermostats & fan controller of  the
   3 * Apple G5 "PowerMac7,2" desktop machines.
   4 *
   5 * (c) Copyright IBM Corp. 2003-2004
   6 *
   7 * Maintained by: Benjamin Herrenschmidt
   8 *                <benh@kernel.crashing.org>
   9 * 
  10 *
  11 * The algorithm used is the PID control algorithm, used the same
  12 * way the published Darwin code does, using the same values that
  13 * are present in the Darwin 7.0 snapshot property lists.
  14 *
  15 * As far as the CPUs control loops are concerned, I use the
  16 * calibration & PID constants provided by the EEPROM,
  17 * I do _not_ embed any value from the property lists, as the ones
  18 * provided by Darwin 7.0 seem to always have an older version that
  19 * what I've seen on the actual computers.
  20 * It would be interesting to verify that though. Darwin has a
  21 * version code of 1.0.0d11 for all control loops it seems, while
  22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
  23 *
  24 * Darwin doesn't provide source to all parts, some missing
  25 * bits like the AppleFCU driver or the actual scale of some
  26 * of the values returned by sensors had to be "guessed" some
  27 * way... or based on what Open Firmware does.
  28 *
  29 * I didn't yet figure out how to get the slots power consumption
  30 * out of the FCU, so that part has not been implemented yet and
  31 * the slots fan is set to a fixed 50% PWM, hoping this value is
  32 * safe enough ...
  33 *
  34 * Note: I have observed strange oscillations of the CPU control
  35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
  36 * oscillates slowly (over several minutes) between the minimum
  37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
  38 * this, it could be some incorrect constant or an error in the
  39 * way I ported the algorithm, or it could be just normal. I
  40 * don't have full understanding on the way Apple tweaked the PID
  41 * algorithm for the CPU control, it is definitely not a standard
  42 * implementation...
  43 *
  44 * TODO:  - Check MPU structure version/signature
  45 *        - Add things like /sbin/overtemp for non-critical
  46 *          overtemp conditions so userland can take some policy
  47 *          decisions, like slewing down CPUs
  48 *        - Deal with fan and i2c failures in a better way
  49 *        - Maybe do a generic PID based on params used for
  50 *          U3 and Drives ? Definitely need to factor code a bit
  51 *          bettter... also make sensor detection more robust using
  52 *          the device-tree to probe for them
  53 *        - Figure out how to get the slots consumption and set the
  54 *          slots fan accordingly
  55 *
  56 * History:
  57 *
  58 *  Nov. 13, 2003 : 0.5
  59 *      - First release
  60 *
  61 *  Nov. 14, 2003 : 0.6
  62 *      - Read fan speed from FCU, low level fan routines now deal
  63 *        with errors & check fan status, though higher level don't
  64 *        do much.
  65 *      - Move a bunch of definitions to .h file
  66 *
  67 *  Nov. 18, 2003 : 0.7
  68 *      - Fix build on ppc64 kernel
  69 *      - Move back statics definitions to .c file
  70 *      - Avoid calling schedule_timeout with a negative number
  71 *
  72 *  Dec. 18, 2003 : 0.8
  73 *      - Fix typo when reading back fan speed on 2 CPU machines
  74 *
  75 *  Mar. 11, 2004 : 0.9
  76 *      - Rework code accessing the ADC chips, make it more robust and
  77 *        closer to the chip spec. Also make sure it is configured properly,
  78 *        I've seen yet unexplained cases where on startup, I would have stale
  79 *        values in the configuration register
  80 *      - Switch back to use of target fan speed for PID, thus lowering
  81 *        pressure on i2c
  82 *
  83 *  Oct. 20, 2004 : 1.1
  84 *      - Add device-tree lookup for fan IDs, should detect liquid cooling
  85 *        pumps when present
  86 *      - Enable driver for PowerMac7,3 machines
  87 *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
  88 *      - Add new CPU cooling algorithm for machines with liquid cooling
  89 *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
  90 *      - Fix a signed/unsigned compare issue in some PID loops
  91 *
  92 *  Mar. 10, 2005 : 1.2
  93 *      - Add basic support for Xserve G5
  94 *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
  95 *      - Use min/max macros here or there
  96 *      - Latest darwin updated U3H min fan speed to 20% PWM
  97 *
  98 *  July. 06, 2006 : 1.3
  99 *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
 100 *      - Add missing slots fan control loop for Xserve G5
 101 *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
 102 *        still can't properly implement the control loop for these, so let's
 103 *        reduce the noise a little bit, it appears that 40% still gives us
 104 *        a pretty good air flow
 105 *      - Add code to "tickle" the FCU regulary so it doesn't think that
 106 *        we are gone while in fact, the machine just didn't need any fan
 107 *        speed change lately
 108 *
 109 */
 110
 111#include <linux/types.h>
 112#include <linux/module.h>
 113#include <linux/errno.h>
 114#include <linux/kernel.h>
 115#include <linux/delay.h>
 116#include <linux/sched.h>
 117#include <linux/slab.h>
 118#include <linux/init.h>
 119#include <linux/spinlock.h>
 120#include <linux/wait.h>
 121#include <linux/reboot.h>
 122#include <linux/kmod.h>
 123#include <linux/i2c.h>
 124#include <linux/kthread.h>
 125#include <linux/mutex.h>
 126#include <linux/of_device.h>
 127#include <linux/of_platform.h>
 128#include <asm/prom.h>
 129#include <asm/machdep.h>
 130#include <asm/io.h>
 131#include <asm/system.h>
 132#include <asm/sections.h>
 133#include <asm/macio.h>
 134
 135#include "therm_pm72.h"
 136
 137#define VERSION "1.3"
 138
 139#undef DEBUG
 140
 141#ifdef DEBUG
 142#define DBG(args...)    printk(args)
 143#else
 144#define DBG(args...)    do { } while(0)
 145#endif
 146
 147
 148/*
 149 * Driver statics
 150 */
 151
 152static struct of_device *               of_dev;
 153static struct i2c_adapter *             u3_0;
 154static struct i2c_adapter *             u3_1;
 155static struct i2c_adapter *             k2;
 156static struct i2c_client *              fcu;
 157static struct cpu_pid_state             cpu_state[2];
 158static struct basckside_pid_params      backside_params;
 159static struct backside_pid_state        backside_state;
 160static struct drives_pid_state          drives_state;
 161static struct dimm_pid_state            dimms_state;
 162static struct slots_pid_state           slots_state;
 163static int                              state;
 164static int                              cpu_count;
 165static int                              cpu_pid_type;
 166static struct task_struct               *ctrl_task;
 167static struct completion                ctrl_complete;
 168static int                              critical_state;
 169static int                              rackmac;
 170static s32                              dimm_output_clamp;
 171static int                              fcu_rpm_shift;
 172static int                              fcu_tickle_ticks;
 173static DEFINE_MUTEX(driver_lock);
 174
 175/*
 176 * We have 3 types of CPU PID control. One is "split" old style control
 177 * for intake & exhaust fans, the other is "combined" control for both
 178 * CPUs that also deals with the pumps when present. To be "compatible"
 179 * with OS X at this point, we only use "COMBINED" on the machines that
 180 * are identified as having the pumps (though that identification is at
 181 * least dodgy). Ultimately, we could probably switch completely to this
 182 * algorithm provided we hack it to deal with the UP case
 183 */
 184#define CPU_PID_TYPE_SPLIT      0
 185#define CPU_PID_TYPE_COMBINED   1
 186#define CPU_PID_TYPE_RACKMAC    2
 187
 188/*
 189 * This table describes all fans in the FCU. The "id" and "type" values
 190 * are defaults valid for all earlier machines. Newer machines will
 191 * eventually override the table content based on the device-tree
 192 */
 193struct fcu_fan_table
 194{
 195        char*   loc;    /* location code */
 196        int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
 197        int     id;     /* id or -1 */
 198};
 199
 200#define FCU_FAN_RPM             0
 201#define FCU_FAN_PWM             1
 202
 203#define FCU_FAN_ABSENT_ID       -1
 204
 205#define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
 206
 207struct fcu_fan_table    fcu_fans[] = {
 208        [BACKSIDE_FAN_PWM_INDEX] = {
 209                .loc    = "BACKSIDE,SYS CTRLR FAN",
 210                .type   = FCU_FAN_PWM,
 211                .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
 212        },
 213        [DRIVES_FAN_RPM_INDEX] = {
 214                .loc    = "DRIVE BAY",
 215                .type   = FCU_FAN_RPM,
 216                .id     = DRIVES_FAN_RPM_DEFAULT_ID,
 217        },
 218        [SLOTS_FAN_PWM_INDEX] = {
 219                .loc    = "SLOT,PCI FAN",
 220                .type   = FCU_FAN_PWM,
 221                .id     = SLOTS_FAN_PWM_DEFAULT_ID,
 222        },
 223        [CPUA_INTAKE_FAN_RPM_INDEX] = {
 224                .loc    = "CPU A INTAKE",
 225                .type   = FCU_FAN_RPM,
 226                .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
 227        },
 228        [CPUA_EXHAUST_FAN_RPM_INDEX] = {
 229                .loc    = "CPU A EXHAUST",
 230                .type   = FCU_FAN_RPM,
 231                .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
 232        },
 233        [CPUB_INTAKE_FAN_RPM_INDEX] = {
 234                .loc    = "CPU B INTAKE",
 235                .type   = FCU_FAN_RPM,
 236                .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
 237        },
 238        [CPUB_EXHAUST_FAN_RPM_INDEX] = {
 239                .loc    = "CPU B EXHAUST",
 240                .type   = FCU_FAN_RPM,
 241                .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
 242        },
 243        /* pumps aren't present by default, have to be looked up in the
 244         * device-tree
 245         */
 246        [CPUA_PUMP_RPM_INDEX] = {
 247                .loc    = "CPU A PUMP",
 248                .type   = FCU_FAN_RPM,          
 249                .id     = FCU_FAN_ABSENT_ID,
 250        },
 251        [CPUB_PUMP_RPM_INDEX] = {
 252                .loc    = "CPU B PUMP",
 253                .type   = FCU_FAN_RPM,
 254                .id     = FCU_FAN_ABSENT_ID,
 255        },
 256        /* Xserve fans */
 257        [CPU_A1_FAN_RPM_INDEX] = {
 258                .loc    = "CPU A 1",
 259                .type   = FCU_FAN_RPM,
 260                .id     = FCU_FAN_ABSENT_ID,
 261        },
 262        [CPU_A2_FAN_RPM_INDEX] = {
 263                .loc    = "CPU A 2",
 264                .type   = FCU_FAN_RPM,
 265                .id     = FCU_FAN_ABSENT_ID,
 266        },
 267        [CPU_A3_FAN_RPM_INDEX] = {
 268                .loc    = "CPU A 3",
 269                .type   = FCU_FAN_RPM,
 270                .id     = FCU_FAN_ABSENT_ID,
 271        },
 272        [CPU_B1_FAN_RPM_INDEX] = {
 273                .loc    = "CPU B 1",
 274                .type   = FCU_FAN_RPM,
 275                .id     = FCU_FAN_ABSENT_ID,
 276        },
 277        [CPU_B2_FAN_RPM_INDEX] = {
 278                .loc    = "CPU B 2",
 279                .type   = FCU_FAN_RPM,
 280                .id     = FCU_FAN_ABSENT_ID,
 281        },
 282        [CPU_B3_FAN_RPM_INDEX] = {
 283                .loc    = "CPU B 3",
 284                .type   = FCU_FAN_RPM,
 285                .id     = FCU_FAN_ABSENT_ID,
 286        },
 287};
 288
 289static struct i2c_driver therm_pm72_driver;
 290
 291/*
 292 * Utility function to create an i2c_client structure and
 293 * attach it to one of u3 adapters
 294 */
 295static struct i2c_client *attach_i2c_chip(int id, const char *name)
 296{
 297        struct i2c_client *clt;
 298        struct i2c_adapter *adap;
 299        struct i2c_board_info info;
 300
 301        if (id & 0x200)
 302                adap = k2;
 303        else if (id & 0x100)
 304                adap = u3_1;
 305        else
 306                adap = u3_0;
 307        if (adap == NULL)
 308                return NULL;
 309
 310        memset(&info, 0, sizeof(struct i2c_board_info));
 311        info.addr = (id >> 1) & 0x7f;
 312        strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
 313        clt = i2c_new_device(adap, &info);
 314        if (!clt) {
 315                printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
 316                return NULL;
 317        }
 318
 319        /*
 320         * Let i2c-core delete that device on driver removal.
 321         * This is safe because i2c-core holds the core_lock mutex for us.
 322         */
 323        list_add_tail(&clt->detected, &therm_pm72_driver.clients);
 324        return clt;
 325}
 326
 327/*
 328 * Here are the i2c chip access wrappers
 329 */
 330
 331static void initialize_adc(struct cpu_pid_state *state)
 332{
 333        int rc;
 334        u8 buf[2];
 335
 336        /* Read ADC the configuration register and cache it. We
 337         * also make sure Config2 contains proper values, I've seen
 338         * cases where we got stale grabage in there, thus preventing
 339         * proper reading of conv. values
 340         */
 341
 342        /* Clear Config2 */
 343        buf[0] = 5;
 344        buf[1] = 0;
 345        i2c_master_send(state->monitor, buf, 2);
 346
 347        /* Read & cache Config1 */
 348        buf[0] = 1;
 349        rc = i2c_master_send(state->monitor, buf, 1);
 350        if (rc > 0) {
 351                rc = i2c_master_recv(state->monitor, buf, 1);
 352                if (rc > 0) {
 353                        state->adc_config = buf[0];
 354                        DBG("ADC config reg: %02x\n", state->adc_config);
 355                        /* Disable shutdown mode */
 356                        state->adc_config &= 0xfe;
 357                        buf[0] = 1;
 358                        buf[1] = state->adc_config;
 359                        rc = i2c_master_send(state->monitor, buf, 2);
 360                }
 361        }
 362        if (rc <= 0)
 363                printk(KERN_ERR "therm_pm72: Error reading ADC config"
 364                       " register !\n");
 365}
 366
 367static int read_smon_adc(struct cpu_pid_state *state, int chan)
 368{
 369        int rc, data, tries = 0;
 370        u8 buf[2];
 371
 372        for (;;) {
 373                /* Set channel */
 374                buf[0] = 1;
 375                buf[1] = (state->adc_config & 0x1f) | (chan << 5);
 376                rc = i2c_master_send(state->monitor, buf, 2);
 377                if (rc <= 0)
 378                        goto error;
 379                /* Wait for convertion */
 380                msleep(1);
 381                /* Switch to data register */
 382                buf[0] = 4;
 383                rc = i2c_master_send(state->monitor, buf, 1);
 384                if (rc <= 0)
 385                        goto error;
 386                /* Read result */
 387                rc = i2c_master_recv(state->monitor, buf, 2);
 388                if (rc < 0)
 389                        goto error;
 390                data = ((u16)buf[0]) << 8 | (u16)buf[1];
 391                return data >> 6;
 392        error:
 393                DBG("Error reading ADC, retrying...\n");
 394                if (++tries > 10) {
 395                        printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
 396                        return -1;
 397                }
 398                msleep(10);
 399        }
 400}
 401
 402static int read_lm87_reg(struct i2c_client * chip, int reg)
 403{
 404        int rc, tries = 0;
 405        u8 buf;
 406
 407        for (;;) {
 408                /* Set address */
 409                buf = (u8)reg;
 410                rc = i2c_master_send(chip, &buf, 1);
 411                if (rc <= 0)
 412                        goto error;
 413                rc = i2c_master_recv(chip, &buf, 1);
 414                if (rc <= 0)
 415                        goto error;
 416                return (int)buf;
 417        error:
 418                DBG("Error reading LM87, retrying...\n");
 419                if (++tries > 10) {
 420                        printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
 421                        return -1;
 422                }
 423                msleep(10);
 424        }
 425}
 426
 427static int fan_read_reg(int reg, unsigned char *buf, int nb)
 428{
 429        int tries, nr, nw;
 430
 431        buf[0] = reg;
 432        tries = 0;
 433        for (;;) {
 434                nw = i2c_master_send(fcu, buf, 1);
 435                if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 436                        break;
 437                msleep(10);
 438                ++tries;
 439        }
 440        if (nw <= 0) {
 441                printk(KERN_ERR "Failure writing address to FCU: %d", nw);
 442                return -EIO;
 443        }
 444        tries = 0;
 445        for (;;) {
 446                nr = i2c_master_recv(fcu, buf, nb);
 447                if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
 448                        break;
 449                msleep(10);
 450                ++tries;
 451        }
 452        if (nr <= 0)
 453                printk(KERN_ERR "Failure reading data from FCU: %d", nw);
 454        return nr;
 455}
 456
 457static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
 458{
 459        int tries, nw;
 460        unsigned char buf[16];
 461
 462        buf[0] = reg;
 463        memcpy(buf+1, ptr, nb);
 464        ++nb;
 465        tries = 0;
 466        for (;;) {
 467                nw = i2c_master_send(fcu, buf, nb);
 468                if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
 469                        break;
 470                msleep(10);
 471                ++tries;
 472        }
 473        if (nw < 0)
 474                printk(KERN_ERR "Failure writing to FCU: %d", nw);
 475        return nw;
 476}
 477
 478static int start_fcu(void)
 479{
 480        unsigned char buf = 0xff;
 481        int rc;
 482
 483        rc = fan_write_reg(0xe, &buf, 1);
 484        if (rc < 0)
 485                return -EIO;
 486        rc = fan_write_reg(0x2e, &buf, 1);
 487        if (rc < 0)
 488                return -EIO;
 489        rc = fan_read_reg(0, &buf, 1);
 490        if (rc < 0)
 491                return -EIO;
 492        fcu_rpm_shift = (buf == 1) ? 2 : 3;
 493        printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
 494               fcu_rpm_shift);
 495
 496        return 0;
 497}
 498
 499static int set_rpm_fan(int fan_index, int rpm)
 500{
 501        unsigned char buf[2];
 502        int rc, id, min, max;
 503
 504        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 505                return -EINVAL;
 506        id = fcu_fans[fan_index].id; 
 507        if (id == FCU_FAN_ABSENT_ID)
 508                return -EINVAL;
 509
 510        min = 2400 >> fcu_rpm_shift;
 511        max = 56000 >> fcu_rpm_shift;
 512
 513        if (rpm < min)
 514                rpm = min;
 515        else if (rpm > max)
 516                rpm = max;
 517        buf[0] = rpm >> (8 - fcu_rpm_shift);
 518        buf[1] = rpm << fcu_rpm_shift;
 519        rc = fan_write_reg(0x10 + (id * 2), buf, 2);
 520        if (rc < 0)
 521                return -EIO;
 522        return 0;
 523}
 524
 525static int get_rpm_fan(int fan_index, int programmed)
 526{
 527        unsigned char failure;
 528        unsigned char active;
 529        unsigned char buf[2];
 530        int rc, id, reg_base;
 531
 532        if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 533                return -EINVAL;
 534        id = fcu_fans[fan_index].id; 
 535        if (id == FCU_FAN_ABSENT_ID)
 536                return -EINVAL;
 537
 538        rc = fan_read_reg(0xb, &failure, 1);
 539        if (rc != 1)
 540                return -EIO;
 541        if ((failure & (1 << id)) != 0)
 542                return -EFAULT;
 543        rc = fan_read_reg(0xd, &active, 1);
 544        if (rc != 1)
 545                return -EIO;
 546        if ((active & (1 << id)) == 0)
 547                return -ENXIO;
 548
 549        /* Programmed value or real current speed */
 550        reg_base = programmed ? 0x10 : 0x11;
 551        rc = fan_read_reg(reg_base + (id * 2), buf, 2);
 552        if (rc != 2)
 553                return -EIO;
 554
 555        return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
 556}
 557
 558static int set_pwm_fan(int fan_index, int pwm)
 559{
 560        unsigned char buf[2];
 561        int rc, id;
 562
 563        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 564                return -EINVAL;
 565        id = fcu_fans[fan_index].id; 
 566        if (id == FCU_FAN_ABSENT_ID)
 567                return -EINVAL;
 568
 569        if (pwm < 10)
 570                pwm = 10;
 571        else if (pwm > 100)
 572                pwm = 100;
 573        pwm = (pwm * 2559) / 1000;
 574        buf[0] = pwm;
 575        rc = fan_write_reg(0x30 + (id * 2), buf, 1);
 576        if (rc < 0)
 577                return rc;
 578        return 0;
 579}
 580
 581static int get_pwm_fan(int fan_index)
 582{
 583        unsigned char failure;
 584        unsigned char active;
 585        unsigned char buf[2];
 586        int rc, id;
 587
 588        if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 589                return -EINVAL;
 590        id = fcu_fans[fan_index].id; 
 591        if (id == FCU_FAN_ABSENT_ID)
 592                return -EINVAL;
 593
 594        rc = fan_read_reg(0x2b, &failure, 1);
 595        if (rc != 1)
 596                return -EIO;
 597        if ((failure & (1 << id)) != 0)
 598                return -EFAULT;
 599        rc = fan_read_reg(0x2d, &active, 1);
 600        if (rc != 1)
 601                return -EIO;
 602        if ((active & (1 << id)) == 0)
 603                return -ENXIO;
 604
 605        /* Programmed value or real current speed */
 606        rc = fan_read_reg(0x30 + (id * 2), buf, 1);
 607        if (rc != 1)
 608                return -EIO;
 609
 610        return (buf[0] * 1000) / 2559;
 611}
 612
 613static void tickle_fcu(void)
 614{
 615        int pwm;
 616
 617        pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 618
 619        DBG("FCU Tickle, slots fan is: %d\n", pwm);
 620        if (pwm < 0)
 621                pwm = 100;
 622
 623        if (!rackmac) {
 624                pwm = SLOTS_FAN_DEFAULT_PWM;
 625        } else if (pwm < SLOTS_PID_OUTPUT_MIN)
 626                pwm = SLOTS_PID_OUTPUT_MIN;
 627
 628        /* That is hopefully enough to make the FCU happy */
 629        set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
 630}
 631
 632
 633/*
 634 * Utility routine to read the CPU calibration EEPROM data
 635 * from the device-tree
 636 */
 637static int read_eeprom(int cpu, struct mpu_data *out)
 638{
 639        struct device_node *np;
 640        char nodename[64];
 641        const u8 *data;
 642        int len;
 643
 644        /* prom.c routine for finding a node by path is a bit brain dead
 645         * and requires exact @xxx unit numbers. This is a bit ugly but
 646         * will work for these machines
 647         */
 648        sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
 649        np = of_find_node_by_path(nodename);
 650        if (np == NULL) {
 651                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
 652                return -ENODEV;
 653        }
 654        data = of_get_property(np, "cpuid", &len);
 655        if (data == NULL) {
 656                printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
 657                of_node_put(np);
 658                return -ENODEV;
 659        }
 660        memcpy(out, data, sizeof(struct mpu_data));
 661        of_node_put(np);
 662        
 663        return 0;
 664}
 665
 666static void fetch_cpu_pumps_minmax(void)
 667{
 668        struct cpu_pid_state *state0 = &cpu_state[0];
 669        struct cpu_pid_state *state1 = &cpu_state[1];
 670        u16 pump_min = 0, pump_max = 0xffff;
 671        u16 tmp[4];
 672
 673        /* Try to fetch pumps min/max infos from eeprom */
 674
 675        memcpy(&tmp, &state0->mpu.processor_part_num, 8);
 676        if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
 677                pump_min = max(pump_min, tmp[0]);
 678                pump_max = min(pump_max, tmp[1]);
 679        }
 680        if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
 681                pump_min = max(pump_min, tmp[2]);
 682                pump_max = min(pump_max, tmp[3]);
 683        }
 684
 685        /* Double check the values, this _IS_ needed as the EEPROM on
 686         * some dual 2.5Ghz G5s seem, at least, to have both min & max
 687         * same to the same value ... (grrrr)
 688         */
 689        if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
 690                pump_min = CPU_PUMP_OUTPUT_MIN;
 691                pump_max = CPU_PUMP_OUTPUT_MAX;
 692        }
 693
 694        state0->pump_min = state1->pump_min = pump_min;
 695        state0->pump_max = state1->pump_max = pump_max;
 696}
 697
 698/* 
 699 * Now, unfortunately, sysfs doesn't give us a nice void * we could
 700 * pass around to the attribute functions, so we don't really have
 701 * choice but implement a bunch of them...
 702 *
 703 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
 704 * the input twice... I accept patches :)
 705 */
 706#define BUILD_SHOW_FUNC_FIX(name, data)                         \
 707static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 708{                                                               \
 709        ssize_t r;                                              \
 710        mutex_lock(&driver_lock);                                       \
 711        r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
 712        mutex_unlock(&driver_lock);                                     \
 713        return r;                                               \
 714}
 715#define BUILD_SHOW_FUNC_INT(name, data)                         \
 716static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
 717{                                                               \
 718        return sprintf(buf, "%d", data);                        \
 719}
 720
 721BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
 722BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
 723BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
 724BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
 725BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
 726
 727BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
 728BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
 729BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
 730BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
 731BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
 732
 733BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
 734BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
 735
 736BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
 737BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
 738
 739BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
 740BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
 741
 742BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
 743
 744static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
 745static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
 746static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
 747static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
 748static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
 749
 750static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
 751static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
 752static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
 753static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
 754static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
 755
 756static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
 757static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
 758
 759static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
 760static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
 761
 762static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
 763static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
 764
 765static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
 766
 767/*
 768 * CPUs fans control loop
 769 */
 770
 771static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
 772{
 773        s32 ltemp, volts, amps;
 774        int index, rc = 0;
 775
 776        /* Default (in case of error) */
 777        *temp = state->cur_temp;
 778        *power = state->cur_power;
 779
 780        if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
 781                index = (state->index == 0) ?
 782                        CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
 783        else
 784                index = (state->index == 0) ?
 785                        CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
 786
 787        /* Read current fan status */
 788        rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
 789        if (rc < 0) {
 790                /* XXX What do we do now ? Nothing for now, keep old value, but
 791                 * return error upstream
 792                 */
 793                DBG("  cpu %d, fan reading error !\n", state->index);
 794        } else {
 795                state->rpm = rc;
 796                DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
 797        }
 798
 799        /* Get some sensor readings and scale it */
 800        ltemp = read_smon_adc(state, 1);
 801        if (ltemp == -1) {
 802                /* XXX What do we do now ? */
 803                state->overtemp++;
 804                if (rc == 0)
 805                        rc = -EIO;
 806                DBG("  cpu %d, temp reading error !\n", state->index);
 807        } else {
 808                /* Fixup temperature according to diode calibration
 809                 */
 810                DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
 811                    state->index,
 812                    ltemp, state->mpu.mdiode, state->mpu.bdiode);
 813                *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
 814                state->last_temp = *temp;
 815                DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
 816        }
 817
 818        /*
 819         * Read voltage & current and calculate power
 820         */
 821        volts = read_smon_adc(state, 3);
 822        amps = read_smon_adc(state, 4);
 823
 824        /* Scale voltage and current raw sensor values according to fixed scales
 825         * obtained in Darwin and calculate power from I and V
 826         */
 827        volts *= ADC_CPU_VOLTAGE_SCALE;
 828        amps *= ADC_CPU_CURRENT_SCALE;
 829        *power = (((u64)volts) * ((u64)amps)) >> 16;
 830        state->voltage = volts;
 831        state->current_a = amps;
 832        state->last_power = *power;
 833
 834        DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
 835            state->index, FIX32TOPRINT(state->current_a),
 836            FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
 837
 838        return 0;
 839}
 840
 841static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
 842{
 843        s32 power_target, integral, derivative, proportional, adj_in_target, sval;
 844        s64 integ_p, deriv_p, prop_p, sum; 
 845        int i;
 846
 847        /* Calculate power target value (could be done once for all)
 848         * and convert to a 16.16 fp number
 849         */
 850        power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
 851        DBG("  power target: %d.%03d, error: %d.%03d\n",
 852            FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
 853
 854        /* Store temperature and power in history array */
 855        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 856        state->temp_history[state->cur_temp] = temp;
 857        state->cur_power = (state->cur_power + 1) % state->count_power;
 858        state->power_history[state->cur_power] = power;
 859        state->error_history[state->cur_power] = power_target - power;
 860        
 861        /* If first loop, fill the history table */
 862        if (state->first) {
 863                for (i = 0; i < (state->count_power - 1); i++) {
 864                        state->cur_power = (state->cur_power + 1) % state->count_power;
 865                        state->power_history[state->cur_power] = power;
 866                        state->error_history[state->cur_power] = power_target - power;
 867                }
 868                for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
 869                        state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 870                        state->temp_history[state->cur_temp] = temp;                    
 871                }
 872                state->first = 0;
 873        }
 874
 875        /* Calculate the integral term normally based on the "power" values */
 876        sum = 0;
 877        integral = 0;
 878        for (i = 0; i < state->count_power; i++)
 879                integral += state->error_history[i];
 880        integral *= CPU_PID_INTERVAL;
 881        DBG("  integral: %08x\n", integral);
 882
 883        /* Calculate the adjusted input (sense value).
 884         *   G_r is 12.20
 885         *   integ is 16.16
 886         *   so the result is 28.36
 887         *
 888         * input target is mpu.ttarget, input max is mpu.tmax
 889         */
 890        integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
 891        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 892        sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
 893        adj_in_target = (state->mpu.ttarget << 16);
 894        if (adj_in_target > sval)
 895                adj_in_target = sval;
 896        DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
 897            state->mpu.ttarget);
 898
 899        /* Calculate the derivative term */
 900        derivative = state->temp_history[state->cur_temp] -
 901                state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
 902                                    % CPU_TEMP_HISTORY_SIZE];
 903        derivative /= CPU_PID_INTERVAL;
 904        deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
 905        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 906        sum += deriv_p;
 907
 908        /* Calculate the proportional term */
 909        proportional = temp - adj_in_target;
 910        prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
 911        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 912        sum += prop_p;
 913
 914        /* Scale sum */
 915        sum >>= 36;
 916
 917        DBG("   sum: %d\n", (int)sum);
 918        state->rpm += (s32)sum;
 919}
 920
 921static void do_monitor_cpu_combined(void)
 922{
 923        struct cpu_pid_state *state0 = &cpu_state[0];
 924        struct cpu_pid_state *state1 = &cpu_state[1];
 925        s32 temp0, power0, temp1, power1;
 926        s32 temp_combi, power_combi;
 927        int rc, intake, pump;
 928
 929        rc = do_read_one_cpu_values(state0, &temp0, &power0);
 930        if (rc < 0) {
 931                /* XXX What do we do now ? */
 932        }
 933        state1->overtemp = 0;
 934        rc = do_read_one_cpu_values(state1, &temp1, &power1);
 935        if (rc < 0) {
 936                /* XXX What do we do now ? */
 937        }
 938        if (state1->overtemp)
 939                state0->overtemp++;
 940
 941        temp_combi = max(temp0, temp1);
 942        power_combi = max(power0, power1);
 943
 944        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
 945         * full blown immediately and try to trigger a shutdown
 946         */
 947        if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
 948                printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
 949                       temp_combi >> 16);
 950                state0->overtemp += CPU_MAX_OVERTEMP / 4;
 951        } else if (temp_combi > (state0->mpu.tmax << 16))
 952                state0->overtemp++;
 953        else
 954                state0->overtemp = 0;
 955        if (state0->overtemp >= CPU_MAX_OVERTEMP)
 956                critical_state = 1;
 957        if (state0->overtemp > 0) {
 958                state0->rpm = state0->mpu.rmaxn_exhaust_fan;
 959                state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
 960                pump = state0->pump_max;
 961                goto do_set_fans;
 962        }
 963
 964        /* Do the PID */
 965        do_cpu_pid(state0, temp_combi, power_combi);
 966
 967        /* Range check */
 968        state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
 969        state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
 970
 971        /* Calculate intake fan speed */
 972        intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
 973        intake = max(intake, (int)state0->mpu.rminn_intake_fan);
 974        intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
 975        state0->intake_rpm = intake;
 976
 977        /* Calculate pump speed */
 978        pump = (state0->rpm * state0->pump_max) /
 979                state0->mpu.rmaxn_exhaust_fan;
 980        pump = min(pump, state0->pump_max);
 981        pump = max(pump, state0->pump_min);
 982        
 983 do_set_fans:
 984        /* We copy values from state 0 to state 1 for /sysfs */
 985        state1->rpm = state0->rpm;
 986        state1->intake_rpm = state0->intake_rpm;
 987
 988        DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
 989            state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
 990
 991        /* We should check for errors, shouldn't we ? But then, what
 992         * do we do once the error occurs ? For FCU notified fan
 993         * failures (-EFAULT) we probably want to notify userland
 994         * some way...
 995         */
 996        set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
 997        set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
 998        set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
 999        set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1000
1001        if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1002                set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1003        if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1004                set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1005}
1006
1007static void do_monitor_cpu_split(struct cpu_pid_state *state)
1008{
1009        s32 temp, power;
1010        int rc, intake;
1011
1012        /* Read current fan status */
1013        rc = do_read_one_cpu_values(state, &temp, &power);
1014        if (rc < 0) {
1015                /* XXX What do we do now ? */
1016        }
1017
1018        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1019         * full blown immediately and try to trigger a shutdown
1020         */
1021        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1022                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1023                       " (%d) !\n",
1024                       state->index, temp >> 16);
1025                state->overtemp += CPU_MAX_OVERTEMP / 4;
1026        } else if (temp > (state->mpu.tmax << 16))
1027                state->overtemp++;
1028        else
1029                state->overtemp = 0;
1030        if (state->overtemp >= CPU_MAX_OVERTEMP)
1031                critical_state = 1;
1032        if (state->overtemp > 0) {
1033                state->rpm = state->mpu.rmaxn_exhaust_fan;
1034                state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1035                goto do_set_fans;
1036        }
1037
1038        /* Do the PID */
1039        do_cpu_pid(state, temp, power);
1040
1041        /* Range check */
1042        state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1043        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1044
1045        /* Calculate intake fan */
1046        intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1047        intake = max(intake, (int)state->mpu.rminn_intake_fan);
1048        intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1049        state->intake_rpm = intake;
1050
1051 do_set_fans:
1052        DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1053            state->index, (int)state->rpm, intake, state->overtemp);
1054
1055        /* We should check for errors, shouldn't we ? But then, what
1056         * do we do once the error occurs ? For FCU notified fan
1057         * failures (-EFAULT) we probably want to notify userland
1058         * some way...
1059         */
1060        if (state->index == 0) {
1061                set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1062                set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1063        } else {
1064                set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1065                set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1066        }
1067}
1068
1069static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1070{
1071        s32 temp, power, fan_min;
1072        int rc;
1073
1074        /* Read current fan status */
1075        rc = do_read_one_cpu_values(state, &temp, &power);
1076        if (rc < 0) {
1077                /* XXX What do we do now ? */
1078        }
1079
1080        /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1081         * full blown immediately and try to trigger a shutdown
1082         */
1083        if (temp >= ((state->mpu.tmax + 8) << 16)) {
1084                printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1085                       " (%d) !\n",
1086                       state->index, temp >> 16);
1087                state->overtemp = CPU_MAX_OVERTEMP / 4;
1088        } else if (temp > (state->mpu.tmax << 16))
1089                state->overtemp++;
1090        else
1091                state->overtemp = 0;
1092        if (state->overtemp >= CPU_MAX_OVERTEMP)
1093                critical_state = 1;
1094        if (state->overtemp > 0) {
1095                state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1096                goto do_set_fans;
1097        }
1098
1099        /* Do the PID */
1100        do_cpu_pid(state, temp, power);
1101
1102        /* Check clamp from dimms */
1103        fan_min = dimm_output_clamp;
1104        fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1105
1106        DBG(" CPU min mpu = %d, min dimm = %d\n",
1107            state->mpu.rminn_intake_fan, dimm_output_clamp);
1108
1109        state->rpm = max(state->rpm, (int)fan_min);
1110        state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1111        state->intake_rpm = state->rpm;
1112
1113 do_set_fans:
1114        DBG("** CPU %d RPM: %d overtemp: %d\n",
1115            state->index, (int)state->rpm, state->overtemp);
1116
1117        /* We should check for errors, shouldn't we ? But then, what
1118         * do we do once the error occurs ? For FCU notified fan
1119         * failures (-EFAULT) we probably want to notify userland
1120         * some way...
1121         */
1122        if (state->index == 0) {
1123                set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1124                set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1125                set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1126        } else {
1127                set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1128                set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1129                set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1130        }
1131}
1132
1133/*
1134 * Initialize the state structure for one CPU control loop
1135 */
1136static int init_cpu_state(struct cpu_pid_state *state, int index)
1137{
1138        int err;
1139
1140        state->index = index;
1141        state->first = 1;
1142        state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1143        state->overtemp = 0;
1144        state->adc_config = 0x00;
1145
1146
1147        if (index == 0)
1148                state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1149        else if (index == 1)
1150                state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1151        if (state->monitor == NULL)
1152                goto fail;
1153
1154        if (read_eeprom(index, &state->mpu))
1155                goto fail;
1156
1157        state->count_power = state->mpu.tguardband;
1158        if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1159                printk(KERN_WARNING "Warning ! too many power history slots\n");
1160                state->count_power = CPU_POWER_HISTORY_SIZE;
1161        }
1162        DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1163
1164        if (index == 0) {
1165                err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1166                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1167                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1168                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1169                err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1170        } else {
1171                err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1172                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1173                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1174                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1175                err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1176        }
1177        if (err)
1178                printk(KERN_WARNING "Failed to create some of the atribute"
1179                        "files for CPU %d\n", index);
1180
1181        return 0;
1182 fail:
1183        state->monitor = NULL;
1184        
1185        return -ENODEV;
1186}
1187
1188/*
1189 * Dispose of the state data for one CPU control loop
1190 */
1191static void dispose_cpu_state(struct cpu_pid_state *state)
1192{
1193        if (state->monitor == NULL)
1194                return;
1195
1196        if (state->index == 0) {
1197                device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1198                device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1199                device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1200                device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1201                device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1202        } else {
1203                device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1204                device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1205                device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1206                device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1207                device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1208        }
1209
1210        state->monitor = NULL;
1211}
1212
1213/*
1214 * Motherboard backside & U3 heatsink fan control loop
1215 */
1216static void do_monitor_backside(struct backside_pid_state *state)
1217{
1218        s32 temp, integral, derivative, fan_min;
1219        s64 integ_p, deriv_p, prop_p, sum; 
1220        int i, rc;
1221
1222        if (--state->ticks != 0)
1223                return;
1224        state->ticks = backside_params.interval;
1225
1226        DBG("backside:\n");
1227
1228        /* Check fan status */
1229        rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1230        if (rc < 0) {
1231                printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1232                /* XXX What do we do now ? */
1233        } else
1234                state->pwm = rc;
1235        DBG("  current pwm: %d\n", state->pwm);
1236
1237        /* Get some sensor readings */
1238        temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1239        state->last_temp = temp;
1240        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1241            FIX32TOPRINT(backside_params.input_target));
1242
1243        /* Store temperature and error in history array */
1244        state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1245        state->sample_history[state->cur_sample] = temp;
1246        state->error_history[state->cur_sample] = temp - backside_params.input_target;
1247        
1248        /* If first loop, fill the history table */
1249        if (state->first) {
1250                for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1251                        state->cur_sample = (state->cur_sample + 1) %
1252                                BACKSIDE_PID_HISTORY_SIZE;
1253                        state->sample_history[state->cur_sample] = temp;
1254                        state->error_history[state->cur_sample] =
1255                                temp - backside_params.input_target;
1256                }
1257                state->first = 0;
1258        }
1259
1260        /* Calculate the integral term */
1261        sum = 0;
1262        integral = 0;
1263        for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1264                integral += state->error_history[i];
1265        integral *= backside_params.interval;
1266        DBG("  integral: %08x\n", integral);
1267        integ_p = ((s64)backside_params.G_r) * (s64)integral;
1268        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1269        sum += integ_p;
1270
1271        /* Calculate the derivative term */
1272        derivative = state->error_history[state->cur_sample] -
1273                state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1274                                    % BACKSIDE_PID_HISTORY_SIZE];
1275        derivative /= backside_params.interval;
1276        deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1277        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1278        sum += deriv_p;
1279
1280        /* Calculate the proportional term */
1281        prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1282        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1283        sum += prop_p;
1284
1285        /* Scale sum */
1286        sum >>= 36;
1287
1288        DBG("   sum: %d\n", (int)sum);
1289        if (backside_params.additive)
1290                state->pwm += (s32)sum;
1291        else
1292                state->pwm = sum;
1293
1294        /* Check for clamp */
1295        fan_min = (dimm_output_clamp * 100) / 14000;
1296        fan_min = max(fan_min, backside_params.output_min);
1297
1298        state->pwm = max(state->pwm, fan_min);
1299        state->pwm = min(state->pwm, backside_params.output_max);
1300
1301        DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1302        set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1303}
1304
1305/*
1306 * Initialize the state structure for the backside fan control loop
1307 */
1308static int init_backside_state(struct backside_pid_state *state)
1309{
1310        struct device_node *u3;
1311        int u3h = 1; /* conservative by default */
1312        int err;
1313
1314        /*
1315         * There are different PID params for machines with U3 and machines
1316         * with U3H, pick the right ones now
1317         */
1318        u3 = of_find_node_by_path("/u3@0,f8000000");
1319        if (u3 != NULL) {
1320                const u32 *vers = of_get_property(u3, "device-rev", NULL);
1321                if (vers)
1322                        if (((*vers) & 0x3f) < 0x34)
1323                                u3h = 0;
1324                of_node_put(u3);
1325        }
1326
1327        if (rackmac) {
1328                backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1329                backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1330                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1331                backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1332                backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1333                backside_params.G_r = BACKSIDE_PID_G_r;
1334                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1335                backside_params.additive = 0;
1336        } else if (u3h) {
1337                backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1338                backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1339                backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1340                backside_params.interval = BACKSIDE_PID_INTERVAL;
1341                backside_params.G_p = BACKSIDE_PID_G_p;
1342                backside_params.G_r = BACKSIDE_PID_G_r;
1343                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1344                backside_params.additive = 1;
1345        } else {
1346                backside_params.G_d = BACKSIDE_PID_U3_G_d;
1347                backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1348                backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1349                backside_params.interval = BACKSIDE_PID_INTERVAL;
1350                backside_params.G_p = BACKSIDE_PID_G_p;
1351                backside_params.G_r = BACKSIDE_PID_G_r;
1352                backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1353                backside_params.additive = 1;
1354        }
1355
1356        state->ticks = 1;
1357        state->first = 1;
1358        state->pwm = 50;
1359
1360        state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1361        if (state->monitor == NULL)
1362                return -ENODEV;
1363
1364        err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1365        err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1366        if (err)
1367                printk(KERN_WARNING "Failed to create attribute file(s)"
1368                        " for backside fan\n");
1369
1370        return 0;
1371}
1372
1373/*
1374 * Dispose of the state data for the backside control loop
1375 */
1376static void dispose_backside_state(struct backside_pid_state *state)
1377{
1378        if (state->monitor == NULL)
1379                return;
1380
1381        device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1382        device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1383
1384        state->monitor = NULL;
1385}
1386 
1387/*
1388 * Drives bay fan control loop
1389 */
1390static void do_monitor_drives(struct drives_pid_state *state)
1391{
1392        s32 temp, integral, derivative;
1393        s64 integ_p, deriv_p, prop_p, sum; 
1394        int i, rc;
1395
1396        if (--state->ticks != 0)
1397                return;
1398        state->ticks = DRIVES_PID_INTERVAL;
1399
1400        DBG("drives:\n");
1401
1402        /* Check fan status */
1403        rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1404        if (rc < 0) {
1405                printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1406                /* XXX What do we do now ? */
1407        } else
1408                state->rpm = rc;
1409        DBG("  current rpm: %d\n", state->rpm);
1410
1411        /* Get some sensor readings */
1412        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1413                                                    DS1775_TEMP)) << 8;
1414        state->last_temp = temp;
1415        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1416            FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1417
1418        /* Store temperature and error in history array */
1419        state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1420        state->sample_history[state->cur_sample] = temp;
1421        state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1422        
1423        /* If first loop, fill the history table */
1424        if (state->first) {
1425                for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1426                        state->cur_sample = (state->cur_sample + 1) %
1427                                DRIVES_PID_HISTORY_SIZE;
1428                        state->sample_history[state->cur_sample] = temp;
1429                        state->error_history[state->cur_sample] =
1430                                temp - DRIVES_PID_INPUT_TARGET;
1431                }
1432                state->first = 0;
1433        }
1434
1435        /* Calculate the integral term */
1436        sum = 0;
1437        integral = 0;
1438        for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1439                integral += state->error_history[i];
1440        integral *= DRIVES_PID_INTERVAL;
1441        DBG("  integral: %08x\n", integral);
1442        integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1443        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1444        sum += integ_p;
1445
1446        /* Calculate the derivative term */
1447        derivative = state->error_history[state->cur_sample] -
1448                state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1449                                    % DRIVES_PID_HISTORY_SIZE];
1450        derivative /= DRIVES_PID_INTERVAL;
1451        deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1452        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1453        sum += deriv_p;
1454
1455        /* Calculate the proportional term */
1456        prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1457        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1458        sum += prop_p;
1459
1460        /* Scale sum */
1461        sum >>= 36;
1462
1463        DBG("   sum: %d\n", (int)sum);
1464        state->rpm += (s32)sum;
1465
1466        state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1467        state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1468
1469        DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1470        set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1471}
1472
1473/*
1474 * Initialize the state structure for the drives bay fan control loop
1475 */
1476static int init_drives_state(struct drives_pid_state *state)
1477{
1478        int err;
1479
1480        state->ticks = 1;
1481        state->first = 1;
1482        state->rpm = 1000;
1483
1484        state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1485        if (state->monitor == NULL)
1486                return -ENODEV;
1487
1488        err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1489        err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1490        if (err)
1491                printk(KERN_WARNING "Failed to create attribute file(s)"
1492                        " for drives bay fan\n");
1493
1494        return 0;
1495}
1496
1497/*
1498 * Dispose of the state data for the drives control loop
1499 */
1500static void dispose_drives_state(struct drives_pid_state *state)
1501{
1502        if (state->monitor == NULL)
1503                return;
1504
1505        device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1506        device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1507
1508        state->monitor = NULL;
1509}
1510
1511/*
1512 * DIMMs temp control loop
1513 */
1514static void do_monitor_dimms(struct dimm_pid_state *state)
1515{
1516        s32 temp, integral, derivative, fan_min;
1517        s64 integ_p, deriv_p, prop_p, sum;
1518        int i;
1519
1520        if (--state->ticks != 0)
1521                return;
1522        state->ticks = DIMM_PID_INTERVAL;
1523
1524        DBG("DIMM:\n");
1525
1526        DBG("  current value: %d\n", state->output);
1527
1528        temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1529        if (temp < 0)
1530                return;
1531        temp <<= 16;
1532        state->last_temp = temp;
1533        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1534            FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1535
1536        /* Store temperature and error in history array */
1537        state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1538        state->sample_history[state->cur_sample] = temp;
1539        state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1540
1541        /* If first loop, fill the history table */
1542        if (state->first) {
1543                for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1544                        state->cur_sample = (state->cur_sample + 1) %
1545                                DIMM_PID_HISTORY_SIZE;
1546                        state->sample_history[state->cur_sample] = temp;
1547                        state->error_history[state->cur_sample] =
1548                                temp - DIMM_PID_INPUT_TARGET;
1549                }
1550                state->first = 0;
1551        }
1552
1553        /* Calculate the integral term */
1554        sum = 0;
1555        integral = 0;
1556        for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1557                integral += state->error_history[i];
1558        integral *= DIMM_PID_INTERVAL;
1559        DBG("  integral: %08x\n", integral);
1560        integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1561        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1562        sum += integ_p;
1563
1564        /* Calculate the derivative term */
1565        derivative = state->error_history[state->cur_sample] -
1566                state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1567                                    % DIMM_PID_HISTORY_SIZE];
1568        derivative /= DIMM_PID_INTERVAL;
1569        deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1570        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1571        sum += deriv_p;
1572
1573        /* Calculate the proportional term */
1574        prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1575        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1576        sum += prop_p;
1577
1578        /* Scale sum */
1579        sum >>= 36;
1580
1581        DBG("   sum: %d\n", (int)sum);
1582        state->output = (s32)sum;
1583        state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1584        state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1585        dimm_output_clamp = state->output;
1586
1587        DBG("** DIMM clamp value: %d\n", (int)state->output);
1588
1589        /* Backside PID is only every 5 seconds, force backside fan clamping now */
1590        fan_min = (dimm_output_clamp * 100) / 14000;
1591        fan_min = max(fan_min, backside_params.output_min);
1592        if (backside_state.pwm < fan_min) {
1593                backside_state.pwm = fan_min;
1594                DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1595                set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1596        }
1597}
1598
1599/*
1600 * Initialize the state structure for the DIMM temp control loop
1601 */
1602static int init_dimms_state(struct dimm_pid_state *state)
1603{
1604        state->ticks = 1;
1605        state->first = 1;
1606        state->output = 4000;
1607
1608        state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1609        if (state->monitor == NULL)
1610                return -ENODEV;
1611
1612        if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1613                printk(KERN_WARNING "Failed to create attribute file"
1614                        " for DIMM temperature\n");
1615
1616        return 0;
1617}
1618
1619/*
1620 * Dispose of the state data for the DIMM control loop
1621 */
1622static void dispose_dimms_state(struct dimm_pid_state *state)
1623{
1624        if (state->monitor == NULL)
1625                return;
1626
1627        device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1628
1629        state->monitor = NULL;
1630}
1631
1632/*
1633 * Slots fan control loop
1634 */
1635static void do_monitor_slots(struct slots_pid_state *state)
1636{
1637        s32 temp, integral, derivative;
1638        s64 integ_p, deriv_p, prop_p, sum;
1639        int i, rc;
1640
1641        if (--state->ticks != 0)
1642                return;
1643        state->ticks = SLOTS_PID_INTERVAL;
1644
1645        DBG("slots:\n");
1646
1647        /* Check fan status */
1648        rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1649        if (rc < 0) {
1650                printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1651                /* XXX What do we do now ? */
1652        } else
1653                state->pwm = rc;
1654        DBG("  current pwm: %d\n", state->pwm);
1655
1656        /* Get some sensor readings */
1657        temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1658                                                    DS1775_TEMP)) << 8;
1659        state->last_temp = temp;
1660        DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1661            FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1662
1663        /* Store temperature and error in history array */
1664        state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1665        state->sample_history[state->cur_sample] = temp;
1666        state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1667
1668        /* If first loop, fill the history table */
1669        if (state->first) {
1670                for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1671                        state->cur_sample = (state->cur_sample + 1) %
1672                                SLOTS_PID_HISTORY_SIZE;
1673                        state->sample_history[state->cur_sample] = temp;
1674                        state->error_history[state->cur_sample] =
1675                                temp - SLOTS_PID_INPUT_TARGET;
1676                }
1677                state->first = 0;
1678        }
1679
1680        /* Calculate the integral term */
1681        sum = 0;
1682        integral = 0;
1683        for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1684                integral += state->error_history[i];
1685        integral *= SLOTS_PID_INTERVAL;
1686        DBG("  integral: %08x\n", integral);
1687        integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1688        DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1689        sum += integ_p;
1690
1691        /* Calculate the derivative term */
1692        derivative = state->error_history[state->cur_sample] -
1693                state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1694                                    % SLOTS_PID_HISTORY_SIZE];
1695        derivative /= SLOTS_PID_INTERVAL;
1696        deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1697        DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1698        sum += deriv_p;
1699
1700        /* Calculate the proportional term */
1701        prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1702        DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1703        sum += prop_p;
1704
1705        /* Scale sum */
1706        sum >>= 36;
1707
1708        DBG("   sum: %d\n", (int)sum);
1709        state->pwm = (s32)sum;
1710
1711        state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1712        state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1713
1714        DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1715        set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1716}
1717
1718/*
1719 * Initialize the state structure for the slots bay fan control loop
1720 */
1721static int init_slots_state(struct slots_pid_state *state)
1722{
1723        int err;
1724
1725        state->ticks = 1;
1726        state->first = 1;
1727        state->pwm = 50;
1728
1729        state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1730        if (state->monitor == NULL)
1731                return -ENODEV;
1732
1733        err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1734        err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1735        if (err)
1736                printk(KERN_WARNING "Failed to create attribute file(s)"
1737                        " for slots bay fan\n");
1738
1739        return 0;
1740}
1741
1742/*
1743 * Dispose of the state data for the slots control loop
1744 */
1745static void dispose_slots_state(struct slots_pid_state *state)
1746{
1747        if (state->monitor == NULL)
1748                return;
1749
1750        device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1751        device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1752
1753        state->monitor = NULL;
1754}
1755
1756
1757static int call_critical_overtemp(void)
1758{
1759        char *argv[] = { critical_overtemp_path, NULL };
1760        static char *envp[] = { "HOME=/",
1761                                "TERM=linux",
1762                                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1763                                NULL };
1764
1765        return call_usermodehelper(critical_overtemp_path,
1766                                   argv, envp, UMH_WAIT_EXEC);
1767}
1768
1769
1770/*
1771 * Here's the kernel thread that calls the various control loops
1772 */
1773static int main_control_loop(void *x)
1774{
1775        DBG("main_control_loop started\n");
1776
1777        mutex_lock(&driver_lock);
1778
1779        if (start_fcu() < 0) {
1780                printk(KERN_ERR "kfand: failed to start FCU\n");
1781                mutex_unlock(&driver_lock);
1782                goto out;
1783        }
1784
1785        /* Set the PCI fan once for now on non-RackMac */
1786        if (!rackmac)
1787                set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1788
1789        /* Initialize ADCs */
1790        initialize_adc(&cpu_state[0]);
1791        if (cpu_state[1].monitor != NULL)
1792                initialize_adc(&cpu_state[1]);
1793
1794        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1795
1796        mutex_unlock(&driver_lock);
1797
1798        while (state == state_attached) {
1799                unsigned long elapsed, start;
1800
1801                start = jiffies;
1802
1803                mutex_lock(&driver_lock);
1804
1805                /* Tickle the FCU just in case */
1806                if (--fcu_tickle_ticks < 0) {
1807                        fcu_tickle_ticks = FCU_TICKLE_TICKS;
1808                        tickle_fcu();
1809                }
1810
1811                /* First, we always calculate the new DIMMs state on an Xserve */
1812                if (rackmac)
1813                        do_monitor_dimms(&dimms_state);
1814
1815                /* Then, the CPUs */
1816                if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1817                        do_monitor_cpu_combined();
1818                else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1819                        do_monitor_cpu_rack(&cpu_state[0]);
1820                        if (cpu_state[1].monitor != NULL)
1821                                do_monitor_cpu_rack(&cpu_state[1]);
1822                        // better deal with UP
1823                } else {
1824                        do_monitor_cpu_split(&cpu_state[0]);
1825                        if (cpu_state[1].monitor != NULL)
1826                                do_monitor_cpu_split(&cpu_state[1]);
1827                        // better deal with UP
1828                }
1829                /* Then, the rest */
1830                do_monitor_backside(&backside_state);
1831                if (rackmac)
1832                        do_monitor_slots(&slots_state);
1833                else
1834                        do_monitor_drives(&drives_state);
1835                mutex_unlock(&driver_lock);
1836
1837                if (critical_state == 1) {
1838                        printk(KERN_WARNING "Temperature control detected a critical condition\n");
1839                        printk(KERN_WARNING "Attempting to shut down...\n");
1840                        if (call_critical_overtemp()) {
1841                                printk(KERN_WARNING "Can't call %s, power off now!\n",
1842                                       critical_overtemp_path);
1843                                machine_power_off();
1844                        }
1845                }
1846                if (critical_state > 0)
1847                        critical_state++;
1848                if (critical_state > MAX_CRITICAL_STATE) {
1849                        printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1850                        machine_power_off();
1851                }
1852
1853                // FIXME: Deal with signals
1854                elapsed = jiffies - start;
1855                if (elapsed < HZ)
1856                        schedule_timeout_interruptible(HZ - elapsed);
1857        }
1858
1859 out:
1860        DBG("main_control_loop ended\n");
1861
1862        ctrl_task = 0;
1863        complete_and_exit(&ctrl_complete, 0);
1864}
1865
1866/*
1867 * Dispose the control loops when tearing down
1868 */
1869static void dispose_control_loops(void)
1870{
1871        dispose_cpu_state(&cpu_state[0]);
1872        dispose_cpu_state(&cpu_state[1]);
1873        dispose_backside_state(&backside_state);
1874        dispose_drives_state(&drives_state);
1875        dispose_slots_state(&slots_state);
1876        dispose_dimms_state(&dimms_state);
1877}
1878
1879/*
1880 * Create the control loops. U3-0 i2c bus is up, so we can now
1881 * get to the various sensors
1882 */
1883static int create_control_loops(void)
1884{
1885        struct device_node *np;
1886
1887        /* Count CPUs from the device-tree, we don't care how many are
1888         * actually used by Linux
1889         */
1890        cpu_count = 0;
1891        for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1892                cpu_count++;
1893
1894        DBG("counted %d CPUs in the device-tree\n", cpu_count);
1895
1896        /* Decide the type of PID algorithm to use based on the presence of
1897         * the pumps, though that may not be the best way, that is good enough
1898         * for now
1899         */
1900        if (rackmac)
1901                cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1902        else if (machine_is_compatible("PowerMac7,3")
1903            && (cpu_count > 1)
1904            && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1905            && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1906                printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1907                cpu_pid_type = CPU_PID_TYPE_COMBINED;
1908        } else
1909                cpu_pid_type = CPU_PID_TYPE_SPLIT;
1910
1911        /* Create control loops for everything. If any fail, everything
1912         * fails
1913         */
1914        if (init_cpu_state(&cpu_state[0], 0))
1915                goto fail;
1916        if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1917                fetch_cpu_pumps_minmax();
1918
1919        if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1920                goto fail;
1921        if (init_backside_state(&backside_state))
1922                goto fail;
1923        if (rackmac && init_dimms_state(&dimms_state))
1924                goto fail;
1925        if (rackmac && init_slots_state(&slots_state))
1926                goto fail;
1927        if (!rackmac && init_drives_state(&drives_state))
1928                goto fail;
1929
1930        DBG("all control loops up !\n");
1931
1932        return 0;
1933        
1934 fail:
1935        DBG("failure creating control loops, disposing\n");
1936
1937        dispose_control_loops();
1938
1939        return -ENODEV;
1940}
1941
1942/*
1943 * Start the control loops after everything is up, that is create
1944 * the thread that will make them run
1945 */
1946static void start_control_loops(void)
1947{
1948        init_completion(&ctrl_complete);
1949
1950        ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1951}
1952
1953/*
1954 * Stop the control loops when tearing down
1955 */
1956static void stop_control_loops(void)
1957{
1958        if (ctrl_task)
1959                wait_for_completion(&ctrl_complete);
1960}
1961
1962/*
1963 * Attach to the i2c FCU after detecting U3-1 bus
1964 */
1965static int attach_fcu(void)
1966{
1967        fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1968        if (fcu == NULL)
1969                return -ENODEV;
1970
1971        DBG("FCU attached\n");
1972
1973        return 0;
1974}
1975
1976/*
1977 * Detach from the i2c FCU when tearing down
1978 */
1979static void detach_fcu(void)
1980{
1981        fcu = NULL;
1982}
1983
1984/*
1985 * Attach to the i2c controller. We probe the various chips based
1986 * on the device-tree nodes and build everything for the driver to
1987 * run, we then kick the driver monitoring thread
1988 */
1989static int therm_pm72_attach(struct i2c_adapter *adapter)
1990{
1991        mutex_lock(&driver_lock);
1992
1993        /* Check state */
1994        if (state == state_detached)
1995                state = state_attaching;
1996        if (state != state_attaching) {
1997                mutex_unlock(&driver_lock);
1998                return 0;
1999        }
2000
2001        /* Check if we are looking for one of these */
2002        if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2003                u3_0 = adapter;
2004                DBG("found U3-0\n");
2005                if (k2 || !rackmac)
2006                        if (create_control_loops())
2007                                u3_0 = NULL;
2008        } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2009                u3_1 = adapter;
2010                DBG("found U3-1, attaching FCU\n");
2011                if (attach_fcu())
2012                        u3_1 = NULL;
2013        } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2014                k2 = adapter;
2015                DBG("Found K2\n");
2016                if (u3_0 && rackmac)
2017                        if (create_control_loops())
2018                                k2 = NULL;
2019        }
2020        /* We got all we need, start control loops */
2021        if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2022                DBG("everything up, starting control loops\n");
2023                state = state_attached;
2024                start_control_loops();
2025        }
2026        mutex_unlock(&driver_lock);
2027
2028        return 0;
2029}
2030
2031static int therm_pm72_probe(struct i2c_client *client,
2032                            const struct i2c_device_id *id)
2033{
2034        /* Always succeed, the real work was done in therm_pm72_attach() */
2035        return 0;
2036}
2037
2038/*
2039 * Called when any of the devices which participates into thermal management
2040 * is going away.
2041 */
2042static int therm_pm72_remove(struct i2c_client *client)
2043{
2044        struct i2c_adapter *adapter = client->adapter;
2045
2046        mutex_lock(&driver_lock);
2047
2048        if (state != state_detached)
2049                state = state_detaching;
2050
2051        /* Stop control loops if any */
2052        DBG("stopping control loops\n");
2053        mutex_unlock(&driver_lock);
2054        stop_control_loops();
2055        mutex_lock(&driver_lock);
2056
2057        if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2058                DBG("lost U3-0, disposing control loops\n");
2059                dispose_control_loops();
2060                u3_0 = NULL;
2061        }
2062        
2063        if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2064                DBG("lost U3-1, detaching FCU\n");
2065                detach_fcu();
2066                u3_1 = NULL;
2067        }
2068        if (u3_0 == NULL && u3_1 == NULL)
2069                state = state_detached;
2070
2071        mutex_unlock(&driver_lock);
2072
2073        return 0;
2074}
2075
2076/*
2077 * i2c_driver structure to attach to the host i2c controller
2078 */
2079
2080static const struct i2c_device_id therm_pm72_id[] = {
2081        /*
2082         * Fake device name, thermal management is done by several
2083         * chips but we don't need to differentiate between them at
2084         * this point.
2085         */
2086        { "therm_pm72", 0 },
2087        { }
2088};
2089
2090static struct i2c_driver therm_pm72_driver = {
2091        .driver = {
2092                .name   = "therm_pm72",
2093        },
2094        .attach_adapter = therm_pm72_attach,
2095        .probe          = therm_pm72_probe,
2096        .remove         = therm_pm72_remove,
2097        .id_table       = therm_pm72_id,
2098};
2099
2100static int fan_check_loc_match(const char *loc, int fan)
2101{
2102        char    tmp[64];
2103        char    *c, *e;
2104
2105        strlcpy(tmp, fcu_fans[fan].loc, 64);
2106
2107        c = tmp;
2108        for (;;) {
2109                e = strchr(c, ',');
2110                if (e)
2111                        *e = 0;
2112                if (strcmp(loc, c) == 0)
2113                        return 1;
2114                if (e == NULL)
2115                        break;
2116                c = e + 1;
2117        }
2118        return 0;
2119}
2120
2121static void fcu_lookup_fans(struct device_node *fcu_node)
2122{
2123        struct device_node *np = NULL;
2124        int i;
2125
2126        /* The table is filled by default with values that are suitable
2127         * for the old machines without device-tree informations. We scan
2128         * the device-tree and override those values with whatever is
2129         * there
2130         */
2131
2132        DBG("Looking up FCU controls in device-tree...\n");
2133
2134        while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2135                int type = -1;
2136                const char *loc;
2137                const u32 *reg;
2138
2139                DBG(" control: %s, type: %s\n", np->name, np->type);
2140
2141                /* Detect control type */
2142                if (!strcmp(np->type, "fan-rpm-control") ||
2143                    !strcmp(np->type, "fan-rpm"))
2144                        type = FCU_FAN_RPM;
2145                if (!strcmp(np->type, "fan-pwm-control") ||
2146                    !strcmp(np->type, "fan-pwm"))
2147                        type = FCU_FAN_PWM;
2148                /* Only care about fans for now */
2149                if (type == -1)
2150                        continue;
2151
2152                /* Lookup for a matching location */
2153                loc = of_get_property(np, "location", NULL);
2154                reg = of_get_property(np, "reg", NULL);
2155                if (loc == NULL || reg == NULL)
2156                        continue;
2157                DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2158
2159                for (i = 0; i < FCU_FAN_COUNT; i++) {
2160                        int fan_id;
2161
2162                        if (!fan_check_loc_match(loc, i))
2163                                continue;
2164                        DBG(" location match, index: %d\n", i);
2165                        fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2166                        if (type != fcu_fans[i].type) {
2167                                printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2168                                       "in device-tree for %s\n", np->full_name);
2169                                break;
2170                        }
2171                        if (type == FCU_FAN_RPM)
2172                                fan_id = ((*reg) - 0x10) / 2;
2173                        else
2174                                fan_id = ((*reg) - 0x30) / 2;
2175                        if (fan_id > 7) {
2176                                printk(KERN_WARNING "therm_pm72: Can't parse "
2177                                       "fan ID in device-tree for %s\n", np->full_name);
2178                                break;
2179                        }
2180                        DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2181                        fcu_fans[i].id = fan_id;
2182                }
2183        }
2184
2185        /* Now dump the array */
2186        printk(KERN_INFO "Detected fan controls:\n");
2187        for (i = 0; i < FCU_FAN_COUNT; i++) {
2188                if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2189                        continue;
2190                printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2191                       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2192                       fcu_fans[i].id, fcu_fans[i].loc);
2193        }
2194}
2195
2196static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2197{
2198        state = state_detached;
2199
2200        /* Lookup the fans in the device tree */
2201        fcu_lookup_fans(dev->node);
2202
2203        /* Add the driver */
2204        return i2c_add_driver(&therm_pm72_driver);
2205}
2206
2207static int fcu_of_remove(struct of_device* dev)
2208{
2209        i2c_del_driver(&therm_pm72_driver);
2210
2211        return 0;
2212}
2213
2214static struct of_device_id fcu_match[] = 
2215{
2216        {
2217        .type           = "fcu",
2218        },
2219        {},
2220};
2221
2222static struct of_platform_driver fcu_of_platform_driver = 
2223{
2224        .name           = "temperature",
2225        .match_table    = fcu_match,
2226        .probe          = fcu_of_probe,
2227        .remove         = fcu_of_remove
2228};
2229
2230/*
2231 * Check machine type, attach to i2c controller
2232 */
2233static int __init therm_pm72_init(void)
2234{
2235        struct device_node *np;
2236
2237        rackmac = machine_is_compatible("RackMac3,1");
2238
2239        if (!machine_is_compatible("PowerMac7,2") &&
2240            !machine_is_compatible("PowerMac7,3") &&
2241            !rackmac)
2242                return -ENODEV;
2243
2244        printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2245
2246        np = of_find_node_by_type(NULL, "fcu");
2247        if (np == NULL) {
2248                /* Some machines have strangely broken device-tree */
2249                np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2250                if (np == NULL) {
2251                            printk(KERN_ERR "Can't find FCU in device-tree !\n");
2252                            return -ENODEV;
2253                }
2254        }
2255        of_dev = of_platform_device_create(np, "temperature", NULL);
2256        if (of_dev == NULL) {
2257                printk(KERN_ERR "Can't register FCU platform device !\n");
2258                return -ENODEV;
2259        }
2260
2261        of_register_platform_driver(&fcu_of_platform_driver);
2262        
2263        return 0;
2264}
2265
2266static void __exit therm_pm72_exit(void)
2267{
2268        of_unregister_platform_driver(&fcu_of_platform_driver);
2269
2270        if (of_dev)
2271                of_device_unregister(of_dev);
2272}
2273
2274module_init(therm_pm72_init);
2275module_exit(therm_pm72_exit);
2276
2277MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2278MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2279MODULE_LICENSE("GPL");
2280
2281