linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/completion.h>
  10#include <linux/err.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/bio.h>
  15#include <linux/blkdev.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/crypto.h>
  19#include <linux/workqueue.h>
  20#include <linux/backing-dev.h>
  21#include <asm/atomic.h>
  22#include <linux/scatterlist.h>
  23#include <asm/page.h>
  24#include <asm/unaligned.h>
  25
  26#include <linux/device-mapper.h>
  27
  28#define DM_MSG_PREFIX "crypt"
  29#define MESG_STR(x) x, sizeof(x)
  30
  31/*
  32 * context holding the current state of a multi-part conversion
  33 */
  34struct convert_context {
  35        struct completion restart;
  36        struct bio *bio_in;
  37        struct bio *bio_out;
  38        unsigned int offset_in;
  39        unsigned int offset_out;
  40        unsigned int idx_in;
  41        unsigned int idx_out;
  42        sector_t sector;
  43        atomic_t pending;
  44};
  45
  46/*
  47 * per bio private data
  48 */
  49struct dm_crypt_io {
  50        struct dm_target *target;
  51        struct bio *base_bio;
  52        struct work_struct work;
  53
  54        struct convert_context ctx;
  55
  56        atomic_t pending;
  57        int error;
  58        sector_t sector;
  59        struct dm_crypt_io *base_io;
  60};
  61
  62struct dm_crypt_request {
  63        struct convert_context *ctx;
  64        struct scatterlist sg_in;
  65        struct scatterlist sg_out;
  66};
  67
  68struct crypt_config;
  69
  70struct crypt_iv_operations {
  71        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  72                   const char *opts);
  73        void (*dtr)(struct crypt_config *cc);
  74        const char *(*status)(struct crypt_config *cc);
  75        int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
  76};
  77
  78/*
  79 * Crypt: maps a linear range of a block device
  80 * and encrypts / decrypts at the same time.
  81 */
  82enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
  83struct crypt_config {
  84        struct dm_dev *dev;
  85        sector_t start;
  86
  87        /*
  88         * pool for per bio private data, crypto requests and
  89         * encryption requeusts/buffer pages
  90         */
  91        mempool_t *io_pool;
  92        mempool_t *req_pool;
  93        mempool_t *page_pool;
  94        struct bio_set *bs;
  95
  96        struct workqueue_struct *io_queue;
  97        struct workqueue_struct *crypt_queue;
  98
  99        /*
 100         * crypto related data
 101         */
 102        struct crypt_iv_operations *iv_gen_ops;
 103        char *iv_mode;
 104        union {
 105                struct crypto_cipher *essiv_tfm;
 106                int benbi_shift;
 107        } iv_gen_private;
 108        sector_t iv_offset;
 109        unsigned int iv_size;
 110
 111        /*
 112         * Layout of each crypto request:
 113         *
 114         *   struct ablkcipher_request
 115         *      context
 116         *      padding
 117         *   struct dm_crypt_request
 118         *      padding
 119         *   IV
 120         *
 121         * The padding is added so that dm_crypt_request and the IV are
 122         * correctly aligned.
 123         */
 124        unsigned int dmreq_start;
 125        struct ablkcipher_request *req;
 126
 127        char cipher[CRYPTO_MAX_ALG_NAME];
 128        char chainmode[CRYPTO_MAX_ALG_NAME];
 129        struct crypto_ablkcipher *tfm;
 130        unsigned long flags;
 131        unsigned int key_size;
 132        u8 key[0];
 133};
 134
 135#define MIN_IOS        16
 136#define MIN_POOL_PAGES 32
 137#define MIN_BIO_PAGES  8
 138
 139static struct kmem_cache *_crypt_io_pool;
 140
 141static void clone_init(struct dm_crypt_io *, struct bio *);
 142static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 143
 144/*
 145 * Different IV generation algorithms:
 146 *
 147 * plain: the initial vector is the 32-bit little-endian version of the sector
 148 *        number, padded with zeros if necessary.
 149 *
 150 * essiv: "encrypted sector|salt initial vector", the sector number is
 151 *        encrypted with the bulk cipher using a salt as key. The salt
 152 *        should be derived from the bulk cipher's key via hashing.
 153 *
 154 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 155 *        (needed for LRW-32-AES and possible other narrow block modes)
 156 *
 157 * null: the initial vector is always zero.  Provides compatibility with
 158 *       obsolete loop_fish2 devices.  Do not use for new devices.
 159 *
 160 * plumb: unimplemented, see:
 161 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 162 */
 163
 164static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 165{
 166        memset(iv, 0, cc->iv_size);
 167        *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
 168
 169        return 0;
 170}
 171
 172static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 173                              const char *opts)
 174{
 175        struct crypto_cipher *essiv_tfm;
 176        struct crypto_hash *hash_tfm;
 177        struct hash_desc desc;
 178        struct scatterlist sg;
 179        unsigned int saltsize;
 180        u8 *salt;
 181        int err;
 182
 183        if (opts == NULL) {
 184                ti->error = "Digest algorithm missing for ESSIV mode";
 185                return -EINVAL;
 186        }
 187
 188        /* Hash the cipher key with the given hash algorithm */
 189        hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 190        if (IS_ERR(hash_tfm)) {
 191                ti->error = "Error initializing ESSIV hash";
 192                return PTR_ERR(hash_tfm);
 193        }
 194
 195        saltsize = crypto_hash_digestsize(hash_tfm);
 196        salt = kmalloc(saltsize, GFP_KERNEL);
 197        if (salt == NULL) {
 198                ti->error = "Error kmallocing salt storage in ESSIV";
 199                crypto_free_hash(hash_tfm);
 200                return -ENOMEM;
 201        }
 202
 203        sg_init_one(&sg, cc->key, cc->key_size);
 204        desc.tfm = hash_tfm;
 205        desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 206        err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
 207        crypto_free_hash(hash_tfm);
 208
 209        if (err) {
 210                ti->error = "Error calculating hash in ESSIV";
 211                kfree(salt);
 212                return err;
 213        }
 214
 215        /* Setup the essiv_tfm with the given salt */
 216        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 217        if (IS_ERR(essiv_tfm)) {
 218                ti->error = "Error allocating crypto tfm for ESSIV";
 219                kfree(salt);
 220                return PTR_ERR(essiv_tfm);
 221        }
 222        if (crypto_cipher_blocksize(essiv_tfm) !=
 223            crypto_ablkcipher_ivsize(cc->tfm)) {
 224                ti->error = "Block size of ESSIV cipher does "
 225                            "not match IV size of block cipher";
 226                crypto_free_cipher(essiv_tfm);
 227                kfree(salt);
 228                return -EINVAL;
 229        }
 230        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 231        if (err) {
 232                ti->error = "Failed to set key for ESSIV cipher";
 233                crypto_free_cipher(essiv_tfm);
 234                kfree(salt);
 235                return err;
 236        }
 237        kfree(salt);
 238
 239        cc->iv_gen_private.essiv_tfm = essiv_tfm;
 240        return 0;
 241}
 242
 243static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 244{
 245        crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
 246        cc->iv_gen_private.essiv_tfm = NULL;
 247}
 248
 249static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 250{
 251        memset(iv, 0, cc->iv_size);
 252        *(u64 *)iv = cpu_to_le64(sector);
 253        crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
 254        return 0;
 255}
 256
 257static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 258                              const char *opts)
 259{
 260        unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
 261        int log = ilog2(bs);
 262
 263        /* we need to calculate how far we must shift the sector count
 264         * to get the cipher block count, we use this shift in _gen */
 265
 266        if (1 << log != bs) {
 267                ti->error = "cypher blocksize is not a power of 2";
 268                return -EINVAL;
 269        }
 270
 271        if (log > 9) {
 272                ti->error = "cypher blocksize is > 512";
 273                return -EINVAL;
 274        }
 275
 276        cc->iv_gen_private.benbi_shift = 9 - log;
 277
 278        return 0;
 279}
 280
 281static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 282{
 283}
 284
 285static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 286{
 287        __be64 val;
 288
 289        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 290
 291        val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
 292        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 293
 294        return 0;
 295}
 296
 297static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
 298{
 299        memset(iv, 0, cc->iv_size);
 300
 301        return 0;
 302}
 303
 304static struct crypt_iv_operations crypt_iv_plain_ops = {
 305        .generator = crypt_iv_plain_gen
 306};
 307
 308static struct crypt_iv_operations crypt_iv_essiv_ops = {
 309        .ctr       = crypt_iv_essiv_ctr,
 310        .dtr       = crypt_iv_essiv_dtr,
 311        .generator = crypt_iv_essiv_gen
 312};
 313
 314static struct crypt_iv_operations crypt_iv_benbi_ops = {
 315        .ctr       = crypt_iv_benbi_ctr,
 316        .dtr       = crypt_iv_benbi_dtr,
 317        .generator = crypt_iv_benbi_gen
 318};
 319
 320static struct crypt_iv_operations crypt_iv_null_ops = {
 321        .generator = crypt_iv_null_gen
 322};
 323
 324static void crypt_convert_init(struct crypt_config *cc,
 325                               struct convert_context *ctx,
 326                               struct bio *bio_out, struct bio *bio_in,
 327                               sector_t sector)
 328{
 329        ctx->bio_in = bio_in;
 330        ctx->bio_out = bio_out;
 331        ctx->offset_in = 0;
 332        ctx->offset_out = 0;
 333        ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 334        ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 335        ctx->sector = sector + cc->iv_offset;
 336        init_completion(&ctx->restart);
 337}
 338
 339static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 340                                             struct ablkcipher_request *req)
 341{
 342        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 343}
 344
 345static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 346                                               struct dm_crypt_request *dmreq)
 347{
 348        return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 349}
 350
 351static int crypt_convert_block(struct crypt_config *cc,
 352                               struct convert_context *ctx,
 353                               struct ablkcipher_request *req)
 354{
 355        struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 356        struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 357        struct dm_crypt_request *dmreq;
 358        u8 *iv;
 359        int r = 0;
 360
 361        dmreq = dmreq_of_req(cc, req);
 362        iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
 363                         crypto_ablkcipher_alignmask(cc->tfm) + 1);
 364
 365        dmreq->ctx = ctx;
 366        sg_init_table(&dmreq->sg_in, 1);
 367        sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 368                    bv_in->bv_offset + ctx->offset_in);
 369
 370        sg_init_table(&dmreq->sg_out, 1);
 371        sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 372                    bv_out->bv_offset + ctx->offset_out);
 373
 374        ctx->offset_in += 1 << SECTOR_SHIFT;
 375        if (ctx->offset_in >= bv_in->bv_len) {
 376                ctx->offset_in = 0;
 377                ctx->idx_in++;
 378        }
 379
 380        ctx->offset_out += 1 << SECTOR_SHIFT;
 381        if (ctx->offset_out >= bv_out->bv_len) {
 382                ctx->offset_out = 0;
 383                ctx->idx_out++;
 384        }
 385
 386        if (cc->iv_gen_ops) {
 387                r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
 388                if (r < 0)
 389                        return r;
 390        }
 391
 392        ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 393                                     1 << SECTOR_SHIFT, iv);
 394
 395        if (bio_data_dir(ctx->bio_in) == WRITE)
 396                r = crypto_ablkcipher_encrypt(req);
 397        else
 398                r = crypto_ablkcipher_decrypt(req);
 399
 400        return r;
 401}
 402
 403static void kcryptd_async_done(struct crypto_async_request *async_req,
 404                               int error);
 405static void crypt_alloc_req(struct crypt_config *cc,
 406                            struct convert_context *ctx)
 407{
 408        if (!cc->req)
 409                cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 410        ablkcipher_request_set_tfm(cc->req, cc->tfm);
 411        ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
 412                                        CRYPTO_TFM_REQ_MAY_SLEEP,
 413                                        kcryptd_async_done,
 414                                        dmreq_of_req(cc, cc->req));
 415}
 416
 417/*
 418 * Encrypt / decrypt data from one bio to another one (can be the same one)
 419 */
 420static int crypt_convert(struct crypt_config *cc,
 421                         struct convert_context *ctx)
 422{
 423        int r;
 424
 425        atomic_set(&ctx->pending, 1);
 426
 427        while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 428              ctx->idx_out < ctx->bio_out->bi_vcnt) {
 429
 430                crypt_alloc_req(cc, ctx);
 431
 432                atomic_inc(&ctx->pending);
 433
 434                r = crypt_convert_block(cc, ctx, cc->req);
 435
 436                switch (r) {
 437                /* async */
 438                case -EBUSY:
 439                        wait_for_completion(&ctx->restart);
 440                        INIT_COMPLETION(ctx->restart);
 441                        /* fall through*/
 442                case -EINPROGRESS:
 443                        cc->req = NULL;
 444                        ctx->sector++;
 445                        continue;
 446
 447                /* sync */
 448                case 0:
 449                        atomic_dec(&ctx->pending);
 450                        ctx->sector++;
 451                        cond_resched();
 452                        continue;
 453
 454                /* error */
 455                default:
 456                        atomic_dec(&ctx->pending);
 457                        return r;
 458                }
 459        }
 460
 461        return 0;
 462}
 463
 464static void dm_crypt_bio_destructor(struct bio *bio)
 465{
 466        struct dm_crypt_io *io = bio->bi_private;
 467        struct crypt_config *cc = io->target->private;
 468
 469        bio_free(bio, cc->bs);
 470}
 471
 472/*
 473 * Generate a new unfragmented bio with the given size
 474 * This should never violate the device limitations
 475 * May return a smaller bio when running out of pages, indicated by
 476 * *out_of_pages set to 1.
 477 */
 478static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 479                                      unsigned *out_of_pages)
 480{
 481        struct crypt_config *cc = io->target->private;
 482        struct bio *clone;
 483        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 484        gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 485        unsigned i, len;
 486        struct page *page;
 487
 488        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 489        if (!clone)
 490                return NULL;
 491
 492        clone_init(io, clone);
 493        *out_of_pages = 0;
 494
 495        for (i = 0; i < nr_iovecs; i++) {
 496                page = mempool_alloc(cc->page_pool, gfp_mask);
 497                if (!page) {
 498                        *out_of_pages = 1;
 499                        break;
 500                }
 501
 502                /*
 503                 * if additional pages cannot be allocated without waiting,
 504                 * return a partially allocated bio, the caller will then try
 505                 * to allocate additional bios while submitting this partial bio
 506                 */
 507                if (i == (MIN_BIO_PAGES - 1))
 508                        gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
 509
 510                len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
 511
 512                if (!bio_add_page(clone, page, len, 0)) {
 513                        mempool_free(page, cc->page_pool);
 514                        break;
 515                }
 516
 517                size -= len;
 518        }
 519
 520        if (!clone->bi_size) {
 521                bio_put(clone);
 522                return NULL;
 523        }
 524
 525        return clone;
 526}
 527
 528static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
 529{
 530        unsigned int i;
 531        struct bio_vec *bv;
 532
 533        for (i = 0; i < clone->bi_vcnt; i++) {
 534                bv = bio_iovec_idx(clone, i);
 535                BUG_ON(!bv->bv_page);
 536                mempool_free(bv->bv_page, cc->page_pool);
 537                bv->bv_page = NULL;
 538        }
 539}
 540
 541static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
 542                                          struct bio *bio, sector_t sector)
 543{
 544        struct crypt_config *cc = ti->private;
 545        struct dm_crypt_io *io;
 546
 547        io = mempool_alloc(cc->io_pool, GFP_NOIO);
 548        io->target = ti;
 549        io->base_bio = bio;
 550        io->sector = sector;
 551        io->error = 0;
 552        io->base_io = NULL;
 553        atomic_set(&io->pending, 0);
 554
 555        return io;
 556}
 557
 558static void crypt_inc_pending(struct dm_crypt_io *io)
 559{
 560        atomic_inc(&io->pending);
 561}
 562
 563/*
 564 * One of the bios was finished. Check for completion of
 565 * the whole request and correctly clean up the buffer.
 566 * If base_io is set, wait for the last fragment to complete.
 567 */
 568static void crypt_dec_pending(struct dm_crypt_io *io)
 569{
 570        struct crypt_config *cc = io->target->private;
 571        struct bio *base_bio = io->base_bio;
 572        struct dm_crypt_io *base_io = io->base_io;
 573        int error = io->error;
 574
 575        if (!atomic_dec_and_test(&io->pending))
 576                return;
 577
 578        mempool_free(io, cc->io_pool);
 579
 580        if (likely(!base_io))
 581                bio_endio(base_bio, error);
 582        else {
 583                if (error && !base_io->error)
 584                        base_io->error = error;
 585                crypt_dec_pending(base_io);
 586        }
 587}
 588
 589/*
 590 * kcryptd/kcryptd_io:
 591 *
 592 * Needed because it would be very unwise to do decryption in an
 593 * interrupt context.
 594 *
 595 * kcryptd performs the actual encryption or decryption.
 596 *
 597 * kcryptd_io performs the IO submission.
 598 *
 599 * They must be separated as otherwise the final stages could be
 600 * starved by new requests which can block in the first stages due
 601 * to memory allocation.
 602 */
 603static void crypt_endio(struct bio *clone, int error)
 604{
 605        struct dm_crypt_io *io = clone->bi_private;
 606        struct crypt_config *cc = io->target->private;
 607        unsigned rw = bio_data_dir(clone);
 608
 609        if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
 610                error = -EIO;
 611
 612        /*
 613         * free the processed pages
 614         */
 615        if (rw == WRITE)
 616                crypt_free_buffer_pages(cc, clone);
 617
 618        bio_put(clone);
 619
 620        if (rw == READ && !error) {
 621                kcryptd_queue_crypt(io);
 622                return;
 623        }
 624
 625        if (unlikely(error))
 626                io->error = error;
 627
 628        crypt_dec_pending(io);
 629}
 630
 631static void clone_init(struct dm_crypt_io *io, struct bio *clone)
 632{
 633        struct crypt_config *cc = io->target->private;
 634
 635        clone->bi_private = io;
 636        clone->bi_end_io  = crypt_endio;
 637        clone->bi_bdev    = cc->dev->bdev;
 638        clone->bi_rw      = io->base_bio->bi_rw;
 639        clone->bi_destructor = dm_crypt_bio_destructor;
 640}
 641
 642static void kcryptd_io_read(struct dm_crypt_io *io)
 643{
 644        struct crypt_config *cc = io->target->private;
 645        struct bio *base_bio = io->base_bio;
 646        struct bio *clone;
 647
 648        crypt_inc_pending(io);
 649
 650        /*
 651         * The block layer might modify the bvec array, so always
 652         * copy the required bvecs because we need the original
 653         * one in order to decrypt the whole bio data *afterwards*.
 654         */
 655        clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
 656        if (unlikely(!clone)) {
 657                io->error = -ENOMEM;
 658                crypt_dec_pending(io);
 659                return;
 660        }
 661
 662        clone_init(io, clone);
 663        clone->bi_idx = 0;
 664        clone->bi_vcnt = bio_segments(base_bio);
 665        clone->bi_size = base_bio->bi_size;
 666        clone->bi_sector = cc->start + io->sector;
 667        memcpy(clone->bi_io_vec, bio_iovec(base_bio),
 668               sizeof(struct bio_vec) * clone->bi_vcnt);
 669
 670        generic_make_request(clone);
 671}
 672
 673static void kcryptd_io_write(struct dm_crypt_io *io)
 674{
 675        struct bio *clone = io->ctx.bio_out;
 676        generic_make_request(clone);
 677}
 678
 679static void kcryptd_io(struct work_struct *work)
 680{
 681        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
 682
 683        if (bio_data_dir(io->base_bio) == READ)
 684                kcryptd_io_read(io);
 685        else
 686                kcryptd_io_write(io);
 687}
 688
 689static void kcryptd_queue_io(struct dm_crypt_io *io)
 690{
 691        struct crypt_config *cc = io->target->private;
 692
 693        INIT_WORK(&io->work, kcryptd_io);
 694        queue_work(cc->io_queue, &io->work);
 695}
 696
 697static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
 698                                          int error, int async)
 699{
 700        struct bio *clone = io->ctx.bio_out;
 701        struct crypt_config *cc = io->target->private;
 702
 703        if (unlikely(error < 0)) {
 704                crypt_free_buffer_pages(cc, clone);
 705                bio_put(clone);
 706                io->error = -EIO;
 707                crypt_dec_pending(io);
 708                return;
 709        }
 710
 711        /* crypt_convert should have filled the clone bio */
 712        BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
 713
 714        clone->bi_sector = cc->start + io->sector;
 715
 716        if (async)
 717                kcryptd_queue_io(io);
 718        else
 719                generic_make_request(clone);
 720}
 721
 722static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
 723{
 724        struct crypt_config *cc = io->target->private;
 725        struct bio *clone;
 726        struct dm_crypt_io *new_io;
 727        int crypt_finished;
 728        unsigned out_of_pages = 0;
 729        unsigned remaining = io->base_bio->bi_size;
 730        sector_t sector = io->sector;
 731        int r;
 732
 733        /*
 734         * Prevent io from disappearing until this function completes.
 735         */
 736        crypt_inc_pending(io);
 737        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
 738
 739        /*
 740         * The allocated buffers can be smaller than the whole bio,
 741         * so repeat the whole process until all the data can be handled.
 742         */
 743        while (remaining) {
 744                clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
 745                if (unlikely(!clone)) {
 746                        io->error = -ENOMEM;
 747                        break;
 748                }
 749
 750                io->ctx.bio_out = clone;
 751                io->ctx.idx_out = 0;
 752
 753                remaining -= clone->bi_size;
 754                sector += bio_sectors(clone);
 755
 756                crypt_inc_pending(io);
 757                r = crypt_convert(cc, &io->ctx);
 758                crypt_finished = atomic_dec_and_test(&io->ctx.pending);
 759
 760                /* Encryption was already finished, submit io now */
 761                if (crypt_finished) {
 762                        kcryptd_crypt_write_io_submit(io, r, 0);
 763
 764                        /*
 765                         * If there was an error, do not try next fragments.
 766                         * For async, error is processed in async handler.
 767                         */
 768                        if (unlikely(r < 0))
 769                                break;
 770
 771                        io->sector = sector;
 772                }
 773
 774                /*
 775                 * Out of memory -> run queues
 776                 * But don't wait if split was due to the io size restriction
 777                 */
 778                if (unlikely(out_of_pages))
 779                        congestion_wait(BLK_RW_ASYNC, HZ/100);
 780
 781                /*
 782                 * With async crypto it is unsafe to share the crypto context
 783                 * between fragments, so switch to a new dm_crypt_io structure.
 784                 */
 785                if (unlikely(!crypt_finished && remaining)) {
 786                        new_io = crypt_io_alloc(io->target, io->base_bio,
 787                                                sector);
 788                        crypt_inc_pending(new_io);
 789                        crypt_convert_init(cc, &new_io->ctx, NULL,
 790                                           io->base_bio, sector);
 791                        new_io->ctx.idx_in = io->ctx.idx_in;
 792                        new_io->ctx.offset_in = io->ctx.offset_in;
 793
 794                        /*
 795                         * Fragments after the first use the base_io
 796                         * pending count.
 797                         */
 798                        if (!io->base_io)
 799                                new_io->base_io = io;
 800                        else {
 801                                new_io->base_io = io->base_io;
 802                                crypt_inc_pending(io->base_io);
 803                                crypt_dec_pending(io);
 804                        }
 805
 806                        io = new_io;
 807                }
 808        }
 809
 810        crypt_dec_pending(io);
 811}
 812
 813static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
 814{
 815        if (unlikely(error < 0))
 816                io->error = -EIO;
 817
 818        crypt_dec_pending(io);
 819}
 820
 821static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
 822{
 823        struct crypt_config *cc = io->target->private;
 824        int r = 0;
 825
 826        crypt_inc_pending(io);
 827
 828        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
 829                           io->sector);
 830
 831        r = crypt_convert(cc, &io->ctx);
 832
 833        if (atomic_dec_and_test(&io->ctx.pending))
 834                kcryptd_crypt_read_done(io, r);
 835
 836        crypt_dec_pending(io);
 837}
 838
 839static void kcryptd_async_done(struct crypto_async_request *async_req,
 840                               int error)
 841{
 842        struct dm_crypt_request *dmreq = async_req->data;
 843        struct convert_context *ctx = dmreq->ctx;
 844        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
 845        struct crypt_config *cc = io->target->private;
 846
 847        if (error == -EINPROGRESS) {
 848                complete(&ctx->restart);
 849                return;
 850        }
 851
 852        mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
 853
 854        if (!atomic_dec_and_test(&ctx->pending))
 855                return;
 856
 857        if (bio_data_dir(io->base_bio) == READ)
 858                kcryptd_crypt_read_done(io, error);
 859        else
 860                kcryptd_crypt_write_io_submit(io, error, 1);
 861}
 862
 863static void kcryptd_crypt(struct work_struct *work)
 864{
 865        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
 866
 867        if (bio_data_dir(io->base_bio) == READ)
 868                kcryptd_crypt_read_convert(io);
 869        else
 870                kcryptd_crypt_write_convert(io);
 871}
 872
 873static void kcryptd_queue_crypt(struct dm_crypt_io *io)
 874{
 875        struct crypt_config *cc = io->target->private;
 876
 877        INIT_WORK(&io->work, kcryptd_crypt);
 878        queue_work(cc->crypt_queue, &io->work);
 879}
 880
 881/*
 882 * Decode key from its hex representation
 883 */
 884static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
 885{
 886        char buffer[3];
 887        char *endp;
 888        unsigned int i;
 889
 890        buffer[2] = '\0';
 891
 892        for (i = 0; i < size; i++) {
 893                buffer[0] = *hex++;
 894                buffer[1] = *hex++;
 895
 896                key[i] = (u8)simple_strtoul(buffer, &endp, 16);
 897
 898                if (endp != &buffer[2])
 899                        return -EINVAL;
 900        }
 901
 902        if (*hex != '\0')
 903                return -EINVAL;
 904
 905        return 0;
 906}
 907
 908/*
 909 * Encode key into its hex representation
 910 */
 911static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
 912{
 913        unsigned int i;
 914
 915        for (i = 0; i < size; i++) {
 916                sprintf(hex, "%02x", *key);
 917                hex += 2;
 918                key++;
 919        }
 920}
 921
 922static int crypt_set_key(struct crypt_config *cc, char *key)
 923{
 924        unsigned key_size = strlen(key) >> 1;
 925
 926        if (cc->key_size && cc->key_size != key_size)
 927                return -EINVAL;
 928
 929        cc->key_size = key_size; /* initial settings */
 930
 931        if ((!key_size && strcmp(key, "-")) ||
 932           (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
 933                return -EINVAL;
 934
 935        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 936
 937        return 0;
 938}
 939
 940static int crypt_wipe_key(struct crypt_config *cc)
 941{
 942        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 943        memset(&cc->key, 0, cc->key_size * sizeof(u8));
 944        return 0;
 945}
 946
 947/*
 948 * Construct an encryption mapping:
 949 * <cipher> <key> <iv_offset> <dev_path> <start>
 950 */
 951static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
 952{
 953        struct crypt_config *cc;
 954        struct crypto_ablkcipher *tfm;
 955        char *tmp;
 956        char *cipher;
 957        char *chainmode;
 958        char *ivmode;
 959        char *ivopts;
 960        unsigned int key_size;
 961        unsigned long long tmpll;
 962
 963        if (argc != 5) {
 964                ti->error = "Not enough arguments";
 965                return -EINVAL;
 966        }
 967
 968        tmp = argv[0];
 969        cipher = strsep(&tmp, "-");
 970        chainmode = strsep(&tmp, "-");
 971        ivopts = strsep(&tmp, "-");
 972        ivmode = strsep(&ivopts, ":");
 973
 974        if (tmp)
 975                DMWARN("Unexpected additional cipher options");
 976
 977        key_size = strlen(argv[1]) >> 1;
 978
 979        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
 980        if (cc == NULL) {
 981                ti->error =
 982                        "Cannot allocate transparent encryption context";
 983                return -ENOMEM;
 984        }
 985
 986        if (crypt_set_key(cc, argv[1])) {
 987                ti->error = "Error decoding key";
 988                goto bad_cipher;
 989        }
 990
 991        /* Compatiblity mode for old dm-crypt cipher strings */
 992        if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
 993                chainmode = "cbc";
 994                ivmode = "plain";
 995        }
 996
 997        if (strcmp(chainmode, "ecb") && !ivmode) {
 998                ti->error = "This chaining mode requires an IV mechanism";
 999                goto bad_cipher;
1000        }
1001
1002        if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
1003                     chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
1004                ti->error = "Chain mode + cipher name is too long";
1005                goto bad_cipher;
1006        }
1007
1008        tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
1009        if (IS_ERR(tfm)) {
1010                ti->error = "Error allocating crypto tfm";
1011                goto bad_cipher;
1012        }
1013
1014        strcpy(cc->cipher, cipher);
1015        strcpy(cc->chainmode, chainmode);
1016        cc->tfm = tfm;
1017
1018        /*
1019         * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
1020         * See comments at iv code
1021         */
1022
1023        if (ivmode == NULL)
1024                cc->iv_gen_ops = NULL;
1025        else if (strcmp(ivmode, "plain") == 0)
1026                cc->iv_gen_ops = &crypt_iv_plain_ops;
1027        else if (strcmp(ivmode, "essiv") == 0)
1028                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1029        else if (strcmp(ivmode, "benbi") == 0)
1030                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1031        else if (strcmp(ivmode, "null") == 0)
1032                cc->iv_gen_ops = &crypt_iv_null_ops;
1033        else {
1034                ti->error = "Invalid IV mode";
1035                goto bad_ivmode;
1036        }
1037
1038        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
1039            cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
1040                goto bad_ivmode;
1041
1042        cc->iv_size = crypto_ablkcipher_ivsize(tfm);
1043        if (cc->iv_size)
1044                /* at least a 64 bit sector number should fit in our buffer */
1045                cc->iv_size = max(cc->iv_size,
1046                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1047        else {
1048                if (cc->iv_gen_ops) {
1049                        DMWARN("Selected cipher does not support IVs");
1050                        if (cc->iv_gen_ops->dtr)
1051                                cc->iv_gen_ops->dtr(cc);
1052                        cc->iv_gen_ops = NULL;
1053                }
1054        }
1055
1056        cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1057        if (!cc->io_pool) {
1058                ti->error = "Cannot allocate crypt io mempool";
1059                goto bad_slab_pool;
1060        }
1061
1062        cc->dmreq_start = sizeof(struct ablkcipher_request);
1063        cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
1064        cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1065        cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
1066                           ~(crypto_tfm_ctx_alignment() - 1);
1067
1068        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1069                        sizeof(struct dm_crypt_request) + cc->iv_size);
1070        if (!cc->req_pool) {
1071                ti->error = "Cannot allocate crypt request mempool";
1072                goto bad_req_pool;
1073        }
1074        cc->req = NULL;
1075
1076        cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1077        if (!cc->page_pool) {
1078                ti->error = "Cannot allocate page mempool";
1079                goto bad_page_pool;
1080        }
1081
1082        cc->bs = bioset_create(MIN_IOS, 0);
1083        if (!cc->bs) {
1084                ti->error = "Cannot allocate crypt bioset";
1085                goto bad_bs;
1086        }
1087
1088        if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1089                ti->error = "Error setting key";
1090                goto bad_device;
1091        }
1092
1093        if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1094                ti->error = "Invalid iv_offset sector";
1095                goto bad_device;
1096        }
1097        cc->iv_offset = tmpll;
1098
1099        if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1100                ti->error = "Invalid device sector";
1101                goto bad_device;
1102        }
1103        cc->start = tmpll;
1104
1105        if (dm_get_device(ti, argv[3], cc->start, ti->len,
1106                          dm_table_get_mode(ti->table), &cc->dev)) {
1107                ti->error = "Device lookup failed";
1108                goto bad_device;
1109        }
1110
1111        if (ivmode && cc->iv_gen_ops) {
1112                if (ivopts)
1113                        *(ivopts - 1) = ':';
1114                cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1115                if (!cc->iv_mode) {
1116                        ti->error = "Error kmallocing iv_mode string";
1117                        goto bad_ivmode_string;
1118                }
1119                strcpy(cc->iv_mode, ivmode);
1120        } else
1121                cc->iv_mode = NULL;
1122
1123        cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1124        if (!cc->io_queue) {
1125                ti->error = "Couldn't create kcryptd io queue";
1126                goto bad_io_queue;
1127        }
1128
1129        cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1130        if (!cc->crypt_queue) {
1131                ti->error = "Couldn't create kcryptd queue";
1132                goto bad_crypt_queue;
1133        }
1134
1135        ti->num_flush_requests = 1;
1136        ti->private = cc;
1137        return 0;
1138
1139bad_crypt_queue:
1140        destroy_workqueue(cc->io_queue);
1141bad_io_queue:
1142        kfree(cc->iv_mode);
1143bad_ivmode_string:
1144        dm_put_device(ti, cc->dev);
1145bad_device:
1146        bioset_free(cc->bs);
1147bad_bs:
1148        mempool_destroy(cc->page_pool);
1149bad_page_pool:
1150        mempool_destroy(cc->req_pool);
1151bad_req_pool:
1152        mempool_destroy(cc->io_pool);
1153bad_slab_pool:
1154        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1155                cc->iv_gen_ops->dtr(cc);
1156bad_ivmode:
1157        crypto_free_ablkcipher(tfm);
1158bad_cipher:
1159        /* Must zero key material before freeing */
1160        kzfree(cc);
1161        return -EINVAL;
1162}
1163
1164static void crypt_dtr(struct dm_target *ti)
1165{
1166        struct crypt_config *cc = (struct crypt_config *) ti->private;
1167
1168        destroy_workqueue(cc->io_queue);
1169        destroy_workqueue(cc->crypt_queue);
1170
1171        if (cc->req)
1172                mempool_free(cc->req, cc->req_pool);
1173
1174        bioset_free(cc->bs);
1175        mempool_destroy(cc->page_pool);
1176        mempool_destroy(cc->req_pool);
1177        mempool_destroy(cc->io_pool);
1178
1179        kfree(cc->iv_mode);
1180        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1181                cc->iv_gen_ops->dtr(cc);
1182        crypto_free_ablkcipher(cc->tfm);
1183        dm_put_device(ti, cc->dev);
1184
1185        /* Must zero key material before freeing */
1186        kzfree(cc);
1187}
1188
1189static int crypt_map(struct dm_target *ti, struct bio *bio,
1190                     union map_info *map_context)
1191{
1192        struct dm_crypt_io *io;
1193        struct crypt_config *cc;
1194
1195        if (unlikely(bio_empty_barrier(bio))) {
1196                cc = ti->private;
1197                bio->bi_bdev = cc->dev->bdev;
1198                return DM_MAPIO_REMAPPED;
1199        }
1200
1201        io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
1202
1203        if (bio_data_dir(io->base_bio) == READ)
1204                kcryptd_queue_io(io);
1205        else
1206                kcryptd_queue_crypt(io);
1207
1208        return DM_MAPIO_SUBMITTED;
1209}
1210
1211static int crypt_status(struct dm_target *ti, status_type_t type,
1212                        char *result, unsigned int maxlen)
1213{
1214        struct crypt_config *cc = (struct crypt_config *) ti->private;
1215        unsigned int sz = 0;
1216
1217        switch (type) {
1218        case STATUSTYPE_INFO:
1219                result[0] = '\0';
1220                break;
1221
1222        case STATUSTYPE_TABLE:
1223                if (cc->iv_mode)
1224                        DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1225                               cc->iv_mode);
1226                else
1227                        DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1228
1229                if (cc->key_size > 0) {
1230                        if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1231                                return -ENOMEM;
1232
1233                        crypt_encode_key(result + sz, cc->key, cc->key_size);
1234                        sz += cc->key_size << 1;
1235                } else {
1236                        if (sz >= maxlen)
1237                                return -ENOMEM;
1238                        result[sz++] = '-';
1239                }
1240
1241                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1242                                cc->dev->name, (unsigned long long)cc->start);
1243                break;
1244        }
1245        return 0;
1246}
1247
1248static void crypt_postsuspend(struct dm_target *ti)
1249{
1250        struct crypt_config *cc = ti->private;
1251
1252        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1253}
1254
1255static int crypt_preresume(struct dm_target *ti)
1256{
1257        struct crypt_config *cc = ti->private;
1258
1259        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1260                DMERR("aborting resume - crypt key is not set.");
1261                return -EAGAIN;
1262        }
1263
1264        return 0;
1265}
1266
1267static void crypt_resume(struct dm_target *ti)
1268{
1269        struct crypt_config *cc = ti->private;
1270
1271        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1272}
1273
1274/* Message interface
1275 *      key set <key>
1276 *      key wipe
1277 */
1278static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1279{
1280        struct crypt_config *cc = ti->private;
1281
1282        if (argc < 2)
1283                goto error;
1284
1285        if (!strnicmp(argv[0], MESG_STR("key"))) {
1286                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1287                        DMWARN("not suspended during key manipulation.");
1288                        return -EINVAL;
1289                }
1290                if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1291                        return crypt_set_key(cc, argv[2]);
1292                if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1293                        return crypt_wipe_key(cc);
1294        }
1295
1296error:
1297        DMWARN("unrecognised message received.");
1298        return -EINVAL;
1299}
1300
1301static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1302                       struct bio_vec *biovec, int max_size)
1303{
1304        struct crypt_config *cc = ti->private;
1305        struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1306
1307        if (!q->merge_bvec_fn)
1308                return max_size;
1309
1310        bvm->bi_bdev = cc->dev->bdev;
1311        bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
1312
1313        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1314}
1315
1316static int crypt_iterate_devices(struct dm_target *ti,
1317                                 iterate_devices_callout_fn fn, void *data)
1318{
1319        struct crypt_config *cc = ti->private;
1320
1321        return fn(ti, cc->dev, cc->start, ti->len, data);
1322}
1323
1324static struct target_type crypt_target = {
1325        .name   = "crypt",
1326        .version = {1, 7, 0},
1327        .module = THIS_MODULE,
1328        .ctr    = crypt_ctr,
1329        .dtr    = crypt_dtr,
1330        .map    = crypt_map,
1331        .status = crypt_status,
1332        .postsuspend = crypt_postsuspend,
1333        .preresume = crypt_preresume,
1334        .resume = crypt_resume,
1335        .message = crypt_message,
1336        .merge  = crypt_merge,
1337        .iterate_devices = crypt_iterate_devices,
1338};
1339
1340static int __init dm_crypt_init(void)
1341{
1342        int r;
1343
1344        _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1345        if (!_crypt_io_pool)
1346                return -ENOMEM;
1347
1348        r = dm_register_target(&crypt_target);
1349        if (r < 0) {
1350                DMERR("register failed %d", r);
1351                kmem_cache_destroy(_crypt_io_pool);
1352        }
1353
1354        return r;
1355}
1356
1357static void __exit dm_crypt_exit(void)
1358{
1359        dm_unregister_target(&crypt_target);
1360        kmem_cache_destroy(_crypt_io_pool);
1361}
1362
1363module_init(dm_crypt_init);
1364module_exit(dm_crypt_exit);
1365
1366MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1367MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1368MODULE_LICENSE("GPL");
1369