linux/drivers/md/raid5.c
<<
>>
Prefs
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *         Copyright (C) 1999, 2000 Ingo Molnar
   5 *         Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->bm_write is the number of the last batch successfully written.
  31 * conf->bm_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is bm_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/async.h>
  51#include <linux/seq_file.h>
  52#include <linux/cpu.h>
  53#include "md.h"
  54#include "raid5.h"
  55#include "bitmap.h"
  56
  57/*
  58 * Stripe cache
  59 */
  60
  61#define NR_STRIPES              256
  62#define STRIPE_SIZE             PAGE_SIZE
  63#define STRIPE_SHIFT            (PAGE_SHIFT - 9)
  64#define STRIPE_SECTORS          (STRIPE_SIZE>>9)
  65#define IO_THRESHOLD            1
  66#define BYPASS_THRESHOLD        1
  67#define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
  68#define HASH_MASK               (NR_HASH - 1)
  69
  70#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
  71
  72/* bio's attached to a stripe+device for I/O are linked together in bi_sector
  73 * order without overlap.  There may be several bio's per stripe+device, and
  74 * a bio could span several devices.
  75 * When walking this list for a particular stripe+device, we must never proceed
  76 * beyond a bio that extends past this device, as the next bio might no longer
  77 * be valid.
  78 * This macro is used to determine the 'next' bio in the list, given the sector
  79 * of the current stripe+device
  80 */
  81#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
  82/*
  83 * The following can be used to debug the driver
  84 */
  85#define RAID5_PARANOIA  1
  86#if RAID5_PARANOIA && defined(CONFIG_SMP)
  87# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
  88#else
  89# define CHECK_DEVLOCK()
  90#endif
  91
  92#ifdef DEBUG
  93#define inline
  94#define __inline__
  95#endif
  96
  97#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
  98
  99/*
 100 * We maintain a biased count of active stripes in the bottom 16 bits of
 101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
 102 */
 103static inline int raid5_bi_phys_segments(struct bio *bio)
 104{
 105        return bio->bi_phys_segments & 0xffff;
 106}
 107
 108static inline int raid5_bi_hw_segments(struct bio *bio)
 109{
 110        return (bio->bi_phys_segments >> 16) & 0xffff;
 111}
 112
 113static inline int raid5_dec_bi_phys_segments(struct bio *bio)
 114{
 115        --bio->bi_phys_segments;
 116        return raid5_bi_phys_segments(bio);
 117}
 118
 119static inline int raid5_dec_bi_hw_segments(struct bio *bio)
 120{
 121        unsigned short val = raid5_bi_hw_segments(bio);
 122
 123        --val;
 124        bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
 125        return val;
 126}
 127
 128static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
 129{
 130        bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
 131}
 132
 133/* Find first data disk in a raid6 stripe */
 134static inline int raid6_d0(struct stripe_head *sh)
 135{
 136        if (sh->ddf_layout)
 137                /* ddf always start from first device */
 138                return 0;
 139        /* md starts just after Q block */
 140        if (sh->qd_idx == sh->disks - 1)
 141                return 0;
 142        else
 143                return sh->qd_idx + 1;
 144}
 145static inline int raid6_next_disk(int disk, int raid_disks)
 146{
 147        disk++;
 148        return (disk < raid_disks) ? disk : 0;
 149}
 150
 151/* When walking through the disks in a raid5, starting at raid6_d0,
 152 * We need to map each disk to a 'slot', where the data disks are slot
 153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 154 * is raid_disks-1.  This help does that mapping.
 155 */
 156static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 157                             int *count, int syndrome_disks)
 158{
 159        int slot = *count;
 160
 161        if (sh->ddf_layout)
 162                (*count)++;
 163        if (idx == sh->pd_idx)
 164                return syndrome_disks;
 165        if (idx == sh->qd_idx)
 166                return syndrome_disks + 1;
 167        if (!sh->ddf_layout)
 168                (*count)++;
 169        return slot;
 170}
 171
 172static void return_io(struct bio *return_bi)
 173{
 174        struct bio *bi = return_bi;
 175        while (bi) {
 176
 177                return_bi = bi->bi_next;
 178                bi->bi_next = NULL;
 179                bi->bi_size = 0;
 180                bio_endio(bi, 0);
 181                bi = return_bi;
 182        }
 183}
 184
 185static void print_raid5_conf (raid5_conf_t *conf);
 186
 187static int stripe_operations_active(struct stripe_head *sh)
 188{
 189        return sh->check_state || sh->reconstruct_state ||
 190               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 191               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 192}
 193
 194static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
 195{
 196        if (atomic_dec_and_test(&sh->count)) {
 197                BUG_ON(!list_empty(&sh->lru));
 198                BUG_ON(atomic_read(&conf->active_stripes)==0);
 199                if (test_bit(STRIPE_HANDLE, &sh->state)) {
 200                        if (test_bit(STRIPE_DELAYED, &sh->state)) {
 201                                list_add_tail(&sh->lru, &conf->delayed_list);
 202                                blk_plug_device(conf->mddev->queue);
 203                        } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 204                                   sh->bm_seq - conf->seq_write > 0) {
 205                                list_add_tail(&sh->lru, &conf->bitmap_list);
 206                                blk_plug_device(conf->mddev->queue);
 207                        } else {
 208                                clear_bit(STRIPE_BIT_DELAY, &sh->state);
 209                                list_add_tail(&sh->lru, &conf->handle_list);
 210                        }
 211                        md_wakeup_thread(conf->mddev->thread);
 212                } else {
 213                        BUG_ON(stripe_operations_active(sh));
 214                        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
 215                                atomic_dec(&conf->preread_active_stripes);
 216                                if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
 217                                        md_wakeup_thread(conf->mddev->thread);
 218                        }
 219                        atomic_dec(&conf->active_stripes);
 220                        if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 221                                list_add_tail(&sh->lru, &conf->inactive_list);
 222                                wake_up(&conf->wait_for_stripe);
 223                                if (conf->retry_read_aligned)
 224                                        md_wakeup_thread(conf->mddev->thread);
 225                        }
 226                }
 227        }
 228}
 229
 230static void release_stripe(struct stripe_head *sh)
 231{
 232        raid5_conf_t *conf = sh->raid_conf;
 233        unsigned long flags;
 234
 235        spin_lock_irqsave(&conf->device_lock, flags);
 236        __release_stripe(conf, sh);
 237        spin_unlock_irqrestore(&conf->device_lock, flags);
 238}
 239
 240static inline void remove_hash(struct stripe_head *sh)
 241{
 242        pr_debug("remove_hash(), stripe %llu\n",
 243                (unsigned long long)sh->sector);
 244
 245        hlist_del_init(&sh->hash);
 246}
 247
 248static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
 249{
 250        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 251
 252        pr_debug("insert_hash(), stripe %llu\n",
 253                (unsigned long long)sh->sector);
 254
 255        CHECK_DEVLOCK();
 256        hlist_add_head(&sh->hash, hp);
 257}
 258
 259
 260/* find an idle stripe, make sure it is unhashed, and return it. */
 261static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
 262{
 263        struct stripe_head *sh = NULL;
 264        struct list_head *first;
 265
 266        CHECK_DEVLOCK();
 267        if (list_empty(&conf->inactive_list))
 268                goto out;
 269        first = conf->inactive_list.next;
 270        sh = list_entry(first, struct stripe_head, lru);
 271        list_del_init(first);
 272        remove_hash(sh);
 273        atomic_inc(&conf->active_stripes);
 274out:
 275        return sh;
 276}
 277
 278static void shrink_buffers(struct stripe_head *sh, int num)
 279{
 280        struct page *p;
 281        int i;
 282
 283        for (i=0; i<num ; i++) {
 284                p = sh->dev[i].page;
 285                if (!p)
 286                        continue;
 287                sh->dev[i].page = NULL;
 288                put_page(p);
 289        }
 290}
 291
 292static int grow_buffers(struct stripe_head *sh, int num)
 293{
 294        int i;
 295
 296        for (i=0; i<num; i++) {
 297                struct page *page;
 298
 299                if (!(page = alloc_page(GFP_KERNEL))) {
 300                        return 1;
 301                }
 302                sh->dev[i].page = page;
 303        }
 304        return 0;
 305}
 306
 307static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 308static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
 309                            struct stripe_head *sh);
 310
 311static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 312{
 313        raid5_conf_t *conf = sh->raid_conf;
 314        int i;
 315
 316        BUG_ON(atomic_read(&sh->count) != 0);
 317        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 318        BUG_ON(stripe_operations_active(sh));
 319
 320        CHECK_DEVLOCK();
 321        pr_debug("init_stripe called, stripe %llu\n",
 322                (unsigned long long)sh->sector);
 323
 324        remove_hash(sh);
 325
 326        sh->generation = conf->generation - previous;
 327        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 328        sh->sector = sector;
 329        stripe_set_idx(sector, conf, previous, sh);
 330        sh->state = 0;
 331
 332
 333        for (i = sh->disks; i--; ) {
 334                struct r5dev *dev = &sh->dev[i];
 335
 336                if (dev->toread || dev->read || dev->towrite || dev->written ||
 337                    test_bit(R5_LOCKED, &dev->flags)) {
 338                        printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
 339                               (unsigned long long)sh->sector, i, dev->toread,
 340                               dev->read, dev->towrite, dev->written,
 341                               test_bit(R5_LOCKED, &dev->flags));
 342                        BUG();
 343                }
 344                dev->flags = 0;
 345                raid5_build_block(sh, i, previous);
 346        }
 347        insert_hash(conf, sh);
 348}
 349
 350static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
 351                                         short generation)
 352{
 353        struct stripe_head *sh;
 354        struct hlist_node *hn;
 355
 356        CHECK_DEVLOCK();
 357        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 358        hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
 359                if (sh->sector == sector && sh->generation == generation)
 360                        return sh;
 361        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 362        return NULL;
 363}
 364
 365static void unplug_slaves(mddev_t *mddev);
 366static void raid5_unplug_device(struct request_queue *q);
 367
 368static struct stripe_head *
 369get_active_stripe(raid5_conf_t *conf, sector_t sector,
 370                  int previous, int noblock, int noquiesce)
 371{
 372        struct stripe_head *sh;
 373
 374        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 375
 376        spin_lock_irq(&conf->device_lock);
 377
 378        do {
 379                wait_event_lock_irq(conf->wait_for_stripe,
 380                                    conf->quiesce == 0 || noquiesce,
 381                                    conf->device_lock, /* nothing */);
 382                sh = __find_stripe(conf, sector, conf->generation - previous);
 383                if (!sh) {
 384                        if (!conf->inactive_blocked)
 385                                sh = get_free_stripe(conf);
 386                        if (noblock && sh == NULL)
 387                                break;
 388                        if (!sh) {
 389                                conf->inactive_blocked = 1;
 390                                wait_event_lock_irq(conf->wait_for_stripe,
 391                                                    !list_empty(&conf->inactive_list) &&
 392                                                    (atomic_read(&conf->active_stripes)
 393                                                     < (conf->max_nr_stripes *3/4)
 394                                                     || !conf->inactive_blocked),
 395                                                    conf->device_lock,
 396                                                    raid5_unplug_device(conf->mddev->queue)
 397                                        );
 398                                conf->inactive_blocked = 0;
 399                        } else
 400                                init_stripe(sh, sector, previous);
 401                } else {
 402                        if (atomic_read(&sh->count)) {
 403                                BUG_ON(!list_empty(&sh->lru)
 404                                    && !test_bit(STRIPE_EXPANDING, &sh->state));
 405                        } else {
 406                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 407                                        atomic_inc(&conf->active_stripes);
 408                                if (list_empty(&sh->lru) &&
 409                                    !test_bit(STRIPE_EXPANDING, &sh->state))
 410                                        BUG();
 411                                list_del_init(&sh->lru);
 412                        }
 413                }
 414        } while (sh == NULL);
 415
 416        if (sh)
 417                atomic_inc(&sh->count);
 418
 419        spin_unlock_irq(&conf->device_lock);
 420        return sh;
 421}
 422
 423static void
 424raid5_end_read_request(struct bio *bi, int error);
 425static void
 426raid5_end_write_request(struct bio *bi, int error);
 427
 428static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 429{
 430        raid5_conf_t *conf = sh->raid_conf;
 431        int i, disks = sh->disks;
 432
 433        might_sleep();
 434
 435        for (i = disks; i--; ) {
 436                int rw;
 437                struct bio *bi;
 438                mdk_rdev_t *rdev;
 439                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
 440                        rw = WRITE;
 441                else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 442                        rw = READ;
 443                else
 444                        continue;
 445
 446                bi = &sh->dev[i].req;
 447
 448                bi->bi_rw = rw;
 449                if (rw == WRITE)
 450                        bi->bi_end_io = raid5_end_write_request;
 451                else
 452                        bi->bi_end_io = raid5_end_read_request;
 453
 454                rcu_read_lock();
 455                rdev = rcu_dereference(conf->disks[i].rdev);
 456                if (rdev && test_bit(Faulty, &rdev->flags))
 457                        rdev = NULL;
 458                if (rdev)
 459                        atomic_inc(&rdev->nr_pending);
 460                rcu_read_unlock();
 461
 462                if (rdev) {
 463                        if (s->syncing || s->expanding || s->expanded)
 464                                md_sync_acct(rdev->bdev, STRIPE_SECTORS);
 465
 466                        set_bit(STRIPE_IO_STARTED, &sh->state);
 467
 468                        bi->bi_bdev = rdev->bdev;
 469                        pr_debug("%s: for %llu schedule op %ld on disc %d\n",
 470                                __func__, (unsigned long long)sh->sector,
 471                                bi->bi_rw, i);
 472                        atomic_inc(&sh->count);
 473                        bi->bi_sector = sh->sector + rdev->data_offset;
 474                        bi->bi_flags = 1 << BIO_UPTODATE;
 475                        bi->bi_vcnt = 1;
 476                        bi->bi_max_vecs = 1;
 477                        bi->bi_idx = 0;
 478                        bi->bi_io_vec = &sh->dev[i].vec;
 479                        bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 480                        bi->bi_io_vec[0].bv_offset = 0;
 481                        bi->bi_size = STRIPE_SIZE;
 482                        bi->bi_next = NULL;
 483                        if (rw == WRITE &&
 484                            test_bit(R5_ReWrite, &sh->dev[i].flags))
 485                                atomic_add(STRIPE_SECTORS,
 486                                        &rdev->corrected_errors);
 487                        generic_make_request(bi);
 488                } else {
 489                        if (rw == WRITE)
 490                                set_bit(STRIPE_DEGRADED, &sh->state);
 491                        pr_debug("skip op %ld on disc %d for sector %llu\n",
 492                                bi->bi_rw, i, (unsigned long long)sh->sector);
 493                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
 494                        set_bit(STRIPE_HANDLE, &sh->state);
 495                }
 496        }
 497}
 498
 499static struct dma_async_tx_descriptor *
 500async_copy_data(int frombio, struct bio *bio, struct page *page,
 501        sector_t sector, struct dma_async_tx_descriptor *tx)
 502{
 503        struct bio_vec *bvl;
 504        struct page *bio_page;
 505        int i;
 506        int page_offset;
 507        struct async_submit_ctl submit;
 508        enum async_tx_flags flags = 0;
 509
 510        if (bio->bi_sector >= sector)
 511                page_offset = (signed)(bio->bi_sector - sector) * 512;
 512        else
 513                page_offset = (signed)(sector - bio->bi_sector) * -512;
 514
 515        if (frombio)
 516                flags |= ASYNC_TX_FENCE;
 517        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
 518
 519        bio_for_each_segment(bvl, bio, i) {
 520                int len = bio_iovec_idx(bio, i)->bv_len;
 521                int clen;
 522                int b_offset = 0;
 523
 524                if (page_offset < 0) {
 525                        b_offset = -page_offset;
 526                        page_offset += b_offset;
 527                        len -= b_offset;
 528                }
 529
 530                if (len > 0 && page_offset + len > STRIPE_SIZE)
 531                        clen = STRIPE_SIZE - page_offset;
 532                else
 533                        clen = len;
 534
 535                if (clen > 0) {
 536                        b_offset += bio_iovec_idx(bio, i)->bv_offset;
 537                        bio_page = bio_iovec_idx(bio, i)->bv_page;
 538                        if (frombio)
 539                                tx = async_memcpy(page, bio_page, page_offset,
 540                                                  b_offset, clen, &submit);
 541                        else
 542                                tx = async_memcpy(bio_page, page, b_offset,
 543                                                  page_offset, clen, &submit);
 544                }
 545                /* chain the operations */
 546                submit.depend_tx = tx;
 547
 548                if (clen < len) /* hit end of page */
 549                        break;
 550                page_offset +=  len;
 551        }
 552
 553        return tx;
 554}
 555
 556static void ops_complete_biofill(void *stripe_head_ref)
 557{
 558        struct stripe_head *sh = stripe_head_ref;
 559        struct bio *return_bi = NULL;
 560        raid5_conf_t *conf = sh->raid_conf;
 561        int i;
 562
 563        pr_debug("%s: stripe %llu\n", __func__,
 564                (unsigned long long)sh->sector);
 565
 566        /* clear completed biofills */
 567        spin_lock_irq(&conf->device_lock);
 568        for (i = sh->disks; i--; ) {
 569                struct r5dev *dev = &sh->dev[i];
 570
 571                /* acknowledge completion of a biofill operation */
 572                /* and check if we need to reply to a read request,
 573                 * new R5_Wantfill requests are held off until
 574                 * !STRIPE_BIOFILL_RUN
 575                 */
 576                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
 577                        struct bio *rbi, *rbi2;
 578
 579                        BUG_ON(!dev->read);
 580                        rbi = dev->read;
 581                        dev->read = NULL;
 582                        while (rbi && rbi->bi_sector <
 583                                dev->sector + STRIPE_SECTORS) {
 584                                rbi2 = r5_next_bio(rbi, dev->sector);
 585                                if (!raid5_dec_bi_phys_segments(rbi)) {
 586                                        rbi->bi_next = return_bi;
 587                                        return_bi = rbi;
 588                                }
 589                                rbi = rbi2;
 590                        }
 591                }
 592        }
 593        spin_unlock_irq(&conf->device_lock);
 594        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
 595
 596        return_io(return_bi);
 597
 598        set_bit(STRIPE_HANDLE, &sh->state);
 599        release_stripe(sh);
 600}
 601
 602static void ops_run_biofill(struct stripe_head *sh)
 603{
 604        struct dma_async_tx_descriptor *tx = NULL;
 605        raid5_conf_t *conf = sh->raid_conf;
 606        struct async_submit_ctl submit;
 607        int i;
 608
 609        pr_debug("%s: stripe %llu\n", __func__,
 610                (unsigned long long)sh->sector);
 611
 612        for (i = sh->disks; i--; ) {
 613                struct r5dev *dev = &sh->dev[i];
 614                if (test_bit(R5_Wantfill, &dev->flags)) {
 615                        struct bio *rbi;
 616                        spin_lock_irq(&conf->device_lock);
 617                        dev->read = rbi = dev->toread;
 618                        dev->toread = NULL;
 619                        spin_unlock_irq(&conf->device_lock);
 620                        while (rbi && rbi->bi_sector <
 621                                dev->sector + STRIPE_SECTORS) {
 622                                tx = async_copy_data(0, rbi, dev->page,
 623                                        dev->sector, tx);
 624                                rbi = r5_next_bio(rbi, dev->sector);
 625                        }
 626                }
 627        }
 628
 629        atomic_inc(&sh->count);
 630        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
 631        async_trigger_callback(&submit);
 632}
 633
 634static void mark_target_uptodate(struct stripe_head *sh, int target)
 635{
 636        struct r5dev *tgt;
 637
 638        if (target < 0)
 639                return;
 640
 641        tgt = &sh->dev[target];
 642        set_bit(R5_UPTODATE, &tgt->flags);
 643        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 644        clear_bit(R5_Wantcompute, &tgt->flags);
 645}
 646
 647static void ops_complete_compute(void *stripe_head_ref)
 648{
 649        struct stripe_head *sh = stripe_head_ref;
 650
 651        pr_debug("%s: stripe %llu\n", __func__,
 652                (unsigned long long)sh->sector);
 653
 654        /* mark the computed target(s) as uptodate */
 655        mark_target_uptodate(sh, sh->ops.target);
 656        mark_target_uptodate(sh, sh->ops.target2);
 657
 658        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
 659        if (sh->check_state == check_state_compute_run)
 660                sh->check_state = check_state_compute_result;
 661        set_bit(STRIPE_HANDLE, &sh->state);
 662        release_stripe(sh);
 663}
 664
 665/* return a pointer to the address conversion region of the scribble buffer */
 666static addr_conv_t *to_addr_conv(struct stripe_head *sh,
 667                                 struct raid5_percpu *percpu)
 668{
 669        return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
 670}
 671
 672static struct dma_async_tx_descriptor *
 673ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
 674{
 675        int disks = sh->disks;
 676        struct page **xor_srcs = percpu->scribble;
 677        int target = sh->ops.target;
 678        struct r5dev *tgt = &sh->dev[target];
 679        struct page *xor_dest = tgt->page;
 680        int count = 0;
 681        struct dma_async_tx_descriptor *tx;
 682        struct async_submit_ctl submit;
 683        int i;
 684
 685        pr_debug("%s: stripe %llu block: %d\n",
 686                __func__, (unsigned long long)sh->sector, target);
 687        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 688
 689        for (i = disks; i--; )
 690                if (i != target)
 691                        xor_srcs[count++] = sh->dev[i].page;
 692
 693        atomic_inc(&sh->count);
 694
 695        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
 696                          ops_complete_compute, sh, to_addr_conv(sh, percpu));
 697        if (unlikely(count == 1))
 698                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
 699        else
 700                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 701
 702        return tx;
 703}
 704
 705/* set_syndrome_sources - populate source buffers for gen_syndrome
 706 * @srcs - (struct page *) array of size sh->disks
 707 * @sh - stripe_head to parse
 708 *
 709 * Populates srcs in proper layout order for the stripe and returns the
 710 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 711 * destination buffer is recorded in srcs[count] and the Q destination
 712 * is recorded in srcs[count+1]].
 713 */
 714static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
 715{
 716        int disks = sh->disks;
 717        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
 718        int d0_idx = raid6_d0(sh);
 719        int count;
 720        int i;
 721
 722        for (i = 0; i < disks; i++)
 723                srcs[i] = NULL;
 724
 725        count = 0;
 726        i = d0_idx;
 727        do {
 728                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 729
 730                srcs[slot] = sh->dev[i].page;
 731                i = raid6_next_disk(i, disks);
 732        } while (i != d0_idx);
 733
 734        return syndrome_disks;
 735}
 736
 737static struct dma_async_tx_descriptor *
 738ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
 739{
 740        int disks = sh->disks;
 741        struct page **blocks = percpu->scribble;
 742        int target;
 743        int qd_idx = sh->qd_idx;
 744        struct dma_async_tx_descriptor *tx;
 745        struct async_submit_ctl submit;
 746        struct r5dev *tgt;
 747        struct page *dest;
 748        int i;
 749        int count;
 750
 751        if (sh->ops.target < 0)
 752                target = sh->ops.target2;
 753        else if (sh->ops.target2 < 0)
 754                target = sh->ops.target;
 755        else
 756                /* we should only have one valid target */
 757                BUG();
 758        BUG_ON(target < 0);
 759        pr_debug("%s: stripe %llu block: %d\n",
 760                __func__, (unsigned long long)sh->sector, target);
 761
 762        tgt = &sh->dev[target];
 763        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 764        dest = tgt->page;
 765
 766        atomic_inc(&sh->count);
 767
 768        if (target == qd_idx) {
 769                count = set_syndrome_sources(blocks, sh);
 770                blocks[count] = NULL; /* regenerating p is not necessary */
 771                BUG_ON(blocks[count+1] != dest); /* q should already be set */
 772                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 773                                  ops_complete_compute, sh,
 774                                  to_addr_conv(sh, percpu));
 775                tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
 776        } else {
 777                /* Compute any data- or p-drive using XOR */
 778                count = 0;
 779                for (i = disks; i-- ; ) {
 780                        if (i == target || i == qd_idx)
 781                                continue;
 782                        blocks[count++] = sh->dev[i].page;
 783                }
 784
 785                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 786                                  NULL, ops_complete_compute, sh,
 787                                  to_addr_conv(sh, percpu));
 788                tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
 789        }
 790
 791        return tx;
 792}
 793
 794static struct dma_async_tx_descriptor *
 795ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
 796{
 797        int i, count, disks = sh->disks;
 798        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
 799        int d0_idx = raid6_d0(sh);
 800        int faila = -1, failb = -1;
 801        int target = sh->ops.target;
 802        int target2 = sh->ops.target2;
 803        struct r5dev *tgt = &sh->dev[target];
 804        struct r5dev *tgt2 = &sh->dev[target2];
 805        struct dma_async_tx_descriptor *tx;
 806        struct page **blocks = percpu->scribble;
 807        struct async_submit_ctl submit;
 808
 809        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
 810                 __func__, (unsigned long long)sh->sector, target, target2);
 811        BUG_ON(target < 0 || target2 < 0);
 812        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 813        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
 814
 815        /* we need to open-code set_syndrome_sources to handle the
 816         * slot number conversion for 'faila' and 'failb'
 817         */
 818        for (i = 0; i < disks ; i++)
 819                blocks[i] = NULL;
 820        count = 0;
 821        i = d0_idx;
 822        do {
 823                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 824
 825                blocks[slot] = sh->dev[i].page;
 826
 827                if (i == target)
 828                        faila = slot;
 829                if (i == target2)
 830                        failb = slot;
 831                i = raid6_next_disk(i, disks);
 832        } while (i != d0_idx);
 833
 834        BUG_ON(faila == failb);
 835        if (failb < faila)
 836                swap(faila, failb);
 837        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
 838                 __func__, (unsigned long long)sh->sector, faila, failb);
 839
 840        atomic_inc(&sh->count);
 841
 842        if (failb == syndrome_disks+1) {
 843                /* Q disk is one of the missing disks */
 844                if (faila == syndrome_disks) {
 845                        /* Missing P+Q, just recompute */
 846                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 847                                          ops_complete_compute, sh,
 848                                          to_addr_conv(sh, percpu));
 849                        return async_gen_syndrome(blocks, 0, syndrome_disks+2,
 850                                                  STRIPE_SIZE, &submit);
 851                } else {
 852                        struct page *dest;
 853                        int data_target;
 854                        int qd_idx = sh->qd_idx;
 855
 856                        /* Missing D+Q: recompute D from P, then recompute Q */
 857                        if (target == qd_idx)
 858                                data_target = target2;
 859                        else
 860                                data_target = target;
 861
 862                        count = 0;
 863                        for (i = disks; i-- ; ) {
 864                                if (i == data_target || i == qd_idx)
 865                                        continue;
 866                                blocks[count++] = sh->dev[i].page;
 867                        }
 868                        dest = sh->dev[data_target].page;
 869                        init_async_submit(&submit,
 870                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 871                                          NULL, NULL, NULL,
 872                                          to_addr_conv(sh, percpu));
 873                        tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
 874                                       &submit);
 875
 876                        count = set_syndrome_sources(blocks, sh);
 877                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
 878                                          ops_complete_compute, sh,
 879                                          to_addr_conv(sh, percpu));
 880                        return async_gen_syndrome(blocks, 0, count+2,
 881                                                  STRIPE_SIZE, &submit);
 882                }
 883        } else {
 884                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 885                                  ops_complete_compute, sh,
 886                                  to_addr_conv(sh, percpu));
 887                if (failb == syndrome_disks) {
 888                        /* We're missing D+P. */
 889                        return async_raid6_datap_recov(syndrome_disks+2,
 890                                                       STRIPE_SIZE, faila,
 891                                                       blocks, &submit);
 892                } else {
 893                        /* We're missing D+D. */
 894                        return async_raid6_2data_recov(syndrome_disks+2,
 895                                                       STRIPE_SIZE, faila, failb,
 896                                                       blocks, &submit);
 897                }
 898        }
 899}
 900
 901
 902static void ops_complete_prexor(void *stripe_head_ref)
 903{
 904        struct stripe_head *sh = stripe_head_ref;
 905
 906        pr_debug("%s: stripe %llu\n", __func__,
 907                (unsigned long long)sh->sector);
 908}
 909
 910static struct dma_async_tx_descriptor *
 911ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
 912               struct dma_async_tx_descriptor *tx)
 913{
 914        int disks = sh->disks;
 915        struct page **xor_srcs = percpu->scribble;
 916        int count = 0, pd_idx = sh->pd_idx, i;
 917        struct async_submit_ctl submit;
 918
 919        /* existing parity data subtracted */
 920        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
 921
 922        pr_debug("%s: stripe %llu\n", __func__,
 923                (unsigned long long)sh->sector);
 924
 925        for (i = disks; i--; ) {
 926                struct r5dev *dev = &sh->dev[i];
 927                /* Only process blocks that are known to be uptodate */
 928                if (test_bit(R5_Wantdrain, &dev->flags))
 929                        xor_srcs[count++] = dev->page;
 930        }
 931
 932        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
 933                          ops_complete_prexor, sh, to_addr_conv(sh, percpu));
 934        tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 935
 936        return tx;
 937}
 938
 939static struct dma_async_tx_descriptor *
 940ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
 941{
 942        int disks = sh->disks;
 943        int i;
 944
 945        pr_debug("%s: stripe %llu\n", __func__,
 946                (unsigned long long)sh->sector);
 947
 948        for (i = disks; i--; ) {
 949                struct r5dev *dev = &sh->dev[i];
 950                struct bio *chosen;
 951
 952                if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
 953                        struct bio *wbi;
 954
 955                        spin_lock(&sh->lock);
 956                        chosen = dev->towrite;
 957                        dev->towrite = NULL;
 958                        BUG_ON(dev->written);
 959                        wbi = dev->written = chosen;
 960                        spin_unlock(&sh->lock);
 961
 962                        while (wbi && wbi->bi_sector <
 963                                dev->sector + STRIPE_SECTORS) {
 964                                tx = async_copy_data(1, wbi, dev->page,
 965                                        dev->sector, tx);
 966                                wbi = r5_next_bio(wbi, dev->sector);
 967                        }
 968                }
 969        }
 970
 971        return tx;
 972}
 973
 974static void ops_complete_reconstruct(void *stripe_head_ref)
 975{
 976        struct stripe_head *sh = stripe_head_ref;
 977        int disks = sh->disks;
 978        int pd_idx = sh->pd_idx;
 979        int qd_idx = sh->qd_idx;
 980        int i;
 981
 982        pr_debug("%s: stripe %llu\n", __func__,
 983                (unsigned long long)sh->sector);
 984
 985        for (i = disks; i--; ) {
 986                struct r5dev *dev = &sh->dev[i];
 987
 988                if (dev->written || i == pd_idx || i == qd_idx)
 989                        set_bit(R5_UPTODATE, &dev->flags);
 990        }
 991
 992        if (sh->reconstruct_state == reconstruct_state_drain_run)
 993                sh->reconstruct_state = reconstruct_state_drain_result;
 994        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
 995                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
 996        else {
 997                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
 998                sh->reconstruct_state = reconstruct_state_result;
 999        }
1000
1001        set_bit(STRIPE_HANDLE, &sh->state);
1002        release_stripe(sh);
1003}
1004
1005static void
1006ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1007                     struct dma_async_tx_descriptor *tx)
1008{
1009        int disks = sh->disks;
1010        struct page **xor_srcs = percpu->scribble;
1011        struct async_submit_ctl submit;
1012        int count = 0, pd_idx = sh->pd_idx, i;
1013        struct page *xor_dest;
1014        int prexor = 0;
1015        unsigned long flags;
1016
1017        pr_debug("%s: stripe %llu\n", __func__,
1018                (unsigned long long)sh->sector);
1019
1020        /* check if prexor is active which means only process blocks
1021         * that are part of a read-modify-write (written)
1022         */
1023        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1024                prexor = 1;
1025                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1026                for (i = disks; i--; ) {
1027                        struct r5dev *dev = &sh->dev[i];
1028                        if (dev->written)
1029                                xor_srcs[count++] = dev->page;
1030                }
1031        } else {
1032                xor_dest = sh->dev[pd_idx].page;
1033                for (i = disks; i--; ) {
1034                        struct r5dev *dev = &sh->dev[i];
1035                        if (i != pd_idx)
1036                                xor_srcs[count++] = dev->page;
1037                }
1038        }
1039
1040        /* 1/ if we prexor'd then the dest is reused as a source
1041         * 2/ if we did not prexor then we are redoing the parity
1042         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1043         * for the synchronous xor case
1044         */
1045        flags = ASYNC_TX_ACK |
1046                (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1047
1048        atomic_inc(&sh->count);
1049
1050        init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1051                          to_addr_conv(sh, percpu));
1052        if (unlikely(count == 1))
1053                tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1054        else
1055                tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1056}
1057
1058static void
1059ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1060                     struct dma_async_tx_descriptor *tx)
1061{
1062        struct async_submit_ctl submit;
1063        struct page **blocks = percpu->scribble;
1064        int count;
1065
1066        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1067
1068        count = set_syndrome_sources(blocks, sh);
1069
1070        atomic_inc(&sh->count);
1071
1072        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1073                          sh, to_addr_conv(sh, percpu));
1074        async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1075}
1076
1077static void ops_complete_check(void *stripe_head_ref)
1078{
1079        struct stripe_head *sh = stripe_head_ref;
1080
1081        pr_debug("%s: stripe %llu\n", __func__,
1082                (unsigned long long)sh->sector);
1083
1084        sh->check_state = check_state_check_result;
1085        set_bit(STRIPE_HANDLE, &sh->state);
1086        release_stripe(sh);
1087}
1088
1089static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1090{
1091        int disks = sh->disks;
1092        int pd_idx = sh->pd_idx;
1093        int qd_idx = sh->qd_idx;
1094        struct page *xor_dest;
1095        struct page **xor_srcs = percpu->scribble;
1096        struct dma_async_tx_descriptor *tx;
1097        struct async_submit_ctl submit;
1098        int count;
1099        int i;
1100
1101        pr_debug("%s: stripe %llu\n", __func__,
1102                (unsigned long long)sh->sector);
1103
1104        count = 0;
1105        xor_dest = sh->dev[pd_idx].page;
1106        xor_srcs[count++] = xor_dest;
1107        for (i = disks; i--; ) {
1108                if (i == pd_idx || i == qd_idx)
1109                        continue;
1110                xor_srcs[count++] = sh->dev[i].page;
1111        }
1112
1113        init_async_submit(&submit, 0, NULL, NULL, NULL,
1114                          to_addr_conv(sh, percpu));
1115        tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1116                           &sh->ops.zero_sum_result, &submit);
1117
1118        atomic_inc(&sh->count);
1119        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1120        tx = async_trigger_callback(&submit);
1121}
1122
1123static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1124{
1125        struct page **srcs = percpu->scribble;
1126        struct async_submit_ctl submit;
1127        int count;
1128
1129        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1130                (unsigned long long)sh->sector, checkp);
1131
1132        count = set_syndrome_sources(srcs, sh);
1133        if (!checkp)
1134                srcs[count] = NULL;
1135
1136        atomic_inc(&sh->count);
1137        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1138                          sh, to_addr_conv(sh, percpu));
1139        async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1140                           &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1141}
1142
1143static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1144{
1145        int overlap_clear = 0, i, disks = sh->disks;
1146        struct dma_async_tx_descriptor *tx = NULL;
1147        raid5_conf_t *conf = sh->raid_conf;
1148        int level = conf->level;
1149        struct raid5_percpu *percpu;
1150        unsigned long cpu;
1151
1152        cpu = get_cpu();
1153        percpu = per_cpu_ptr(conf->percpu, cpu);
1154        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1155                ops_run_biofill(sh);
1156                overlap_clear++;
1157        }
1158
1159        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1160                if (level < 6)
1161                        tx = ops_run_compute5(sh, percpu);
1162                else {
1163                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
1164                                tx = ops_run_compute6_1(sh, percpu);
1165                        else
1166                                tx = ops_run_compute6_2(sh, percpu);
1167                }
1168                /* terminate the chain if reconstruct is not set to be run */
1169                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1170                        async_tx_ack(tx);
1171        }
1172
1173        if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1174                tx = ops_run_prexor(sh, percpu, tx);
1175
1176        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1177                tx = ops_run_biodrain(sh, tx);
1178                overlap_clear++;
1179        }
1180
1181        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1182                if (level < 6)
1183                        ops_run_reconstruct5(sh, percpu, tx);
1184                else
1185                        ops_run_reconstruct6(sh, percpu, tx);
1186        }
1187
1188        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1189                if (sh->check_state == check_state_run)
1190                        ops_run_check_p(sh, percpu);
1191                else if (sh->check_state == check_state_run_q)
1192                        ops_run_check_pq(sh, percpu, 0);
1193                else if (sh->check_state == check_state_run_pq)
1194                        ops_run_check_pq(sh, percpu, 1);
1195                else
1196                        BUG();
1197        }
1198
1199        if (overlap_clear)
1200                for (i = disks; i--; ) {
1201                        struct r5dev *dev = &sh->dev[i];
1202                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
1203                                wake_up(&sh->raid_conf->wait_for_overlap);
1204                }
1205        put_cpu();
1206}
1207
1208#ifdef CONFIG_MULTICORE_RAID456
1209static void async_run_ops(void *param, async_cookie_t cookie)
1210{
1211        struct stripe_head *sh = param;
1212        unsigned long ops_request = sh->ops.request;
1213
1214        clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1215        wake_up(&sh->ops.wait_for_ops);
1216
1217        __raid_run_ops(sh, ops_request);
1218        release_stripe(sh);
1219}
1220
1221static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1222{
1223        /* since handle_stripe can be called outside of raid5d context
1224         * we need to ensure sh->ops.request is de-staged before another
1225         * request arrives
1226         */
1227        wait_event(sh->ops.wait_for_ops,
1228                   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1229        sh->ops.request = ops_request;
1230
1231        atomic_inc(&sh->count);
1232        async_schedule(async_run_ops, sh);
1233}
1234#else
1235#define raid_run_ops __raid_run_ops
1236#endif
1237
1238static int grow_one_stripe(raid5_conf_t *conf)
1239{
1240        struct stripe_head *sh;
1241        int disks = max(conf->raid_disks, conf->previous_raid_disks);
1242        sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1243        if (!sh)
1244                return 0;
1245        memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1246        sh->raid_conf = conf;
1247        spin_lock_init(&sh->lock);
1248        #ifdef CONFIG_MULTICORE_RAID456
1249        init_waitqueue_head(&sh->ops.wait_for_ops);
1250        #endif
1251
1252        if (grow_buffers(sh, disks)) {
1253                shrink_buffers(sh, disks);
1254                kmem_cache_free(conf->slab_cache, sh);
1255                return 0;
1256        }
1257        /* we just created an active stripe so... */
1258        atomic_set(&sh->count, 1);
1259        atomic_inc(&conf->active_stripes);
1260        INIT_LIST_HEAD(&sh->lru);
1261        release_stripe(sh);
1262        return 1;
1263}
1264
1265static int grow_stripes(raid5_conf_t *conf, int num)
1266{
1267        struct kmem_cache *sc;
1268        int devs = max(conf->raid_disks, conf->previous_raid_disks);
1269
1270        sprintf(conf->cache_name[0],
1271                "raid%d-%s", conf->level, mdname(conf->mddev));
1272        sprintf(conf->cache_name[1],
1273                "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1274        conf->active_name = 0;
1275        sc = kmem_cache_create(conf->cache_name[conf->active_name],
1276                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1277                               0, 0, NULL);
1278        if (!sc)
1279                return 1;
1280        conf->slab_cache = sc;
1281        conf->pool_size = devs;
1282        while (num--)
1283                if (!grow_one_stripe(conf))
1284                        return 1;
1285        return 0;
1286}
1287
1288/**
1289 * scribble_len - return the required size of the scribble region
1290 * @num - total number of disks in the array
1291 *
1292 * The size must be enough to contain:
1293 * 1/ a struct page pointer for each device in the array +2
1294 * 2/ room to convert each entry in (1) to its corresponding dma
1295 *    (dma_map_page()) or page (page_address()) address.
1296 *
1297 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1298 * calculate over all devices (not just the data blocks), using zeros in place
1299 * of the P and Q blocks.
1300 */
1301static size_t scribble_len(int num)
1302{
1303        size_t len;
1304
1305        len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1306
1307        return len;
1308}
1309
1310static int resize_stripes(raid5_conf_t *conf, int newsize)
1311{
1312        /* Make all the stripes able to hold 'newsize' devices.
1313         * New slots in each stripe get 'page' set to a new page.
1314         *
1315         * This happens in stages:
1316         * 1/ create a new kmem_cache and allocate the required number of
1317         *    stripe_heads.
1318         * 2/ gather all the old stripe_heads and tranfer the pages across
1319         *    to the new stripe_heads.  This will have the side effect of
1320         *    freezing the array as once all stripe_heads have been collected,
1321         *    no IO will be possible.  Old stripe heads are freed once their
1322         *    pages have been transferred over, and the old kmem_cache is
1323         *    freed when all stripes are done.
1324         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1325         *    we simple return a failre status - no need to clean anything up.
1326         * 4/ allocate new pages for the new slots in the new stripe_heads.
1327         *    If this fails, we don't bother trying the shrink the
1328         *    stripe_heads down again, we just leave them as they are.
1329         *    As each stripe_head is processed the new one is released into
1330         *    active service.
1331         *
1332         * Once step2 is started, we cannot afford to wait for a write,
1333         * so we use GFP_NOIO allocations.
1334         */
1335        struct stripe_head *osh, *nsh;
1336        LIST_HEAD(newstripes);
1337        struct disk_info *ndisks;
1338        unsigned long cpu;
1339        int err;
1340        struct kmem_cache *sc;
1341        int i;
1342
1343        if (newsize <= conf->pool_size)
1344                return 0; /* never bother to shrink */
1345
1346        err = md_allow_write(conf->mddev);
1347        if (err)
1348                return err;
1349
1350        /* Step 1 */
1351        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1352                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1353                               0, 0, NULL);
1354        if (!sc)
1355                return -ENOMEM;
1356
1357        for (i = conf->max_nr_stripes; i; i--) {
1358                nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1359                if (!nsh)
1360                        break;
1361
1362                memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1363
1364                nsh->raid_conf = conf;
1365                spin_lock_init(&nsh->lock);
1366                #ifdef CONFIG_MULTICORE_RAID456
1367                init_waitqueue_head(&nsh->ops.wait_for_ops);
1368                #endif
1369
1370                list_add(&nsh->lru, &newstripes);
1371        }
1372        if (i) {
1373                /* didn't get enough, give up */
1374                while (!list_empty(&newstripes)) {
1375                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
1376                        list_del(&nsh->lru);
1377                        kmem_cache_free(sc, nsh);
1378                }
1379                kmem_cache_destroy(sc);
1380                return -ENOMEM;
1381        }
1382        /* Step 2 - Must use GFP_NOIO now.
1383         * OK, we have enough stripes, start collecting inactive
1384         * stripes and copying them over
1385         */
1386        list_for_each_entry(nsh, &newstripes, lru) {
1387                spin_lock_irq(&conf->device_lock);
1388                wait_event_lock_irq(conf->wait_for_stripe,
1389                                    !list_empty(&conf->inactive_list),
1390                                    conf->device_lock,
1391                                    unplug_slaves(conf->mddev)
1392                        );
1393                osh = get_free_stripe(conf);
1394                spin_unlock_irq(&conf->device_lock);
1395                atomic_set(&nsh->count, 1);
1396                for(i=0; i<conf->pool_size; i++)
1397                        nsh->dev[i].page = osh->dev[i].page;
1398                for( ; i<newsize; i++)
1399                        nsh->dev[i].page = NULL;
1400                kmem_cache_free(conf->slab_cache, osh);
1401        }
1402        kmem_cache_destroy(conf->slab_cache);
1403
1404        /* Step 3.
1405         * At this point, we are holding all the stripes so the array
1406         * is completely stalled, so now is a good time to resize
1407         * conf->disks and the scribble region
1408         */
1409        ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1410        if (ndisks) {
1411                for (i=0; i<conf->raid_disks; i++)
1412                        ndisks[i] = conf->disks[i];
1413                kfree(conf->disks);
1414                conf->disks = ndisks;
1415        } else
1416                err = -ENOMEM;
1417
1418        get_online_cpus();
1419        conf->scribble_len = scribble_len(newsize);
1420        for_each_present_cpu(cpu) {
1421                struct raid5_percpu *percpu;
1422                void *scribble;
1423
1424                percpu = per_cpu_ptr(conf->percpu, cpu);
1425                scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1426
1427                if (scribble) {
1428                        kfree(percpu->scribble);
1429                        percpu->scribble = scribble;
1430                } else {
1431                        err = -ENOMEM;
1432                        break;
1433                }
1434        }
1435        put_online_cpus();
1436
1437        /* Step 4, return new stripes to service */
1438        while(!list_empty(&newstripes)) {
1439                nsh = list_entry(newstripes.next, struct stripe_head, lru);
1440                list_del_init(&nsh->lru);
1441
1442                for (i=conf->raid_disks; i < newsize; i++)
1443                        if (nsh->dev[i].page == NULL) {
1444                                struct page *p = alloc_page(GFP_NOIO);
1445                                nsh->dev[i].page = p;
1446                                if (!p)
1447                                        err = -ENOMEM;
1448                        }
1449                release_stripe(nsh);
1450        }
1451        /* critical section pass, GFP_NOIO no longer needed */
1452
1453        conf->slab_cache = sc;
1454        conf->active_name = 1-conf->active_name;
1455        conf->pool_size = newsize;
1456        return err;
1457}
1458
1459static int drop_one_stripe(raid5_conf_t *conf)
1460{
1461        struct stripe_head *sh;
1462
1463        spin_lock_irq(&conf->device_lock);
1464        sh = get_free_stripe(conf);
1465        spin_unlock_irq(&conf->device_lock);
1466        if (!sh)
1467                return 0;
1468        BUG_ON(atomic_read(&sh->count));
1469        shrink_buffers(sh, conf->pool_size);
1470        kmem_cache_free(conf->slab_cache, sh);
1471        atomic_dec(&conf->active_stripes);
1472        return 1;
1473}
1474
1475static void shrink_stripes(raid5_conf_t *conf)
1476{
1477        while (drop_one_stripe(conf))
1478                ;
1479
1480        if (conf->slab_cache)
1481                kmem_cache_destroy(conf->slab_cache);
1482        conf->slab_cache = NULL;
1483}
1484
1485static void raid5_end_read_request(struct bio * bi, int error)
1486{
1487        struct stripe_head *sh = bi->bi_private;
1488        raid5_conf_t *conf = sh->raid_conf;
1489        int disks = sh->disks, i;
1490        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1491        char b[BDEVNAME_SIZE];
1492        mdk_rdev_t *rdev;
1493
1494
1495        for (i=0 ; i<disks; i++)
1496                if (bi == &sh->dev[i].req)
1497                        break;
1498
1499        pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1500                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1501                uptodate);
1502        if (i == disks) {
1503                BUG();
1504                return;
1505        }
1506
1507        if (uptodate) {
1508                set_bit(R5_UPTODATE, &sh->dev[i].flags);
1509                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1510                        rdev = conf->disks[i].rdev;
1511                        printk_rl(KERN_INFO "raid5:%s: read error corrected"
1512                                  " (%lu sectors at %llu on %s)\n",
1513                                  mdname(conf->mddev), STRIPE_SECTORS,
1514                                  (unsigned long long)(sh->sector
1515                                                       + rdev->data_offset),
1516                                  bdevname(rdev->bdev, b));
1517                        clear_bit(R5_ReadError, &sh->dev[i].flags);
1518                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
1519                }
1520                if (atomic_read(&conf->disks[i].rdev->read_errors))
1521                        atomic_set(&conf->disks[i].rdev->read_errors, 0);
1522        } else {
1523                const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1524                int retry = 0;
1525                rdev = conf->disks[i].rdev;
1526
1527                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1528                atomic_inc(&rdev->read_errors);
1529                if (conf->mddev->degraded)
1530                        printk_rl(KERN_WARNING
1531                                  "raid5:%s: read error not correctable "
1532                                  "(sector %llu on %s).\n",
1533                                  mdname(conf->mddev),
1534                                  (unsigned long long)(sh->sector
1535                                                       + rdev->data_offset),
1536                                  bdn);
1537                else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1538                        /* Oh, no!!! */
1539                        printk_rl(KERN_WARNING
1540                                  "raid5:%s: read error NOT corrected!! "
1541                                  "(sector %llu on %s).\n",
1542                                  mdname(conf->mddev),
1543                                  (unsigned long long)(sh->sector
1544                                                       + rdev->data_offset),
1545                                  bdn);
1546                else if (atomic_read(&rdev->read_errors)
1547                         > conf->max_nr_stripes)
1548                        printk(KERN_WARNING
1549                               "raid5:%s: Too many read errors, failing device %s.\n",
1550                               mdname(conf->mddev), bdn);
1551                else
1552                        retry = 1;
1553                if (retry)
1554                        set_bit(R5_ReadError, &sh->dev[i].flags);
1555                else {
1556                        clear_bit(R5_ReadError, &sh->dev[i].flags);
1557                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
1558                        md_error(conf->mddev, rdev);
1559                }
1560        }
1561        rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1562        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1563        set_bit(STRIPE_HANDLE, &sh->state);
1564        release_stripe(sh);
1565}
1566
1567static void raid5_end_write_request(struct bio *bi, int error)
1568{
1569        struct stripe_head *sh = bi->bi_private;
1570        raid5_conf_t *conf = sh->raid_conf;
1571        int disks = sh->disks, i;
1572        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1573
1574        for (i=0 ; i<disks; i++)
1575                if (bi == &sh->dev[i].req)
1576                        break;
1577
1578        pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1579                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580                uptodate);
1581        if (i == disks) {
1582                BUG();
1583                return;
1584        }
1585
1586        if (!uptodate)
1587                md_error(conf->mddev, conf->disks[i].rdev);
1588
1589        rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1590        
1591        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1592        set_bit(STRIPE_HANDLE, &sh->state);
1593        release_stripe(sh);
1594}
1595
1596
1597static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1598        
1599static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1600{
1601        struct r5dev *dev = &sh->dev[i];
1602
1603        bio_init(&dev->req);
1604        dev->req.bi_io_vec = &dev->vec;
1605        dev->req.bi_vcnt++;
1606        dev->req.bi_max_vecs++;
1607        dev->vec.bv_page = dev->page;
1608        dev->vec.bv_len = STRIPE_SIZE;
1609        dev->vec.bv_offset = 0;
1610
1611        dev->req.bi_sector = sh->sector;
1612        dev->req.bi_private = sh;
1613
1614        dev->flags = 0;
1615        dev->sector = compute_blocknr(sh, i, previous);
1616}
1617
1618static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1619{
1620        char b[BDEVNAME_SIZE];
1621        raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1622        pr_debug("raid5: error called\n");
1623
1624        if (!test_bit(Faulty, &rdev->flags)) {
1625                set_bit(MD_CHANGE_DEVS, &mddev->flags);
1626                if (test_and_clear_bit(In_sync, &rdev->flags)) {
1627                        unsigned long flags;
1628                        spin_lock_irqsave(&conf->device_lock, flags);
1629                        mddev->degraded++;
1630                        spin_unlock_irqrestore(&conf->device_lock, flags);
1631                        /*
1632                         * if recovery was running, make sure it aborts.
1633                         */
1634                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1635                }
1636                set_bit(Faulty, &rdev->flags);
1637                printk(KERN_ALERT
1638                       "raid5: Disk failure on %s, disabling device.\n"
1639                       "raid5: Operation continuing on %d devices.\n",
1640                       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1641        }
1642}
1643
1644/*
1645 * Input: a 'big' sector number,
1646 * Output: index of the data and parity disk, and the sector # in them.
1647 */
1648static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1649                                     int previous, int *dd_idx,
1650                                     struct stripe_head *sh)
1651{
1652        long stripe;
1653        unsigned long chunk_number;
1654        unsigned int chunk_offset;
1655        int pd_idx, qd_idx;
1656        int ddf_layout = 0;
1657        sector_t new_sector;
1658        int algorithm = previous ? conf->prev_algo
1659                                 : conf->algorithm;
1660        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1661                                         : conf->chunk_sectors;
1662        int raid_disks = previous ? conf->previous_raid_disks
1663                                  : conf->raid_disks;
1664        int data_disks = raid_disks - conf->max_degraded;
1665
1666        /* First compute the information on this sector */
1667
1668        /*
1669         * Compute the chunk number and the sector offset inside the chunk
1670         */
1671        chunk_offset = sector_div(r_sector, sectors_per_chunk);
1672        chunk_number = r_sector;
1673        BUG_ON(r_sector != chunk_number);
1674
1675        /*
1676         * Compute the stripe number
1677         */
1678        stripe = chunk_number / data_disks;
1679
1680        /*
1681         * Compute the data disk and parity disk indexes inside the stripe
1682         */
1683        *dd_idx = chunk_number % data_disks;
1684
1685        /*
1686         * Select the parity disk based on the user selected algorithm.
1687         */
1688        pd_idx = qd_idx = ~0;
1689        switch(conf->level) {
1690        case 4:
1691                pd_idx = data_disks;
1692                break;
1693        case 5:
1694                switch (algorithm) {
1695                case ALGORITHM_LEFT_ASYMMETRIC:
1696                        pd_idx = data_disks - stripe % raid_disks;
1697                        if (*dd_idx >= pd_idx)
1698                                (*dd_idx)++;
1699                        break;
1700                case ALGORITHM_RIGHT_ASYMMETRIC:
1701                        pd_idx = stripe % raid_disks;
1702                        if (*dd_idx >= pd_idx)
1703                                (*dd_idx)++;
1704                        break;
1705                case ALGORITHM_LEFT_SYMMETRIC:
1706                        pd_idx = data_disks - stripe % raid_disks;
1707                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1708                        break;
1709                case ALGORITHM_RIGHT_SYMMETRIC:
1710                        pd_idx = stripe % raid_disks;
1711                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1712                        break;
1713                case ALGORITHM_PARITY_0:
1714                        pd_idx = 0;
1715                        (*dd_idx)++;
1716                        break;
1717                case ALGORITHM_PARITY_N:
1718                        pd_idx = data_disks;
1719                        break;
1720                default:
1721                        printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1722                                algorithm);
1723                        BUG();
1724                }
1725                break;
1726        case 6:
1727
1728                switch (algorithm) {
1729                case ALGORITHM_LEFT_ASYMMETRIC:
1730                        pd_idx = raid_disks - 1 - (stripe % raid_disks);
1731                        qd_idx = pd_idx + 1;
1732                        if (pd_idx == raid_disks-1) {
1733                                (*dd_idx)++;    /* Q D D D P */
1734                                qd_idx = 0;
1735                        } else if (*dd_idx >= pd_idx)
1736                                (*dd_idx) += 2; /* D D P Q D */
1737                        break;
1738                case ALGORITHM_RIGHT_ASYMMETRIC:
1739                        pd_idx = stripe % raid_disks;
1740                        qd_idx = pd_idx + 1;
1741                        if (pd_idx == raid_disks-1) {
1742                                (*dd_idx)++;    /* Q D D D P */
1743                                qd_idx = 0;
1744                        } else if (*dd_idx >= pd_idx)
1745                                (*dd_idx) += 2; /* D D P Q D */
1746                        break;
1747                case ALGORITHM_LEFT_SYMMETRIC:
1748                        pd_idx = raid_disks - 1 - (stripe % raid_disks);
1749                        qd_idx = (pd_idx + 1) % raid_disks;
1750                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1751                        break;
1752                case ALGORITHM_RIGHT_SYMMETRIC:
1753                        pd_idx = stripe % raid_disks;
1754                        qd_idx = (pd_idx + 1) % raid_disks;
1755                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1756                        break;
1757
1758                case ALGORITHM_PARITY_0:
1759                        pd_idx = 0;
1760                        qd_idx = 1;
1761                        (*dd_idx) += 2;
1762                        break;
1763                case ALGORITHM_PARITY_N:
1764                        pd_idx = data_disks;
1765                        qd_idx = data_disks + 1;
1766                        break;
1767
1768                case ALGORITHM_ROTATING_ZERO_RESTART:
1769                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
1770                         * of blocks for computing Q is different.
1771                         */
1772                        pd_idx = stripe % raid_disks;
1773                        qd_idx = pd_idx + 1;
1774                        if (pd_idx == raid_disks-1) {
1775                                (*dd_idx)++;    /* Q D D D P */
1776                                qd_idx = 0;
1777                        } else if (*dd_idx >= pd_idx)
1778                                (*dd_idx) += 2; /* D D P Q D */
1779                        ddf_layout = 1;
1780                        break;
1781
1782                case ALGORITHM_ROTATING_N_RESTART:
1783                        /* Same a left_asymmetric, by first stripe is
1784                         * D D D P Q  rather than
1785                         * Q D D D P
1786                         */
1787                        pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1788                        qd_idx = pd_idx + 1;
1789                        if (pd_idx == raid_disks-1) {
1790                                (*dd_idx)++;    /* Q D D D P */
1791                                qd_idx = 0;
1792                        } else if (*dd_idx >= pd_idx)
1793                                (*dd_idx) += 2; /* D D P Q D */
1794                        ddf_layout = 1;
1795                        break;
1796
1797                case ALGORITHM_ROTATING_N_CONTINUE:
1798                        /* Same as left_symmetric but Q is before P */
1799                        pd_idx = raid_disks - 1 - (stripe % raid_disks);
1800                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1801                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1802                        ddf_layout = 1;
1803                        break;
1804
1805                case ALGORITHM_LEFT_ASYMMETRIC_6:
1806                        /* RAID5 left_asymmetric, with Q on last device */
1807                        pd_idx = data_disks - stripe % (raid_disks-1);
1808                        if (*dd_idx >= pd_idx)
1809                                (*dd_idx)++;
1810                        qd_idx = raid_disks - 1;
1811                        break;
1812
1813                case ALGORITHM_RIGHT_ASYMMETRIC_6:
1814                        pd_idx = stripe % (raid_disks-1);
1815                        if (*dd_idx >= pd_idx)
1816                                (*dd_idx)++;
1817                        qd_idx = raid_disks - 1;
1818                        break;
1819
1820                case ALGORITHM_LEFT_SYMMETRIC_6:
1821                        pd_idx = data_disks - stripe % (raid_disks-1);
1822                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1823                        qd_idx = raid_disks - 1;
1824                        break;
1825
1826                case ALGORITHM_RIGHT_SYMMETRIC_6:
1827                        pd_idx = stripe % (raid_disks-1);
1828                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1829                        qd_idx = raid_disks - 1;
1830                        break;
1831
1832                case ALGORITHM_PARITY_0_6:
1833                        pd_idx = 0;
1834                        (*dd_idx)++;
1835                        qd_idx = raid_disks - 1;
1836                        break;
1837
1838
1839                default:
1840                        printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1841                               algorithm);
1842                        BUG();
1843                }
1844                break;
1845        }
1846
1847        if (sh) {
1848                sh->pd_idx = pd_idx;
1849                sh->qd_idx = qd_idx;
1850                sh->ddf_layout = ddf_layout;
1851        }
1852        /*
1853         * Finally, compute the new sector number
1854         */
1855        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1856        return new_sector;
1857}
1858
1859
1860static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1861{
1862        raid5_conf_t *conf = sh->raid_conf;
1863        int raid_disks = sh->disks;
1864        int data_disks = raid_disks - conf->max_degraded;
1865        sector_t new_sector = sh->sector, check;
1866        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1867                                         : conf->chunk_sectors;
1868        int algorithm = previous ? conf->prev_algo
1869                                 : conf->algorithm;
1870        sector_t stripe;
1871        int chunk_offset;
1872        int chunk_number, dummy1, dd_idx = i;
1873        sector_t r_sector;
1874        struct stripe_head sh2;
1875
1876
1877        chunk_offset = sector_div(new_sector, sectors_per_chunk);
1878        stripe = new_sector;
1879        BUG_ON(new_sector != stripe);
1880
1881        if (i == sh->pd_idx)
1882                return 0;
1883        switch(conf->level) {
1884        case 4: break;
1885        case 5:
1886                switch (algorithm) {
1887                case ALGORITHM_LEFT_ASYMMETRIC:
1888                case ALGORITHM_RIGHT_ASYMMETRIC:
1889                        if (i > sh->pd_idx)
1890                                i--;
1891                        break;
1892                case ALGORITHM_LEFT_SYMMETRIC:
1893                case ALGORITHM_RIGHT_SYMMETRIC:
1894                        if (i < sh->pd_idx)
1895                                i += raid_disks;
1896                        i -= (sh->pd_idx + 1);
1897                        break;
1898                case ALGORITHM_PARITY_0:
1899                        i -= 1;
1900                        break;
1901                case ALGORITHM_PARITY_N:
1902                        break;
1903                default:
1904                        printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1905                               algorithm);
1906                        BUG();
1907                }
1908                break;
1909        case 6:
1910                if (i == sh->qd_idx)
1911                        return 0; /* It is the Q disk */
1912                switch (algorithm) {
1913                case ALGORITHM_LEFT_ASYMMETRIC:
1914                case ALGORITHM_RIGHT_ASYMMETRIC:
1915                case ALGORITHM_ROTATING_ZERO_RESTART:
1916                case ALGORITHM_ROTATING_N_RESTART:
1917                        if (sh->pd_idx == raid_disks-1)
1918                                i--;    /* Q D D D P */
1919                        else if (i > sh->pd_idx)
1920                                i -= 2; /* D D P Q D */
1921                        break;
1922                case ALGORITHM_LEFT_SYMMETRIC:
1923                case ALGORITHM_RIGHT_SYMMETRIC:
1924                        if (sh->pd_idx == raid_disks-1)
1925                                i--; /* Q D D D P */
1926                        else {
1927                                /* D D P Q D */
1928                                if (i < sh->pd_idx)
1929                                        i += raid_disks;
1930                                i -= (sh->pd_idx + 2);
1931                        }
1932                        break;
1933                case ALGORITHM_PARITY_0:
1934                        i -= 2;
1935                        break;
1936                case ALGORITHM_PARITY_N:
1937                        break;
1938                case ALGORITHM_ROTATING_N_CONTINUE:
1939                        /* Like left_symmetric, but P is before Q */
1940                        if (sh->pd_idx == 0)
1941                                i--;    /* P D D D Q */
1942                        else {
1943                                /* D D Q P D */
1944                                if (i < sh->pd_idx)
1945                                        i += raid_disks;
1946                                i -= (sh->pd_idx + 1);
1947                        }
1948                        break;
1949                case ALGORITHM_LEFT_ASYMMETRIC_6:
1950                case ALGORITHM_RIGHT_ASYMMETRIC_6:
1951                        if (i > sh->pd_idx)
1952                                i--;
1953                        break;
1954                case ALGORITHM_LEFT_SYMMETRIC_6:
1955                case ALGORITHM_RIGHT_SYMMETRIC_6:
1956                        if (i < sh->pd_idx)
1957                                i += data_disks + 1;
1958                        i -= (sh->pd_idx + 1);
1959                        break;
1960                case ALGORITHM_PARITY_0_6:
1961                        i -= 1;
1962                        break;
1963                default:
1964                        printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1965                               algorithm);
1966                        BUG();
1967                }
1968                break;
1969        }
1970
1971        chunk_number = stripe * data_disks + i;
1972        r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1973
1974        check = raid5_compute_sector(conf, r_sector,
1975                                     previous, &dummy1, &sh2);
1976        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1977                || sh2.qd_idx != sh->qd_idx) {
1978                printk(KERN_ERR "compute_blocknr: map not correct\n");
1979                return 0;
1980        }
1981        return r_sector;
1982}
1983
1984
1985static void
1986schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1987                         int rcw, int expand)
1988{
1989        int i, pd_idx = sh->pd_idx, disks = sh->disks;
1990        raid5_conf_t *conf = sh->raid_conf;
1991        int level = conf->level;
1992
1993        if (rcw) {
1994                /* if we are not expanding this is a proper write request, and
1995                 * there will be bios with new data to be drained into the
1996                 * stripe cache
1997                 */
1998                if (!expand) {
1999                        sh->reconstruct_state = reconstruct_state_drain_run;
2000                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2001                } else
2002                        sh->reconstruct_state = reconstruct_state_run;
2003
2004                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2005
2006                for (i = disks; i--; ) {
2007                        struct r5dev *dev = &sh->dev[i];
2008
2009                        if (dev->towrite) {
2010                                set_bit(R5_LOCKED, &dev->flags);
2011                                set_bit(R5_Wantdrain, &dev->flags);
2012                                if (!expand)
2013                                        clear_bit(R5_UPTODATE, &dev->flags);
2014                                s->locked++;
2015                        }
2016                }
2017                if (s->locked + conf->max_degraded == disks)
2018                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2019                                atomic_inc(&conf->pending_full_writes);
2020        } else {
2021                BUG_ON(level == 6);
2022                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2023                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2024
2025                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2026                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2027                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2028                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2029
2030                for (i = disks; i--; ) {
2031                        struct r5dev *dev = &sh->dev[i];
2032                        if (i == pd_idx)
2033                                continue;
2034
2035                        if (dev->towrite &&
2036                            (test_bit(R5_UPTODATE, &dev->flags) ||
2037                             test_bit(R5_Wantcompute, &dev->flags))) {
2038                                set_bit(R5_Wantdrain, &dev->flags);
2039                                set_bit(R5_LOCKED, &dev->flags);
2040                                clear_bit(R5_UPTODATE, &dev->flags);
2041                                s->locked++;
2042                        }
2043                }
2044        }
2045
2046        /* keep the parity disk(s) locked while asynchronous operations
2047         * are in flight
2048         */
2049        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2050        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2051        s->locked++;
2052
2053        if (level == 6) {
2054                int qd_idx = sh->qd_idx;
2055                struct r5dev *dev = &sh->dev[qd_idx];
2056
2057                set_bit(R5_LOCKED, &dev->flags);
2058                clear_bit(R5_UPTODATE, &dev->flags);
2059                s->locked++;
2060        }
2061
2062        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2063                __func__, (unsigned long long)sh->sector,
2064                s->locked, s->ops_request);
2065}
2066
2067/*
2068 * Each stripe/dev can have one or more bion attached.
2069 * toread/towrite point to the first in a chain.
2070 * The bi_next chain must be in order.
2071 */
2072static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2073{
2074        struct bio **bip;
2075        raid5_conf_t *conf = sh->raid_conf;
2076        int firstwrite=0;
2077
2078        pr_debug("adding bh b#%llu to stripe s#%llu\n",
2079                (unsigned long long)bi->bi_sector,
2080                (unsigned long long)sh->sector);
2081
2082
2083        spin_lock(&sh->lock);
2084        spin_lock_irq(&conf->device_lock);
2085        if (forwrite) {
2086                bip = &sh->dev[dd_idx].towrite;
2087                if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2088                        firstwrite = 1;
2089        } else
2090                bip = &sh->dev[dd_idx].toread;
2091        while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2092                if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2093                        goto overlap;
2094                bip = & (*bip)->bi_next;
2095        }
2096        if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2097                goto overlap;
2098
2099        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2100        if (*bip)
2101                bi->bi_next = *bip;
2102        *bip = bi;
2103        bi->bi_phys_segments++;
2104        spin_unlock_irq(&conf->device_lock);
2105        spin_unlock(&sh->lock);
2106
2107        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2108                (unsigned long long)bi->bi_sector,
2109                (unsigned long long)sh->sector, dd_idx);
2110
2111        if (conf->mddev->bitmap && firstwrite) {
2112                bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2113                                  STRIPE_SECTORS, 0);
2114                sh->bm_seq = conf->seq_flush+1;
2115                set_bit(STRIPE_BIT_DELAY, &sh->state);
2116        }
2117
2118        if (forwrite) {
2119                /* check if page is covered */
2120                sector_t sector = sh->dev[dd_idx].sector;
2121                for (bi=sh->dev[dd_idx].towrite;
2122                     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2123                             bi && bi->bi_sector <= sector;
2124                     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2125                        if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2126                                sector = bi->bi_sector + (bi->bi_size>>9);
2127                }
2128                if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2129                        set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2130        }
2131        return 1;
2132
2133 overlap:
2134        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2135        spin_unlock_irq(&conf->device_lock);
2136        spin_unlock(&sh->lock);
2137        return 0;
2138}
2139
2140static void end_reshape(raid5_conf_t *conf);
2141
2142static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2143                            struct stripe_head *sh)
2144{
2145        int sectors_per_chunk =
2146                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2147        int dd_idx;
2148        int chunk_offset = sector_div(stripe, sectors_per_chunk);
2149        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2150
2151        raid5_compute_sector(conf,
2152                             stripe * (disks - conf->max_degraded)
2153                             *sectors_per_chunk + chunk_offset,
2154                             previous,
2155                             &dd_idx, sh);
2156}
2157
2158static void
2159handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2160                                struct stripe_head_state *s, int disks,
2161                                struct bio **return_bi)
2162{
2163        int i;
2164        for (i = disks; i--; ) {
2165                struct bio *bi;
2166                int bitmap_end = 0;
2167
2168                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2169                        mdk_rdev_t *rdev;
2170                        rcu_read_lock();
2171                        rdev = rcu_dereference(conf->disks[i].rdev);
2172                        if (rdev && test_bit(In_sync, &rdev->flags))
2173                                /* multiple read failures in one stripe */
2174                                md_error(conf->mddev, rdev);
2175                        rcu_read_unlock();
2176                }
2177                spin_lock_irq(&conf->device_lock);
2178                /* fail all writes first */
2179                bi = sh->dev[i].towrite;
2180                sh->dev[i].towrite = NULL;
2181                if (bi) {
2182                        s->to_write--;
2183                        bitmap_end = 1;
2184                }
2185
2186                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2187                        wake_up(&conf->wait_for_overlap);
2188
2189                while (bi && bi->bi_sector <
2190                        sh->dev[i].sector + STRIPE_SECTORS) {
2191                        struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2192                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2193                        if (!raid5_dec_bi_phys_segments(bi)) {
2194                                md_write_end(conf->mddev);
2195                                bi->bi_next = *return_bi;
2196                                *return_bi = bi;
2197                        }
2198                        bi = nextbi;
2199                }
2200                /* and fail all 'written' */
2201                bi = sh->dev[i].written;
2202                sh->dev[i].written = NULL;
2203                if (bi) bitmap_end = 1;
2204                while (bi && bi->bi_sector <
2205                       sh->dev[i].sector + STRIPE_SECTORS) {
2206                        struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2207                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
2208                        if (!raid5_dec_bi_phys_segments(bi)) {
2209                                md_write_end(conf->mddev);
2210                                bi->bi_next = *return_bi;
2211                                *return_bi = bi;
2212                        }
2213                        bi = bi2;
2214                }
2215
2216                /* fail any reads if this device is non-operational and
2217                 * the data has not reached the cache yet.
2218                 */
2219                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2220                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2221                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2222                        bi = sh->dev[i].toread;
2223                        sh->dev[i].toread = NULL;
2224                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2225                                wake_up(&conf->wait_for_overlap);
2226                        if (bi) s->to_read--;
2227                        while (bi && bi->bi_sector <
2228                               sh->dev[i].sector + STRIPE_SECTORS) {
2229                                struct bio *nextbi =
2230                                        r5_next_bio(bi, sh->dev[i].sector);
2231                                clear_bit(BIO_UPTODATE, &bi->bi_flags);
2232                                if (!raid5_dec_bi_phys_segments(bi)) {
2233                                        bi->bi_next = *return_bi;
2234                                        *return_bi = bi;
2235                                }
2236                                bi = nextbi;
2237                        }
2238                }
2239                spin_unlock_irq(&conf->device_lock);
2240                if (bitmap_end)
2241                        bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2242                                        STRIPE_SECTORS, 0, 0);
2243        }
2244
2245        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2246                if (atomic_dec_and_test(&conf->pending_full_writes))
2247                        md_wakeup_thread(conf->mddev->thread);
2248}
2249
2250/* fetch_block5 - checks the given member device to see if its data needs
2251 * to be read or computed to satisfy a request.
2252 *
2253 * Returns 1 when no more member devices need to be checked, otherwise returns
2254 * 0 to tell the loop in handle_stripe_fill5 to continue
2255 */
2256static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2257                        int disk_idx, int disks)
2258{
2259        struct r5dev *dev = &sh->dev[disk_idx];
2260        struct r5dev *failed_dev = &sh->dev[s->failed_num];
2261
2262        /* is the data in this block needed, and can we get it? */
2263        if (!test_bit(R5_LOCKED, &dev->flags) &&
2264            !test_bit(R5_UPTODATE, &dev->flags) &&
2265            (dev->toread ||
2266             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2267             s->syncing || s->expanding ||
2268             (s->failed &&
2269              (failed_dev->toread ||
2270               (failed_dev->towrite &&
2271                !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2272                /* We would like to get this block, possibly by computing it,
2273                 * otherwise read it if the backing disk is insync
2274                 */
2275                if ((s->uptodate == disks - 1) &&
2276                    (s->failed && disk_idx == s->failed_num)) {
2277                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2278                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2279                        set_bit(R5_Wantcompute, &dev->flags);
2280                        sh->ops.target = disk_idx;
2281                        sh->ops.target2 = -1;
2282                        s->req_compute = 1;
2283                        /* Careful: from this point on 'uptodate' is in the eye
2284                         * of raid_run_ops which services 'compute' operations
2285                         * before writes. R5_Wantcompute flags a block that will
2286                         * be R5_UPTODATE by the time it is needed for a
2287                         * subsequent operation.
2288                         */
2289                        s->uptodate++;
2290                        return 1; /* uptodate + compute == disks */
2291                } else if (test_bit(R5_Insync, &dev->flags)) {
2292                        set_bit(R5_LOCKED, &dev->flags);
2293                        set_bit(R5_Wantread, &dev->flags);
2294                        s->locked++;
2295                        pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2296                                s->syncing);
2297                }
2298        }
2299
2300        return 0;
2301}
2302
2303/**
2304 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2305 */
2306static void handle_stripe_fill5(struct stripe_head *sh,
2307                        struct stripe_head_state *s, int disks)
2308{
2309        int i;
2310
2311        /* look for blocks to read/compute, skip this if a compute
2312         * is already in flight, or if the stripe contents are in the
2313         * midst of changing due to a write
2314         */
2315        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2316            !sh->reconstruct_state)
2317                for (i = disks; i--; )
2318                        if (fetch_block5(sh, s, i, disks))
2319                                break;
2320        set_bit(STRIPE_HANDLE, &sh->state);
2321}
2322
2323/* fetch_block6 - checks the given member device to see if its data needs
2324 * to be read or computed to satisfy a request.
2325 *
2326 * Returns 1 when no more member devices need to be checked, otherwise returns
2327 * 0 to tell the loop in handle_stripe_fill6 to continue
2328 */
2329static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2330                         struct r6_state *r6s, int disk_idx, int disks)
2331{
2332        struct r5dev *dev = &sh->dev[disk_idx];
2333        struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2334                                  &sh->dev[r6s->failed_num[1]] };
2335
2336        if (!test_bit(R5_LOCKED, &dev->flags) &&
2337            !test_bit(R5_UPTODATE, &dev->flags) &&
2338            (dev->toread ||
2339             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2340             s->syncing || s->expanding ||
2341             (s->failed >= 1 &&
2342              (fdev[0]->toread || s->to_write)) ||
2343             (s->failed >= 2 &&
2344              (fdev[1]->toread || s->to_write)))) {
2345                /* we would like to get this block, possibly by computing it,
2346                 * otherwise read it if the backing disk is insync
2347                 */
2348                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2349                BUG_ON(test_bit(R5_Wantread, &dev->flags));
2350                if ((s->uptodate == disks - 1) &&
2351                    (s->failed && (disk_idx == r6s->failed_num[0] ||
2352                                   disk_idx == r6s->failed_num[1]))) {
2353                        /* have disk failed, and we're requested to fetch it;
2354                         * do compute it
2355                         */
2356                        pr_debug("Computing stripe %llu block %d\n",
2357                               (unsigned long long)sh->sector, disk_idx);
2358                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2359                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2360                        set_bit(R5_Wantcompute, &dev->flags);
2361                        sh->ops.target = disk_idx;
2362                        sh->ops.target2 = -1; /* no 2nd target */
2363                        s->req_compute = 1;
2364                        s->uptodate++;
2365                        return 1;
2366                } else if (s->uptodate == disks-2 && s->failed >= 2) {
2367                        /* Computing 2-failure is *very* expensive; only
2368                         * do it if failed >= 2
2369                         */
2370                        int other;
2371                        for (other = disks; other--; ) {
2372                                if (other == disk_idx)
2373                                        continue;
2374                                if (!test_bit(R5_UPTODATE,
2375                                      &sh->dev[other].flags))
2376                                        break;
2377                        }
2378                        BUG_ON(other < 0);
2379                        pr_debug("Computing stripe %llu blocks %d,%d\n",
2380                               (unsigned long long)sh->sector,
2381                               disk_idx, other);
2382                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2383                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2384                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2385                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
2386                        sh->ops.target = disk_idx;
2387                        sh->ops.target2 = other;
2388                        s->uptodate += 2;
2389                        s->req_compute = 1;
2390                        return 1;
2391                } else if (test_bit(R5_Insync, &dev->flags)) {
2392                        set_bit(R5_LOCKED, &dev->flags);
2393                        set_bit(R5_Wantread, &dev->flags);
2394                        s->locked++;
2395                        pr_debug("Reading block %d (sync=%d)\n",
2396                                disk_idx, s->syncing);
2397                }
2398        }
2399
2400        return 0;
2401}
2402
2403/**
2404 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2405 */
2406static void handle_stripe_fill6(struct stripe_head *sh,
2407                        struct stripe_head_state *s, struct r6_state *r6s,
2408                        int disks)
2409{
2410        int i;
2411
2412        /* look for blocks to read/compute, skip this if a compute
2413         * is already in flight, or if the stripe contents are in the
2414         * midst of changing due to a write
2415         */
2416        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2417            !sh->reconstruct_state)
2418                for (i = disks; i--; )
2419                        if (fetch_block6(sh, s, r6s, i, disks))
2420                                break;
2421        set_bit(STRIPE_HANDLE, &sh->state);
2422}
2423
2424
2425/* handle_stripe_clean_event
2426 * any written block on an uptodate or failed drive can be returned.
2427 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2428 * never LOCKED, so we don't need to test 'failed' directly.
2429 */
2430static void handle_stripe_clean_event(raid5_conf_t *conf,
2431        struct stripe_head *sh, int disks, struct bio **return_bi)
2432{
2433        int i;
2434        struct r5dev *dev;
2435
2436        for (i = disks; i--; )
2437                if (sh->dev[i].written) {
2438                        dev = &sh->dev[i];
2439                        if (!test_bit(R5_LOCKED, &dev->flags) &&
2440                                test_bit(R5_UPTODATE, &dev->flags)) {
2441                                /* We can return any write requests */
2442                                struct bio *wbi, *wbi2;
2443                                int bitmap_end = 0;
2444                                pr_debug("Return write for disc %d\n", i);
2445                                spin_lock_irq(&conf->device_lock);
2446                                wbi = dev->written;
2447                                dev->written = NULL;
2448                                while (wbi && wbi->bi_sector <
2449                                        dev->sector + STRIPE_SECTORS) {
2450                                        wbi2 = r5_next_bio(wbi, dev->sector);
2451                                        if (!raid5_dec_bi_phys_segments(wbi)) {
2452                                                md_write_end(conf->mddev);
2453                                                wbi->bi_next = *return_bi;
2454                                                *return_bi = wbi;
2455                                        }
2456                                        wbi = wbi2;
2457                                }
2458                                if (dev->towrite == NULL)
2459                                        bitmap_end = 1;
2460                                spin_unlock_irq(&conf->device_lock);
2461                                if (bitmap_end)
2462                                        bitmap_endwrite(conf->mddev->bitmap,
2463                                                        sh->sector,
2464                                                        STRIPE_SECTORS,
2465                                         !test_bit(STRIPE_DEGRADED, &sh->state),
2466                                                        0);
2467                        }
2468                }
2469
2470        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2471                if (atomic_dec_and_test(&conf->pending_full_writes))
2472                        md_wakeup_thread(conf->mddev->thread);
2473}
2474
2475static void handle_stripe_dirtying5(raid5_conf_t *conf,
2476                struct stripe_head *sh, struct stripe_head_state *s, int disks)
2477{
2478        int rmw = 0, rcw = 0, i;
2479        for (i = disks; i--; ) {
2480                /* would I have to read this buffer for read_modify_write */
2481                struct r5dev *dev = &sh->dev[i];
2482                if ((dev->towrite || i == sh->pd_idx) &&
2483                    !test_bit(R5_LOCKED, &dev->flags) &&
2484                    !(test_bit(R5_UPTODATE, &dev->flags) ||
2485                      test_bit(R5_Wantcompute, &dev->flags))) {
2486                        if (test_bit(R5_Insync, &dev->flags))
2487                                rmw++;
2488                        else
2489                                rmw += 2*disks;  /* cannot read it */
2490                }
2491                /* Would I have to read this buffer for reconstruct_write */
2492                if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2493                    !test_bit(R5_LOCKED, &dev->flags) &&
2494                    !(test_bit(R5_UPTODATE, &dev->flags) ||
2495                    test_bit(R5_Wantcompute, &dev->flags))) {
2496                        if (test_bit(R5_Insync, &dev->flags)) rcw++;
2497                        else
2498                                rcw += 2*disks;
2499                }
2500        }
2501        pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2502                (unsigned long long)sh->sector, rmw, rcw);
2503        set_bit(STRIPE_HANDLE, &sh->state);
2504        if (rmw < rcw && rmw > 0)
2505                /* prefer read-modify-write, but need to get some data */
2506                for (i = disks; i--; ) {
2507                        struct r5dev *dev = &sh->dev[i];
2508                        if ((dev->towrite || i == sh->pd_idx) &&
2509                            !test_bit(R5_LOCKED, &dev->flags) &&
2510                            !(test_bit(R5_UPTODATE, &dev->flags) ||
2511                            test_bit(R5_Wantcompute, &dev->flags)) &&
2512                            test_bit(R5_Insync, &dev->flags)) {
2513                                if (
2514                                  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2515                                        pr_debug("Read_old block "
2516                                                "%d for r-m-w\n", i);
2517                                        set_bit(R5_LOCKED, &dev->flags);
2518                                        set_bit(R5_Wantread, &dev->flags);
2519                                        s->locked++;
2520                                } else {
2521                                        set_bit(STRIPE_DELAYED, &sh->state);
2522                                        set_bit(STRIPE_HANDLE, &sh->state);
2523                                }
2524                        }
2525                }
2526        if (rcw <= rmw && rcw > 0)
2527                /* want reconstruct write, but need to get some data */
2528                for (i = disks; i--; ) {
2529                        struct r5dev *dev = &sh->dev[i];
2530                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2531                            i != sh->pd_idx &&
2532                            !test_bit(R5_LOCKED, &dev->flags) &&
2533                            !(test_bit(R5_UPTODATE, &dev->flags) ||
2534                            test_bit(R5_Wantcompute, &dev->flags)) &&
2535                            test_bit(R5_Insync, &dev->flags)) {
2536                                if (
2537                                  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2538                                        pr_debug("Read_old block "
2539                                                "%d for Reconstruct\n", i);
2540                                        set_bit(R5_LOCKED, &dev->flags);
2541                                        set_bit(R5_Wantread, &dev->flags);
2542                                        s->locked++;
2543                                } else {
2544                                        set_bit(STRIPE_DELAYED, &sh->state);
2545                                        set_bit(STRIPE_HANDLE, &sh->state);
2546                                }
2547                        }
2548                }
2549        /* now if nothing is locked, and if we have enough data,
2550         * we can start a write request
2551         */
2552        /* since handle_stripe can be called at any time we need to handle the
2553         * case where a compute block operation has been submitted and then a
2554         * subsequent call wants to start a write request.  raid_run_ops only
2555         * handles the case where compute block and reconstruct are requested
2556         * simultaneously.  If this is not the case then new writes need to be
2557         * held off until the compute completes.
2558         */
2559        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2560            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2561            !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2562                schedule_reconstruction(sh, s, rcw == 0, 0);
2563}
2564
2565static void handle_stripe_dirtying6(raid5_conf_t *conf,
2566                struct stripe_head *sh, struct stripe_head_state *s,
2567                struct r6_state *r6s, int disks)
2568{
2569        int rcw = 0, pd_idx = sh->pd_idx, i;
2570        int qd_idx = sh->qd_idx;
2571
2572        set_bit(STRIPE_HANDLE, &sh->state);
2573        for (i = disks; i--; ) {
2574                struct r5dev *dev = &sh->dev[i];
2575                /* check if we haven't enough data */
2576                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2577                    i != pd_idx && i != qd_idx &&
2578                    !test_bit(R5_LOCKED, &dev->flags) &&
2579                    !(test_bit(R5_UPTODATE, &dev->flags) ||
2580                      test_bit(R5_Wantcompute, &dev->flags))) {
2581                        rcw++;
2582                        if (!test_bit(R5_Insync, &dev->flags))
2583                                continue; /* it's a failed drive */
2584
2585                        if (
2586                          test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2587                                pr_debug("Read_old stripe %llu "
2588                                        "block %d for Reconstruct\n",
2589                                     (unsigned long long)sh->sector, i);
2590                                set_bit(R5_LOCKED, &dev->flags);
2591                                set_bit(R5_Wantread, &dev->flags);
2592                                s->locked++;
2593                        } else {
2594                                pr_debug("Request delayed stripe %llu "
2595                                        "block %d for Reconstruct\n",
2596                                     (unsigned long long)sh->sector, i);
2597                                set_bit(STRIPE_DELAYED, &sh->state);
2598                                set_bit(STRIPE_HANDLE, &sh->state);
2599                        }
2600                }
2601        }
2602        /* now if nothing is locked, and if we have enough data, we can start a
2603         * write request
2604         */
2605        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2606            s->locked == 0 && rcw == 0 &&
2607            !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2608                schedule_reconstruction(sh, s, 1, 0);
2609        }
2610}
2611
2612static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2613                                struct stripe_head_state *s, int disks)
2614{
2615        struct r5dev *dev = NULL;
2616
2617        set_bit(STRIPE_HANDLE, &sh->state);
2618
2619        switch (sh->check_state) {
2620        case check_state_idle:
2621                /* start a new check operation if there are no failures */
2622                if (s->failed == 0) {
2623                        BUG_ON(s->uptodate != disks);
2624                        sh->check_state = check_state_run;
2625                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
2626                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2627                        s->uptodate--;
2628                        break;
2629                }
2630                dev = &sh->dev[s->failed_num];
2631                /* fall through */
2632        case check_state_compute_result:
2633                sh->check_state = check_state_idle;
2634                if (!dev)
2635                        dev = &sh->dev[sh->pd_idx];
2636
2637                /* check that a write has not made the stripe insync */
2638                if (test_bit(STRIPE_INSYNC, &sh->state))
2639                        break;
2640
2641                /* either failed parity check, or recovery is happening */
2642                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2643                BUG_ON(s->uptodate != disks);
2644
2645                set_bit(R5_LOCKED, &dev->flags);
2646                s->locked++;
2647                set_bit(R5_Wantwrite, &dev->flags);
2648
2649                clear_bit(STRIPE_DEGRADED, &sh->state);
2650                set_bit(STRIPE_INSYNC, &sh->state);
2651                break;
2652        case check_state_run:
2653                break; /* we will be called again upon completion */
2654        case check_state_check_result:
2655                sh->check_state = check_state_idle;
2656
2657                /* if a failure occurred during the check operation, leave
2658                 * STRIPE_INSYNC not set and let the stripe be handled again
2659                 */
2660                if (s->failed)
2661                        break;
2662
2663                /* handle a successful check operation, if parity is correct
2664                 * we are done.  Otherwise update the mismatch count and repair
2665                 * parity if !MD_RECOVERY_CHECK
2666                 */
2667                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2668                        /* parity is correct (on disc,
2669                         * not in buffer any more)
2670                         */
2671                        set_bit(STRIPE_INSYNC, &sh->state);
2672                else {
2673                        conf->mddev->resync_mismatches += STRIPE_SECTORS;
2674                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2675                                /* don't try to repair!! */
2676                                set_bit(STRIPE_INSYNC, &sh->state);
2677                        else {
2678                                sh->check_state = check_state_compute_run;
2679                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2680                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2681                                set_bit(R5_Wantcompute,
2682                                        &sh->dev[sh->pd_idx].flags);
2683                                sh->ops.target = sh->pd_idx;
2684                                sh->ops.target2 = -1;
2685                                s->uptodate++;
2686                        }
2687                }
2688                break;
2689        case check_state_compute_run:
2690                break;
2691        default:
2692                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2693                       __func__, sh->check_state,
2694                       (unsigned long long) sh->sector);
2695                BUG();
2696        }
2697}
2698
2699
2700static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2701                                  struct stripe_head_state *s,
2702                                  struct r6_state *r6s, int disks)
2703{
2704        int pd_idx = sh->pd_idx;
2705        int qd_idx = sh->qd_idx;
2706        struct r5dev *dev;
2707
2708        set_bit(STRIPE_HANDLE, &sh->state);
2709
2710        BUG_ON(s->failed > 2);
2711
2712        /* Want to check and possibly repair P and Q.
2713         * However there could be one 'failed' device, in which
2714         * case we can only check one of them, possibly using the
2715         * other to generate missing data
2716         */
2717
2718        switch (sh->check_state) {
2719        case check_state_idle:
2720                /* start a new check operation if there are < 2 failures */
2721                if (s->failed == r6s->q_failed) {
2722                        /* The only possible failed device holds Q, so it
2723                         * makes sense to check P (If anything else were failed,
2724                         * we would have used P to recreate it).
2725                         */
2726                        sh->check_state = check_state_run;
2727                }
2728                if (!r6s->q_failed && s->failed < 2) {
2729                        /* Q is not failed, and we didn't use it to generate
2730                         * anything, so it makes sense to check it
2731                         */
2732                        if (sh->check_state == check_state_run)
2733                                sh->check_state = check_state_run_pq;
2734                        else
2735                                sh->check_state = check_state_run_q;
2736                }
2737
2738                /* discard potentially stale zero_sum_result */
2739                sh->ops.zero_sum_result = 0;
2740
2741                if (sh->check_state == check_state_run) {
2742                        /* async_xor_zero_sum destroys the contents of P */
2743                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2744                        s->uptodate--;
2745                }
2746                if (sh->check_state >= check_state_run &&
2747                    sh->check_state <= check_state_run_pq) {
2748                        /* async_syndrome_zero_sum preserves P and Q, so
2749                         * no need to mark them !uptodate here
2750                         */
2751                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
2752                        break;
2753                }
2754
2755                /* we have 2-disk failure */
2756                BUG_ON(s->failed != 2);
2757                /* fall through */
2758        case check_state_compute_result:
2759                sh->check_state = check_state_idle;
2760
2761                /* check that a write has not made the stripe insync */
2762                if (test_bit(STRIPE_INSYNC, &sh->state))
2763                        break;
2764
2765                /* now write out any block on a failed drive,
2766                 * or P or Q if they were recomputed
2767                 */
2768                BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2769                if (s->failed == 2) {
2770                        dev = &sh->dev[r6s->failed_num[1]];
2771                        s->locked++;
2772                        set_bit(R5_LOCKED, &dev->flags);
2773                        set_bit(R5_Wantwrite, &dev->flags);
2774                }
2775                if (s->failed >= 1) {
2776                        dev = &sh->dev[r6s->failed_num[0]];
2777                        s->locked++;
2778                        set_bit(R5_LOCKED, &dev->flags);
2779                        set_bit(R5_Wantwrite, &dev->flags);
2780                }
2781                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2782                        dev = &sh->dev[pd_idx];
2783                        s->locked++;
2784                        set_bit(R5_LOCKED, &dev->flags);
2785                        set_bit(R5_Wantwrite, &dev->flags);
2786                }
2787                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2788                        dev = &sh->dev[qd_idx];
2789                        s->locked++;
2790                        set_bit(R5_LOCKED, &dev->flags);
2791                        set_bit(R5_Wantwrite, &dev->flags);
2792                }
2793                clear_bit(STRIPE_DEGRADED, &sh->state);
2794
2795                set_bit(STRIPE_INSYNC, &sh->state);
2796                break;
2797        case check_state_run:
2798        case check_state_run_q:
2799        case check_state_run_pq:
2800                break; /* we will be called again upon completion */
2801        case check_state_check_result:
2802                sh->check_state = check_state_idle;
2803
2804                /* handle a successful check operation, if parity is correct
2805                 * we are done.  Otherwise update the mismatch count and repair
2806                 * parity if !MD_RECOVERY_CHECK
2807                 */
2808                if (sh->ops.zero_sum_result == 0) {
2809                        /* both parities are correct */
2810                        if (!s->failed)
2811                                set_bit(STRIPE_INSYNC, &sh->state);
2812                        else {
2813                                /* in contrast to the raid5 case we can validate
2814                                 * parity, but still have a failure to write
2815                                 * back
2816                                 */
2817                                sh->check_state = check_state_compute_result;
2818                                /* Returning at this point means that we may go
2819                                 * off and bring p and/or q uptodate again so
2820                                 * we make sure to check zero_sum_result again
2821                                 * to verify if p or q need writeback
2822                                 */
2823                        }
2824                } else {
2825                        conf->mddev->resync_mismatches += STRIPE_SECTORS;
2826                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2827                                /* don't try to repair!! */
2828                                set_bit(STRIPE_INSYNC, &sh->state);
2829                        else {
2830                                int *target = &sh->ops.target;
2831
2832                                sh->ops.target = -1;
2833                                sh->ops.target2 = -1;
2834                                sh->check_state = check_state_compute_run;
2835                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2836                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2837                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2838                                        set_bit(R5_Wantcompute,
2839                                                &sh->dev[pd_idx].flags);
2840                                        *target = pd_idx;
2841                                        target = &sh->ops.target2;
2842                                        s->uptodate++;
2843                                }
2844                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2845                                        set_bit(R5_Wantcompute,
2846                                                &sh->dev[qd_idx].flags);
2847                                        *target = qd_idx;
2848                                        s->uptodate++;
2849                                }
2850                        }
2851                }
2852                break;
2853        case check_state_compute_run:
2854                break;
2855        default:
2856                printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2857                       __func__, sh->check_state,
2858                       (unsigned long long) sh->sector);
2859                BUG();
2860        }
2861}
2862
2863static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2864                                struct r6_state *r6s)
2865{
2866        int i;
2867
2868        /* We have read all the blocks in this stripe and now we need to
2869         * copy some of them into a target stripe for expand.
2870         */
2871        struct dma_async_tx_descriptor *tx = NULL;
2872        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2873        for (i = 0; i < sh->disks; i++)
2874                if (i != sh->pd_idx && i != sh->qd_idx) {
2875                        int dd_idx, j;
2876                        struct stripe_head *sh2;
2877                        struct async_submit_ctl submit;
2878
2879                        sector_t bn = compute_blocknr(sh, i, 1);
2880                        sector_t s = raid5_compute_sector(conf, bn, 0,
2881                                                          &dd_idx, NULL);
2882                        sh2 = get_active_stripe(conf, s, 0, 1, 1);
2883                        if (sh2 == NULL)
2884                                /* so far only the early blocks of this stripe
2885                                 * have been requested.  When later blocks
2886                                 * get requested, we will try again
2887                                 */
2888                                continue;
2889                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2890                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2891                                /* must have already done this block */
2892                                release_stripe(sh2);
2893                                continue;
2894                        }
2895
2896                        /* place all the copies on one channel */
2897                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2898                        tx = async_memcpy(sh2->dev[dd_idx].page,
2899                                          sh->dev[i].page, 0, 0, STRIPE_SIZE,
2900                                          &submit);
2901
2902                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2903                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2904                        for (j = 0; j < conf->raid_disks; j++)
2905                                if (j != sh2->pd_idx &&
2906                                    (!r6s || j != sh2->qd_idx) &&
2907                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2908                                        break;
2909                        if (j == conf->raid_disks) {
2910                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
2911                                set_bit(STRIPE_HANDLE, &sh2->state);
2912                        }
2913                        release_stripe(sh2);
2914
2915                }
2916        /* done submitting copies, wait for them to complete */
2917        if (tx) {
2918                async_tx_ack(tx);
2919                dma_wait_for_async_tx(tx);
2920        }
2921}
2922
2923
2924/*
2925 * handle_stripe - do things to a stripe.
2926 *
2927 * We lock the stripe and then examine the state of various bits
2928 * to see what needs to be done.
2929 * Possible results:
2930 *    return some read request which now have data
2931 *    return some write requests which are safely on disc
2932 *    schedule a read on some buffers
2933 *    schedule a write of some buffers
2934 *    return confirmation of parity correctness
2935 *
2936 * buffers are taken off read_list or write_list, and bh_cache buffers
2937 * get BH_Lock set before the stripe lock is released.
2938 *
2939 */
2940
2941static void handle_stripe5(struct stripe_head *sh)
2942{
2943        raid5_conf_t *conf = sh->raid_conf;
2944        int disks = sh->disks, i;
2945        struct bio *return_bi = NULL;
2946        struct stripe_head_state s;
2947        struct r5dev *dev;
2948        mdk_rdev_t *blocked_rdev = NULL;
2949        int prexor;
2950
2951        memset(&s, 0, sizeof(s));
2952        pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2953                 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2954                 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2955                 sh->reconstruct_state);
2956
2957        spin_lock(&sh->lock);
2958        clear_bit(STRIPE_HANDLE, &sh->state);
2959        clear_bit(STRIPE_DELAYED, &sh->state);
2960
2961        s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2962        s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2963        s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2964
2965        /* Now to look around and see what can be done */
2966        rcu_read_lock();
2967        for (i=disks; i--; ) {
2968                mdk_rdev_t *rdev;
2969
2970                dev = &sh->dev[i];
2971                clear_bit(R5_Insync, &dev->flags);
2972
2973                pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2974                        "written %p\n", i, dev->flags, dev->toread, dev->read,
2975                        dev->towrite, dev->written);
2976
2977                /* maybe we can request a biofill operation
2978                 *
2979                 * new wantfill requests are only permitted while
2980                 * ops_complete_biofill is guaranteed to be inactive
2981                 */
2982                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2983                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2984                        set_bit(R5_Wantfill, &dev->flags);
2985
2986                /* now count some things */
2987                if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2988                if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2989                if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2990
2991                if (test_bit(R5_Wantfill, &dev->flags))
2992                        s.to_fill++;
2993                else if (dev->toread)
2994                        s.to_read++;
2995                if (dev->towrite) {
2996                        s.to_write++;
2997                        if (!test_bit(R5_OVERWRITE, &dev->flags))
2998                                s.non_overwrite++;
2999                }
3000                if (dev->written)
3001                        s.written++;
3002                rdev = rcu_dereference(conf->disks[i].rdev);
3003                if (blocked_rdev == NULL &&
3004                    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3005                        blocked_rdev = rdev;
3006                        atomic_inc(&rdev->nr_pending);
3007                }
3008                if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3009                        /* The ReadError flag will just be confusing now */
3010                        clear_bit(R5_ReadError, &dev->flags);
3011                        clear_bit(R5_ReWrite, &dev->flags);
3012                }
3013                if (!rdev || !test_bit(In_sync, &rdev->flags)
3014                    || test_bit(R5_ReadError, &dev->flags)) {
3015                        s.failed++;
3016                        s.failed_num = i;
3017                } else
3018                        set_bit(R5_Insync, &dev->flags);
3019        }
3020        rcu_read_unlock();
3021
3022        if (unlikely(blocked_rdev)) {
3023                if (s.syncing || s.expanding || s.expanded ||
3024                    s.to_write || s.written) {
3025                        set_bit(STRIPE_HANDLE, &sh->state);
3026                        goto unlock;
3027                }
3028                /* There is nothing for the blocked_rdev to block */
3029                rdev_dec_pending(blocked_rdev, conf->mddev);
3030                blocked_rdev = NULL;
3031        }
3032
3033        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3034                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3035                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3036        }
3037
3038        pr_debug("locked=%d uptodate=%d to_read=%d"
3039                " to_write=%d failed=%d failed_num=%d\n",
3040                s.locked, s.uptodate, s.to_read, s.to_write,
3041                s.failed, s.failed_num);
3042        /* check if the array has lost two devices and, if so, some requests might
3043         * need to be failed
3044         */
3045        if (s.failed > 1 && s.to_read+s.to_write+s.written)
3046                handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3047        if (s.failed > 1 && s.syncing) {
3048                md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3049                clear_bit(STRIPE_SYNCING, &sh->state);
3050                s.syncing = 0;
3051        }
3052
3053        /* might be able to return some write requests if the parity block
3054         * is safe, or on a failed drive
3055         */
3056        dev = &sh->dev[sh->pd_idx];
3057        if ( s.written &&
3058             ((test_bit(R5_Insync, &dev->flags) &&
3059               !test_bit(R5_LOCKED, &dev->flags) &&
3060               test_bit(R5_UPTODATE, &dev->flags)) ||
3061               (s.failed == 1 && s.failed_num == sh->pd_idx)))
3062                handle_stripe_clean_event(conf, sh, disks, &return_bi);
3063
3064        /* Now we might consider reading some blocks, either to check/generate
3065         * parity, or to satisfy requests
3066         * or to load a block that is being partially written.
3067         */
3068        if (s.to_read || s.non_overwrite ||
3069            (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3070                handle_stripe_fill5(sh, &s, disks);
3071
3072        /* Now we check to see if any write operations have recently
3073         * completed
3074         */
3075        prexor = 0;
3076        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3077                prexor = 1;
3078        if (sh->reconstruct_state == reconstruct_state_drain_result ||
3079            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3080                sh->reconstruct_state = reconstruct_state_idle;
3081
3082                /* All the 'written' buffers and the parity block are ready to
3083                 * be written back to disk
3084                 */
3085                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3086                for (i = disks; i--; ) {
3087                        dev = &sh->dev[i];
3088                        if (test_bit(R5_LOCKED, &dev->flags) &&
3089                                (i == sh->pd_idx || dev->written)) {
3090                                pr_debug("Writing block %d\n", i);
3091                                set_bit(R5_Wantwrite, &dev->flags);
3092                                if (prexor)
3093                                        continue;
3094                                if (!test_bit(R5_Insync, &dev->flags) ||
3095                                    (i == sh->pd_idx && s.failed == 0))
3096                                        set_bit(STRIPE_INSYNC, &sh->state);
3097                        }
3098                }
3099                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3100                        atomic_dec(&conf->preread_active_stripes);
3101                        if (atomic_read(&conf->preread_active_stripes) <
3102                                IO_THRESHOLD)
3103                                md_wakeup_thread(conf->mddev->thread);
3104                }
3105        }
3106
3107        /* Now to consider new write requests and what else, if anything
3108         * should be read.  We do not handle new writes when:
3109         * 1/ A 'write' operation (copy+xor) is already in flight.
3110         * 2/ A 'check' operation is in flight, as it may clobber the parity
3111         *    block.
3112         */
3113        if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3114                handle_stripe_dirtying5(conf, sh, &s, disks);
3115
3116        /* maybe we need to check and possibly fix the parity for this stripe
3117         * Any reads will already have been scheduled, so we just see if enough
3118         * data is available.  The parity check is held off while parity
3119         * dependent operations are in flight.
3120         */
3121        if (sh->check_state ||
3122            (s.syncing && s.locked == 0 &&
3123             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3124             !test_bit(STRIPE_INSYNC, &sh->state)))
3125                handle_parity_checks5(conf, sh, &s, disks);
3126
3127        if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3128                md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3129                clear_bit(STRIPE_SYNCING, &sh->state);
3130        }
3131
3132        /* If the failed drive is just a ReadError, then we might need to progress
3133         * the repair/check process
3134         */
3135        if (s.failed == 1 && !conf->mddev->ro &&
3136            test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3137            && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3138            && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3139                ) {
3140                dev = &sh->dev[s.failed_num];
3141                if (!test_bit(R5_ReWrite, &dev->flags)) {
3142                        set_bit(R5_Wantwrite, &dev->flags);
3143                        set_bit(R5_ReWrite, &dev->flags);
3144                        set_bit(R5_LOCKED, &dev->flags);
3145                        s.locked++;
3146                } else {
3147                        /* let's read it back */
3148                        set_bit(R5_Wantread, &dev->flags);
3149                        set_bit(R5_LOCKED, &dev->flags);
3150                        s.locked++;
3151                }
3152        }
3153
3154        /* Finish reconstruct operations initiated by the expansion process */
3155        if (sh->reconstruct_state == reconstruct_state_result) {
3156                struct stripe_head *sh2
3157                        = get_active_stripe(conf, sh->sector, 1, 1, 1);
3158                if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3159                        /* sh cannot be written until sh2 has been read.
3160                         * so arrange for sh to be delayed a little
3161                         */
3162                        set_bit(STRIPE_DELAYED, &sh->state);
3163                        set_bit(STRIPE_HANDLE, &sh->state);
3164                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3165                                              &sh2->state))
3166                                atomic_inc(&conf->preread_active_stripes);
3167                        release_stripe(sh2);
3168                        goto unlock;
3169                }
3170                if (sh2)
3171                        release_stripe(sh2);
3172
3173                sh->reconstruct_state = reconstruct_state_idle;
3174                clear_bit(STRIPE_EXPANDING, &sh->state);
3175                for (i = conf->raid_disks; i--; ) {
3176                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
3177                        set_bit(R5_LOCKED, &sh->dev[i].flags);
3178                        s.locked++;
3179                }
3180        }
3181
3182        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3183            !sh->reconstruct_state) {
3184                /* Need to write out all blocks after computing parity */
3185                sh->disks = conf->raid_disks;
3186                stripe_set_idx(sh->sector, conf, 0, sh);
3187                schedule_reconstruction(sh, &s, 1, 1);
3188        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3189                clear_bit(STRIPE_EXPAND_READY, &sh->state);
3190                atomic_dec(&conf->reshape_stripes);
3191                wake_up(&conf->wait_for_overlap);
3192                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3193        }
3194
3195        if (s.expanding && s.locked == 0 &&
3196            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3197                handle_stripe_expansion(conf, sh, NULL);
3198
3199 unlock:
3200        spin_unlock(&sh->lock);
3201
3202        /* wait for this device to become unblocked */
3203        if (unlikely(blocked_rdev))
3204                md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3205
3206        if (s.ops_request)
3207                raid_run_ops(sh, s.ops_request);
3208
3209        ops_run_io(sh, &s);
3210
3211        return_io(return_bi);
3212}
3213
3214static void handle_stripe6(struct stripe_head *sh)
3215{
3216        raid5_conf_t *conf = sh->raid_conf;
3217        int disks = sh->disks;
3218        struct bio *return_bi = NULL;
3219        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3220        struct stripe_head_state s;
3221        struct r6_state r6s;
3222        struct r5dev *dev, *pdev, *qdev;
3223        mdk_rdev_t *blocked_rdev = NULL;
3224
3225        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3226                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3227               (unsigned long long)sh->sector, sh->state,
3228               atomic_read(&sh->count), pd_idx, qd_idx,
3229               sh->check_state, sh->reconstruct_state);
3230        memset(&s, 0, sizeof(s));
3231
3232        spin_lock(&sh->lock);
3233        clear_bit(STRIPE_HANDLE, &sh->state);
3234        clear_bit(STRIPE_DELAYED, &sh->state);
3235
3236        s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3237        s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3238        s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3239        /* Now to look around and see what can be done */
3240
3241        rcu_read_lock();
3242        for (i=disks; i--; ) {
3243                mdk_rdev_t *rdev;
3244                dev = &sh->dev[i];
3245                clear_bit(R5_Insync, &dev->flags);
3246
3247                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3248                        i, dev->flags, dev->toread, dev->towrite, dev->written);
3249                /* maybe we can reply to a read
3250                 *
3251                 * new wantfill requests are only permitted while
3252                 * ops_complete_biofill is guaranteed to be inactive
3253                 */
3254                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3255                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3256                        set_bit(R5_Wantfill, &dev->flags);
3257
3258                /* now count some things */
3259                if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3260                if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3261                if (test_bit(R5_Wantcompute, &dev->flags)) {
3262                        s.compute++;
3263                        BUG_ON(s.compute > 2);
3264                }
3265
3266                if (test_bit(R5_Wantfill, &dev->flags)) {
3267                        s.to_fill++;
3268                } else if (dev->toread)
3269                        s.to_read++;
3270                if (dev->towrite) {
3271                        s.to_write++;
3272                        if (!test_bit(R5_OVERWRITE, &dev->flags))
3273                                s.non_overwrite++;
3274                }
3275                if (dev->written)
3276                        s.written++;
3277                rdev = rcu_dereference(conf->disks[i].rdev);
3278                if (blocked_rdev == NULL &&
3279                    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3280                        blocked_rdev = rdev;
3281                        atomic_inc(&rdev->nr_pending);
3282                }
3283                if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3284                        /* The ReadError flag will just be confusing now */
3285                        clear_bit(R5_ReadError, &dev->flags);
3286                        clear_bit(R5_ReWrite, &dev->flags);
3287                }
3288                if (!rdev || !test_bit(In_sync, &rdev->flags)
3289                    || test_bit(R5_ReadError, &dev->flags)) {
3290                        if (s.failed < 2)
3291                                r6s.failed_num[s.failed] = i;
3292                        s.failed++;
3293                } else
3294                        set_bit(R5_Insync, &dev->flags);
3295        }
3296        rcu_read_unlock();
3297
3298        if (unlikely(blocked_rdev)) {
3299                if (s.syncing || s.expanding || s.expanded ||
3300                    s.to_write || s.written) {
3301                        set_bit(STRIPE_HANDLE, &sh->state);
3302                        goto unlock;
3303                }
3304                /* There is nothing for the blocked_rdev to block */
3305                rdev_dec_pending(blocked_rdev, conf->mddev);
3306                blocked_rdev = NULL;
3307        }
3308
3309        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3310                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3311                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3312        }
3313
3314        pr_debug("locked=%d uptodate=%d to_read=%d"
3315               " to_write=%d failed=%d failed_num=%d,%d\n",
3316               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3317               r6s.failed_num[0], r6s.failed_num[1]);
3318        /* check if the array has lost >2 devices and, if so, some requests
3319         * might need to be failed
3320         */
3321        if (s.failed > 2 && s.to_read+s.to_write+s.written)
3322                handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3323        if (s.failed > 2 && s.syncing) {
3324                md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3325                clear_bit(STRIPE_SYNCING, &sh->state);
3326                s.syncing = 0;
3327        }
3328
3329        /*
3330         * might be able to return some write requests if the parity blocks
3331         * are safe, or on a failed drive
3332         */
3333        pdev = &sh->dev[pd_idx];
3334        r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3335                || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3336        qdev = &sh->dev[qd_idx];
3337        r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3338                || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3339
3340        if ( s.written &&
3341             ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3342                             && !test_bit(R5_LOCKED, &pdev->flags)
3343                             && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3344             ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3345                             && !test_bit(R5_LOCKED, &qdev->flags)
3346                             && test_bit(R5_UPTODATE, &qdev->flags)))))
3347                handle_stripe_clean_event(conf, sh, disks, &return_bi);
3348
3349        /* Now we might consider reading some blocks, either to check/generate
3350         * parity, or to satisfy requests
3351         * or to load a block that is being partially written.
3352         */
3353        if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3354            (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3355                handle_stripe_fill6(sh, &s, &r6s, disks);
3356
3357        /* Now we check to see if any write operations have recently
3358         * completed
3359         */
3360        if (sh->reconstruct_state == reconstruct_state_drain_result) {
3361                int qd_idx = sh->qd_idx;
3362
3363                sh->reconstruct_state = reconstruct_state_idle;
3364                /* All the 'written' buffers and the parity blocks are ready to
3365                 * be written back to disk
3366                 */
3367                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3368                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3369                for (i = disks; i--; ) {
3370                        dev = &sh->dev[i];
3371                        if (test_bit(R5_LOCKED, &dev->flags) &&
3372                            (i == sh->pd_idx || i == qd_idx ||
3373                             dev->written)) {
3374                                pr_debug("Writing block %d\n", i);
3375                                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3376                                set_bit(R5_Wantwrite, &dev->flags);
3377                                if (!test_bit(R5_Insync, &dev->flags) ||
3378                                    ((i == sh->pd_idx || i == qd_idx) &&
3379                                      s.failed == 0))
3380                                        set_bit(STRIPE_INSYNC, &sh->state);
3381                        }
3382                }
3383                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3384                        atomic_dec(&conf->preread_active_stripes);
3385                        if (atomic_read(&conf->preread_active_stripes) <
3386                                IO_THRESHOLD)
3387                                md_wakeup_thread(conf->mddev->thread);
3388                }
3389        }
3390
3391        /* Now to consider new write requests and what else, if anything
3392         * should be read.  We do not handle new writes when:
3393         * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3394         * 2/ A 'check' operation is in flight, as it may clobber the parity
3395         *    block.
3396         */
3397        if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3398                handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3399
3400        /* maybe we need to check and possibly fix the parity for this stripe
3401         * Any reads will already have been scheduled, so we just see if enough
3402         * data is available.  The parity check is held off while parity
3403         * dependent operations are in flight.
3404         */
3405        if (sh->check_state ||
3406            (s.syncing && s.locked == 0 &&
3407             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3408             !test_bit(STRIPE_INSYNC, &sh->state)))
3409                handle_parity_checks6(conf, sh, &s, &r6s, disks);
3410
3411        if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3412                md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3413                clear_bit(STRIPE_SYNCING, &sh->state);
3414        }
3415
3416        /* If the failed drives are just a ReadError, then we might need
3417         * to progress the repair/check process
3418         */
3419        if (s.failed <= 2 && !conf->mddev->ro)
3420                for (i = 0; i < s.failed; i++) {
3421                        dev = &sh->dev[r6s.failed_num[i]];
3422                        if (test_bit(R5_ReadError, &dev->flags)
3423                            && !test_bit(R5_LOCKED, &dev->flags)
3424                            && test_bit(R5_UPTODATE, &dev->flags)
3425                                ) {
3426                                if (!test_bit(R5_ReWrite, &dev->flags)) {
3427                                        set_bit(R5_Wantwrite, &dev->flags);
3428                                        set_bit(R5_ReWrite, &dev->flags);
3429                                        set_bit(R5_LOCKED, &dev->flags);
3430                                        s.locked++;
3431                                } else {
3432                                        /* let's read it back */
3433                                        set_bit(R5_Wantread, &dev->flags);
3434                                        set_bit(R5_LOCKED, &dev->flags);
3435                                        s.locked++;
3436                                }
3437                        }
3438                }
3439
3440        /* Finish reconstruct operations initiated by the expansion process */
3441        if (sh->reconstruct_state == reconstruct_state_result) {
3442                sh->reconstruct_state = reconstruct_state_idle;
3443                clear_bit(STRIPE_EXPANDING, &sh->state);
3444                for (i = conf->raid_disks; i--; ) {
3445                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
3446                        set_bit(R5_LOCKED, &sh->dev[i].flags);
3447                        s.locked++;
3448                }
3449        }
3450
3451        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3452            !sh->reconstruct_state) {
3453                struct stripe_head *sh2
3454                        = get_active_stripe(conf, sh->sector, 1, 1, 1);
3455                if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3456                        /* sh cannot be written until sh2 has been read.
3457                         * so arrange for sh to be delayed a little
3458                         */
3459                        set_bit(STRIPE_DELAYED, &sh->state);
3460                        set_bit(STRIPE_HANDLE, &sh->state);
3461                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3462                                              &sh2->state))
3463                                atomic_inc(&conf->preread_active_stripes);
3464                        release_stripe(sh2);
3465                        goto unlock;
3466                }
3467                if (sh2)
3468                        release_stripe(sh2);
3469
3470                /* Need to write out all blocks after computing P&Q */
3471                sh->disks = conf->raid_disks;
3472                stripe_set_idx(sh->sector, conf, 0, sh);
3473                schedule_reconstruction(sh, &s, 1, 1);
3474        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3475                clear_bit(STRIPE_EXPAND_READY, &sh->state);
3476                atomic_dec(&conf->reshape_stripes);
3477                wake_up(&conf->wait_for_overlap);
3478                md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3479        }
3480
3481        if (s.expanding && s.locked == 0 &&
3482            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3483                handle_stripe_expansion(conf, sh, &r6s);
3484
3485 unlock:
3486        spin_unlock(&sh->lock);
3487
3488        /* wait for this device to become unblocked */
3489        if (unlikely(blocked_rdev))
3490                md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3491
3492        if (s.ops_request)
3493                raid_run_ops(sh, s.ops_request);
3494
3495        ops_run_io(sh, &s);
3496
3497        return_io(return_bi);
3498}
3499
3500static void handle_stripe(struct stripe_head *sh)
3501{
3502        if (sh->raid_conf->level == 6)
3503                handle_stripe6(sh);
3504        else
3505                handle_stripe5(sh);
3506}
3507
3508static void raid5_activate_delayed(raid5_conf_t *conf)
3509{
3510        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3511                while (!list_empty(&conf->delayed_list)) {
3512                        struct list_head *l = conf->delayed_list.next;
3513                        struct stripe_head *sh;
3514                        sh = list_entry(l, struct stripe_head, lru);
3515                        list_del_init(l);
3516                        clear_bit(STRIPE_DELAYED, &sh->state);
3517                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3518                                atomic_inc(&conf->preread_active_stripes);
3519                        list_add_tail(&sh->lru, &conf->hold_list);
3520                }
3521        } else
3522                blk_plug_device(conf->mddev->queue);
3523}
3524
3525static void activate_bit_delay(raid5_conf_t *conf)
3526{
3527        /* device_lock is held */
3528        struct list_head head;
3529        list_add(&head, &conf->bitmap_list);
3530        list_del_init(&conf->bitmap_list);
3531        while (!list_empty(&head)) {
3532                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3533                list_del_init(&sh->lru);
3534                atomic_inc(&sh->count);
3535                __release_stripe(conf, sh);
3536        }
3537}
3538
3539static void unplug_slaves(mddev_t *mddev)
3540{
3541        raid5_conf_t *conf = mddev->private;
3542        int i;
3543        int devs = max(conf->raid_disks, conf->previous_raid_disks);
3544
3545        rcu_read_lock();
3546        for (i = 0; i < devs; i++) {
3547                mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3548                if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3549                        struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3550
3551                        atomic_inc(&rdev->nr_pending);
3552                        rcu_read_unlock();
3553
3554                        blk_unplug(r_queue);
3555
3556                        rdev_dec_pending(rdev, mddev);
3557                        rcu_read_lock();
3558                }
3559        }
3560        rcu_read_unlock();
3561}
3562
3563static void raid5_unplug_device(struct request_queue *q)
3564{
3565        mddev_t *mddev = q->queuedata;
3566        raid5_conf_t *conf = mddev->private;
3567        unsigned long flags;
3568
3569        spin_lock_irqsave(&conf->device_lock, flags);
3570
3571        if (blk_remove_plug(q)) {
3572                conf->seq_flush++;
3573                raid5_activate_delayed(conf);
3574        }
3575        md_wakeup_thread(mddev->thread);
3576
3577        spin_unlock_irqrestore(&conf->device_lock, flags);
3578
3579        unplug_slaves(mddev);
3580}
3581
3582static int raid5_congested(void *data, int bits)
3583{
3584        mddev_t *mddev = data;
3585        raid5_conf_t *conf = mddev->private;
3586
3587        /* No difference between reads and writes.  Just check
3588         * how busy the stripe_cache is
3589         */
3590
3591        if (mddev_congested(mddev, bits))
3592                return 1;
3593        if (conf->inactive_blocked)
3594                return 1;
3595        if (conf->quiesce)
3596                return 1;
3597        if (list_empty_careful(&conf->inactive_list))
3598                return 1;
3599
3600        return 0;
3601}
3602
3603/* We want read requests to align with chunks where possible,
3604 * but write requests don't need to.
3605 */
3606static int raid5_mergeable_bvec(struct request_queue *q,
3607                                struct bvec_merge_data *bvm,
3608                                struct bio_vec *biovec)
3609{
3610        mddev_t *mddev = q->queuedata;
3611        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3612        int max;
3613        unsigned int chunk_sectors = mddev->chunk_sectors;
3614        unsigned int bio_sectors = bvm->bi_size >> 9;
3615
3616        if ((bvm->bi_rw & 1) == WRITE)
3617                return biovec->bv_len; /* always allow writes to be mergeable */
3618
3619        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3620                chunk_sectors = mddev->new_chunk_sectors;
3621        max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3622        if (max < 0) max = 0;
3623        if (max <= biovec->bv_len && bio_sectors == 0)
3624                return biovec->bv_len;
3625        else
3626                return max;
3627}
3628
3629
3630static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3631{
3632        sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3633        unsigned int chunk_sectors = mddev->chunk_sectors;
3634        unsigned int bio_sectors = bio->bi_size >> 9;
3635
3636        if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3637                chunk_sectors = mddev->new_chunk_sectors;
3638        return  chunk_sectors >=
3639                ((sector & (chunk_sectors - 1)) + bio_sectors);
3640}
3641
3642/*
3643 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3644 *  later sampled by raid5d.
3645 */
3646static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3647{
3648        unsigned long flags;
3649
3650        spin_lock_irqsave(&conf->device_lock, flags);
3651
3652        bi->bi_next = conf->retry_read_aligned_list;
3653        conf->retry_read_aligned_list = bi;
3654
3655        spin_unlock_irqrestore(&conf->device_lock, flags);
3656        md_wakeup_thread(conf->mddev->thread);
3657}
3658
3659
3660static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3661{
3662        struct bio *bi;
3663
3664        bi = conf->retry_read_aligned;
3665        if (bi) {
3666                conf->retry_read_aligned = NULL;
3667                return bi;
3668        }
3669        bi = conf->retry_read_aligned_list;
3670        if(bi) {
3671                conf->retry_read_aligned_list = bi->bi_next;
3672                bi->bi_next = NULL;
3673                /*
3674                 * this sets the active strip count to 1 and the processed
3675                 * strip count to zero (upper 8 bits)
3676                 */
3677                bi->bi_phys_segments = 1; /* biased count of active stripes */
3678        }
3679
3680        return bi;
3681}
3682
3683
3684/*
3685 *  The "raid5_align_endio" should check if the read succeeded and if it
3686 *  did, call bio_endio on the original bio (having bio_put the new bio
3687 *  first).
3688 *  If the read failed..
3689 */
3690static void raid5_align_endio(struct bio *bi, int error)
3691{
3692        struct bio* raid_bi  = bi->bi_private;
3693        mddev_t *mddev;
3694        raid5_conf_t *conf;
3695        int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3696        mdk_rdev_t *rdev;
3697
3698        bio_put(bi);
3699
3700        mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3701        conf = mddev->private;
3702        rdev = (void*)raid_bi->bi_next;
3703        raid_bi->bi_next = NULL;
3704
3705        rdev_dec_pending(rdev, conf->mddev);
3706
3707        if (!error && uptodate) {
3708                bio_endio(raid_bi, 0);
3709                if (atomic_dec_and_test(&conf->active_aligned_reads))
3710                        wake_up(&conf->wait_for_stripe);
3711                return;
3712        }
3713
3714
3715        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3716
3717        add_bio_to_retry(raid_bi, conf);
3718}
3719
3720static int bio_fits_rdev(struct bio *bi)
3721{
3722        struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3723
3724        if ((bi->bi_size>>9) > queue_max_sectors(q))
3725                return 0;
3726        blk_recount_segments(q, bi);
3727        if (bi->bi_phys_segments > queue_max_phys_segments(q))
3728                return 0;
3729
3730        if (q->merge_bvec_fn)
3731                /* it's too hard to apply the merge_bvec_fn at this stage,
3732                 * just just give up
3733                 */
3734                return 0;
3735
3736        return 1;
3737}
3738
3739
3740static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3741{
3742        mddev_t *mddev = q->queuedata;
3743        raid5_conf_t *conf = mddev->private;
3744        unsigned int dd_idx;
3745        struct bio* align_bi;
3746        mdk_rdev_t *rdev;
3747
3748        if (!in_chunk_boundary(mddev, raid_bio)) {
3749                pr_debug("chunk_aligned_read : non aligned\n");
3750                return 0;
3751        }
3752        /*
3753         * use bio_clone to make a copy of the bio
3754         */
3755        align_bi = bio_clone(raid_bio, GFP_NOIO);
3756        if (!align_bi)
3757                return 0;
3758        /*
3759         *   set bi_end_io to a new function, and set bi_private to the
3760         *     original bio.
3761         */
3762        align_bi->bi_end_io  = raid5_align_endio;
3763        align_bi->bi_private = raid_bio;
3764        /*
3765         *      compute position
3766         */
3767        align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3768                                                    0,
3769                                                    &dd_idx, NULL);
3770
3771        rcu_read_lock();
3772        rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3773        if (rdev && test_bit(In_sync, &rdev->flags)) {
3774                atomic_inc(&rdev->nr_pending);
3775                rcu_read_unlock();
3776                raid_bio->bi_next = (void*)rdev;
3777                align_bi->bi_bdev =  rdev->bdev;
3778                align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3779                align_bi->bi_sector += rdev->data_offset;
3780
3781                if (!bio_fits_rdev(align_bi)) {
3782                        /* too big in some way */
3783                        bio_put(align_bi);
3784                        rdev_dec_pending(rdev, mddev);
3785                        return 0;
3786                }
3787
3788                spin_lock_irq(&conf->device_lock);
3789                wait_event_lock_irq(conf->wait_for_stripe,
3790                                    conf->quiesce == 0,
3791                                    conf->device_lock, /* nothing */);
3792                atomic_inc(&conf->active_aligned_reads);
3793                spin_unlock_irq(&conf->device_lock);
3794
3795                generic_make_request(align_bi);
3796                return 1;
3797        } else {
3798                rcu_read_unlock();
3799                bio_put(align_bi);
3800                return 0;
3801        }
3802}
3803
3804/* __get_priority_stripe - get the next stripe to process
3805 *
3806 * Full stripe writes are allowed to pass preread active stripes up until
3807 * the bypass_threshold is exceeded.  In general the bypass_count
3808 * increments when the handle_list is handled before the hold_list; however, it
3809 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3810 * stripe with in flight i/o.  The bypass_count will be reset when the
3811 * head of the hold_list has changed, i.e. the head was promoted to the
3812 * handle_list.
3813 */
3814static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3815{
3816        struct stripe_head *sh;
3817
3818        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3819                  __func__,
3820                  list_empty(&conf->handle_list) ? "empty" : "busy",
3821                  list_empty(&conf->hold_list) ? "empty" : "busy",
3822                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3823
3824        if (!list_empty(&conf->handle_list)) {
3825                sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3826
3827                if (list_empty(&conf->hold_list))
3828                        conf->bypass_count = 0;
3829                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3830                        if (conf->hold_list.next == conf->last_hold)
3831                                conf->bypass_count++;
3832                        else {
3833                                conf->last_hold = conf->hold_list.next;
3834                                conf->bypass_count -= conf->bypass_threshold;
3835                                if (conf->bypass_count < 0)
3836                                        conf->bypass_count = 0;
3837                        }
3838                }
3839        } else if (!list_empty(&conf->hold_list) &&
3840                   ((conf->bypass_threshold &&
3841                     conf->bypass_count > conf->bypass_threshold) ||
3842                    atomic_read(&conf->pending_full_writes) == 0)) {
3843                sh = list_entry(conf->hold_list.next,
3844                                typeof(*sh), lru);
3845                conf->bypass_count -= conf->bypass_threshold;
3846                if (conf->bypass_count < 0)
3847                        conf->bypass_count = 0;
3848        } else
3849                return NULL;
3850
3851        list_del_init(&sh->lru);
3852        atomic_inc(&sh->count);
3853        BUG_ON(atomic_read(&sh->count) != 1);
3854        return sh;
3855}
3856
3857static int make_request(struct request_queue *q, struct bio * bi)
3858{
3859        mddev_t *mddev = q->queuedata;
3860        raid5_conf_t *conf = mddev->private;
3861        int dd_idx;
3862        sector_t new_sector;
3863        sector_t logical_sector, last_sector;
3864        struct stripe_head *sh;
3865        const int rw = bio_data_dir(bi);
3866        int cpu, remaining;
3867
3868        if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3869                bio_endio(bi, -EOPNOTSUPP);
3870                return 0;
3871        }
3872
3873        md_write_start(mddev, bi);
3874
3875        cpu = part_stat_lock();
3876        part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3877        part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3878                      bio_sectors(bi));
3879        part_stat_unlock();
3880
3881        if (rw == READ &&
3882             mddev->reshape_position == MaxSector &&
3883             chunk_aligned_read(q,bi))
3884                return 0;
3885
3886        logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3887        last_sector = bi->bi_sector + (bi->bi_size>>9);
3888        bi->bi_next = NULL;
3889        bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3890
3891        for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3892                DEFINE_WAIT(w);
3893                int disks, data_disks;
3894                int previous;
3895
3896        retry:
3897                previous = 0;
3898                disks = conf->raid_disks;
3899                prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3900                if (unlikely(conf->reshape_progress != MaxSector)) {
3901                        /* spinlock is needed as reshape_progress may be
3902                         * 64bit on a 32bit platform, and so it might be
3903                         * possible to see a half-updated value
3904                         * Ofcourse reshape_progress could change after
3905                         * the lock is dropped, so once we get a reference
3906                         * to the stripe that we think it is, we will have
3907                         * to check again.
3908                         */
3909                        spin_lock_irq(&conf->device_lock);
3910                        if (mddev->delta_disks < 0
3911                            ? logical_sector < conf->reshape_progress
3912                            : logical_sector >= conf->reshape_progress) {
3913                                disks = conf->previous_raid_disks;
3914                                previous = 1;
3915                        } else {
3916                                if (mddev->delta_disks < 0
3917                                    ? logical_sector < conf->reshape_safe
3918                                    : logical_sector >= conf->reshape_safe) {
3919                                        spin_unlock_irq(&conf->device_lock);
3920                                        schedule();
3921                                        goto retry;
3922                                }
3923                        }
3924                        spin_unlock_irq(&conf->device_lock);
3925                }
3926                data_disks = disks - conf->max_degraded;
3927
3928                new_sector = raid5_compute_sector(conf, logical_sector,
3929                                                  previous,
3930                                                  &dd_idx, NULL);
3931                pr_debug("raid5: make_request, sector %llu logical %llu\n",
3932                        (unsigned long long)new_sector, 
3933                        (unsigned long long)logical_sector);
3934
3935                sh = get_active_stripe(conf, new_sector, previous,
3936                                       (bi->bi_rw&RWA_MASK), 0);
3937                if (sh) {
3938                        if (unlikely(previous)) {
3939                                /* expansion might have moved on while waiting for a
3940                                 * stripe, so we must do the range check again.
3941                                 * Expansion could still move past after this
3942                                 * test, but as we are holding a reference to
3943                                 * 'sh', we know that if that happens,
3944                                 *  STRIPE_EXPANDING will get set and the expansion
3945                                 * won't proceed until we finish with the stripe.
3946                                 */
3947                                int must_retry = 0;
3948                                spin_lock_irq(&conf->device_lock);
3949                                if (mddev->delta_disks < 0
3950                                    ? logical_sector >= conf->reshape_progress
3951                                    : logical_sector < conf->reshape_progress)
3952                                        /* mismatch, need to try again */
3953                                        must_retry = 1;
3954                                spin_unlock_irq(&conf->device_lock);
3955                                if (must_retry) {
3956                                        release_stripe(sh);
3957                                        schedule();
3958                                        goto retry;
3959                                }
3960                        }
3961
3962                        if (bio_data_dir(bi) == WRITE &&
3963                            logical_sector >= mddev->suspend_lo &&
3964                            logical_sector < mddev->suspend_hi) {
3965                                release_stripe(sh);
3966                                /* As the suspend_* range is controlled by
3967                                 * userspace, we want an interruptible
3968                                 * wait.
3969                                 */
3970                                flush_signals(current);
3971                                prepare_to_wait(&conf->wait_for_overlap,
3972                                                &w, TASK_INTERRUPTIBLE);
3973                                if (logical_sector >= mddev->suspend_lo &&
3974                                    logical_sector < mddev->suspend_hi)
3975                                        schedule();
3976                                goto retry;
3977                        }
3978
3979                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3980                            !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3981                                /* Stripe is busy expanding or
3982                                 * add failed due to overlap.  Flush everything
3983                                 * and wait a while
3984                                 */
3985                                raid5_unplug_device(mddev->queue);
3986                                release_stripe(sh);
3987                                schedule();
3988                                goto retry;
3989                        }
3990                        finish_wait(&conf->wait_for_overlap, &w);
3991                        set_bit(STRIPE_HANDLE, &sh->state);
3992                        clear_bit(STRIPE_DELAYED, &sh->state);
3993                        release_stripe(sh);
3994                } else {
3995                        /* cannot get stripe for read-ahead, just give-up */
3996                        clear_bit(BIO_UPTODATE, &bi->bi_flags);
3997                        finish_wait(&conf->wait_for_overlap, &w);
3998                        break;
3999                }
4000                        
4001        }
4002        spin_lock_irq(&conf->device_lock);
4003        remaining = raid5_dec_bi_phys_segments(bi);
4004        spin_unlock_irq(&conf->device_lock);
4005        if (remaining == 0) {
4006
4007                if ( rw == WRITE )
4008                        md_write_end(mddev);
4009
4010                bio_endio(bi, 0);
4011        }
4012        return 0;
4013}
4014
4015static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4016
4017static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4018{
4019        /* reshaping is quite different to recovery/resync so it is
4020         * handled quite separately ... here.
4021         *
4022         * On each call to sync_request, we gather one chunk worth of
4023         * destination stripes and flag them as expanding.
4024         * Then we find all the source stripes and request reads.
4025         * As the reads complete, handle_stripe will copy the data
4026         * into the destination stripe and release that stripe.
4027         */
4028        raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4029        struct stripe_head *sh;
4030        sector_t first_sector, last_sector;
4031        int raid_disks = conf->previous_raid_disks;
4032        int data_disks = raid_disks - conf->max_degraded;
4033        int new_data_disks = conf->raid_disks - conf->max_degraded;
4034        int i;
4035        int dd_idx;
4036        sector_t writepos, readpos, safepos;
4037        sector_t stripe_addr;
4038        int reshape_sectors;
4039        struct list_head stripes;
4040
4041        if (sector_nr == 0) {
4042                /* If restarting in the middle, skip the initial sectors */
4043                if (mddev->delta_disks < 0 &&
4044                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4045                        sector_nr = raid5_size(mddev, 0, 0)
4046                                - conf->reshape_progress;
4047                } else if (mddev->delta_disks >= 0 &&
4048                           conf->reshape_progress > 0)
4049                        sector_nr = conf->reshape_progress;
4050                sector_div(sector_nr, new_data_disks);
4051                if (sector_nr) {
4052                        mddev->curr_resync_completed = sector_nr;
4053                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4054                        *skipped = 1;
4055                        return sector_nr;
4056                }
4057        }
4058
4059        /* We need to process a full chunk at a time.
4060         * If old and new chunk sizes differ, we need to process the
4061         * largest of these
4062         */
4063        if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4064                reshape_sectors = mddev->new_chunk_sectors;
4065        else
4066                reshape_sectors = mddev->chunk_sectors;
4067
4068        /* we update the metadata when there is more than 3Meg
4069         * in the block range (that is rather arbitrary, should
4070         * probably be time based) or when the data about to be
4071         * copied would over-write the source of the data at
4072         * the front of the range.
4073         * i.e. one new_stripe along from reshape_progress new_maps
4074         * to after where reshape_safe old_maps to
4075         */
4076        writepos = conf->reshape_progress;
4077        sector_div(writepos, new_data_disks);
4078        readpos = conf->reshape_progress;
4079        sector_div(readpos, data_disks);
4080        safepos = conf->reshape_safe;
4081        sector_div(safepos, data_disks);
4082        if (mddev->delta_disks < 0) {
4083                writepos -= min_t(sector_t, reshape_sectors, writepos);
4084                readpos += reshape_sectors;
4085                safepos += reshape_sectors;
4086        } else {
4087                writepos += reshape_sectors;
4088                readpos -= min_t(sector_t, reshape_sectors, readpos);
4089                safepos -= min_t(sector_t, reshape_sectors, safepos);
4090        }
4091
4092        /* 'writepos' is the most advanced device address we might write.
4093         * 'readpos' is the least advanced device address we might read.
4094         * 'safepos' is the least address recorded in the metadata as having
4095         *     been reshaped.
4096         * If 'readpos' is behind 'writepos', then there is no way that we can
4097         * ensure safety in the face of a crash - that must be done by userspace
4098         * making a backup of the data.  So in that case there is no particular
4099         * rush to update metadata.
4100         * Otherwise if 'safepos' is behind 'writepos', then we really need to
4101         * update the metadata to advance 'safepos' to match 'readpos' so that
4102         * we can be safe in the event of a crash.
4103         * So we insist on updating metadata if safepos is behind writepos and
4104         * readpos is beyond writepos.
4105         * In any case, update the metadata every 10 seconds.
4106         * Maybe that number should be configurable, but I'm not sure it is
4107         * worth it.... maybe it could be a multiple of safemode_delay???
4108         */
4109        if ((mddev->delta_disks < 0
4110             ? (safepos > writepos && readpos < writepos)
4111             : (safepos < writepos && readpos > writepos)) ||
4112            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4113                /* Cannot proceed until we've updated the superblock... */
4114                wait_event(conf->wait_for_overlap,
4115                           atomic_read(&conf->reshape_stripes)==0);
4116                mddev->reshape_position = conf->reshape_progress;
4117                mddev->curr_resync_completed = mddev->curr_resync;
4118                conf->reshape_checkpoint = jiffies;
4119                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4120                md_wakeup_thread(mddev->thread);
4121                wait_event(mddev->sb_wait, mddev->flags == 0 ||
4122                           kthread_should_stop());
4123                spin_lock_irq(&conf->device_lock);
4124                conf->reshape_safe = mddev->reshape_position;
4125                spin_unlock_irq(&conf->device_lock);
4126                wake_up(&conf->wait_for_overlap);
4127                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4128        }
4129
4130        if (mddev->delta_disks < 0) {
4131                BUG_ON(conf->reshape_progress == 0);
4132                stripe_addr = writepos;
4133                BUG_ON((mddev->dev_sectors &
4134                        ~((sector_t)reshape_sectors - 1))
4135                       - reshape_sectors - stripe_addr
4136                       != sector_nr);
4137        } else {
4138                BUG_ON(writepos != sector_nr + reshape_sectors);
4139                stripe_addr = sector_nr;
4140        }
4141        INIT_LIST_HEAD(&stripes);
4142        for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4143                int j;
4144                int skipped_disk = 0;
4145                sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4146                set_bit(STRIPE_EXPANDING, &sh->state);
4147                atomic_inc(&conf->reshape_stripes);
4148                /* If any of this stripe is beyond the end of the old
4149                 * array, then we need to zero those blocks
4150                 */
4151                for (j=sh->disks; j--;) {
4152                        sector_t s;
4153                        if (j == sh->pd_idx)
4154                                continue;
4155                        if (conf->level == 6 &&
4156                            j == sh->qd_idx)
4157                                continue;
4158                        s = compute_blocknr(sh, j, 0);
4159                        if (s < raid5_size(mddev, 0, 0)) {
4160                                skipped_disk = 1;
4161                                continue;
4162                        }
4163                        memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4164                        set_bit(R5_Expanded, &sh->dev[j].flags);
4165                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
4166                }
4167                if (!skipped_disk) {
4168                        set_bit(STRIPE_EXPAND_READY, &sh->state);
4169                        set_bit(STRIPE_HANDLE, &sh->state);
4170                }
4171                list_add(&sh->lru, &stripes);
4172        }
4173        spin_lock_irq(&conf->device_lock);
4174        if (mddev->delta_disks < 0)
4175                conf->reshape_progress -= reshape_sectors * new_data_disks;
4176        else
4177                conf->reshape_progress += reshape_sectors * new_data_disks;
4178        spin_unlock_irq(&conf->device_lock);
4179        /* Ok, those stripe are ready. We can start scheduling
4180         * reads on the source stripes.
4181         * The source stripes are determined by mapping the first and last
4182         * block on the destination stripes.
4183         */
4184        first_sector =
4185                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4186                                     1, &dd_idx, NULL);
4187        last_sector =
4188                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4189                                            * new_data_disks - 1),
4190                                     1, &dd_idx, NULL);
4191        if (last_sector >= mddev->dev_sectors)
4192                last_sector = mddev->dev_sectors - 1;
4193        while (first_sector <= last_sector) {
4194                sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4195                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4196                set_bit(STRIPE_HANDLE, &sh->state);
4197                release_stripe(sh);
4198                first_sector += STRIPE_SECTORS;
4199        }
4200        /* Now that the sources are clearly marked, we can release
4201         * the destination stripes
4202         */
4203        while (!list_empty(&stripes)) {
4204                sh = list_entry(stripes.next, struct stripe_head, lru);
4205                list_del_init(&sh->lru);
4206                release_stripe(sh);
4207        }
4208        /* If this takes us to the resync_max point where we have to pause,
4209         * then we need to write out the superblock.
4210         */
4211        sector_nr += reshape_sectors;
4212        if ((sector_nr - mddev->curr_resync_completed) * 2
4213            >= mddev->resync_max - mddev->curr_resync_completed) {
4214                /* Cannot proceed until we've updated the superblock... */
4215                wait_event(conf->wait_for_overlap,
4216                           atomic_read(&conf->reshape_stripes) == 0);
4217                mddev->reshape_position = conf->reshape_progress;
4218                mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4219                conf->reshape_checkpoint = jiffies;
4220                set_bit(MD_CHANGE_DEVS, &mddev->flags);
4221                md_wakeup_thread(mddev->thread);
4222                wait_event(mddev->sb_wait,
4223                           !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4224                           || kthread_should_stop());
4225                spin_lock_irq(&conf->device_lock);
4226                conf->reshape_safe = mddev->reshape_position;
4227                spin_unlock_irq(&conf->device_lock);
4228                wake_up(&conf->wait_for_overlap);
4229                sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4230        }
4231        return reshape_sectors;
4232}
4233
4234/* FIXME go_faster isn't used */
4235static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4236{
4237        raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4238        struct stripe_head *sh;
4239        sector_t max_sector = mddev->dev_sectors;
4240        int sync_blocks;
4241        int still_degraded = 0;
4242        int i;
4243
4244        if (sector_nr >= max_sector) {
4245                /* just being told to finish up .. nothing much to do */
4246                unplug_slaves(mddev);
4247
4248                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4249                        end_reshape(conf);
4250                        return 0;
4251                }
4252
4253                if (mddev->curr_resync < max_sector) /* aborted */
4254                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4255                                        &sync_blocks, 1);
4256                else /* completed sync */
4257                        conf->fullsync = 0;
4258                bitmap_close_sync(mddev->bitmap);
4259
4260                return 0;
4261        }
4262
4263        /* Allow raid5_quiesce to complete */
4264        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4265
4266        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4267                return reshape_request(mddev, sector_nr, skipped);
4268
4269        /* No need to check resync_max as we never do more than one
4270         * stripe, and as resync_max will always be on a chunk boundary,
4271         * if the check in md_do_sync didn't fire, there is no chance
4272         * of overstepping resync_max here
4273         */
4274
4275        /* if there is too many failed drives and we are trying
4276         * to resync, then assert that we are finished, because there is
4277         * nothing we can do.
4278         */
4279        if (mddev->degraded >= conf->max_degraded &&
4280            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4281                sector_t rv = mddev->dev_sectors - sector_nr;
4282                *skipped = 1;
4283                return rv;
4284        }
4285        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4286            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4287            !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4288                /* we can skip this block, and probably more */
4289                sync_blocks /= STRIPE_SECTORS;
4290                *skipped = 1;
4291                return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4292        }
4293
4294
4295        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4296
4297        sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4298        if (sh == NULL) {
4299                sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4300                /* make sure we don't swamp the stripe cache if someone else
4301                 * is trying to get access
4302                 */
4303                schedule_timeout_uninterruptible(1);
4304        }
4305        /* Need to check if array will still be degraded after recovery/resync
4306         * We don't need to check the 'failed' flag as when that gets set,
4307         * recovery aborts.
4308         */
4309        for (i = 0; i < conf->raid_disks; i++)
4310                if (conf->disks[i].rdev == NULL)
4311                        still_degraded = 1;
4312
4313        bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4314
4315        spin_lock(&sh->lock);
4316        set_bit(STRIPE_SYNCING, &sh->state);
4317        clear_bit(STRIPE_INSYNC, &sh->state);
4318        spin_unlock(&sh->lock);
4319
4320        handle_stripe(sh);
4321        release_stripe(sh);
4322
4323        return STRIPE_SECTORS;
4324}
4325
4326static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4327{
4328        /* We may not be able to submit a whole bio at once as there
4329         * may not be enough stripe_heads available.
4330         * We cannot pre-allocate enough stripe_heads as we may need
4331         * more than exist in the cache (if we allow ever large chunks).
4332         * So we do one stripe head at a time and record in
4333         * ->bi_hw_segments how many have been done.
4334         *
4335         * We *know* that this entire raid_bio is in one chunk, so
4336         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4337         */
4338        struct stripe_head *sh;
4339        int dd_idx;
4340        sector_t sector, logical_sector, last_sector;
4341        int scnt = 0;
4342        int remaining;
4343        int handled = 0;
4344
4345        logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4346        sector = raid5_compute_sector(conf, logical_sector,
4347                                      0, &dd_idx, NULL);
4348        last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4349
4350        for (; logical_sector < last_sector;
4351             logical_sector += STRIPE_SECTORS,
4352                     sector += STRIPE_SECTORS,
4353                     scnt++) {
4354
4355                if (scnt < raid5_bi_hw_segments(raid_bio))
4356                        /* already done this stripe */
4357                        continue;
4358
4359                sh = get_active_stripe(conf, sector, 0, 1, 0);
4360
4361                if (!sh) {
4362                        /* failed to get a stripe - must wait */
4363                        raid5_set_bi_hw_segments(raid_bio, scnt);
4364                        conf->retry_read_aligned = raid_bio;
4365                        return handled;
4366                }
4367
4368                set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4369                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4370                        release_stripe(sh);
4371                        raid5_set_bi_hw_segments(raid_bio, scnt);
4372                        conf->retry_read_aligned = raid_bio;
4373                        return handled;
4374                }
4375
4376                handle_stripe(sh);
4377                release_stripe(sh);
4378                handled++;
4379        }
4380        spin_lock_irq(&conf->device_lock);
4381        remaining = raid5_dec_bi_phys_segments(raid_bio);
4382        spin_unlock_irq(&conf->device_lock);
4383        if (remaining == 0)
4384                bio_endio(raid_bio, 0);
4385        if (atomic_dec_and_test(&conf->active_aligned_reads))
4386                wake_up(&conf->wait_for_stripe);
4387        return handled;
4388}
4389
4390
4391/*
4392 * This is our raid5 kernel thread.
4393 *
4394 * We scan the hash table for stripes which can be handled now.
4395 * During the scan, completed stripes are saved for us by the interrupt
4396 * handler, so that they will not have to wait for our next wakeup.
4397 */
4398static void raid5d(mddev_t *mddev)
4399{
4400        struct stripe_head *sh;
4401        raid5_conf_t *conf = mddev->private;
4402        int handled;
4403
4404        pr_debug("+++ raid5d active\n");
4405
4406        md_check_recovery(mddev);
4407
4408        handled = 0;
4409        spin_lock_irq(&conf->device_lock);
4410        while (1) {
4411                struct bio *bio;
4412
4413                if (conf->seq_flush != conf->seq_write) {
4414                        int seq = conf->seq_flush;
4415                        spin_unlock_irq(&conf->device_lock);
4416                        bitmap_unplug(mddev->bitmap);
4417                        spin_lock_irq(&conf->device_lock);
4418                        conf->seq_write = seq;
4419                        activate_bit_delay(conf);
4420                }
4421
4422                while ((bio = remove_bio_from_retry(conf))) {
4423                        int ok;
4424                        spin_unlock_irq(&conf->device_lock);
4425                        ok = retry_aligned_read(conf, bio);
4426                        spin_lock_irq(&conf->device_lock);
4427                        if (!ok)
4428                                break;
4429                        handled++;
4430                }
4431
4432                sh = __get_priority_stripe(conf);
4433
4434                if (!sh)
4435                        break;
4436                spin_unlock_irq(&conf->device_lock);
4437                
4438                handled++;
4439                handle_stripe(sh);
4440                release_stripe(sh);
4441                cond_resched();
4442
4443                spin_lock_irq(&conf->device_lock);
4444        }
4445        pr_debug("%d stripes handled\n", handled);
4446
4447        spin_unlock_irq(&conf->device_lock);
4448
4449        async_tx_issue_pending_all();
4450        unplug_slaves(mddev);
4451
4452        pr_debug("--- raid5d inactive\n");
4453}
4454
4455static ssize_t
4456raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4457{
4458        raid5_conf_t *conf = mddev->private;
4459        if (conf)
4460                return sprintf(page, "%d\n", conf->max_nr_stripes);
4461        else
4462                return 0;
4463}
4464
4465static ssize_t
4466raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4467{
4468        raid5_conf_t *conf = mddev->private;
4469        unsigned long new;
4470        int err;
4471
4472        if (len >= PAGE_SIZE)
4473                return -EINVAL;
4474        if (!conf)
4475                return -ENODEV;
4476
4477        if (strict_strtoul(page, 10, &new))
4478                return -EINVAL;
4479        if (new <= 16 || new > 32768)
4480                return -EINVAL;
4481        while (new < conf->max_nr_stripes) {
4482                if (drop_one_stripe(conf))
4483                        conf->max_nr_stripes--;
4484                else
4485                        break;
4486        }
4487        err = md_allow_write(mddev);
4488        if (err)
4489                return err;
4490        while (new > conf->max_nr_stripes) {
4491                if (grow_one_stripe(conf))
4492                        conf->max_nr_stripes++;
4493                else break;
4494        }
4495        return len;
4496}
4497
4498static struct md_sysfs_entry
4499raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4500                                raid5_show_stripe_cache_size,
4501                                raid5_store_stripe_cache_size);
4502
4503static ssize_t
4504raid5_show_preread_threshold(mddev_t *mddev, char *page)
4505{
4506        raid5_conf_t *conf = mddev->private;
4507        if (conf)
4508                return sprintf(page, "%d\n", conf->bypass_threshold);
4509        else
4510                return 0;
4511}
4512
4513static ssize_t
4514raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4515{
4516        raid5_conf_t *conf = mddev->private;
4517        unsigned long new;
4518        if (len >= PAGE_SIZE)
4519                return -EINVAL;
4520        if (!conf)
4521                return -ENODEV;
4522
4523        if (strict_strtoul(page, 10, &new))
4524                return -EINVAL;
4525        if (new > conf->max_nr_stripes)
4526                return -EINVAL;
4527        conf->bypass_threshold = new;
4528        return len;
4529}
4530
4531static struct md_sysfs_entry
4532raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4533                                        S_IRUGO | S_IWUSR,
4534                                        raid5_show_preread_threshold,
4535                                        raid5_store_preread_threshold);
4536
4537static ssize_t
4538stripe_cache_active_show(mddev_t *mddev, char *page)
4539{
4540        raid5_conf_t *conf = mddev->private;
4541        if (conf)
4542                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4543        else
4544                return 0;
4545}
4546
4547static struct md_sysfs_entry
4548raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4549
4550static struct attribute *raid5_attrs[] =  {
4551        &raid5_stripecache_size.attr,
4552        &raid5_stripecache_active.attr,
4553        &raid5_preread_bypass_threshold.attr,
4554        NULL,
4555};
4556static struct attribute_group raid5_attrs_group = {
4557        .name = NULL,
4558        .attrs = raid5_attrs,
4559};
4560
4561static sector_t
4562raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4563{
4564        raid5_conf_t *conf = mddev->private;
4565
4566        if (!sectors)
4567                sectors = mddev->dev_sectors;
4568        if (!raid_disks)
4569                /* size is defined by the smallest of previous and new size */
4570                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4571
4572        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4573        sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4574        return sectors * (raid_disks - conf->max_degraded);
4575}
4576
4577static void raid5_free_percpu(raid5_conf_t *conf)
4578{
4579        struct raid5_percpu *percpu;
4580        unsigned long cpu;
4581
4582        if (!conf->percpu)
4583                return;
4584
4585        get_online_cpus();
4586        for_each_possible_cpu(cpu) {
4587                percpu = per_cpu_ptr(conf->percpu, cpu);
4588                safe_put_page(percpu->spare_page);
4589                kfree(percpu->scribble);
4590        }
4591#ifdef CONFIG_HOTPLUG_CPU
4592        unregister_cpu_notifier(&conf->cpu_notify);
4593#endif
4594        put_online_cpus();
4595
4596        free_percpu(conf->percpu);
4597}
4598
4599static void free_conf(raid5_conf_t *conf)
4600{
4601        shrink_stripes(conf);
4602        raid5_free_percpu(conf);
4603        kfree(conf->disks);
4604        kfree(conf->stripe_hashtbl);
4605        kfree(conf);
4606}
4607
4608#ifdef CONFIG_HOTPLUG_CPU
4609static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4610                              void *hcpu)
4611{
4612        raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4613        long cpu = (long)hcpu;
4614        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4615
4616        switch (action) {
4617        case CPU_UP_PREPARE:
4618        case CPU_UP_PREPARE_FROZEN:
4619                if (conf->level == 6 && !percpu->spare_page)
4620                        percpu->spare_page = alloc_page(GFP_KERNEL);
4621                if (!percpu->scribble)
4622                        percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4623
4624                if (!percpu->scribble ||
4625                    (conf->level == 6 && !percpu->spare_page)) {
4626                        safe_put_page(percpu->spare_page);
4627                        kfree(percpu->scribble);
4628                        pr_err("%s: failed memory allocation for cpu%ld\n",
4629                               __func__, cpu);
4630                        return NOTIFY_BAD;
4631                }
4632                break;
4633        case CPU_DEAD:
4634        case CPU_DEAD_FROZEN:
4635                safe_put_page(percpu->spare_page);
4636                kfree(percpu->scribble);
4637                percpu->spare_page = NULL;
4638                percpu->scribble = NULL;
4639                break;
4640        default:
4641                break;
4642        }
4643        return NOTIFY_OK;
4644}
4645#endif
4646
4647static int raid5_alloc_percpu(raid5_conf_t *conf)
4648{
4649        unsigned long cpu;
4650        struct page *spare_page;
4651        struct raid5_percpu *allcpus;
4652        void *scribble;
4653        int err;
4654
4655        allcpus = alloc_percpu(struct raid5_percpu);
4656        if (!allcpus)
4657                return -ENOMEM;
4658        conf->percpu = allcpus;
4659
4660        get_online_cpus();
4661        err = 0;
4662        for_each_present_cpu(cpu) {
4663                if (conf->level == 6) {
4664                        spare_page = alloc_page(GFP_KERNEL);
4665                        if (!spare_page) {
4666                                err = -ENOMEM;
4667                                break;
4668                        }
4669                        per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4670                }
4671                scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4672                if (!scribble) {
4673                        err = -ENOMEM;
4674                        break;
4675                }
4676                per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4677        }
4678#ifdef CONFIG_HOTPLUG_CPU
4679        conf->cpu_notify.notifier_call = raid456_cpu_notify;
4680        conf->cpu_notify.priority = 0;
4681        if (err == 0)
4682                err = register_cpu_notifier(&conf->cpu_notify);
4683#endif
4684        put_online_cpus();
4685
4686        return err;
4687}
4688
4689static raid5_conf_t *setup_conf(mddev_t *mddev)
4690{
4691        raid5_conf_t *conf;
4692        int raid_disk, memory, max_disks;
4693        mdk_rdev_t *rdev;
4694        struct disk_info *disk;
4695
4696        if (mddev->new_level != 5
4697            && mddev->new_level != 4
4698            && mddev->new_level != 6) {
4699                printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4700                       mdname(mddev), mddev->new_level);
4701                return ERR_PTR(-EIO);
4702        }
4703        if ((mddev->new_level == 5
4704             && !algorithm_valid_raid5(mddev->new_layout)) ||
4705            (mddev->new_level == 6
4706             && !algorithm_valid_raid6(mddev->new_layout))) {
4707                printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4708                       mdname(mddev), mddev->new_layout);
4709                return ERR_PTR(-EIO);
4710        }
4711        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4712                printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4713                       mdname(mddev), mddev->raid_disks);
4714                return ERR_PTR(-EINVAL);
4715        }
4716
4717        if (!mddev->new_chunk_sectors ||
4718            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4719            !is_power_of_2(mddev->new_chunk_sectors)) {
4720                printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4721                       mddev->new_chunk_sectors << 9, mdname(mddev));
4722                return ERR_PTR(-EINVAL);
4723        }
4724
4725        conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4726        if (conf == NULL)
4727                goto abort;
4728        spin_lock_init(&conf->device_lock);
4729        init_waitqueue_head(&conf->wait_for_stripe);
4730        init_waitqueue_head(&conf->wait_for_overlap);
4731        INIT_LIST_HEAD(&conf->handle_list);
4732        INIT_LIST_HEAD(&conf->hold_list);
4733        INIT_LIST_HEAD(&conf->delayed_list);
4734        INIT_LIST_HEAD(&conf->bitmap_list);
4735        INIT_LIST_HEAD(&conf->inactive_list);
4736        atomic_set(&conf->active_stripes, 0);
4737        atomic_set(&conf->preread_active_stripes, 0);
4738        atomic_set(&conf->active_aligned_reads, 0);
4739        conf->bypass_threshold = BYPASS_THRESHOLD;
4740
4741        conf->raid_disks = mddev->raid_disks;
4742        if (mddev->reshape_position == MaxSector)
4743                conf->previous_raid_disks = mddev->raid_disks;
4744        else
4745                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4746        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4747        conf->scribble_len = scribble_len(max_disks);
4748
4749        conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4750                              GFP_KERNEL);
4751        if (!conf->disks)
4752                goto abort;
4753
4754        conf->mddev = mddev;
4755
4756        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4757                goto abort;
4758
4759        conf->level = mddev->new_level;
4760        if (raid5_alloc_percpu(conf) != 0)
4761                goto abort;
4762
4763        pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4764
4765        list_for_each_entry(rdev, &mddev->disks, same_set) {
4766                raid_disk = rdev->raid_disk;
4767                if (raid_disk >= max_disks
4768                    || raid_disk < 0)
4769                        continue;
4770                disk = conf->disks + raid_disk;
4771
4772                disk->rdev = rdev;
4773
4774                if (test_bit(In_sync, &rdev->flags)) {
4775                        char b[BDEVNAME_SIZE];
4776                        printk(KERN_INFO "raid5: device %s operational as raid"
4777                                " disk %d\n", bdevname(rdev->bdev,b),
4778                                raid_disk);
4779                } else
4780                        /* Cannot rely on bitmap to complete recovery */
4781                        conf->fullsync = 1;
4782        }
4783
4784        conf->chunk_sectors = mddev->new_chunk_sectors;
4785        conf->level = mddev->new_level;
4786        if (conf->level == 6)
4787                conf->max_degraded = 2;
4788        else
4789                conf->max_degraded = 1;
4790        conf->algorithm = mddev->new_layout;
4791        conf->max_nr_stripes = NR_STRIPES;
4792        conf->reshape_progress = mddev->reshape_position;
4793        if (conf->reshape_progress != MaxSector) {
4794                conf->prev_chunk_sectors = mddev->chunk_sectors;
4795                conf->prev_algo = mddev->layout;
4796        }
4797
4798        memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4799                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4800        if (grow_stripes(conf, conf->max_nr_stripes)) {
4801                printk(KERN_ERR
4802                        "raid5: couldn't allocate %dkB for buffers\n", memory);
4803                goto abort;
4804        } else
4805                printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4806                        memory, mdname(mddev));
4807
4808        conf->thread = md_register_thread(raid5d, mddev, NULL);
4809        if (!conf->thread) {
4810                printk(KERN_ERR
4811                       "raid5: couldn't allocate thread for %s\n",
4812                       mdname(mddev));
4813                goto abort;
4814        }
4815
4816        return conf;
4817
4818 abort:
4819        if (conf) {
4820                free_conf(conf);
4821                return ERR_PTR(-EIO);
4822        } else
4823                return ERR_PTR(-ENOMEM);
4824}
4825
4826
4827static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4828{
4829        switch (algo) {
4830        case ALGORITHM_PARITY_0:
4831                if (raid_disk < max_degraded)
4832                        return 1;
4833                break;
4834        case ALGORITHM_PARITY_N:
4835                if (raid_disk >= raid_disks - max_degraded)
4836                        return 1;
4837                break;
4838        case ALGORITHM_PARITY_0_6:
4839                if (raid_disk == 0 || 
4840                    raid_disk == raid_disks - 1)
4841                        return 1;
4842                break;
4843        case ALGORITHM_LEFT_ASYMMETRIC_6:
4844        case ALGORITHM_RIGHT_ASYMMETRIC_6:
4845        case ALGORITHM_LEFT_SYMMETRIC_6:
4846        case ALGORITHM_RIGHT_SYMMETRIC_6:
4847                if (raid_disk == raid_disks - 1)
4848                        return 1;
4849        }
4850        return 0;
4851}
4852
4853static int run(mddev_t *mddev)
4854{
4855        raid5_conf_t *conf;
4856        int working_disks = 0, chunk_size;
4857        int dirty_parity_disks = 0;
4858        mdk_rdev_t *rdev;
4859        sector_t reshape_offset = 0;
4860
4861        if (mddev->recovery_cp != MaxSector)
4862                printk(KERN_NOTICE "raid5: %s is not clean"
4863                       " -- starting background reconstruction\n",
4864                       mdname(mddev));
4865        if (mddev->reshape_position != MaxSector) {
4866                /* Check that we can continue the reshape.
4867                 * Currently only disks can change, it must
4868                 * increase, and we must be past the point where
4869                 * a stripe over-writes itself
4870                 */
4871                sector_t here_new, here_old;
4872                int old_disks;
4873                int max_degraded = (mddev->level == 6 ? 2 : 1);
4874
4875                if (mddev->new_level != mddev->level) {
4876                        printk(KERN_ERR "raid5: %s: unsupported reshape "
4877                               "required - aborting.\n",
4878                               mdname(mddev));
4879                        return -EINVAL;
4880                }
4881                old_disks = mddev->raid_disks - mddev->delta_disks;
4882                /* reshape_position must be on a new-stripe boundary, and one
4883                 * further up in new geometry must map after here in old
4884                 * geometry.
4885                 */
4886                here_new = mddev->reshape_position;
4887                if (sector_div(here_new, mddev->new_chunk_sectors *
4888                               (mddev->raid_disks - max_degraded))) {
4889                        printk(KERN_ERR "raid5: reshape_position not "
4890                               "on a stripe boundary\n");
4891                        return -EINVAL;
4892                }
4893                reshape_offset = here_new * mddev->new_chunk_sectors;
4894                /* here_new is the stripe we will write to */
4895                here_old = mddev->reshape_position;
4896                sector_div(here_old, mddev->chunk_sectors *
4897                           (old_disks-max_degraded));
4898                /* here_old is the first stripe that we might need to read
4899                 * from */
4900                if (mddev->delta_disks == 0) {
4901                        /* We cannot be sure it is safe to start an in-place
4902                         * reshape.  It is only safe if user-space if monitoring
4903                         * and taking constant backups.
4904                         * mdadm always starts a situation like this in
4905                         * readonly mode so it can take control before
4906                         * allowing any writes.  So just check for that.
4907                         */
4908                        if ((here_new * mddev->new_chunk_sectors != 
4909                             here_old * mddev->chunk_sectors) ||
4910                            mddev->ro == 0) {
4911                                printk(KERN_ERR "raid5: in-place reshape must be started"
4912                                       " in read-only mode - aborting\n");
4913                                return -EINVAL;
4914                        }
4915                } else if (mddev->delta_disks < 0
4916                    ? (here_new * mddev->new_chunk_sectors <=
4917                       here_old * mddev->chunk_sectors)
4918                    : (here_new * mddev->new_chunk_sectors >=
4919                       here_old * mddev->chunk_sectors)) {
4920                        /* Reading from the same stripe as writing to - bad */
4921                        printk(KERN_ERR "raid5: reshape_position too early for "
4922                               "auto-recovery - aborting.\n");
4923                        return -EINVAL;
4924                }
4925                printk(KERN_INFO "raid5: reshape will continue\n");
4926                /* OK, we should be able to continue; */
4927        } else {
4928                BUG_ON(mddev->level != mddev->new_level);
4929                BUG_ON(mddev->layout != mddev->new_layout);
4930                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4931                BUG_ON(mddev->delta_disks != 0);
4932        }
4933
4934        if (mddev->private == NULL)
4935                conf = setup_conf(mddev);
4936        else
4937                conf = mddev->private;
4938
4939        if (IS_ERR(conf))
4940                return PTR_ERR(conf);
4941
4942        mddev->thread = conf->thread;
4943        conf->thread = NULL;
4944        mddev->private = conf;
4945
4946        /*
4947         * 0 for a fully functional array, 1 or 2 for a degraded array.
4948         */
4949        list_for_each_entry(rdev, &mddev->disks, same_set) {
4950                if (rdev->raid_disk < 0)
4951                        continue;
4952                if (test_bit(In_sync, &rdev->flags))
4953                        working_disks++;
4954                /* This disc is not fully in-sync.  However if it
4955                 * just stored parity (beyond the recovery_offset),
4956                 * when we don't need to be concerned about the
4957                 * array being dirty.
4958                 * When reshape goes 'backwards', we never have
4959                 * partially completed devices, so we only need
4960                 * to worry about reshape going forwards.
4961                 */
4962                /* Hack because v0.91 doesn't store recovery_offset properly. */
4963                if (mddev->major_version == 0 &&
4964                    mddev->minor_version > 90)
4965                        rdev->recovery_offset = reshape_offset;
4966                        
4967                printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4968                       rdev->raid_disk, working_disks, conf->prev_algo,
4969                       conf->previous_raid_disks, conf->max_degraded,
4970                       conf->algorithm, conf->raid_disks, 
4971                       only_parity(rdev->raid_disk,
4972                                   conf->prev_algo,
4973                                   conf->previous_raid_disks,
4974                                   conf->max_degraded),
4975                       only_parity(rdev->raid_disk,
4976                                   conf->algorithm,
4977                                   conf->raid_disks,
4978                                   conf->max_degraded));
4979                if (rdev->recovery_offset < reshape_offset) {
4980                        /* We need to check old and new layout */
4981                        if (!only_parity(rdev->raid_disk,
4982                                         conf->algorithm,
4983                                         conf->raid_disks,
4984                                         conf->max_degraded))
4985                                continue;
4986                }
4987                if (!only_parity(rdev->raid_disk,
4988                                 conf->prev_algo,
4989                                 conf->previous_raid_disks,
4990                                 conf->max_degraded))
4991                        continue;
4992                dirty_parity_disks++;
4993        }
4994
4995        mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4996                           - working_disks);
4997
4998        if (mddev->degraded > conf->max_degraded) {
4999                printk(KERN_ERR "raid5: not enough operational devices for %s"
5000                        " (%d/%d failed)\n",
5001                        mdname(mddev), mddev->degraded, conf->raid_disks);
5002                goto abort;
5003        }
5004
5005        /* device size must be a multiple of chunk size */
5006        mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5007        mddev->resync_max_sectors = mddev->dev_sectors;
5008
5009        if (mddev->degraded > dirty_parity_disks &&
5010            mddev->recovery_cp != MaxSector) {
5011                if (mddev->ok_start_degraded)
5012                        printk(KERN_WARNING
5013                               "raid5: starting dirty degraded array: %s"
5014                               "- data corruption possible.\n",
5015                               mdname(mddev));
5016                else {
5017                        printk(KERN_ERR
5018                               "raid5: cannot start dirty degraded array for %s\n",
5019                               mdname(mddev));
5020                        goto abort;
5021                }
5022        }
5023
5024        if (mddev->degraded == 0)
5025                printk("raid5: raid level %d set %s active with %d out of %d"
5026                       " devices, algorithm %d\n", conf->level, mdname(mddev),
5027                       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5028                       mddev->new_layout);
5029        else
5030                printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5031                        " out of %d devices, algorithm %d\n", conf->level,
5032                        mdname(mddev), mddev->raid_disks - mddev->degraded,
5033                        mddev->raid_disks, mddev->new_layout);
5034
5035        print_raid5_conf(conf);
5036
5037        if (conf->reshape_progress != MaxSector) {
5038                printk("...ok start reshape thread\n");
5039                conf->reshape_safe = conf->reshape_progress;
5040                atomic_set(&conf->reshape_stripes, 0);
5041                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5042                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5043                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5044                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5045                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5046                                                        "reshape");
5047        }
5048
5049        /* read-ahead size must cover two whole stripes, which is
5050         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5051         */
5052        {
5053                int data_disks = conf->previous_raid_disks - conf->max_degraded;
5054                int stripe = data_disks *
5055                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5056                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5057                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5058        }
5059
5060        /* Ok, everything is just fine now */
5061        if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5062                printk(KERN_WARNING
5063                       "raid5: failed to create sysfs attributes for %s\n",
5064                       mdname(mddev));
5065
5066        mddev->queue->queue_lock = &conf->device_lock;
5067
5068        mddev->queue->unplug_fn = raid5_unplug_device;
5069        mddev->queue->backing_dev_info.congested_data = mddev;
5070        mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5071
5072        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5073
5074        blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5075        chunk_size = mddev->chunk_sectors << 9;
5076        blk_queue_io_min(mddev->queue, chunk_size);
5077        blk_queue_io_opt(mddev->queue, chunk_size *
5078                         (conf->raid_disks - conf->max_degraded));
5079
5080        list_for_each_entry(rdev, &mddev->disks, same_set)
5081                disk_stack_limits(mddev->gendisk, rdev->bdev,
5082                                  rdev->data_offset << 9);
5083
5084        return 0;
5085abort:
5086        md_unregister_thread(mddev->thread);
5087        mddev->thread = NULL;
5088        if (conf) {
5089                print_raid5_conf(conf);
5090                free_conf(conf);
5091        }
5092        mddev->private = NULL;
5093        printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5094        return -EIO;
5095}
5096
5097
5098
5099static int stop(mddev_t *mddev)
5100{
5101        raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5102
5103        md_unregister_thread(mddev->thread);
5104        mddev->thread = NULL;
5105        mddev->queue->backing_dev_info.congested_fn = NULL;
5106        blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5107        sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5108        free_conf(conf);
5109        mddev->private = NULL;
5110        return 0;
5111}
5112
5113#ifdef DEBUG
5114static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5115{
5116        int i;
5117
5118        seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5119                   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5120        seq_printf(seq, "sh %llu,  count %d.\n",
5121                   (unsigned long long)sh->sector, atomic_read(&sh->count));
5122        seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5123        for (i = 0; i < sh->disks; i++) {
5124                seq_printf(seq, "(cache%d: %p %ld) ",
5125                           i, sh->dev[i].page, sh->dev[i].flags);
5126        }
5127        seq_printf(seq, "\n");
5128}
5129
5130static void printall(struct seq_file *seq, raid5_conf_t *conf)
5131{
5132        struct stripe_head *sh;
5133        struct hlist_node *hn;
5134        int i;
5135
5136        spin_lock_irq(&conf->device_lock);
5137        for (i = 0; i < NR_HASH; i++) {
5138                hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5139                        if (sh->raid_conf != conf)
5140                                continue;
5141                        print_sh(seq, sh);
5142                }
5143        }
5144        spin_unlock_irq(&conf->device_lock);
5145}
5146#endif
5147
5148static void status(struct seq_file *seq, mddev_t *mddev)
5149{
5150        raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5151        int i;
5152
5153        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5154                mddev->chunk_sectors / 2, mddev->layout);
5155        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5156        for (i = 0; i < conf->raid_disks; i++)
5157                seq_printf (seq, "%s",
5158                               conf->disks[i].rdev &&
5159                               test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5160        seq_printf (seq, "]");
5161#ifdef DEBUG
5162        seq_printf (seq, "\n");
5163        printall(seq, conf);
5164#endif
5165}
5166
5167static void print_raid5_conf (raid5_conf_t *conf)
5168{
5169        int i;
5170        struct disk_info *tmp;
5171
5172        printk("RAID5 conf printout:\n");
5173        if (!conf) {
5174                printk("(conf==NULL)\n");
5175                return;
5176        }
5177        printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5178                 conf->raid_disks - conf->mddev->degraded);
5179
5180        for (i = 0; i < conf->raid_disks; i++) {
5181                char b[BDEVNAME_SIZE];
5182                tmp = conf->disks + i;
5183                if (tmp->rdev)
5184                printk(" disk %d, o:%d, dev:%s\n",
5185                        i, !test_bit(Faulty, &tmp->rdev->flags),
5186                        bdevname(tmp->rdev->bdev,b));
5187        }
5188}
5189
5190static int raid5_spare_active(mddev_t *mddev)
5191{
5192        int i;
5193        raid5_conf_t *conf = mddev->private;
5194        struct disk_info *tmp;
5195
5196        for (i = 0; i < conf->raid_disks; i++) {
5197                tmp = conf->disks + i;
5198                if (tmp->rdev
5199                    && !test_bit(Faulty, &tmp->rdev->flags)
5200                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5201                        unsigned long flags;
5202                        spin_lock_irqsave(&conf->device_lock, flags);
5203                        mddev->degraded--;
5204                        spin_unlock_irqrestore(&conf->device_lock, flags);
5205                }
5206        }
5207        print_raid5_conf(conf);
5208        return 0;
5209}
5210
5211static int raid5_remove_disk(mddev_t *mddev, int number)
5212{
5213        raid5_conf_t *conf = mddev->private;
5214        int err = 0;
5215        mdk_rdev_t *rdev;
5216        struct disk_info *p = conf->disks + number;
5217
5218        print_raid5_conf(conf);
5219        rdev = p->rdev;
5220        if (rdev) {
5221                if (number >= conf->raid_disks &&
5222                    conf->reshape_progress == MaxSector)
5223                        clear_bit(In_sync, &rdev->flags);
5224
5225                if (test_bit(In_sync, &rdev->flags) ||
5226                    atomic_read(&rdev->nr_pending)) {
5227                        err = -EBUSY;
5228                        goto abort;
5229                }
5230                /* Only remove non-faulty devices if recovery
5231                 * isn't possible.
5232                 */
5233                if (!test_bit(Faulty, &rdev->flags) &&
5234                    mddev->degraded <= conf->max_degraded &&
5235                    number < conf->raid_disks) {
5236                        err = -EBUSY;
5237                        goto abort;
5238                }
5239                p->rdev = NULL;
5240                synchronize_rcu();
5241                if (atomic_read(&rdev->nr_pending)) {
5242                        /* lost the race, try later */
5243                        err = -EBUSY;
5244                        p->rdev = rdev;
5245                }
5246        }
5247abort:
5248
5249        print_raid5_conf(conf);
5250        return err;
5251}
5252
5253static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5254{
5255        raid5_conf_t *conf = mddev->private;
5256        int err = -EEXIST;
5257        int disk;
5258        struct disk_info *p;
5259        int first = 0;
5260        int last = conf->raid_disks - 1;
5261
5262        if (mddev->degraded > conf->max_degraded)
5263                /* no point adding a device */
5264                return -EINVAL;
5265
5266        if (rdev->raid_disk >= 0)
5267                first = last = rdev->raid_disk;
5268
5269        /*
5270         * find the disk ... but prefer rdev->saved_raid_disk
5271         * if possible.
5272         */
5273        if (rdev->saved_raid_disk >= 0 &&
5274            rdev->saved_raid_disk >= first &&
5275            conf->disks[rdev->saved_raid_disk].rdev == NULL)
5276                disk = rdev->saved_raid_disk;
5277        else
5278                disk = first;
5279        for ( ; disk <= last ; disk++)
5280                if ((p=conf->disks + disk)->rdev == NULL) {
5281                        clear_bit(In_sync, &rdev->flags);
5282                        rdev->raid_disk = disk;
5283                        err = 0;
5284                        if (rdev->saved_raid_disk != disk)
5285                                conf->fullsync = 1;
5286                        rcu_assign_pointer(p->rdev, rdev);
5287                        break;
5288                }
5289        print_raid5_conf(conf);
5290        return err;
5291}
5292
5293static int raid5_resize(mddev_t *mddev, sector_t sectors)
5294{
5295        /* no resync is happening, and there is enough space
5296         * on all devices, so we can resize.
5297         * We need to make sure resync covers any new space.
5298         * If the array is shrinking we should possibly wait until
5299         * any io in the removed space completes, but it hardly seems
5300         * worth it.
5301         */
5302        sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5303        md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5304                                               mddev->raid_disks));
5305        if (mddev->array_sectors >
5306            raid5_size(mddev, sectors, mddev->raid_disks))
5307                return -EINVAL;
5308        set_capacity(mddev->gendisk, mddev->array_sectors);
5309        mddev->changed = 1;
5310        revalidate_disk(mddev->gendisk);
5311        if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5312                mddev->recovery_cp = mddev->dev_sectors;
5313                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5314        }
5315        mddev->dev_sectors = sectors;
5316        mddev->resync_max_sectors = sectors;
5317        return 0;
5318}
5319
5320static int check_stripe_cache(mddev_t *mddev)
5321{
5322        /* Can only proceed if there are plenty of stripe_heads.
5323         * We need a minimum of one full stripe,, and for sensible progress
5324         * it is best to have about 4 times that.
5325         * If we require 4 times, then the default 256 4K stripe_heads will
5326         * allow for chunk sizes up to 256K, which is probably OK.
5327         * If the chunk size is greater, user-space should request more
5328         * stripe_heads first.
5329         */
5330        raid5_conf_t *conf = mddev->private;
5331        if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5332            > conf->max_nr_stripes ||
5333            ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5334            > conf->max_nr_stripes) {
5335                printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5336                       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5337                        / STRIPE_SIZE)*4);
5338                return 0;
5339        }
5340        return 1;
5341}
5342
5343static int check_reshape(mddev_t *mddev)
5344{
5345        raid5_conf_t *conf = mddev->private;
5346
5347        if (mddev->delta_disks == 0 &&
5348            mddev->new_layout == mddev->layout &&
5349            mddev->new_chunk_sectors == mddev->chunk_sectors)
5350                return 0; /* nothing to do */
5351        if (mddev->bitmap)
5352                /* Cannot grow a bitmap yet */
5353                return -EBUSY;
5354        if (mddev->degraded > conf->max_degraded)
5355                return -EINVAL;
5356        if (mddev->delta_disks < 0) {
5357                /* We might be able to shrink, but the devices must
5358                 * be made bigger first.
5359                 * For raid6, 4 is the minimum size.
5360                 * Otherwise 2 is the minimum
5361                 */
5362                int min = 2;
5363                if (mddev->level == 6)
5364                        min = 4;
5365                if (mddev->raid_disks + mddev->delta_disks < min)
5366                        return -EINVAL;
5367        }
5368
5369        if (!check_stripe_cache(mddev))
5370                return -ENOSPC;
5371
5372        return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5373}
5374
5375static int raid5_start_reshape(mddev_t *mddev)
5376{
5377        raid5_conf_t *conf = mddev->private;
5378        mdk_rdev_t *rdev;
5379        int spares = 0;
5380        int added_devices = 0;
5381        unsigned long flags;
5382
5383        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5384                return -EBUSY;
5385
5386        if (!check_stripe_cache(mddev))
5387                return -ENOSPC;
5388
5389        list_for_each_entry(rdev, &mddev->disks, same_set)
5390                if (rdev->raid_disk < 0 &&
5391                    !test_bit(Faulty, &rdev->flags))
5392                        spares++;
5393
5394        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5395                /* Not enough devices even to make a degraded array
5396                 * of that size
5397                 */
5398                return -EINVAL;
5399
5400        /* Refuse to reduce size of the array.  Any reductions in
5401         * array size must be through explicit setting of array_size
5402         * attribute.
5403         */
5404        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5405            < mddev->array_sectors) {
5406                printk(KERN_ERR "md: %s: array size must be reduced "
5407                       "before number of disks\n", mdname(mddev));
5408                return -EINVAL;
5409        }
5410
5411        atomic_set(&conf->reshape_stripes, 0);
5412        spin_lock_irq(&conf->device_lock);
5413        conf->previous_raid_disks = conf->raid_disks;
5414        conf->raid_disks += mddev->delta_disks;
5415        conf->prev_chunk_sectors = conf->chunk_sectors;
5416        conf->chunk_sectors = mddev->new_chunk_sectors;
5417        conf->prev_algo = conf->algorithm;
5418        conf->algorithm = mddev->new_layout;
5419        if (mddev->delta_disks < 0)
5420                conf->reshape_progress = raid5_size(mddev, 0, 0);
5421        else
5422                conf->reshape_progress = 0;
5423        conf->reshape_safe = conf->reshape_progress;
5424        conf->generation++;
5425        spin_unlock_irq(&conf->device_lock);
5426
5427        /* Add some new drives, as many as will fit.
5428         * We know there are enough to make the newly sized array work.
5429         */
5430        list_for_each_entry(rdev, &mddev->disks, same_set)
5431                if (rdev->raid_disk < 0 &&
5432                    !test_bit(Faulty, &rdev->flags)) {
5433                        if (raid5_add_disk(mddev, rdev) == 0) {
5434                                char nm[20];
5435                                if (rdev->raid_disk >= conf->previous_raid_disks)
5436                                        set_bit(In_sync, &rdev->flags);
5437                                else
5438                                        rdev->recovery_offset = 0;
5439                                added_devices++;
5440                                sprintf(nm, "rd%d", rdev->raid_disk);
5441                                if (sysfs_create_link(&mddev->kobj,
5442                                                      &rdev->kobj, nm))
5443                                        printk(KERN_WARNING
5444                                               "raid5: failed to create "
5445                                               " link %s for %s\n",
5446                                               nm, mdname(mddev));
5447                        } else
5448                                break;
5449                }
5450
5451        if (mddev->delta_disks > 0) {
5452                spin_lock_irqsave(&conf->device_lock, flags);
5453                mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5454                        - added_devices;
5455                spin_unlock_irqrestore(&conf->device_lock, flags);
5456        }
5457        mddev->raid_disks = conf->raid_disks;
5458        mddev->reshape_position = conf->reshape_progress;
5459        set_bit(MD_CHANGE_DEVS, &mddev->flags);
5460
5461        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5462        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5463        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5464        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5465        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5466                                                "reshape");
5467        if (!mddev->sync_thread) {
5468                mddev->recovery = 0;
5469                spin_lock_irq(&conf->device_lock);
5470                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5471                conf->reshape_progress = MaxSector;
5472                spin_unlock_irq(&conf->device_lock);
5473                return -EAGAIN;
5474        }
5475        conf->reshape_checkpoint = jiffies;
5476        md_wakeup_thread(mddev->sync_thread);
5477        md_new_event(mddev);
5478        return 0;
5479}
5480
5481/* This is called from the reshape thread and should make any
5482 * changes needed in 'conf'
5483 */
5484static void end_reshape(raid5_conf_t *conf)
5485{
5486
5487        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5488
5489                spin_lock_irq(&conf->device_lock);
5490                conf->previous_raid_disks = conf->raid_disks;
5491                conf->reshape_progress = MaxSector;
5492                spin_unlock_irq(&conf->device_lock);
5493                wake_up(&conf->wait_for_overlap);
5494
5495                /* read-ahead size must cover two whole stripes, which is
5496                 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5497                 */
5498                {
5499                        int data_disks = conf->raid_disks - conf->max_degraded;
5500                        int stripe = data_disks * ((conf->chunk_sectors << 9)
5501                                                   / PAGE_SIZE);
5502                        if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5503                                conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5504                }
5505        }
5506}
5507
5508/* This is called from the raid5d thread with mddev_lock held.
5509 * It makes config changes to the device.
5510 */
5511static void raid5_finish_reshape(mddev_t *mddev)
5512{
5513        raid5_conf_t *conf = mddev->private;
5514
5515        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5516
5517                if (mddev->delta_disks > 0) {
5518                        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5519                        set_capacity(mddev->gendisk, mddev->array_sectors);
5520                        mddev->changed = 1;
5521                        revalidate_disk(mddev->gendisk);
5522                } else {
5523                        int d;
5524                        mddev->degraded = conf->raid_disks;
5525                        for (d = 0; d < conf->raid_disks ; d++)
5526                                if (conf->disks[d].rdev &&
5527                                    test_bit(In_sync,
5528                                             &conf->disks[d].rdev->flags))
5529                                        mddev->degraded--;
5530                        for (d = conf->raid_disks ;
5531                             d < conf->raid_disks - mddev->delta_disks;
5532                             d++) {
5533                                mdk_rdev_t *rdev = conf->disks[d].rdev;
5534                                if (rdev && raid5_remove_disk(mddev, d) == 0) {
5535                                        char nm[20];
5536                                        sprintf(nm, "rd%d", rdev->raid_disk);
5537                                        sysfs_remove_link(&mddev->kobj, nm);
5538                                        rdev->raid_disk = -1;
5539                                }
5540                        }
5541                }
5542                mddev->layout = conf->algorithm;
5543                mddev->chunk_sectors = conf->chunk_sectors;
5544                mddev->reshape_position = MaxSector;
5545                mddev->delta_disks = 0;
5546        }
5547}
5548
5549static void raid5_quiesce(mddev_t *mddev, int state)
5550{
5551        raid5_conf_t *conf = mddev->private;
5552
5553        switch(state) {
5554        case 2: /* resume for a suspend */
5555                wake_up(&conf->wait_for_overlap);
5556                break;
5557
5558        case 1: /* stop all writes */
5559                spin_lock_irq(&conf->device_lock);
5560                /* '2' tells resync/reshape to pause so that all
5561                 * active stripes can drain
5562                 */
5563                conf->quiesce = 2;
5564                wait_event_lock_irq(conf->wait_for_stripe,
5565                                    atomic_read(&conf->active_stripes) == 0 &&
5566                                    atomic_read(&conf->active_aligned_reads) == 0,
5567                                    conf->device_lock, /* nothing */);
5568                conf->quiesce = 1;
5569                spin_unlock_irq(&conf->device_lock);
5570                /* allow reshape to continue */
5571                wake_up(&conf->wait_for_overlap);
5572                break;
5573
5574        case 0: /* re-enable writes */
5575                spin_lock_irq(&conf->device_lock);
5576                conf->quiesce = 0;
5577                wake_up(&conf->wait_for_stripe);
5578                wake_up(&conf->wait_for_overlap);
5579                spin_unlock_irq(&conf->device_lock);
5580                break;
5581        }
5582}
5583
5584
5585static void *raid5_takeover_raid1(mddev_t *mddev)
5586{
5587        int chunksect;
5588
5589        if (mddev->raid_disks != 2 ||
5590            mddev->degraded > 1)
5591                return ERR_PTR(-EINVAL);
5592
5593        /* Should check if there are write-behind devices? */
5594
5595        chunksect = 64*2; /* 64K by default */
5596
5597        /* The array must be an exact multiple of chunksize */
5598        while (chunksect && (mddev->array_sectors & (chunksect-1)))
5599                chunksect >>= 1;
5600
5601        if ((chunksect<<9) < STRIPE_SIZE)
5602                /* array size does not allow a suitable chunk size */
5603                return ERR_PTR(-EINVAL);
5604
5605        mddev->new_level = 5;
5606        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5607        mddev->new_chunk_sectors = chunksect;
5608
5609        return setup_conf(mddev);
5610}
5611
5612static void *raid5_takeover_raid6(mddev_t *mddev)
5613{
5614        int new_layout;
5615
5616        switch (mddev->layout) {
5617        case ALGORITHM_LEFT_ASYMMETRIC_6:
5618                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5619                break;
5620        case ALGORITHM_RIGHT_ASYMMETRIC_6:
5621                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5622                break;
5623        case ALGORITHM_LEFT_SYMMETRIC_6:
5624                new_layout = ALGORITHM_LEFT_SYMMETRIC;
5625                break;
5626        case ALGORITHM_RIGHT_SYMMETRIC_6:
5627                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5628                break;
5629        case ALGORITHM_PARITY_0_6:
5630                new_layout = ALGORITHM_PARITY_0;
5631                break;
5632        case ALGORITHM_PARITY_N:
5633                new_layout = ALGORITHM_PARITY_N;
5634                break;
5635        default:
5636                return ERR_PTR(-EINVAL);
5637        }
5638        mddev->new_level = 5;
5639        mddev->new_layout = new_layout;
5640        mddev->delta_disks = -1;
5641        mddev->raid_disks -= 1;
5642        return setup_conf(mddev);
5643}
5644
5645
5646static int raid5_check_reshape(mddev_t *mddev)
5647{
5648        /* For a 2-drive array, the layout and chunk size can be changed
5649         * immediately as not restriping is needed.
5650         * For larger arrays we record the new value - after validation
5651         * to be used by a reshape pass.
5652         */
5653        raid5_conf_t *conf = mddev->private;
5654        int new_chunk = mddev->new_chunk_sectors;
5655
5656        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5657                return -EINVAL;
5658        if (new_chunk > 0) {
5659                if (!is_power_of_2(new_chunk))
5660                        return -EINVAL;
5661                if (new_chunk < (PAGE_SIZE>>9))
5662                        return -EINVAL;
5663                if (mddev->array_sectors & (new_chunk-1))
5664                        /* not factor of array size */
5665                        return -EINVAL;
5666        }
5667
5668        /* They look valid */
5669
5670        if (mddev->raid_disks == 2) {
5671                /* can make the change immediately */
5672                if (mddev->new_layout >= 0) {
5673                        conf->algorithm = mddev->new_layout;
5674                        mddev->layout = mddev->new_layout;
5675                }
5676                if (new_chunk > 0) {
5677                        conf->chunk_sectors = new_chunk ;
5678                        mddev->chunk_sectors = new_chunk;
5679                }
5680                set_bit(MD_CHANGE_DEVS, &mddev->flags);
5681                md_wakeup_thread(mddev->thread);
5682        }
5683        return check_reshape(mddev);
5684}
5685
5686static int raid6_check_reshape(mddev_t *mddev)
5687{
5688        int new_chunk = mddev->new_chunk_sectors;
5689
5690        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5691                return -EINVAL;
5692        if (new_chunk > 0) {
5693                if (!is_power_of_2(new_chunk))
5694                        return -EINVAL;
5695                if (new_chunk < (PAGE_SIZE >> 9))
5696                        return -EINVAL;
5697                if (mddev->array_sectors & (new_chunk-1))
5698                        /* not factor of array size */
5699                        return -EINVAL;
5700        }
5701
5702        /* They look valid */
5703        return check_reshape(mddev);
5704}
5705
5706static void *raid5_takeover(mddev_t *mddev)
5707{
5708        /* raid5 can take over:
5709         *  raid0 - if all devices are the same - make it a raid4 layout
5710         *  raid1 - if there are two drives.  We need to know the chunk size
5711         *  raid4 - trivial - just use a raid4 layout.
5712         *  raid6 - Providing it is a *_6 layout
5713         */
5714
5715        if (mddev->level == 1)
5716                return raid5_takeover_raid1(mddev);
5717        if (mddev->level == 4) {
5718                mddev->new_layout = ALGORITHM_PARITY_N;
5719                mddev->new_level = 5;
5720                return setup_conf(mddev);
5721        }
5722        if (mddev->level == 6)
5723                return raid5_takeover_raid6(mddev);
5724
5725        return ERR_PTR(-EINVAL);
5726}
5727
5728
5729static struct mdk_personality raid5_personality;
5730
5731static void *raid6_takeover(mddev_t *mddev)
5732{
5733        /* Currently can only take over a raid5.  We map the
5734         * personality to an equivalent raid6 personality
5735         * with the Q block at the end.
5736         */
5737        int new_layout;
5738
5739        if (mddev->pers != &raid5_personality)
5740                return ERR_PTR(-EINVAL);
5741        if (mddev->degraded > 1)
5742                return ERR_PTR(-EINVAL);
5743        if (mddev->raid_disks > 253)
5744                return ERR_PTR(-EINVAL);
5745        if (mddev->raid_disks < 3)
5746                return ERR_PTR(-EINVAL);
5747
5748        switch (mddev->layout) {
5749        case ALGORITHM_LEFT_ASYMMETRIC:
5750                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5751                break;
5752        case ALGORITHM_RIGHT_ASYMMETRIC:
5753                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5754                break;
5755        case ALGORITHM_LEFT_SYMMETRIC:
5756                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5757                break;
5758        case ALGORITHM_RIGHT_SYMMETRIC:
5759                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5760                break;
5761        case ALGORITHM_PARITY_0:
5762                new_layout = ALGORITHM_PARITY_0_6;
5763                break;
5764        case ALGORITHM_PARITY_N:
5765                new_layout = ALGORITHM_PARITY_N;
5766                break;
5767        default:
5768                return ERR_PTR(-EINVAL);
5769        }
5770        mddev->new_level = 6;
5771        mddev->new_layout = new_layout;
5772        mddev->delta_disks = 1;
5773        mddev->raid_disks += 1;
5774        return setup_conf(mddev);
5775}
5776
5777
5778static struct mdk_personality raid6_personality =
5779{
5780        .name           = "raid6",
5781        .level          = 6,
5782        .owner          = THIS_MODULE,
5783        .make_request   = make_request,
5784        .run            = run,
5785        .stop           = stop,
5786        .status         = status,
5787        .error_handler  = error,
5788        .hot_add_disk   = raid5_add_disk,
5789        .hot_remove_disk= raid5_remove_disk,
5790        .spare_active   = raid5_spare_active,
5791        .sync_request   = sync_request,
5792        .resize         = raid5_resize,
5793        .size           = raid5_size,
5794        .check_reshape  = raid6_check_reshape,
5795        .start_reshape  = raid5_start_reshape,
5796        .finish_reshape = raid5_finish_reshape,
5797        .quiesce        = raid5_quiesce,
5798        .takeover       = raid6_takeover,
5799};
5800static struct mdk_personality raid5_personality =
5801{
5802        .name           = "raid5",
5803        .level          = 5,
5804        .owner          = THIS_MODULE,
5805        .make_request   = make_request,
5806        .run            = run,
5807        .stop           = stop,
5808        .status         = status,
5809        .error_handler  = error,
5810        .hot_add_disk   = raid5_add_disk,
5811        .hot_remove_disk= raid5_remove_disk,
5812        .spare_active   = raid5_spare_active,
5813        .sync_request   = sync_request,
5814        .resize         = raid5_resize,
5815        .size           = raid5_size,
5816        .check_reshape  = raid5_check_reshape,
5817        .start_reshape  = raid5_start_reshape,
5818        .finish_reshape = raid5_finish_reshape,
5819        .quiesce        = raid5_quiesce,
5820        .takeover       = raid5_takeover,
5821};
5822
5823static struct mdk_personality raid4_personality =
5824{
5825        .name           = "raid4",
5826        .level          = 4,
5827        .owner          = THIS_MODULE,
5828        .make_request   = make_request,
5829        .run            = run,
5830        .stop           = stop,
5831        .status         = status,
5832        .error_handler  = error,
5833        .hot_add_disk   = raid5_add_disk,
5834        .hot_remove_disk= raid5_remove_disk,
5835        .spare_active   = raid5_spare_active,
5836        .sync_request   = sync_request,
5837        .resize         = raid5_resize,
5838        .size           = raid5_size,
5839        .check_reshape  = raid5_check_reshape,
5840        .start_reshape  = raid5_start_reshape,
5841        .finish_reshape = raid5_finish_reshape,
5842        .quiesce        = raid5_quiesce,
5843};
5844
5845static int __init raid5_init(void)
5846{
5847        register_md_personality(&raid6_personality);
5848        register_md_personality(&raid5_personality);
5849        register_md_personality(&raid4_personality);
5850        return 0;
5851}
5852
5853static void raid5_exit(void)
5854{
5855        unregister_md_personality(&raid6_personality);
5856        unregister_md_personality(&raid5_personality);
5857        unregister_md_personality(&raid4_personality);
5858}
5859
5860module_init(raid5_init);
5861module_exit(raid5_exit);
5862MODULE_LICENSE("GPL");
5863MODULE_ALIAS("md-personality-4"); /* RAID5 */
5864MODULE_ALIAS("md-raid5");
5865MODULE_ALIAS("md-raid4");
5866MODULE_ALIAS("md-level-5");
5867MODULE_ALIAS("md-level-4");
5868MODULE_ALIAS("md-personality-8"); /* RAID6 */
5869MODULE_ALIAS("md-raid6");
5870MODULE_ALIAS("md-level-6");
5871
5872/* This used to be two separate modules, they were: */
5873MODULE_ALIAS("raid5");
5874MODULE_ALIAS("raid6");
5875