linux/drivers/mmc/host/mmc_spi.c
<<
>>
Prefs
   1/*
   2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
   3 *
   4 * (C) Copyright 2005, Intec Automation,
   5 *              Mike Lavender (mike@steroidmicros)
   6 * (C) Copyright 2006-2007, David Brownell
   7 * (C) Copyright 2007, Axis Communications,
   8 *              Hans-Peter Nilsson (hp@axis.com)
   9 * (C) Copyright 2007, ATRON electronic GmbH,
  10 *              Jan Nikitenko <jan.nikitenko@gmail.com>
  11 *
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 */
  27#include <linux/sched.h>
  28#include <linux/delay.h>
  29#include <linux/bio.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/crc7.h>
  32#include <linux/crc-itu-t.h>
  33#include <linux/scatterlist.h>
  34
  35#include <linux/mmc/host.h>
  36#include <linux/mmc/mmc.h>              /* for R1_SPI_* bit values */
  37
  38#include <linux/spi/spi.h>
  39#include <linux/spi/mmc_spi.h>
  40
  41#include <asm/unaligned.h>
  42
  43
  44/* NOTES:
  45 *
  46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  47 *   controller, although some of them do have hardware support for
  48 *   SPI protocol.  The main reason for such configs would be mmc-ish
  49 *   cards like DataFlash, which don't support that "native" protocol.
  50 *
  51 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  52 *   switch between driver stacks, and in any case if "native" mode
  53 *   is available, it will be faster and hence preferable.
  54 *
  55 * - MMC depends on a different chipselect management policy than the
  56 *   SPI interface currently supports for shared bus segments:  it needs
  57 *   to issue multiple spi_message requests with the chipselect active,
  58 *   using the results of one message to decide the next one to issue.
  59 *
  60 *   Pending updates to the programming interface, this driver expects
  61 *   that it not share the bus with other drivers (precluding conflicts).
  62 *
  63 * - We tell the controller to keep the chipselect active from the
  64 *   beginning of an mmc_host_ops.request until the end.  So beware
  65 *   of SPI controller drivers that mis-handle the cs_change flag!
  66 *
  67 *   However, many cards seem OK with chipselect flapping up/down
  68 *   during that time ... at least on unshared bus segments.
  69 */
  70
  71
  72/*
  73 * Local protocol constants, internal to data block protocols.
  74 */
  75
  76/* Response tokens used to ack each block written: */
  77#define SPI_MMC_RESPONSE_CODE(x)        ((x) & 0x1f)
  78#define SPI_RESPONSE_ACCEPTED           ((2 << 1)|1)
  79#define SPI_RESPONSE_CRC_ERR            ((5 << 1)|1)
  80#define SPI_RESPONSE_WRITE_ERR          ((6 << 1)|1)
  81
  82/* Read and write blocks start with these tokens and end with crc;
  83 * on error, read tokens act like a subset of R2_SPI_* values.
  84 */
  85#define SPI_TOKEN_SINGLE        0xfe    /* single block r/w, multiblock read */
  86#define SPI_TOKEN_MULTI_WRITE   0xfc    /* multiblock write */
  87#define SPI_TOKEN_STOP_TRAN     0xfd    /* terminate multiblock write */
  88
  89#define MMC_SPI_BLOCKSIZE       512
  90
  91
  92/* These fixed timeouts come from the latest SD specs, which say to ignore
  93 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  95 * reads which takes nowhere near that long.  Older cards may be able to use
  96 * shorter timeouts ... but why bother?
  97 */
  98#define r1b_timeout             (HZ * 3)
  99
 100/* One of the critical speed parameters is the amount of data which may
 101 * be transfered in one command. If this value is too low, the SD card
 102 * controller has to do multiple partial block writes (argggh!). With
 103 * today (2008) SD cards there is little speed gain if we transfer more
 104 * than 64 KBytes at a time. So use this value until there is any indication
 105 * that we should do more here.
 106 */
 107#define MMC_SPI_BLOCKSATONCE    128
 108
 109/****************************************************************************/
 110
 111/*
 112 * Local Data Structures
 113 */
 114
 115/* "scratch" is per-{command,block} data exchanged with the card */
 116struct scratch {
 117        u8                      status[29];
 118        u8                      data_token;
 119        __be16                  crc_val;
 120};
 121
 122struct mmc_spi_host {
 123        struct mmc_host         *mmc;
 124        struct spi_device       *spi;
 125
 126        unsigned char           power_mode;
 127        u16                     powerup_msecs;
 128
 129        struct mmc_spi_platform_data    *pdata;
 130
 131        /* for bulk data transfers */
 132        struct spi_transfer     token, t, crc, early_status;
 133        struct spi_message      m;
 134
 135        /* for status readback */
 136        struct spi_transfer     status;
 137        struct spi_message      readback;
 138
 139        /* underlying DMA-aware controller, or null */
 140        struct device           *dma_dev;
 141
 142        /* buffer used for commands and for message "overhead" */
 143        struct scratch          *data;
 144        dma_addr_t              data_dma;
 145
 146        /* Specs say to write ones most of the time, even when the card
 147         * has no need to read its input data; and many cards won't care.
 148         * This is our source of those ones.
 149         */
 150        void                    *ones;
 151        dma_addr_t              ones_dma;
 152};
 153
 154
 155/****************************************************************************/
 156
 157/*
 158 * MMC-over-SPI protocol glue, used by the MMC stack interface
 159 */
 160
 161static inline int mmc_cs_off(struct mmc_spi_host *host)
 162{
 163        /* chipselect will always be inactive after setup() */
 164        return spi_setup(host->spi);
 165}
 166
 167static int
 168mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 169{
 170        int status;
 171
 172        if (len > sizeof(*host->data)) {
 173                WARN_ON(1);
 174                return -EIO;
 175        }
 176
 177        host->status.len = len;
 178
 179        if (host->dma_dev)
 180                dma_sync_single_for_device(host->dma_dev,
 181                                host->data_dma, sizeof(*host->data),
 182                                DMA_FROM_DEVICE);
 183
 184        status = spi_sync(host->spi, &host->readback);
 185
 186        if (host->dma_dev)
 187                dma_sync_single_for_cpu(host->dma_dev,
 188                                host->data_dma, sizeof(*host->data),
 189                                DMA_FROM_DEVICE);
 190
 191        return status;
 192}
 193
 194static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 195                        unsigned n, u8 byte)
 196{
 197        u8              *cp = host->data->status;
 198        unsigned long start = jiffies;
 199
 200        while (1) {
 201                int             status;
 202                unsigned        i;
 203
 204                status = mmc_spi_readbytes(host, n);
 205                if (status < 0)
 206                        return status;
 207
 208                for (i = 0; i < n; i++) {
 209                        if (cp[i] != byte)
 210                                return cp[i];
 211                }
 212
 213                if (time_is_before_jiffies(start + timeout))
 214                        break;
 215
 216                /* If we need long timeouts, we may release the CPU.
 217                 * We use jiffies here because we want to have a relation
 218                 * between elapsed time and the blocking of the scheduler.
 219                 */
 220                if (time_is_before_jiffies(start+1))
 221                        schedule();
 222        }
 223        return -ETIMEDOUT;
 224}
 225
 226static inline int
 227mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 228{
 229        return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 230}
 231
 232static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 233{
 234        return mmc_spi_skip(host, timeout, 1, 0xff);
 235}
 236
 237
 238/*
 239 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 240 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 241 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 242 *
 243 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 244 * newer cards R7 (IF_COND).
 245 */
 246
 247static char *maptype(struct mmc_command *cmd)
 248{
 249        switch (mmc_spi_resp_type(cmd)) {
 250        case MMC_RSP_SPI_R1:    return "R1";
 251        case MMC_RSP_SPI_R1B:   return "R1B";
 252        case MMC_RSP_SPI_R2:    return "R2/R5";
 253        case MMC_RSP_SPI_R3:    return "R3/R4/R7";
 254        default:                return "?";
 255        }
 256}
 257
 258/* return zero, else negative errno after setting cmd->error */
 259static int mmc_spi_response_get(struct mmc_spi_host *host,
 260                struct mmc_command *cmd, int cs_on)
 261{
 262        u8      *cp = host->data->status;
 263        u8      *end = cp + host->t.len;
 264        int     value = 0;
 265        int     bitshift;
 266        u8      leftover = 0;
 267        unsigned short rotator;
 268        int     i;
 269        char    tag[32];
 270
 271        snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 272                cmd->opcode, maptype(cmd));
 273
 274        /* Except for data block reads, the whole response will already
 275         * be stored in the scratch buffer.  It's somewhere after the
 276         * command and the first byte we read after it.  We ignore that
 277         * first byte.  After STOP_TRANSMISSION command it may include
 278         * two data bits, but otherwise it's all ones.
 279         */
 280        cp += 8;
 281        while (cp < end && *cp == 0xff)
 282                cp++;
 283
 284        /* Data block reads (R1 response types) may need more data... */
 285        if (cp == end) {
 286                cp = host->data->status;
 287                end = cp+1;
 288
 289                /* Card sends N(CR) (== 1..8) bytes of all-ones then one
 290                 * status byte ... and we already scanned 2 bytes.
 291                 *
 292                 * REVISIT block read paths use nasty byte-at-a-time I/O
 293                 * so it can always DMA directly into the target buffer.
 294                 * It'd probably be better to memcpy() the first chunk and
 295                 * avoid extra i/o calls...
 296                 *
 297                 * Note we check for more than 8 bytes, because in practice,
 298                 * some SD cards are slow...
 299                 */
 300                for (i = 2; i < 16; i++) {
 301                        value = mmc_spi_readbytes(host, 1);
 302                        if (value < 0)
 303                                goto done;
 304                        if (*cp != 0xff)
 305                                goto checkstatus;
 306                }
 307                value = -ETIMEDOUT;
 308                goto done;
 309        }
 310
 311checkstatus:
 312        bitshift = 0;
 313        if (*cp & 0x80) {
 314                /* Houston, we have an ugly card with a bit-shifted response */
 315                rotator = *cp++ << 8;
 316                /* read the next byte */
 317                if (cp == end) {
 318                        value = mmc_spi_readbytes(host, 1);
 319                        if (value < 0)
 320                                goto done;
 321                        cp = host->data->status;
 322                        end = cp+1;
 323                }
 324                rotator |= *cp++;
 325                while (rotator & 0x8000) {
 326                        bitshift++;
 327                        rotator <<= 1;
 328                }
 329                cmd->resp[0] = rotator >> 8;
 330                leftover = rotator;
 331        } else {
 332                cmd->resp[0] = *cp++;
 333        }
 334        cmd->error = 0;
 335
 336        /* Status byte: the entire seven-bit R1 response.  */
 337        if (cmd->resp[0] != 0) {
 338                if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 339                                & cmd->resp[0])
 340                        value = -EFAULT; /* Bad address */
 341                else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 342                        value = -ENOSYS; /* Function not implemented */
 343                else if (R1_SPI_COM_CRC & cmd->resp[0])
 344                        value = -EILSEQ; /* Illegal byte sequence */
 345                else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 346                                & cmd->resp[0])
 347                        value = -EIO;    /* I/O error */
 348                /* else R1_SPI_IDLE, "it's resetting" */
 349        }
 350
 351        switch (mmc_spi_resp_type(cmd)) {
 352
 353        /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 354         * and less-common stuff like various erase operations.
 355         */
 356        case MMC_RSP_SPI_R1B:
 357                /* maybe we read all the busy tokens already */
 358                while (cp < end && *cp == 0)
 359                        cp++;
 360                if (cp == end)
 361                        mmc_spi_wait_unbusy(host, r1b_timeout);
 362                break;
 363
 364        /* SPI R2 == R1 + second status byte; SEND_STATUS
 365         * SPI R5 == R1 + data byte; IO_RW_DIRECT
 366         */
 367        case MMC_RSP_SPI_R2:
 368                /* read the next byte */
 369                if (cp == end) {
 370                        value = mmc_spi_readbytes(host, 1);
 371                        if (value < 0)
 372                                goto done;
 373                        cp = host->data->status;
 374                        end = cp+1;
 375                }
 376                if (bitshift) {
 377                        rotator = leftover << 8;
 378                        rotator |= *cp << bitshift;
 379                        cmd->resp[0] |= (rotator & 0xFF00);
 380                } else {
 381                        cmd->resp[0] |= *cp << 8;
 382                }
 383                break;
 384
 385        /* SPI R3, R4, or R7 == R1 + 4 bytes */
 386        case MMC_RSP_SPI_R3:
 387                rotator = leftover << 8;
 388                cmd->resp[1] = 0;
 389                for (i = 0; i < 4; i++) {
 390                        cmd->resp[1] <<= 8;
 391                        /* read the next byte */
 392                        if (cp == end) {
 393                                value = mmc_spi_readbytes(host, 1);
 394                                if (value < 0)
 395                                        goto done;
 396                                cp = host->data->status;
 397                                end = cp+1;
 398                        }
 399                        if (bitshift) {
 400                                rotator |= *cp++ << bitshift;
 401                                cmd->resp[1] |= (rotator >> 8);
 402                                rotator <<= 8;
 403                        } else {
 404                                cmd->resp[1] |= *cp++;
 405                        }
 406                }
 407                break;
 408
 409        /* SPI R1 == just one status byte */
 410        case MMC_RSP_SPI_R1:
 411                break;
 412
 413        default:
 414                dev_dbg(&host->spi->dev, "bad response type %04x\n",
 415                                mmc_spi_resp_type(cmd));
 416                if (value >= 0)
 417                        value = -EINVAL;
 418                goto done;
 419        }
 420
 421        if (value < 0)
 422                dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 423                        tag, cmd->resp[0], cmd->resp[1]);
 424
 425        /* disable chipselect on errors and some success cases */
 426        if (value >= 0 && cs_on)
 427                return value;
 428done:
 429        if (value < 0)
 430                cmd->error = value;
 431        mmc_cs_off(host);
 432        return value;
 433}
 434
 435/* Issue command and read its response.
 436 * Returns zero on success, negative for error.
 437 *
 438 * On error, caller must cope with mmc core retry mechanism.  That
 439 * means immediate low-level resubmit, which affects the bus lock...
 440 */
 441static int
 442mmc_spi_command_send(struct mmc_spi_host *host,
 443                struct mmc_request *mrq,
 444                struct mmc_command *cmd, int cs_on)
 445{
 446        struct scratch          *data = host->data;
 447        u8                      *cp = data->status;
 448        u32                     arg = cmd->arg;
 449        int                     status;
 450        struct spi_transfer     *t;
 451
 452        /* We can handle most commands (except block reads) in one full
 453         * duplex I/O operation before either starting the next transfer
 454         * (data block or command) or else deselecting the card.
 455         *
 456         * First, write 7 bytes:
 457         *  - an all-ones byte to ensure the card is ready
 458         *  - opcode byte (plus start and transmission bits)
 459         *  - four bytes of big-endian argument
 460         *  - crc7 (plus end bit) ... always computed, it's cheap
 461         *
 462         * We init the whole buffer to all-ones, which is what we need
 463         * to write while we're reading (later) response data.
 464         */
 465        memset(cp++, 0xff, sizeof(data->status));
 466
 467        *cp++ = 0x40 | cmd->opcode;
 468        *cp++ = (u8)(arg >> 24);
 469        *cp++ = (u8)(arg >> 16);
 470        *cp++ = (u8)(arg >> 8);
 471        *cp++ = (u8)arg;
 472        *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
 473
 474        /* Then, read up to 13 bytes (while writing all-ones):
 475         *  - N(CR) (== 1..8) bytes of all-ones
 476         *  - status byte (for all response types)
 477         *  - the rest of the response, either:
 478         *      + nothing, for R1 or R1B responses
 479         *      + second status byte, for R2 responses
 480         *      + four data bytes, for R3 and R7 responses
 481         *
 482         * Finally, read some more bytes ... in the nice cases we know in
 483         * advance how many, and reading 1 more is always OK:
 484         *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 485         *  - N(RC) (== 1..N) bytes of all-ones, before next command
 486         *  - N(WR) (== 1..N) bytes of all-ones, before data write
 487         *
 488         * So in those cases one full duplex I/O of at most 21 bytes will
 489         * handle the whole command, leaving the card ready to receive a
 490         * data block or new command.  We do that whenever we can, shaving
 491         * CPU and IRQ costs (especially when using DMA or FIFOs).
 492         *
 493         * There are two other cases, where it's not generally practical
 494         * to rely on a single I/O:
 495         *
 496         *  - R1B responses need at least N(EC) bytes of all-zeroes.
 497         *
 498         *    In this case we can *try* to fit it into one I/O, then
 499         *    maybe read more data later.
 500         *
 501         *  - Data block reads are more troublesome, since a variable
 502         *    number of padding bytes precede the token and data.
 503         *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 504         *      + N(AC) (== 1..many) bytes of all-ones
 505         *
 506         *    In this case we currently only have minimal speedups here:
 507         *    when N(CR) == 1 we can avoid I/O in response_get().
 508         */
 509        if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 510                cp += 2;        /* min(N(CR)) + status */
 511                /* R1 */
 512        } else {
 513                cp += 10;       /* max(N(CR)) + status + min(N(RC),N(WR)) */
 514                if (cmd->flags & MMC_RSP_SPI_S2)        /* R2/R5 */
 515                        cp++;
 516                else if (cmd->flags & MMC_RSP_SPI_B4)   /* R3/R4/R7 */
 517                        cp += 4;
 518                else if (cmd->flags & MMC_RSP_BUSY)     /* R1B */
 519                        cp = data->status + sizeof(data->status);
 520                /* else:  R1 (most commands) */
 521        }
 522
 523        dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 524                cmd->opcode, maptype(cmd));
 525
 526        /* send command, leaving chipselect active */
 527        spi_message_init(&host->m);
 528
 529        t = &host->t;
 530        memset(t, 0, sizeof(*t));
 531        t->tx_buf = t->rx_buf = data->status;
 532        t->tx_dma = t->rx_dma = host->data_dma;
 533        t->len = cp - data->status;
 534        t->cs_change = 1;
 535        spi_message_add_tail(t, &host->m);
 536
 537        if (host->dma_dev) {
 538                host->m.is_dma_mapped = 1;
 539                dma_sync_single_for_device(host->dma_dev,
 540                                host->data_dma, sizeof(*host->data),
 541                                DMA_BIDIRECTIONAL);
 542        }
 543        status = spi_sync(host->spi, &host->m);
 544
 545        if (host->dma_dev)
 546                dma_sync_single_for_cpu(host->dma_dev,
 547                                host->data_dma, sizeof(*host->data),
 548                                DMA_BIDIRECTIONAL);
 549        if (status < 0) {
 550                dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 551                cmd->error = status;
 552                return status;
 553        }
 554
 555        /* after no-data commands and STOP_TRANSMISSION, chipselect off */
 556        return mmc_spi_response_get(host, cmd, cs_on);
 557}
 558
 559/* Build data message with up to four separate transfers.  For TX, we
 560 * start by writing the data token.  And in most cases, we finish with
 561 * a status transfer.
 562 *
 563 * We always provide TX data for data and CRC.  The MMC/SD protocol
 564 * requires us to write ones; but Linux defaults to writing zeroes;
 565 * so we explicitly initialize it to all ones on RX paths.
 566 *
 567 * We also handle DMA mapping, so the underlying SPI controller does
 568 * not need to (re)do it for each message.
 569 */
 570static void
 571mmc_spi_setup_data_message(
 572        struct mmc_spi_host     *host,
 573        int                     multiple,
 574        enum dma_data_direction direction)
 575{
 576        struct spi_transfer     *t;
 577        struct scratch          *scratch = host->data;
 578        dma_addr_t              dma = host->data_dma;
 579
 580        spi_message_init(&host->m);
 581        if (dma)
 582                host->m.is_dma_mapped = 1;
 583
 584        /* for reads, readblock() skips 0xff bytes before finding
 585         * the token; for writes, this transfer issues that token.
 586         */
 587        if (direction == DMA_TO_DEVICE) {
 588                t = &host->token;
 589                memset(t, 0, sizeof(*t));
 590                t->len = 1;
 591                if (multiple)
 592                        scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 593                else
 594                        scratch->data_token = SPI_TOKEN_SINGLE;
 595                t->tx_buf = &scratch->data_token;
 596                if (dma)
 597                        t->tx_dma = dma + offsetof(struct scratch, data_token);
 598                spi_message_add_tail(t, &host->m);
 599        }
 600
 601        /* Body of transfer is buffer, then CRC ...
 602         * either TX-only, or RX with TX-ones.
 603         */
 604        t = &host->t;
 605        memset(t, 0, sizeof(*t));
 606        t->tx_buf = host->ones;
 607        t->tx_dma = host->ones_dma;
 608        /* length and actual buffer info are written later */
 609        spi_message_add_tail(t, &host->m);
 610
 611        t = &host->crc;
 612        memset(t, 0, sizeof(*t));
 613        t->len = 2;
 614        if (direction == DMA_TO_DEVICE) {
 615                /* the actual CRC may get written later */
 616                t->tx_buf = &scratch->crc_val;
 617                if (dma)
 618                        t->tx_dma = dma + offsetof(struct scratch, crc_val);
 619        } else {
 620                t->tx_buf = host->ones;
 621                t->tx_dma = host->ones_dma;
 622                t->rx_buf = &scratch->crc_val;
 623                if (dma)
 624                        t->rx_dma = dma + offsetof(struct scratch, crc_val);
 625        }
 626        spi_message_add_tail(t, &host->m);
 627
 628        /*
 629         * A single block read is followed by N(EC) [0+] all-ones bytes
 630         * before deselect ... don't bother.
 631         *
 632         * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 633         * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 634         * collect that single byte, so readblock() doesn't need to.
 635         *
 636         * For a write, the one-byte data response follows immediately, then
 637         * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 638         * Then single block reads may deselect, and multiblock ones issue
 639         * the next token (next data block, or STOP_TRAN).  We can try to
 640         * minimize I/O ops by using a single read to collect end-of-busy.
 641         */
 642        if (multiple || direction == DMA_TO_DEVICE) {
 643                t = &host->early_status;
 644                memset(t, 0, sizeof(*t));
 645                t->len = (direction == DMA_TO_DEVICE)
 646                                ? sizeof(scratch->status)
 647                                : 1;
 648                t->tx_buf = host->ones;
 649                t->tx_dma = host->ones_dma;
 650                t->rx_buf = scratch->status;
 651                if (dma)
 652                        t->rx_dma = dma + offsetof(struct scratch, status);
 653                t->cs_change = 1;
 654                spi_message_add_tail(t, &host->m);
 655        }
 656}
 657
 658/*
 659 * Write one block:
 660 *  - caller handled preceding N(WR) [1+] all-ones bytes
 661 *  - data block
 662 *      + token
 663 *      + data bytes
 664 *      + crc16
 665 *  - an all-ones byte ... card writes a data-response byte
 666 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 667 *
 668 * Return negative errno, else success.
 669 */
 670static int
 671mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 672        unsigned long timeout)
 673{
 674        struct spi_device       *spi = host->spi;
 675        int                     status, i;
 676        struct scratch          *scratch = host->data;
 677        u32                     pattern;
 678
 679        if (host->mmc->use_spi_crc)
 680                scratch->crc_val = cpu_to_be16(
 681                                crc_itu_t(0, t->tx_buf, t->len));
 682        if (host->dma_dev)
 683                dma_sync_single_for_device(host->dma_dev,
 684                                host->data_dma, sizeof(*scratch),
 685                                DMA_BIDIRECTIONAL);
 686
 687        status = spi_sync(spi, &host->m);
 688
 689        if (status != 0) {
 690                dev_dbg(&spi->dev, "write error (%d)\n", status);
 691                return status;
 692        }
 693
 694        if (host->dma_dev)
 695                dma_sync_single_for_cpu(host->dma_dev,
 696                                host->data_dma, sizeof(*scratch),
 697                                DMA_BIDIRECTIONAL);
 698
 699        /*
 700         * Get the transmission data-response reply.  It must follow
 701         * immediately after the data block we transferred.  This reply
 702         * doesn't necessarily tell whether the write operation succeeded;
 703         * it just says if the transmission was ok and whether *earlier*
 704         * writes succeeded; see the standard.
 705         *
 706         * In practice, there are (even modern SDHC-)cards which are late
 707         * in sending the response, and miss the time frame by a few bits,
 708         * so we have to cope with this situation and check the response
 709         * bit-by-bit. Arggh!!!
 710         */
 711        pattern  = scratch->status[0] << 24;
 712        pattern |= scratch->status[1] << 16;
 713        pattern |= scratch->status[2] << 8;
 714        pattern |= scratch->status[3];
 715
 716        /* First 3 bit of pattern are undefined */
 717        pattern |= 0xE0000000;
 718
 719        /* left-adjust to leading 0 bit */
 720        while (pattern & 0x80000000)
 721                pattern <<= 1;
 722        /* right-adjust for pattern matching. Code is in bit 4..0 now. */
 723        pattern >>= 27;
 724
 725        switch (pattern) {
 726        case SPI_RESPONSE_ACCEPTED:
 727                status = 0;
 728                break;
 729        case SPI_RESPONSE_CRC_ERR:
 730                /* host shall then issue MMC_STOP_TRANSMISSION */
 731                status = -EILSEQ;
 732                break;
 733        case SPI_RESPONSE_WRITE_ERR:
 734                /* host shall then issue MMC_STOP_TRANSMISSION,
 735                 * and should MMC_SEND_STATUS to sort it out
 736                 */
 737                status = -EIO;
 738                break;
 739        default:
 740                status = -EPROTO;
 741                break;
 742        }
 743        if (status != 0) {
 744                dev_dbg(&spi->dev, "write error %02x (%d)\n",
 745                        scratch->status[0], status);
 746                return status;
 747        }
 748
 749        t->tx_buf += t->len;
 750        if (host->dma_dev)
 751                t->tx_dma += t->len;
 752
 753        /* Return when not busy.  If we didn't collect that status yet,
 754         * we'll need some more I/O.
 755         */
 756        for (i = 4; i < sizeof(scratch->status); i++) {
 757                /* card is non-busy if the most recent bit is 1 */
 758                if (scratch->status[i] & 0x01)
 759                        return 0;
 760        }
 761        return mmc_spi_wait_unbusy(host, timeout);
 762}
 763
 764/*
 765 * Read one block:
 766 *  - skip leading all-ones bytes ... either
 767 *      + N(AC) [1..f(clock,CSD)] usually, else
 768 *      + N(CX) [0..8] when reading CSD or CID
 769 *  - data block
 770 *      + token ... if error token, no data or crc
 771 *      + data bytes
 772 *      + crc16
 773 *
 774 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 775 * before dropping chipselect.
 776 *
 777 * For multiblock reads, caller either reads the next block or issues a
 778 * STOP_TRANSMISSION command.
 779 */
 780static int
 781mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 782        unsigned long timeout)
 783{
 784        struct spi_device       *spi = host->spi;
 785        int                     status;
 786        struct scratch          *scratch = host->data;
 787        unsigned int            bitshift;
 788        u8                      leftover;
 789
 790        /* At least one SD card sends an all-zeroes byte when N(CX)
 791         * applies, before the all-ones bytes ... just cope with that.
 792         */
 793        status = mmc_spi_readbytes(host, 1);
 794        if (status < 0)
 795                return status;
 796        status = scratch->status[0];
 797        if (status == 0xff || status == 0)
 798                status = mmc_spi_readtoken(host, timeout);
 799
 800        if (status < 0) {
 801                dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 802                return status;
 803        }
 804
 805        /* The token may be bit-shifted...
 806         * the first 0-bit precedes the data stream.
 807         */
 808        bitshift = 7;
 809        while (status & 0x80) {
 810                status <<= 1;
 811                bitshift--;
 812        }
 813        leftover = status << 1;
 814
 815        if (host->dma_dev) {
 816                dma_sync_single_for_device(host->dma_dev,
 817                                host->data_dma, sizeof(*scratch),
 818                                DMA_BIDIRECTIONAL);
 819                dma_sync_single_for_device(host->dma_dev,
 820                                t->rx_dma, t->len,
 821                                DMA_FROM_DEVICE);
 822        }
 823
 824        status = spi_sync(spi, &host->m);
 825
 826        if (host->dma_dev) {
 827                dma_sync_single_for_cpu(host->dma_dev,
 828                                host->data_dma, sizeof(*scratch),
 829                                DMA_BIDIRECTIONAL);
 830                dma_sync_single_for_cpu(host->dma_dev,
 831                                t->rx_dma, t->len,
 832                                DMA_FROM_DEVICE);
 833        }
 834
 835        if (bitshift) {
 836                /* Walk through the data and the crc and do
 837                 * all the magic to get byte-aligned data.
 838                 */
 839                u8 *cp = t->rx_buf;
 840                unsigned int len;
 841                unsigned int bitright = 8 - bitshift;
 842                u8 temp;
 843                for (len = t->len; len; len--) {
 844                        temp = *cp;
 845                        *cp++ = leftover | (temp >> bitshift);
 846                        leftover = temp << bitright;
 847                }
 848                cp = (u8 *) &scratch->crc_val;
 849                temp = *cp;
 850                *cp++ = leftover | (temp >> bitshift);
 851                leftover = temp << bitright;
 852                temp = *cp;
 853                *cp = leftover | (temp >> bitshift);
 854        }
 855
 856        if (host->mmc->use_spi_crc) {
 857                u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 858
 859                be16_to_cpus(&scratch->crc_val);
 860                if (scratch->crc_val != crc) {
 861                        dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
 862                                        "computed=0x%04x len=%d\n",
 863                                        scratch->crc_val, crc, t->len);
 864                        return -EILSEQ;
 865                }
 866        }
 867
 868        t->rx_buf += t->len;
 869        if (host->dma_dev)
 870                t->rx_dma += t->len;
 871
 872        return 0;
 873}
 874
 875/*
 876 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 877 * and inline handshaking.  That handhaking makes it unlike most
 878 * other SPI protocol stacks.
 879 */
 880static void
 881mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 882                struct mmc_data *data, u32 blk_size)
 883{
 884        struct spi_device       *spi = host->spi;
 885        struct device           *dma_dev = host->dma_dev;
 886        struct spi_transfer     *t;
 887        enum dma_data_direction direction;
 888        struct scatterlist      *sg;
 889        unsigned                n_sg;
 890        int                     multiple = (data->blocks > 1);
 891        u32                     clock_rate;
 892        unsigned long           timeout;
 893
 894        if (data->flags & MMC_DATA_READ)
 895                direction = DMA_FROM_DEVICE;
 896        else
 897                direction = DMA_TO_DEVICE;
 898        mmc_spi_setup_data_message(host, multiple, direction);
 899        t = &host->t;
 900
 901        if (t->speed_hz)
 902                clock_rate = t->speed_hz;
 903        else
 904                clock_rate = spi->max_speed_hz;
 905
 906        timeout = data->timeout_ns +
 907                  data->timeout_clks * 1000000 / clock_rate;
 908        timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 909
 910        /* Handle scatterlist segments one at a time, with synch for
 911         * each 512-byte block
 912         */
 913        for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
 914                int                     status = 0;
 915                dma_addr_t              dma_addr = 0;
 916                void                    *kmap_addr;
 917                unsigned                length = sg->length;
 918                enum dma_data_direction dir = direction;
 919
 920                /* set up dma mapping for controller drivers that might
 921                 * use DMA ... though they may fall back to PIO
 922                 */
 923                if (dma_dev) {
 924                        /* never invalidate whole *shared* pages ... */
 925                        if ((sg->offset != 0 || length != PAGE_SIZE)
 926                                        && dir == DMA_FROM_DEVICE)
 927                                dir = DMA_BIDIRECTIONAL;
 928
 929                        dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 930                                                PAGE_SIZE, dir);
 931                        if (direction == DMA_TO_DEVICE)
 932                                t->tx_dma = dma_addr + sg->offset;
 933                        else
 934                                t->rx_dma = dma_addr + sg->offset;
 935                }
 936
 937                /* allow pio too; we don't allow highmem */
 938                kmap_addr = kmap(sg_page(sg));
 939                if (direction == DMA_TO_DEVICE)
 940                        t->tx_buf = kmap_addr + sg->offset;
 941                else
 942                        t->rx_buf = kmap_addr + sg->offset;
 943
 944                /* transfer each block, and update request status */
 945                while (length) {
 946                        t->len = min(length, blk_size);
 947
 948                        dev_dbg(&host->spi->dev,
 949                                "    mmc_spi: %s block, %d bytes\n",
 950                                (direction == DMA_TO_DEVICE)
 951                                ? "write"
 952                                : "read",
 953                                t->len);
 954
 955                        if (direction == DMA_TO_DEVICE)
 956                                status = mmc_spi_writeblock(host, t, timeout);
 957                        else
 958                                status = mmc_spi_readblock(host, t, timeout);
 959                        if (status < 0)
 960                                break;
 961
 962                        data->bytes_xfered += t->len;
 963                        length -= t->len;
 964
 965                        if (!multiple)
 966                                break;
 967                }
 968
 969                /* discard mappings */
 970                if (direction == DMA_FROM_DEVICE)
 971                        flush_kernel_dcache_page(sg_page(sg));
 972                kunmap(sg_page(sg));
 973                if (dma_dev)
 974                        dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 975
 976                if (status < 0) {
 977                        data->error = status;
 978                        dev_dbg(&spi->dev, "%s status %d\n",
 979                                (direction == DMA_TO_DEVICE)
 980                                        ? "write" : "read",
 981                                status);
 982                        break;
 983                }
 984        }
 985
 986        /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 987         * can be issued before multiblock writes.  Unlike its more widely
 988         * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 989         * that can affect the STOP_TRAN logic.   Complete (and current)
 990         * MMC specs should sort that out before Linux starts using CMD23.
 991         */
 992        if (direction == DMA_TO_DEVICE && multiple) {
 993                struct scratch  *scratch = host->data;
 994                int             tmp;
 995                const unsigned  statlen = sizeof(scratch->status);
 996
 997                dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
 998
 999                /* Tweak the per-block message we set up earlier by morphing
1000                 * it to hold single buffer with the token followed by some
1001                 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1002                 * "not busy any longer" status, and leave chip selected.
1003                 */
1004                INIT_LIST_HEAD(&host->m.transfers);
1005                list_add(&host->early_status.transfer_list,
1006                                &host->m.transfers);
1007
1008                memset(scratch->status, 0xff, statlen);
1009                scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1010
1011                host->early_status.tx_buf = host->early_status.rx_buf;
1012                host->early_status.tx_dma = host->early_status.rx_dma;
1013                host->early_status.len = statlen;
1014
1015                if (host->dma_dev)
1016                        dma_sync_single_for_device(host->dma_dev,
1017                                        host->data_dma, sizeof(*scratch),
1018                                        DMA_BIDIRECTIONAL);
1019
1020                tmp = spi_sync(spi, &host->m);
1021
1022                if (host->dma_dev)
1023                        dma_sync_single_for_cpu(host->dma_dev,
1024                                        host->data_dma, sizeof(*scratch),
1025                                        DMA_BIDIRECTIONAL);
1026
1027                if (tmp < 0) {
1028                        if (!data->error)
1029                                data->error = tmp;
1030                        return;
1031                }
1032
1033                /* Ideally we collected "not busy" status with one I/O,
1034                 * avoiding wasteful byte-at-a-time scanning... but more
1035                 * I/O is often needed.
1036                 */
1037                for (tmp = 2; tmp < statlen; tmp++) {
1038                        if (scratch->status[tmp] != 0)
1039                                return;
1040                }
1041                tmp = mmc_spi_wait_unbusy(host, timeout);
1042                if (tmp < 0 && !data->error)
1043                        data->error = tmp;
1044        }
1045}
1046
1047/****************************************************************************/
1048
1049/*
1050 * MMC driver implementation -- the interface to the MMC stack
1051 */
1052
1053static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1054{
1055        struct mmc_spi_host     *host = mmc_priv(mmc);
1056        int                     status = -EINVAL;
1057
1058#ifdef DEBUG
1059        /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1060        {
1061                struct mmc_command      *cmd;
1062                int                     invalid = 0;
1063
1064                cmd = mrq->cmd;
1065                if (!mmc_spi_resp_type(cmd)) {
1066                        dev_dbg(&host->spi->dev, "bogus command\n");
1067                        cmd->error = -EINVAL;
1068                        invalid = 1;
1069                }
1070
1071                cmd = mrq->stop;
1072                if (cmd && !mmc_spi_resp_type(cmd)) {
1073                        dev_dbg(&host->spi->dev, "bogus STOP command\n");
1074                        cmd->error = -EINVAL;
1075                        invalid = 1;
1076                }
1077
1078                if (invalid) {
1079                        dump_stack();
1080                        mmc_request_done(host->mmc, mrq);
1081                        return;
1082                }
1083        }
1084#endif
1085
1086        /* issue command; then optionally data and stop */
1087        status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1088        if (status == 0 && mrq->data) {
1089                mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1090                if (mrq->stop)
1091                        status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1092                else
1093                        mmc_cs_off(host);
1094        }
1095
1096        mmc_request_done(host->mmc, mrq);
1097}
1098
1099/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1100 *
1101 * NOTE that here we can't know that the card has just been powered up;
1102 * not all MMC/SD sockets support power switching.
1103 *
1104 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1105 * this doesn't seem to do the right thing at all...
1106 */
1107static void mmc_spi_initsequence(struct mmc_spi_host *host)
1108{
1109        /* Try to be very sure any previous command has completed;
1110         * wait till not-busy, skip debris from any old commands.
1111         */
1112        mmc_spi_wait_unbusy(host, r1b_timeout);
1113        mmc_spi_readbytes(host, 10);
1114
1115        /*
1116         * Do a burst with chipselect active-high.  We need to do this to
1117         * meet the requirement of 74 clock cycles with both chipselect
1118         * and CMD (MOSI) high before CMD0 ... after the card has been
1119         * powered up to Vdd(min), and so is ready to take commands.
1120         *
1121         * Some cards are particularly needy of this (e.g. Viking "SD256")
1122         * while most others don't seem to care.
1123         *
1124         * Note that this is one of the places MMC/SD plays games with the
1125         * SPI protocol.  Another is that when chipselect is released while
1126         * the card returns BUSY status, the clock must issue several cycles
1127         * with chipselect high before the card will stop driving its output.
1128         */
1129        host->spi->mode |= SPI_CS_HIGH;
1130        if (spi_setup(host->spi) != 0) {
1131                /* Just warn; most cards work without it. */
1132                dev_warn(&host->spi->dev,
1133                                "can't change chip-select polarity\n");
1134                host->spi->mode &= ~SPI_CS_HIGH;
1135        } else {
1136                mmc_spi_readbytes(host, 18);
1137
1138                host->spi->mode &= ~SPI_CS_HIGH;
1139                if (spi_setup(host->spi) != 0) {
1140                        /* Wot, we can't get the same setup we had before? */
1141                        dev_err(&host->spi->dev,
1142                                        "can't restore chip-select polarity\n");
1143                }
1144        }
1145}
1146
1147static char *mmc_powerstring(u8 power_mode)
1148{
1149        switch (power_mode) {
1150        case MMC_POWER_OFF: return "off";
1151        case MMC_POWER_UP:  return "up";
1152        case MMC_POWER_ON:  return "on";
1153        }
1154        return "?";
1155}
1156
1157static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1158{
1159        struct mmc_spi_host *host = mmc_priv(mmc);
1160
1161        if (host->power_mode != ios->power_mode) {
1162                int             canpower;
1163
1164                canpower = host->pdata && host->pdata->setpower;
1165
1166                dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1167                                mmc_powerstring(ios->power_mode),
1168                                ios->vdd,
1169                                canpower ? ", can switch" : "");
1170
1171                /* switch power on/off if possible, accounting for
1172                 * max 250msec powerup time if needed.
1173                 */
1174                if (canpower) {
1175                        switch (ios->power_mode) {
1176                        case MMC_POWER_OFF:
1177                        case MMC_POWER_UP:
1178                                host->pdata->setpower(&host->spi->dev,
1179                                                ios->vdd);
1180                                if (ios->power_mode == MMC_POWER_UP)
1181                                        msleep(host->powerup_msecs);
1182                        }
1183                }
1184
1185                /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186                if (ios->power_mode == MMC_POWER_ON)
1187                        mmc_spi_initsequence(host);
1188
1189                /* If powering down, ground all card inputs to avoid power
1190                 * delivery from data lines!  On a shared SPI bus, this
1191                 * will probably be temporary; 6.4.2 of the simplified SD
1192                 * spec says this must last at least 1msec.
1193                 *
1194                 *   - Clock low means CPOL 0, e.g. mode 0
1195                 *   - MOSI low comes from writing zero
1196                 *   - Chipselect is usually active low...
1197                 */
1198                if (canpower && ios->power_mode == MMC_POWER_OFF) {
1199                        int mres;
1200                        u8 nullbyte = 0;
1201
1202                        host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1203                        mres = spi_setup(host->spi);
1204                        if (mres < 0)
1205                                dev_dbg(&host->spi->dev,
1206                                        "switch to SPI mode 0 failed\n");
1207
1208                        if (spi_write(host->spi, &nullbyte, 1) < 0)
1209                                dev_dbg(&host->spi->dev,
1210                                        "put spi signals to low failed\n");
1211
1212                        /*
1213                         * Now clock should be low due to spi mode 0;
1214                         * MOSI should be low because of written 0x00;
1215                         * chipselect should be low (it is active low)
1216                         * power supply is off, so now MMC is off too!
1217                         *
1218                         * FIXME no, chipselect can be high since the
1219                         * device is inactive and SPI_CS_HIGH is clear...
1220                         */
1221                        msleep(10);
1222                        if (mres == 0) {
1223                                host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1224                                mres = spi_setup(host->spi);
1225                                if (mres < 0)
1226                                        dev_dbg(&host->spi->dev,
1227                                                "switch back to SPI mode 3"
1228                                                " failed\n");
1229                        }
1230                }
1231
1232                host->power_mode = ios->power_mode;
1233        }
1234
1235        if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1236                int             status;
1237
1238                host->spi->max_speed_hz = ios->clock;
1239                status = spi_setup(host->spi);
1240                dev_dbg(&host->spi->dev,
1241                        "mmc_spi:  clock to %d Hz, %d\n",
1242                        host->spi->max_speed_hz, status);
1243        }
1244}
1245
1246static int mmc_spi_get_ro(struct mmc_host *mmc)
1247{
1248        struct mmc_spi_host *host = mmc_priv(mmc);
1249
1250        if (host->pdata && host->pdata->get_ro)
1251                return !!host->pdata->get_ro(mmc->parent);
1252        /*
1253         * Board doesn't support read only detection; let the mmc core
1254         * decide what to do.
1255         */
1256        return -ENOSYS;
1257}
1258
1259static int mmc_spi_get_cd(struct mmc_host *mmc)
1260{
1261        struct mmc_spi_host *host = mmc_priv(mmc);
1262
1263        if (host->pdata && host->pdata->get_cd)
1264                return !!host->pdata->get_cd(mmc->parent);
1265        return -ENOSYS;
1266}
1267
1268static const struct mmc_host_ops mmc_spi_ops = {
1269        .request        = mmc_spi_request,
1270        .set_ios        = mmc_spi_set_ios,
1271        .get_ro         = mmc_spi_get_ro,
1272        .get_cd         = mmc_spi_get_cd,
1273};
1274
1275
1276/****************************************************************************/
1277
1278/*
1279 * SPI driver implementation
1280 */
1281
1282static irqreturn_t
1283mmc_spi_detect_irq(int irq, void *mmc)
1284{
1285        struct mmc_spi_host *host = mmc_priv(mmc);
1286        u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1287
1288        mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1289        return IRQ_HANDLED;
1290}
1291
1292struct count_children {
1293        unsigned        n;
1294        struct bus_type *bus;
1295};
1296
1297static int maybe_count_child(struct device *dev, void *c)
1298{
1299        struct count_children *ccp = c;
1300
1301        if (dev->bus == ccp->bus) {
1302                if (ccp->n)
1303                        return -EBUSY;
1304                ccp->n++;
1305        }
1306        return 0;
1307}
1308
1309static int mmc_spi_probe(struct spi_device *spi)
1310{
1311        void                    *ones;
1312        struct mmc_host         *mmc;
1313        struct mmc_spi_host     *host;
1314        int                     status;
1315
1316        /* We rely on full duplex transfers, mostly to reduce
1317         * per-transfer overheads (by making fewer transfers).
1318         */
1319        if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1320                return -EINVAL;
1321
1322        /* MMC and SD specs only seem to care that sampling is on the
1323         * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1324         * should be legit.  We'll use mode 0 since the steady state is 0,
1325         * which is appropriate for hotplugging, unless the platform data
1326         * specify mode 3 (if hardware is not compatible to mode 0).
1327         */
1328        if (spi->mode != SPI_MODE_3)
1329                spi->mode = SPI_MODE_0;
1330        spi->bits_per_word = 8;
1331
1332        status = spi_setup(spi);
1333        if (status < 0) {
1334                dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1335                                spi->mode, spi->max_speed_hz / 1000,
1336                                status);
1337                return status;
1338        }
1339
1340        /* We can use the bus safely iff nobody else will interfere with us.
1341         * Most commands consist of one SPI message to issue a command, then
1342         * several more to collect its response, then possibly more for data
1343         * transfer.  Clocking access to other devices during that period will
1344         * corrupt the command execution.
1345         *
1346         * Until we have software primitives which guarantee non-interference,
1347         * we'll aim for a hardware-level guarantee.
1348         *
1349         * REVISIT we can't guarantee another device won't be added later...
1350         */
1351        if (spi->master->num_chipselect > 1) {
1352                struct count_children cc;
1353
1354                cc.n = 0;
1355                cc.bus = spi->dev.bus;
1356                status = device_for_each_child(spi->dev.parent, &cc,
1357                                maybe_count_child);
1358                if (status < 0) {
1359                        dev_err(&spi->dev, "can't share SPI bus\n");
1360                        return status;
1361                }
1362
1363                dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1364        }
1365
1366        /* We need a supply of ones to transmit.  This is the only time
1367         * the CPU touches these, so cache coherency isn't a concern.
1368         *
1369         * NOTE if many systems use more than one MMC-over-SPI connector
1370         * it'd save some memory to share this.  That's evidently rare.
1371         */
1372        status = -ENOMEM;
1373        ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1374        if (!ones)
1375                goto nomem;
1376        memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1377
1378        mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1379        if (!mmc)
1380                goto nomem;
1381
1382        mmc->ops = &mmc_spi_ops;
1383        mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1384        mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE;
1385        mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE;
1386        mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1387        mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1388
1389        mmc->caps = MMC_CAP_SPI;
1390
1391        /* SPI doesn't need the lowspeed device identification thing for
1392         * MMC or SD cards, since it never comes up in open drain mode.
1393         * That's good; some SPI masters can't handle very low speeds!
1394         *
1395         * However, low speed SDIO cards need not handle over 400 KHz;
1396         * that's the only reason not to use a few MHz for f_min (until
1397         * the upper layer reads the target frequency from the CSD).
1398         */
1399        mmc->f_min = 400000;
1400        mmc->f_max = spi->max_speed_hz;
1401
1402        host = mmc_priv(mmc);
1403        host->mmc = mmc;
1404        host->spi = spi;
1405
1406        host->ones = ones;
1407
1408        /* Platform data is used to hook up things like card sensing
1409         * and power switching gpios.
1410         */
1411        host->pdata = mmc_spi_get_pdata(spi);
1412        if (host->pdata)
1413                mmc->ocr_avail = host->pdata->ocr_mask;
1414        if (!mmc->ocr_avail) {
1415                dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1416                mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1417        }
1418        if (host->pdata && host->pdata->setpower) {
1419                host->powerup_msecs = host->pdata->powerup_msecs;
1420                if (!host->powerup_msecs || host->powerup_msecs > 250)
1421                        host->powerup_msecs = 250;
1422        }
1423
1424        dev_set_drvdata(&spi->dev, mmc);
1425
1426        /* preallocate dma buffers */
1427        host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1428        if (!host->data)
1429                goto fail_nobuf1;
1430
1431        if (spi->master->dev.parent->dma_mask) {
1432                struct device   *dev = spi->master->dev.parent;
1433
1434                host->dma_dev = dev;
1435                host->ones_dma = dma_map_single(dev, ones,
1436                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1437                host->data_dma = dma_map_single(dev, host->data,
1438                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1439
1440                /* REVISIT in theory those map operations can fail... */
1441
1442                dma_sync_single_for_cpu(host->dma_dev,
1443                                host->data_dma, sizeof(*host->data),
1444                                DMA_BIDIRECTIONAL);
1445        }
1446
1447        /* setup message for status/busy readback */
1448        spi_message_init(&host->readback);
1449        host->readback.is_dma_mapped = (host->dma_dev != NULL);
1450
1451        spi_message_add_tail(&host->status, &host->readback);
1452        host->status.tx_buf = host->ones;
1453        host->status.tx_dma = host->ones_dma;
1454        host->status.rx_buf = &host->data->status;
1455        host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1456        host->status.cs_change = 1;
1457
1458        /* register card detect irq */
1459        if (host->pdata && host->pdata->init) {
1460                status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1461                if (status != 0)
1462                        goto fail_glue_init;
1463        }
1464
1465        /* pass platform capabilities, if any */
1466        if (host->pdata)
1467                mmc->caps |= host->pdata->caps;
1468
1469        status = mmc_add_host(mmc);
1470        if (status != 0)
1471                goto fail_add_host;
1472
1473        dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1474                        dev_name(&mmc->class_dev),
1475                        host->dma_dev ? "" : ", no DMA",
1476                        (host->pdata && host->pdata->get_ro)
1477                                ? "" : ", no WP",
1478                        (host->pdata && host->pdata->setpower)
1479                                ? "" : ", no poweroff",
1480                        (mmc->caps & MMC_CAP_NEEDS_POLL)
1481                                ? ", cd polling" : "");
1482        return 0;
1483
1484fail_add_host:
1485        mmc_remove_host (mmc);
1486fail_glue_init:
1487        if (host->dma_dev)
1488                dma_unmap_single(host->dma_dev, host->data_dma,
1489                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1490        kfree(host->data);
1491
1492fail_nobuf1:
1493        mmc_free_host(mmc);
1494        mmc_spi_put_pdata(spi);
1495        dev_set_drvdata(&spi->dev, NULL);
1496
1497nomem:
1498        kfree(ones);
1499        return status;
1500}
1501
1502
1503static int __devexit mmc_spi_remove(struct spi_device *spi)
1504{
1505        struct mmc_host         *mmc = dev_get_drvdata(&spi->dev);
1506        struct mmc_spi_host     *host;
1507
1508        if (mmc) {
1509                host = mmc_priv(mmc);
1510
1511                /* prevent new mmc_detect_change() calls */
1512                if (host->pdata && host->pdata->exit)
1513                        host->pdata->exit(&spi->dev, mmc);
1514
1515                mmc_remove_host(mmc);
1516
1517                if (host->dma_dev) {
1518                        dma_unmap_single(host->dma_dev, host->ones_dma,
1519                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1520                        dma_unmap_single(host->dma_dev, host->data_dma,
1521                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1522                }
1523
1524                kfree(host->data);
1525                kfree(host->ones);
1526
1527                spi->max_speed_hz = mmc->f_max;
1528                mmc_free_host(mmc);
1529                mmc_spi_put_pdata(spi);
1530                dev_set_drvdata(&spi->dev, NULL);
1531        }
1532        return 0;
1533}
1534
1535
1536static struct spi_driver mmc_spi_driver = {
1537        .driver = {
1538                .name =         "mmc_spi",
1539                .bus =          &spi_bus_type,
1540                .owner =        THIS_MODULE,
1541        },
1542        .probe =        mmc_spi_probe,
1543        .remove =       __devexit_p(mmc_spi_remove),
1544};
1545
1546
1547static int __init mmc_spi_init(void)
1548{
1549        return spi_register_driver(&mmc_spi_driver);
1550}
1551module_init(mmc_spi_init);
1552
1553
1554static void __exit mmc_spi_exit(void)
1555{
1556        spi_unregister_driver(&mmc_spi_driver);
1557}
1558module_exit(mmc_spi_exit);
1559
1560
1561MODULE_AUTHOR("Mike Lavender, David Brownell, "
1562                "Hans-Peter Nilsson, Jan Nikitenko");
1563MODULE_DESCRIPTION("SPI SD/MMC host driver");
1564MODULE_LICENSE("GPL");
1565MODULE_ALIAS("spi:mmc_spi");
1566