linux/drivers/mtd/devices/lart.c
<<
>>
Prefs
   1
   2/*
   3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
   4 *
   5 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
   6 *
   7 * Copyright (c) 2001, 2d3D, Inc.
   8 *
   9 * This code is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * References:
  14 *
  15 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  16 *           - Order Number: 290644-005
  17 *           - January 2000
  18 *
  19 *    [2] MTD internal API documentation
  20 *           - http://www.linux-mtd.infradead.org/tech/
  21 *
  22 * Limitations:
  23 *
  24 *    Even though this driver is written for 3 Volt Fast Boot
  25 *    Block Flash Memory, it is rather specific to LART. With
  26 *    Minor modifications, notably the without data/address line
  27 *    mangling and different bus settings, etc. it should be
  28 *    trivial to adapt to other platforms.
  29 *
  30 *    If somebody would sponsor me a different board, I'll
  31 *    adapt the driver (:
  32 */
  33
  34/* debugging */
  35//#define LART_DEBUG
  36
  37/* partition support */
  38#define HAVE_PARTITIONS
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/init.h>
  44#include <linux/errno.h>
  45#include <linux/string.h>
  46#include <linux/mtd/mtd.h>
  47#ifdef HAVE_PARTITIONS
  48#include <linux/mtd/partitions.h>
  49#endif
  50
  51#ifndef CONFIG_SA1100_LART
  52#error This is for LART architecture only
  53#endif
  54
  55static char module_name[] = "lart";
  56
  57/*
  58 * These values is specific to 28Fxxxx3 flash memory.
  59 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  60 */
  61#define FLASH_BLOCKSIZE_PARAM           (4096 * BUSWIDTH)
  62#define FLASH_NUMBLOCKS_16m_PARAM       8
  63#define FLASH_NUMBLOCKS_8m_PARAM        8
  64
  65/*
  66 * These values is specific to 28Fxxxx3 flash memory.
  67 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  68 */
  69#define FLASH_BLOCKSIZE_MAIN            (32768 * BUSWIDTH)
  70#define FLASH_NUMBLOCKS_16m_MAIN        31
  71#define FLASH_NUMBLOCKS_8m_MAIN         15
  72
  73/*
  74 * These values are specific to LART
  75 */
  76
  77/* general */
  78#define BUSWIDTH                        4                               /* don't change this - a lot of the code _will_ break if you change this */
  79#define FLASH_OFFSET            0xe8000000              /* see linux/arch/arm/mach-sa1100/lart.c */
  80
  81/* blob */
  82#define NUM_BLOB_BLOCKS         FLASH_NUMBLOCKS_16m_PARAM
  83#define BLOB_START                      0x00000000
  84#define BLOB_LEN                        (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
  85
  86/* kernel */
  87#define NUM_KERNEL_BLOCKS       7
  88#define KERNEL_START            (BLOB_START + BLOB_LEN)
  89#define KERNEL_LEN                      (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  90
  91/* initial ramdisk */
  92#define NUM_INITRD_BLOCKS       24
  93#define INITRD_START            (KERNEL_START + KERNEL_LEN)
  94#define INITRD_LEN                      (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
  95
  96/*
  97 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
  98 */
  99#define READ_ARRAY                      0x00FF00FF              /* Read Array/Reset */
 100#define READ_ID_CODES           0x00900090              /* Read Identifier Codes */
 101#define ERASE_SETUP                     0x00200020              /* Block Erase */
 102#define ERASE_CONFIRM           0x00D000D0              /* Block Erase and Program Resume */
 103#define PGM_SETUP                       0x00400040              /* Program */
 104#define STATUS_READ                     0x00700070              /* Read Status Register */
 105#define STATUS_CLEAR            0x00500050              /* Clear Status Register */
 106#define STATUS_BUSY                     0x00800080              /* Write State Machine Status (WSMS) */
 107#define STATUS_ERASE_ERR        0x00200020              /* Erase Status (ES) */
 108#define STATUS_PGM_ERR          0x00100010              /* Program Status (PS) */
 109
 110/*
 111 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 112 */
 113#define FLASH_MANUFACTURER                      0x00890089
 114#define FLASH_DEVICE_8mbit_TOP          0x88f188f1
 115#define FLASH_DEVICE_8mbit_BOTTOM       0x88f288f2
 116#define FLASH_DEVICE_16mbit_TOP         0x88f388f3
 117#define FLASH_DEVICE_16mbit_BOTTOM      0x88f488f4
 118
 119/***************************************************************************************************/
 120
 121/*
 122 * The data line mapping on LART is as follows:
 123 *
 124 *       U2  CPU |   U3  CPU
 125 *       -------------------
 126 *        0  20  |   0   12
 127 *        1  22  |   1   14
 128 *        2  19  |   2   11
 129 *        3  17  |   3   9
 130 *        4  24  |   4   0
 131 *        5  26  |   5   2
 132 *        6  31  |   6   7
 133 *        7  29  |   7   5
 134 *        8  21  |   8   13
 135 *        9  23  |   9   15
 136 *        10 18  |   10  10
 137 *        11 16  |   11  8
 138 *        12 25  |   12  1
 139 *        13 27  |   13  3
 140 *        14 30  |   14  6
 141 *        15 28  |   15  4
 142 */
 143
 144/* Mangle data (x) */
 145#define DATA_TO_FLASH(x)                                \
 146        (                                                                       \
 147                (((x) & 0x08009000) >> 11)      +       \
 148                (((x) & 0x00002000) >> 10)      +       \
 149                (((x) & 0x04004000) >> 8)       +       \
 150                (((x) & 0x00000010) >> 4)       +       \
 151                (((x) & 0x91000820) >> 3)       +       \
 152                (((x) & 0x22080080) >> 2)       +       \
 153                ((x) & 0x40000400)                      +       \
 154                (((x) & 0x00040040) << 1)       +       \
 155                (((x) & 0x00110000) << 4)       +       \
 156                (((x) & 0x00220100) << 5)       +       \
 157                (((x) & 0x00800208) << 6)       +       \
 158                (((x) & 0x00400004) << 9)       +       \
 159                (((x) & 0x00000001) << 12)      +       \
 160                (((x) & 0x00000002) << 13)              \
 161        )
 162
 163/* Unmangle data (x) */
 164#define FLASH_TO_DATA(x)                                \
 165        (                                                                       \
 166                (((x) & 0x00010012) << 11)      +       \
 167                (((x) & 0x00000008) << 10)      +       \
 168                (((x) & 0x00040040) << 8)       +       \
 169                (((x) & 0x00000001) << 4)       +       \
 170                (((x) & 0x12200104) << 3)       +       \
 171                (((x) & 0x08820020) << 2)       +       \
 172                ((x) & 0x40000400)                      +       \
 173                (((x) & 0x00080080) >> 1)       +       \
 174                (((x) & 0x01100000) >> 4)       +       \
 175                (((x) & 0x04402000) >> 5)       +       \
 176                (((x) & 0x20008200) >> 6)       +       \
 177                (((x) & 0x80000800) >> 9)       +       \
 178                (((x) & 0x00001000) >> 12)      +       \
 179                (((x) & 0x00004000) >> 13)              \
 180        )
 181
 182/*
 183 * The address line mapping on LART is as follows:
 184 *
 185 *       U3  CPU |   U2  CPU
 186 *       -------------------
 187 *        0  2   |   0   2
 188 *        1  3   |   1   3
 189 *        2  9   |   2   9
 190 *        3  13  |   3   8
 191 *        4  8   |   4   7
 192 *        5  12  |   5   6
 193 *        6  11  |   6   5
 194 *        7  10  |   7   4
 195 *        8  4   |   8   10
 196 *        9  5   |   9   11
 197 *       10  6   |   10  12
 198 *       11  7   |   11  13
 199 *
 200 *       BOOT BLOCK BOUNDARY
 201 *
 202 *       12  15  |   12  15
 203 *       13  14  |   13  14
 204 *       14  16  |   14  16
 205 *
 206 *       MAIN BLOCK BOUNDARY
 207 *
 208 *       15  17  |   15  18
 209 *       16  18  |   16  17
 210 *       17  20  |   17  20
 211 *       18  19  |   18  19
 212 *       19  21  |   19  21
 213 *
 214 * As we can see from above, the addresses aren't mangled across
 215 * block boundaries, so we don't need to worry about address
 216 * translations except for sending/reading commands during
 217 * initialization
 218 */
 219
 220/* Mangle address (x) on chip U2 */
 221#define ADDR_TO_FLASH_U2(x)                             \
 222        (                                                                       \
 223                (((x) & 0x00000f00) >> 4)       +       \
 224                (((x) & 0x00042000) << 1)       +       \
 225                (((x) & 0x0009c003) << 2)       +       \
 226                (((x) & 0x00021080) << 3)       +       \
 227                (((x) & 0x00000010) << 4)       +       \
 228                (((x) & 0x00000040) << 5)       +       \
 229                (((x) & 0x00000024) << 7)       +       \
 230                (((x) & 0x00000008) << 10)              \
 231        )
 232
 233/* Unmangle address (x) on chip U2 */
 234#define FLASH_U2_TO_ADDR(x)                             \
 235        (                                                                       \
 236                (((x) << 4) & 0x00000f00)       +       \
 237                (((x) >> 1) & 0x00042000)       +       \
 238                (((x) >> 2) & 0x0009c003)       +       \
 239                (((x) >> 3) & 0x00021080)       +       \
 240                (((x) >> 4) & 0x00000010)       +       \
 241                (((x) >> 5) & 0x00000040)       +       \
 242                (((x) >> 7) & 0x00000024)       +       \
 243                (((x) >> 10) & 0x00000008)              \
 244        )
 245
 246/* Mangle address (x) on chip U3 */
 247#define ADDR_TO_FLASH_U3(x)                             \
 248        (                                                                       \
 249                (((x) & 0x00000080) >> 3)       +       \
 250                (((x) & 0x00000040) >> 1)       +       \
 251                (((x) & 0x00052020) << 1)       +       \
 252                (((x) & 0x00084f03) << 2)       +       \
 253                (((x) & 0x00029010) << 3)       +       \
 254                (((x) & 0x00000008) << 5)       +       \
 255                (((x) & 0x00000004) << 7)               \
 256        )
 257
 258/* Unmangle address (x) on chip U3 */
 259#define FLASH_U3_TO_ADDR(x)                             \
 260        (                                                                       \
 261                (((x) << 3) & 0x00000080)       +       \
 262                (((x) << 1) & 0x00000040)       +       \
 263                (((x) >> 1) & 0x00052020)       +       \
 264                (((x) >> 2) & 0x00084f03)       +       \
 265                (((x) >> 3) & 0x00029010)       +       \
 266                (((x) >> 5) & 0x00000008)       +       \
 267                (((x) >> 7) & 0x00000004)               \
 268        )
 269
 270/***************************************************************************************************/
 271
 272static __u8 read8 (__u32 offset)
 273{
 274   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
 275#ifdef LART_DEBUG
 276   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
 277#endif
 278   return (*data);
 279}
 280
 281static __u32 read32 (__u32 offset)
 282{
 283   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 284#ifdef LART_DEBUG
 285   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
 286#endif
 287   return (*data);
 288}
 289
 290static void write32 (__u32 x,__u32 offset)
 291{
 292   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
 293   *data = x;
 294#ifdef LART_DEBUG
 295   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
 296#endif
 297}
 298
 299/***************************************************************************************************/
 300
 301/*
 302 * Probe for 16mbit flash memory on a LART board without doing
 303 * too much damage. Since we need to write 1 dword to memory,
 304 * we're f**cked if this happens to be DRAM since we can't
 305 * restore the memory (otherwise we might exit Read Array mode).
 306 *
 307 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
 308 */
 309static int flash_probe (void)
 310{
 311   __u32 manufacturer,devtype;
 312
 313   /* setup "Read Identifier Codes" mode */
 314   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
 315
 316   /* probe U2. U2/U3 returns the same data since the first 3
 317        * address lines is mangled in the same way */
 318   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
 319   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
 320
 321   /* put the flash back into command mode */
 322   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
 323
 324   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
 325}
 326
 327/*
 328 * Erase one block of flash memory at offset ``offset'' which is any
 329 * address within the block which should be erased.
 330 *
 331 * Returns 1 if successful, 0 otherwise.
 332 */
 333static inline int erase_block (__u32 offset)
 334{
 335   __u32 status;
 336
 337#ifdef LART_DEBUG
 338   printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
 339#endif
 340
 341   /* erase and confirm */
 342   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
 343   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
 344
 345   /* wait for block erase to finish */
 346   do
 347         {
 348                write32 (DATA_TO_FLASH (STATUS_READ),offset);
 349                status = FLASH_TO_DATA (read32 (offset));
 350         }
 351   while ((~status & STATUS_BUSY) != 0);
 352
 353   /* put the flash back into command mode */
 354   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 355
 356   /* was the erase successfull? */
 357   if ((status & STATUS_ERASE_ERR))
 358         {
 359                printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
 360                return (0);
 361         }
 362
 363   return (1);
 364}
 365
 366static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
 367{
 368   __u32 addr,len;
 369   int i,first;
 370
 371#ifdef LART_DEBUG
 372   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
 373#endif
 374
 375   /* sanity checks */
 376   if (instr->addr + instr->len > mtd->size) return (-EINVAL);
 377
 378   /*
 379        * check that both start and end of the requested erase are
 380        * aligned with the erasesize at the appropriate addresses.
 381        *
 382        * skip all erase regions which are ended before the start of
 383        * the requested erase. Actually, to save on the calculations,
 384        * we skip to the first erase region which starts after the
 385        * start of the requested erase, and then go back one.
 386        */
 387   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
 388   i--;
 389
 390   /*
 391        * ok, now i is pointing at the erase region in which this
 392        * erase request starts. Check the start of the requested
 393        * erase range is aligned with the erase size which is in
 394        * effect here.
 395        */
 396   if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
 397      return -EINVAL;
 398
 399   /* Remember the erase region we start on */
 400   first = i;
 401
 402   /*
 403        * next, check that the end of the requested erase is aligned
 404        * with the erase region at that address.
 405        *
 406        * as before, drop back one to point at the region in which
 407        * the address actually falls
 408        */
 409   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
 410   i--;
 411
 412   /* is the end aligned on a block boundary? */
 413   if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
 414      return -EINVAL;
 415
 416   addr = instr->addr;
 417   len = instr->len;
 418
 419   i = first;
 420
 421   /* now erase those blocks */
 422   while (len)
 423         {
 424                if (!erase_block (addr))
 425                  {
 426                         instr->state = MTD_ERASE_FAILED;
 427                         return (-EIO);
 428                  }
 429
 430                addr += mtd->eraseregions[i].erasesize;
 431                len -= mtd->eraseregions[i].erasesize;
 432
 433                if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
 434         }
 435
 436   instr->state = MTD_ERASE_DONE;
 437   mtd_erase_callback(instr);
 438
 439   return (0);
 440}
 441
 442static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
 443{
 444#ifdef LART_DEBUG
 445   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
 446#endif
 447
 448   /* sanity checks */
 449   if (!len) return (0);
 450   if (from + len > mtd->size) return (-EINVAL);
 451
 452   /* we always read len bytes */
 453   *retlen = len;
 454
 455   /* first, we read bytes until we reach a dword boundary */
 456   if (from & (BUSWIDTH - 1))
 457         {
 458                int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
 459
 460                while (len && gap--) *buf++ = read8 (from++), len--;
 461         }
 462
 463   /* now we read dwords until we reach a non-dword boundary */
 464   while (len >= BUSWIDTH)
 465         {
 466                *((__u32 *) buf) = read32 (from);
 467
 468                buf += BUSWIDTH;
 469                from += BUSWIDTH;
 470                len -= BUSWIDTH;
 471         }
 472
 473   /* top up the last unaligned bytes */
 474   if (len & (BUSWIDTH - 1))
 475         while (len--) *buf++ = read8 (from++);
 476
 477   return (0);
 478}
 479
 480/*
 481 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
 482 * must be 32 bits, i.e. it must be on a dword boundary.
 483 *
 484 * Returns 1 if successful, 0 otherwise.
 485 */
 486static inline int write_dword (__u32 offset,__u32 x)
 487{
 488   __u32 status;
 489
 490#ifdef LART_DEBUG
 491   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
 492#endif
 493
 494   /* setup writing */
 495   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
 496
 497   /* write the data */
 498   write32 (x,offset);
 499
 500   /* wait for the write to finish */
 501   do
 502         {
 503                write32 (DATA_TO_FLASH (STATUS_READ),offset);
 504                status = FLASH_TO_DATA (read32 (offset));
 505         }
 506   while ((~status & STATUS_BUSY) != 0);
 507
 508   /* put the flash back into command mode */
 509   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
 510
 511   /* was the write successfull? */
 512   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
 513         {
 514                printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
 515                return (0);
 516         }
 517
 518   return (1);
 519}
 520
 521static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
 522{
 523   __u8 tmp[4];
 524   int i,n;
 525
 526#ifdef LART_DEBUG
 527   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
 528#endif
 529
 530   *retlen = 0;
 531
 532   /* sanity checks */
 533   if (!len) return (0);
 534   if (to + len > mtd->size) return (-EINVAL);
 535
 536   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
 537   if (to & (BUSWIDTH - 1))
 538         {
 539                __u32 aligned = to & ~(BUSWIDTH - 1);
 540                int gap = to - aligned;
 541
 542                i = n = 0;
 543
 544                while (gap--) tmp[i++] = 0xFF;
 545                while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
 546                while (i < BUSWIDTH) tmp[i++] = 0xFF;
 547
 548                if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
 549
 550                to += n;
 551                buf += n;
 552                *retlen += n;
 553         }
 554
 555   /* now we write dwords until we reach a non-dword boundary */
 556   while (len >= BUSWIDTH)
 557         {
 558                if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
 559
 560                to += BUSWIDTH;
 561                buf += BUSWIDTH;
 562                *retlen += BUSWIDTH;
 563                len -= BUSWIDTH;
 564         }
 565
 566   /* top up the last unaligned bytes, padded with 0xFF.... */
 567   if (len & (BUSWIDTH - 1))
 568         {
 569                i = n = 0;
 570
 571                while (len--) tmp[i++] = buf[n++];
 572                while (i < BUSWIDTH) tmp[i++] = 0xFF;
 573
 574                if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
 575
 576                *retlen += n;
 577         }
 578
 579   return (0);
 580}
 581
 582/***************************************************************************************************/
 583
 584static struct mtd_info mtd;
 585
 586static struct mtd_erase_region_info erase_regions[] = {
 587        /* parameter blocks */
 588        {
 589                .offset         = 0x00000000,
 590                .erasesize      = FLASH_BLOCKSIZE_PARAM,
 591                .numblocks      = FLASH_NUMBLOCKS_16m_PARAM,
 592        },
 593        /* main blocks */
 594        {
 595                .offset  = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
 596                .erasesize      = FLASH_BLOCKSIZE_MAIN,
 597                .numblocks      = FLASH_NUMBLOCKS_16m_MAIN,
 598        }
 599};
 600
 601#ifdef HAVE_PARTITIONS
 602static struct mtd_partition lart_partitions[] = {
 603        /* blob */
 604        {
 605                .name   = "blob",
 606                .offset = BLOB_START,
 607                .size   = BLOB_LEN,
 608        },
 609        /* kernel */
 610        {
 611                .name   = "kernel",
 612                .offset = KERNEL_START,         /* MTDPART_OFS_APPEND */
 613                .size   = KERNEL_LEN,
 614        },
 615        /* initial ramdisk / file system */
 616        {
 617                .name   = "file system",
 618                .offset = INITRD_START,         /* MTDPART_OFS_APPEND */
 619                .size   = INITRD_LEN,           /* MTDPART_SIZ_FULL */
 620        }
 621};
 622#endif
 623
 624static int __init lart_flash_init (void)
 625{
 626   int result;
 627   memset (&mtd,0,sizeof (mtd));
 628   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
 629   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
 630   if (!flash_probe ())
 631         {
 632                printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
 633                return (-ENXIO);
 634         }
 635   printk ("%s: This looks like a LART board to me.\n",module_name);
 636   mtd.name = module_name;
 637   mtd.type = MTD_NORFLASH;
 638   mtd.writesize = 1;
 639   mtd.flags = MTD_CAP_NORFLASH;
 640   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
 641   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
 642   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
 643   mtd.eraseregions = erase_regions;
 644   mtd.erase = flash_erase;
 645   mtd.read = flash_read;
 646   mtd.write = flash_write;
 647   mtd.owner = THIS_MODULE;
 648
 649#ifdef LART_DEBUG
 650   printk (KERN_DEBUG
 651                   "mtd.name = %s\n"
 652                   "mtd.size = 0x%.8x (%uM)\n"
 653                   "mtd.erasesize = 0x%.8x (%uK)\n"
 654                   "mtd.numeraseregions = %d\n",
 655                   mtd.name,
 656                   mtd.size,mtd.size / (1024*1024),
 657                   mtd.erasesize,mtd.erasesize / 1024,
 658                   mtd.numeraseregions);
 659
 660   if (mtd.numeraseregions)
 661         for (result = 0; result < mtd.numeraseregions; result++)
 662           printk (KERN_DEBUG
 663                           "\n\n"
 664                           "mtd.eraseregions[%d].offset = 0x%.8x\n"
 665                           "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
 666                           "mtd.eraseregions[%d].numblocks = %d\n",
 667                           result,mtd.eraseregions[result].offset,
 668                           result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
 669                           result,mtd.eraseregions[result].numblocks);
 670
 671#ifdef HAVE_PARTITIONS
 672   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
 673
 674   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
 675         printk (KERN_DEBUG
 676                         "\n\n"
 677                         "lart_partitions[%d].name = %s\n"
 678                         "lart_partitions[%d].offset = 0x%.8x\n"
 679                         "lart_partitions[%d].size = 0x%.8x (%uK)\n",
 680                         result,lart_partitions[result].name,
 681                         result,lart_partitions[result].offset,
 682                         result,lart_partitions[result].size,lart_partitions[result].size / 1024);
 683#endif
 684#endif
 685
 686#ifndef HAVE_PARTITIONS
 687   result = add_mtd_device (&mtd);
 688#else
 689   result = add_mtd_partitions (&mtd,lart_partitions, ARRAY_SIZE(lart_partitions));
 690#endif
 691
 692   return (result);
 693}
 694
 695static void __exit lart_flash_exit (void)
 696{
 697#ifndef HAVE_PARTITIONS
 698   del_mtd_device (&mtd);
 699#else
 700   del_mtd_partitions (&mtd);
 701#endif
 702}
 703
 704module_init (lart_flash_init);
 705module_exit (lart_flash_exit);
 706
 707MODULE_LICENSE("GPL");
 708MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
 709MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
 710