linux/drivers/mtd/lpddr/lpddr_cmds.c
<<
>>
Prefs
   1/*
   2 * LPDDR flash memory device operations. This module provides read, write,
   3 * erase, lock/unlock support for LPDDR flash memories
   4 * (C) 2008 Korolev Alexey <akorolev@infradead.org>
   5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
   6 * Many thanks to Roman Borisov for intial enabling
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version 2
  11 * of the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21 * 02110-1301, USA.
  22 * TODO:
  23 * Implement VPP management
  24 * Implement XIP support
  25 * Implement OTP support
  26 */
  27#include <linux/mtd/pfow.h>
  28#include <linux/mtd/qinfo.h>
  29
  30static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
  31                                        size_t *retlen, u_char *buf);
  32static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
  33                                size_t len, size_t *retlen, const u_char *buf);
  34static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
  35                                unsigned long count, loff_t to, size_t *retlen);
  36static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
  37static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  38static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  39static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
  40                        size_t *retlen, void **mtdbuf, resource_size_t *phys);
  41static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
  42static int get_chip(struct map_info *map, struct flchip *chip, int mode);
  43static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
  44static void put_chip(struct map_info *map, struct flchip *chip);
  45
  46struct mtd_info *lpddr_cmdset(struct map_info *map)
  47{
  48        struct lpddr_private *lpddr = map->fldrv_priv;
  49        struct flchip_shared *shared;
  50        struct flchip *chip;
  51        struct mtd_info *mtd;
  52        int numchips;
  53        int i, j;
  54
  55        mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
  56        if (!mtd) {
  57                printk(KERN_ERR "Failed to allocate memory for MTD device\n");
  58                return NULL;
  59        }
  60        mtd->priv = map;
  61        mtd->type = MTD_NORFLASH;
  62
  63        /* Fill in the default mtd operations */
  64        mtd->read = lpddr_read;
  65        mtd->type = MTD_NORFLASH;
  66        mtd->flags = MTD_CAP_NORFLASH;
  67        mtd->flags &= ~MTD_BIT_WRITEABLE;
  68        mtd->erase = lpddr_erase;
  69        mtd->write = lpddr_write_buffers;
  70        mtd->writev = lpddr_writev;
  71        mtd->read_oob = NULL;
  72        mtd->write_oob = NULL;
  73        mtd->sync = NULL;
  74        mtd->lock = lpddr_lock;
  75        mtd->unlock = lpddr_unlock;
  76        mtd->suspend = NULL;
  77        mtd->resume = NULL;
  78        if (map_is_linear(map)) {
  79                mtd->point = lpddr_point;
  80                mtd->unpoint = lpddr_unpoint;
  81        }
  82        mtd->block_isbad = NULL;
  83        mtd->block_markbad = NULL;
  84        mtd->size = 1 << lpddr->qinfo->DevSizeShift;
  85        mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
  86        mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
  87
  88        shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
  89                                                GFP_KERNEL);
  90        if (!shared) {
  91                kfree(lpddr);
  92                kfree(mtd);
  93                return NULL;
  94        }
  95
  96        chip = &lpddr->chips[0];
  97        numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
  98        for (i = 0; i < numchips; i++) {
  99                shared[i].writing = shared[i].erasing = NULL;
 100                spin_lock_init(&shared[i].lock);
 101                for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
 102                        *chip = lpddr->chips[i];
 103                        chip->start += j << lpddr->chipshift;
 104                        chip->oldstate = chip->state = FL_READY;
 105                        chip->priv = &shared[i];
 106                        /* those should be reset too since
 107                           they create memory references. */
 108                        init_waitqueue_head(&chip->wq);
 109                        spin_lock_init(&chip->_spinlock);
 110                        chip->mutex = &chip->_spinlock;
 111                        chip++;
 112                }
 113        }
 114
 115        return mtd;
 116}
 117EXPORT_SYMBOL(lpddr_cmdset);
 118
 119static int wait_for_ready(struct map_info *map, struct flchip *chip,
 120                unsigned int chip_op_time)
 121{
 122        unsigned int timeo, reset_timeo, sleep_time;
 123        unsigned int dsr;
 124        flstate_t chip_state = chip->state;
 125        int ret = 0;
 126
 127        /* set our timeout to 8 times the expected delay */
 128        timeo = chip_op_time * 8;
 129        if (!timeo)
 130                timeo = 500000;
 131        reset_timeo = timeo;
 132        sleep_time = chip_op_time / 2;
 133
 134        for (;;) {
 135                dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
 136                if (dsr & DSR_READY_STATUS)
 137                        break;
 138                if (!timeo) {
 139                        printk(KERN_ERR "%s: Flash timeout error state %d \n",
 140                                                        map->name, chip_state);
 141                        ret = -ETIME;
 142                        break;
 143                }
 144
 145                /* OK Still waiting. Drop the lock, wait a while and retry. */
 146                spin_unlock(chip->mutex);
 147                if (sleep_time >= 1000000/HZ) {
 148                        /*
 149                         * Half of the normal delay still remaining
 150                         * can be performed with a sleeping delay instead
 151                         * of busy waiting.
 152                         */
 153                        msleep(sleep_time/1000);
 154                        timeo -= sleep_time;
 155                        sleep_time = 1000000/HZ;
 156                } else {
 157                        udelay(1);
 158                        cond_resched();
 159                        timeo--;
 160                }
 161                spin_lock(chip->mutex);
 162
 163                while (chip->state != chip_state) {
 164                        /* Someone's suspended the operation: sleep */
 165                        DECLARE_WAITQUEUE(wait, current);
 166                        set_current_state(TASK_UNINTERRUPTIBLE);
 167                        add_wait_queue(&chip->wq, &wait);
 168                        spin_unlock(chip->mutex);
 169                        schedule();
 170                        remove_wait_queue(&chip->wq, &wait);
 171                        spin_lock(chip->mutex);
 172                }
 173                if (chip->erase_suspended || chip->write_suspended)  {
 174                        /* Suspend has occured while sleep: reset timeout */
 175                        timeo = reset_timeo;
 176                        chip->erase_suspended = chip->write_suspended = 0;
 177                }
 178        }
 179        /* check status for errors */
 180        if (dsr & DSR_ERR) {
 181                /* Clear DSR*/
 182                map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
 183                printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
 184                                map->name, dsr);
 185                print_drs_error(dsr);
 186                ret = -EIO;
 187        }
 188        chip->state = FL_READY;
 189        return ret;
 190}
 191
 192static int get_chip(struct map_info *map, struct flchip *chip, int mode)
 193{
 194        int ret;
 195        DECLARE_WAITQUEUE(wait, current);
 196
 197 retry:
 198        if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
 199                && chip->state != FL_SYNCING) {
 200                /*
 201                 * OK. We have possibility for contension on the write/erase
 202                 * operations which are global to the real chip and not per
 203                 * partition.  So let's fight it over in the partition which
 204                 * currently has authority on the operation.
 205                 *
 206                 * The rules are as follows:
 207                 *
 208                 * - any write operation must own shared->writing.
 209                 *
 210                 * - any erase operation must own _both_ shared->writing and
 211                 *   shared->erasing.
 212                 *
 213                 * - contension arbitration is handled in the owner's context.
 214                 *
 215                 * The 'shared' struct can be read and/or written only when
 216                 * its lock is taken.
 217                 */
 218                struct flchip_shared *shared = chip->priv;
 219                struct flchip *contender;
 220                spin_lock(&shared->lock);
 221                contender = shared->writing;
 222                if (contender && contender != chip) {
 223                        /*
 224                         * The engine to perform desired operation on this
 225                         * partition is already in use by someone else.
 226                         * Let's fight over it in the context of the chip
 227                         * currently using it.  If it is possible to suspend,
 228                         * that other partition will do just that, otherwise
 229                         * it'll happily send us to sleep.  In any case, when
 230                         * get_chip returns success we're clear to go ahead.
 231                         */
 232                        ret = spin_trylock(contender->mutex);
 233                        spin_unlock(&shared->lock);
 234                        if (!ret)
 235                                goto retry;
 236                        spin_unlock(chip->mutex);
 237                        ret = chip_ready(map, contender, mode);
 238                        spin_lock(chip->mutex);
 239
 240                        if (ret == -EAGAIN) {
 241                                spin_unlock(contender->mutex);
 242                                goto retry;
 243                        }
 244                        if (ret) {
 245                                spin_unlock(contender->mutex);
 246                                return ret;
 247                        }
 248                        spin_lock(&shared->lock);
 249
 250                        /* We should not own chip if it is already in FL_SYNCING
 251                         * state. Put contender and retry. */
 252                        if (chip->state == FL_SYNCING) {
 253                                put_chip(map, contender);
 254                                spin_unlock(contender->mutex);
 255                                goto retry;
 256                        }
 257                        spin_unlock(contender->mutex);
 258                }
 259
 260                /* Check if we have suspended erase on this chip.
 261                   Must sleep in such a case. */
 262                if (mode == FL_ERASING && shared->erasing
 263                    && shared->erasing->oldstate == FL_ERASING) {
 264                        spin_unlock(&shared->lock);
 265                        set_current_state(TASK_UNINTERRUPTIBLE);
 266                        add_wait_queue(&chip->wq, &wait);
 267                        spin_unlock(chip->mutex);
 268                        schedule();
 269                        remove_wait_queue(&chip->wq, &wait);
 270                        spin_lock(chip->mutex);
 271                        goto retry;
 272                }
 273
 274                /* We now own it */
 275                shared->writing = chip;
 276                if (mode == FL_ERASING)
 277                        shared->erasing = chip;
 278                spin_unlock(&shared->lock);
 279        }
 280
 281        ret = chip_ready(map, chip, mode);
 282        if (ret == -EAGAIN)
 283                goto retry;
 284
 285        return ret;
 286}
 287
 288static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
 289{
 290        struct lpddr_private *lpddr = map->fldrv_priv;
 291        int ret = 0;
 292        DECLARE_WAITQUEUE(wait, current);
 293
 294        /* Prevent setting state FL_SYNCING for chip in suspended state. */
 295        if (FL_SYNCING == mode && FL_READY != chip->oldstate)
 296                goto sleep;
 297
 298        switch (chip->state) {
 299        case FL_READY:
 300        case FL_JEDEC_QUERY:
 301                return 0;
 302
 303        case FL_ERASING:
 304                if (!lpddr->qinfo->SuspEraseSupp ||
 305                        !(mode == FL_READY || mode == FL_POINT))
 306                        goto sleep;
 307
 308                map_write(map, CMD(LPDDR_SUSPEND),
 309                        map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
 310                chip->oldstate = FL_ERASING;
 311                chip->state = FL_ERASE_SUSPENDING;
 312                ret = wait_for_ready(map, chip, 0);
 313                if (ret) {
 314                        /* Oops. something got wrong. */
 315                        /* Resume and pretend we weren't here.  */
 316                        map_write(map, CMD(LPDDR_RESUME),
 317                                map->pfow_base + PFOW_COMMAND_CODE);
 318                        map_write(map, CMD(LPDDR_START_EXECUTION),
 319                                map->pfow_base + PFOW_COMMAND_EXECUTE);
 320                        chip->state = FL_ERASING;
 321                        chip->oldstate = FL_READY;
 322                        printk(KERN_ERR "%s: suspend operation failed."
 323                                        "State may be wrong \n", map->name);
 324                        return -EIO;
 325                }
 326                chip->erase_suspended = 1;
 327                chip->state = FL_READY;
 328                return 0;
 329                /* Erase suspend */
 330        case FL_POINT:
 331                /* Only if there's no operation suspended... */
 332                if (mode == FL_READY && chip->oldstate == FL_READY)
 333                        return 0;
 334
 335        default:
 336sleep:
 337                set_current_state(TASK_UNINTERRUPTIBLE);
 338                add_wait_queue(&chip->wq, &wait);
 339                spin_unlock(chip->mutex);
 340                schedule();
 341                remove_wait_queue(&chip->wq, &wait);
 342                spin_lock(chip->mutex);
 343                return -EAGAIN;
 344        }
 345}
 346
 347static void put_chip(struct map_info *map, struct flchip *chip)
 348{
 349        if (chip->priv) {
 350                struct flchip_shared *shared = chip->priv;
 351                spin_lock(&shared->lock);
 352                if (shared->writing == chip && chip->oldstate == FL_READY) {
 353                        /* We own the ability to write, but we're done */
 354                        shared->writing = shared->erasing;
 355                        if (shared->writing && shared->writing != chip) {
 356                                /* give back the ownership */
 357                                struct flchip *loaner = shared->writing;
 358                                spin_lock(loaner->mutex);
 359                                spin_unlock(&shared->lock);
 360                                spin_unlock(chip->mutex);
 361                                put_chip(map, loaner);
 362                                spin_lock(chip->mutex);
 363                                spin_unlock(loaner->mutex);
 364                                wake_up(&chip->wq);
 365                                return;
 366                        }
 367                        shared->erasing = NULL;
 368                        shared->writing = NULL;
 369                } else if (shared->erasing == chip && shared->writing != chip) {
 370                        /*
 371                         * We own the ability to erase without the ability
 372                         * to write, which means the erase was suspended
 373                         * and some other partition is currently writing.
 374                         * Don't let the switch below mess things up since
 375                         * we don't have ownership to resume anything.
 376                         */
 377                        spin_unlock(&shared->lock);
 378                        wake_up(&chip->wq);
 379                        return;
 380                }
 381                spin_unlock(&shared->lock);
 382        }
 383
 384        switch (chip->oldstate) {
 385        case FL_ERASING:
 386                chip->state = chip->oldstate;
 387                map_write(map, CMD(LPDDR_RESUME),
 388                                map->pfow_base + PFOW_COMMAND_CODE);
 389                map_write(map, CMD(LPDDR_START_EXECUTION),
 390                                map->pfow_base + PFOW_COMMAND_EXECUTE);
 391                chip->oldstate = FL_READY;
 392                chip->state = FL_ERASING;
 393                break;
 394        case FL_READY:
 395                break;
 396        default:
 397                printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
 398                                map->name, chip->oldstate);
 399        }
 400        wake_up(&chip->wq);
 401}
 402
 403int do_write_buffer(struct map_info *map, struct flchip *chip,
 404                        unsigned long adr, const struct kvec **pvec,
 405                        unsigned long *pvec_seek, int len)
 406{
 407        struct lpddr_private *lpddr = map->fldrv_priv;
 408        map_word datum;
 409        int ret, wbufsize, word_gap, words;
 410        const struct kvec *vec;
 411        unsigned long vec_seek;
 412        unsigned long prog_buf_ofs;
 413
 414        wbufsize = 1 << lpddr->qinfo->BufSizeShift;
 415
 416        spin_lock(chip->mutex);
 417        ret = get_chip(map, chip, FL_WRITING);
 418        if (ret) {
 419                spin_unlock(chip->mutex);
 420                return ret;
 421        }
 422        /* Figure out the number of words to write */
 423        word_gap = (-adr & (map_bankwidth(map)-1));
 424        words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
 425        if (!word_gap) {
 426                words--;
 427        } else {
 428                word_gap = map_bankwidth(map) - word_gap;
 429                adr -= word_gap;
 430                datum = map_word_ff(map);
 431        }
 432        /* Write data */
 433        /* Get the program buffer offset from PFOW register data first*/
 434        prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
 435                                map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
 436        vec = *pvec;
 437        vec_seek = *pvec_seek;
 438        do {
 439                int n = map_bankwidth(map) - word_gap;
 440
 441                if (n > vec->iov_len - vec_seek)
 442                        n = vec->iov_len - vec_seek;
 443                if (n > len)
 444                        n = len;
 445
 446                if (!word_gap && (len < map_bankwidth(map)))
 447                        datum = map_word_ff(map);
 448
 449                datum = map_word_load_partial(map, datum,
 450                                vec->iov_base + vec_seek, word_gap, n);
 451
 452                len -= n;
 453                word_gap += n;
 454                if (!len || word_gap == map_bankwidth(map)) {
 455                        map_write(map, datum, prog_buf_ofs);
 456                        prog_buf_ofs += map_bankwidth(map);
 457                        word_gap = 0;
 458                }
 459
 460                vec_seek += n;
 461                if (vec_seek == vec->iov_len) {
 462                        vec++;
 463                        vec_seek = 0;
 464                }
 465        } while (len);
 466        *pvec = vec;
 467        *pvec_seek = vec_seek;
 468
 469        /* GO GO GO */
 470        send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
 471        chip->state = FL_WRITING;
 472        ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
 473        if (ret)        {
 474                printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
 475                        map->name, ret, adr);
 476                goto out;
 477        }
 478
 479 out:   put_chip(map, chip);
 480        spin_unlock(chip->mutex);
 481        return ret;
 482}
 483
 484int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
 485{
 486        struct map_info *map = mtd->priv;
 487        struct lpddr_private *lpddr = map->fldrv_priv;
 488        int chipnum = adr >> lpddr->chipshift;
 489        struct flchip *chip = &lpddr->chips[chipnum];
 490        int ret;
 491
 492        spin_lock(chip->mutex);
 493        ret = get_chip(map, chip, FL_ERASING);
 494        if (ret) {
 495                spin_unlock(chip->mutex);
 496                return ret;
 497        }
 498        send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
 499        chip->state = FL_ERASING;
 500        ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
 501        if (ret) {
 502                printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
 503                        map->name, ret, adr);
 504                goto out;
 505        }
 506 out:   put_chip(map, chip);
 507        spin_unlock(chip->mutex);
 508        return ret;
 509}
 510
 511static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
 512                        size_t *retlen, u_char *buf)
 513{
 514        struct map_info *map = mtd->priv;
 515        struct lpddr_private *lpddr = map->fldrv_priv;
 516        int chipnum = adr >> lpddr->chipshift;
 517        struct flchip *chip = &lpddr->chips[chipnum];
 518        int ret = 0;
 519
 520        spin_lock(chip->mutex);
 521        ret = get_chip(map, chip, FL_READY);
 522        if (ret) {
 523                spin_unlock(chip->mutex);
 524                return ret;
 525        }
 526
 527        map_copy_from(map, buf, adr, len);
 528        *retlen = len;
 529
 530        put_chip(map, chip);
 531        spin_unlock(chip->mutex);
 532        return ret;
 533}
 534
 535static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
 536                        size_t *retlen, void **mtdbuf, resource_size_t *phys)
 537{
 538        struct map_info *map = mtd->priv;
 539        struct lpddr_private *lpddr = map->fldrv_priv;
 540        int chipnum = adr >> lpddr->chipshift;
 541        unsigned long ofs, last_end = 0;
 542        struct flchip *chip = &lpddr->chips[chipnum];
 543        int ret = 0;
 544
 545        if (!map->virt || (adr + len > mtd->size))
 546                return -EINVAL;
 547
 548        /* ofs: offset within the first chip that the first read should start */
 549        ofs = adr - (chipnum << lpddr->chipshift);
 550
 551        *mtdbuf = (void *)map->virt + chip->start + ofs;
 552        *retlen = 0;
 553
 554        while (len) {
 555                unsigned long thislen;
 556
 557                if (chipnum >= lpddr->numchips)
 558                        break;
 559
 560                /* We cannot point across chips that are virtually disjoint */
 561                if (!last_end)
 562                        last_end = chip->start;
 563                else if (chip->start != last_end)
 564                        break;
 565
 566                if ((len + ofs - 1) >> lpddr->chipshift)
 567                        thislen = (1<<lpddr->chipshift) - ofs;
 568                else
 569                        thislen = len;
 570                /* get the chip */
 571                spin_lock(chip->mutex);
 572                ret = get_chip(map, chip, FL_POINT);
 573                spin_unlock(chip->mutex);
 574                if (ret)
 575                        break;
 576
 577                chip->state = FL_POINT;
 578                chip->ref_point_counter++;
 579                *retlen += thislen;
 580                len -= thislen;
 581
 582                ofs = 0;
 583                last_end += 1 << lpddr->chipshift;
 584                chipnum++;
 585                chip = &lpddr->chips[chipnum];
 586        }
 587        return 0;
 588}
 589
 590static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
 591{
 592        struct map_info *map = mtd->priv;
 593        struct lpddr_private *lpddr = map->fldrv_priv;
 594        int chipnum = adr >> lpddr->chipshift;
 595        unsigned long ofs;
 596
 597        /* ofs: offset within the first chip that the first read should start */
 598        ofs = adr - (chipnum << lpddr->chipshift);
 599
 600        while (len) {
 601                unsigned long thislen;
 602                struct flchip *chip;
 603
 604                chip = &lpddr->chips[chipnum];
 605                if (chipnum >= lpddr->numchips)
 606                        break;
 607
 608                if ((len + ofs - 1) >> lpddr->chipshift)
 609                        thislen = (1<<lpddr->chipshift) - ofs;
 610                else
 611                        thislen = len;
 612
 613                spin_lock(chip->mutex);
 614                if (chip->state == FL_POINT) {
 615                        chip->ref_point_counter--;
 616                        if (chip->ref_point_counter == 0)
 617                                chip->state = FL_READY;
 618                } else
 619                        printk(KERN_WARNING "%s: Warning: unpoint called on non"
 620                                        "pointed region\n", map->name);
 621
 622                put_chip(map, chip);
 623                spin_unlock(chip->mutex);
 624
 625                len -= thislen;
 626                ofs = 0;
 627                chipnum++;
 628        }
 629}
 630
 631static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
 632                                size_t *retlen, const u_char *buf)
 633{
 634        struct kvec vec;
 635
 636        vec.iov_base = (void *) buf;
 637        vec.iov_len = len;
 638
 639        return lpddr_writev(mtd, &vec, 1, to, retlen);
 640}
 641
 642
 643static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
 644                                unsigned long count, loff_t to, size_t *retlen)
 645{
 646        struct map_info *map = mtd->priv;
 647        struct lpddr_private *lpddr = map->fldrv_priv;
 648        int ret = 0;
 649        int chipnum;
 650        unsigned long ofs, vec_seek, i;
 651        int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
 652
 653        size_t len = 0;
 654
 655        for (i = 0; i < count; i++)
 656                len += vecs[i].iov_len;
 657
 658        *retlen = 0;
 659        if (!len)
 660                return 0;
 661
 662        chipnum = to >> lpddr->chipshift;
 663
 664        ofs = to;
 665        vec_seek = 0;
 666
 667        do {
 668                /* We must not cross write block boundaries */
 669                int size = wbufsize - (ofs & (wbufsize-1));
 670
 671                if (size > len)
 672                        size = len;
 673
 674                ret = do_write_buffer(map, &lpddr->chips[chipnum],
 675                                          ofs, &vecs, &vec_seek, size);
 676                if (ret)
 677                        return ret;
 678
 679                ofs += size;
 680                (*retlen) += size;
 681                len -= size;
 682
 683                /* Be nice and reschedule with the chip in a usable
 684                 * state for other processes */
 685                cond_resched();
 686
 687        } while (len);
 688
 689        return 0;
 690}
 691
 692static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
 693{
 694        unsigned long ofs, len;
 695        int ret;
 696        struct map_info *map = mtd->priv;
 697        struct lpddr_private *lpddr = map->fldrv_priv;
 698        int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
 699
 700        ofs = instr->addr;
 701        len = instr->len;
 702
 703        if (ofs > mtd->size || (len + ofs) > mtd->size)
 704                return -EINVAL;
 705
 706        while (len > 0) {
 707                ret = do_erase_oneblock(mtd, ofs);
 708                if (ret)
 709                        return ret;
 710                ofs += size;
 711                len -= size;
 712        }
 713        instr->state = MTD_ERASE_DONE;
 714        mtd_erase_callback(instr);
 715
 716        return 0;
 717}
 718
 719#define DO_XXLOCK_LOCK          1
 720#define DO_XXLOCK_UNLOCK        2
 721int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
 722{
 723        int ret = 0;
 724        struct map_info *map = mtd->priv;
 725        struct lpddr_private *lpddr = map->fldrv_priv;
 726        int chipnum = adr >> lpddr->chipshift;
 727        struct flchip *chip = &lpddr->chips[chipnum];
 728
 729        spin_lock(chip->mutex);
 730        ret = get_chip(map, chip, FL_LOCKING);
 731        if (ret) {
 732                spin_unlock(chip->mutex);
 733                return ret;
 734        }
 735
 736        if (thunk == DO_XXLOCK_LOCK) {
 737                send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
 738                chip->state = FL_LOCKING;
 739        } else if (thunk == DO_XXLOCK_UNLOCK) {
 740                send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
 741                chip->state = FL_UNLOCKING;
 742        } else
 743                BUG();
 744
 745        ret = wait_for_ready(map, chip, 1);
 746        if (ret)        {
 747                printk(KERN_ERR "%s: block unlock error status %d \n",
 748                                map->name, ret);
 749                goto out;
 750        }
 751out:    put_chip(map, chip);
 752        spin_unlock(chip->mutex);
 753        return ret;
 754}
 755
 756static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 757{
 758        return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
 759}
 760
 761static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 762{
 763        return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
 764}
 765
 766int word_program(struct map_info *map, loff_t adr, uint32_t curval)
 767{
 768    int ret;
 769        struct lpddr_private *lpddr = map->fldrv_priv;
 770        int chipnum = adr >> lpddr->chipshift;
 771        struct flchip *chip = &lpddr->chips[chipnum];
 772
 773        spin_lock(chip->mutex);
 774        ret = get_chip(map, chip, FL_WRITING);
 775        if (ret) {
 776                spin_unlock(chip->mutex);
 777                return ret;
 778        }
 779
 780        send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
 781
 782        ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
 783        if (ret)        {
 784                printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
 785                        map->name, adr, curval);
 786                goto out;
 787        }
 788
 789out:    put_chip(map, chip);
 790        spin_unlock(chip->mutex);
 791        return ret;
 792}
 793
 794MODULE_LICENSE("GPL");
 795MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
 796MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
 797