linux/drivers/mtd/nand/cafe_nand.c
<<
>>
Prefs
   1/*
   2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
   3 *
   4 * The data sheet for this device can be found at:
   5 *    http://www.marvell.com/products/pcconn/88ALP01.jsp
   6 *
   7 * Copyright © 2006 Red Hat, Inc.
   8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
   9 */
  10
  11#define DEBUG
  12
  13#include <linux/device.h>
  14#undef DEBUG
  15#include <linux/mtd/mtd.h>
  16#include <linux/mtd/nand.h>
  17#include <linux/mtd/partitions.h>
  18#include <linux/rslib.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/interrupt.h>
  22#include <linux/dma-mapping.h>
  23#include <asm/io.h>
  24
  25#define CAFE_NAND_CTRL1         0x00
  26#define CAFE_NAND_CTRL2         0x04
  27#define CAFE_NAND_CTRL3         0x08
  28#define CAFE_NAND_STATUS        0x0c
  29#define CAFE_NAND_IRQ           0x10
  30#define CAFE_NAND_IRQ_MASK      0x14
  31#define CAFE_NAND_DATA_LEN      0x18
  32#define CAFE_NAND_ADDR1         0x1c
  33#define CAFE_NAND_ADDR2         0x20
  34#define CAFE_NAND_TIMING1       0x24
  35#define CAFE_NAND_TIMING2       0x28
  36#define CAFE_NAND_TIMING3       0x2c
  37#define CAFE_NAND_NONMEM        0x30
  38#define CAFE_NAND_ECC_RESULT    0x3C
  39#define CAFE_NAND_DMA_CTRL      0x40
  40#define CAFE_NAND_DMA_ADDR0     0x44
  41#define CAFE_NAND_DMA_ADDR1     0x48
  42#define CAFE_NAND_ECC_SYN01     0x50
  43#define CAFE_NAND_ECC_SYN23     0x54
  44#define CAFE_NAND_ECC_SYN45     0x58
  45#define CAFE_NAND_ECC_SYN67     0x5c
  46#define CAFE_NAND_READ_DATA     0x1000
  47#define CAFE_NAND_WRITE_DATA    0x2000
  48
  49#define CAFE_GLOBAL_CTRL        0x3004
  50#define CAFE_GLOBAL_IRQ         0x3008
  51#define CAFE_GLOBAL_IRQ_MASK    0x300c
  52#define CAFE_NAND_RESET         0x3034
  53
  54/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  55#define CTRL1_CHIPSELECT        (1<<19)
  56
  57struct cafe_priv {
  58        struct nand_chip nand;
  59        struct mtd_partition *parts;
  60        struct pci_dev *pdev;
  61        void __iomem *mmio;
  62        struct rs_control *rs;
  63        uint32_t ctl1;
  64        uint32_t ctl2;
  65        int datalen;
  66        int nr_data;
  67        int data_pos;
  68        int page_addr;
  69        dma_addr_t dmaaddr;
  70        unsigned char *dmabuf;
  71};
  72
  73static int usedma = 1;
  74module_param(usedma, int, 0644);
  75
  76static int skipbbt = 0;
  77module_param(skipbbt, int, 0644);
  78
  79static int debug = 0;
  80module_param(debug, int, 0644);
  81
  82static int regdebug = 0;
  83module_param(regdebug, int, 0644);
  84
  85static int checkecc = 1;
  86module_param(checkecc, int, 0644);
  87
  88static unsigned int numtimings;
  89static int timing[3];
  90module_param_array(timing, int, &numtimings, 0644);
  91
  92#ifdef CONFIG_MTD_PARTITIONS
  93static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  94#endif
  95
  96/* Hrm. Why isn't this already conditional on something in the struct device? */
  97#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  98
  99/* Make it easier to switch to PIO if we need to */
 100#define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
 101#define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
 102
 103static int cafe_device_ready(struct mtd_info *mtd)
 104{
 105        struct cafe_priv *cafe = mtd->priv;
 106        int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
 107        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 108
 109        cafe_writel(cafe, irqs, NAND_IRQ);
 110
 111        cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
 112                result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
 113                cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 114
 115        return result;
 116}
 117
 118
 119static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 120{
 121        struct cafe_priv *cafe = mtd->priv;
 122
 123        if (usedma)
 124                memcpy(cafe->dmabuf + cafe->datalen, buf, len);
 125        else
 126                memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
 127
 128        cafe->datalen += len;
 129
 130        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
 131                len, cafe->datalen);
 132}
 133
 134static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 135{
 136        struct cafe_priv *cafe = mtd->priv;
 137
 138        if (usedma)
 139                memcpy(buf, cafe->dmabuf + cafe->datalen, len);
 140        else
 141                memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
 142
 143        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
 144                  len, cafe->datalen);
 145        cafe->datalen += len;
 146}
 147
 148static uint8_t cafe_read_byte(struct mtd_info *mtd)
 149{
 150        struct cafe_priv *cafe = mtd->priv;
 151        uint8_t d;
 152
 153        cafe_read_buf(mtd, &d, 1);
 154        cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
 155
 156        return d;
 157}
 158
 159static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
 160                              int column, int page_addr)
 161{
 162        struct cafe_priv *cafe = mtd->priv;
 163        int adrbytes = 0;
 164        uint32_t ctl1;
 165        uint32_t doneint = 0x80000000;
 166
 167        cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
 168                command, column, page_addr);
 169
 170        if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
 171                /* Second half of a command we already calculated */
 172                cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
 173                ctl1 = cafe->ctl1;
 174                cafe->ctl2 &= ~(1<<30);
 175                cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
 176                          cafe->ctl1, cafe->nr_data);
 177                goto do_command;
 178        }
 179        /* Reset ECC engine */
 180        cafe_writel(cafe, 0, NAND_CTRL2);
 181
 182        /* Emulate NAND_CMD_READOOB on large-page chips */
 183        if (mtd->writesize > 512 &&
 184            command == NAND_CMD_READOOB) {
 185                column += mtd->writesize;
 186                command = NAND_CMD_READ0;
 187        }
 188
 189        /* FIXME: Do we need to send read command before sending data
 190           for small-page chips, to position the buffer correctly? */
 191
 192        if (column != -1) {
 193                cafe_writel(cafe, column, NAND_ADDR1);
 194                adrbytes = 2;
 195                if (page_addr != -1)
 196                        goto write_adr2;
 197        } else if (page_addr != -1) {
 198                cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
 199                page_addr >>= 16;
 200        write_adr2:
 201                cafe_writel(cafe, page_addr, NAND_ADDR2);
 202                adrbytes += 2;
 203                if (mtd->size > mtd->writesize << 16)
 204                        adrbytes++;
 205        }
 206
 207        cafe->data_pos = cafe->datalen = 0;
 208
 209        /* Set command valid bit, mask in the chip select bit  */
 210        ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
 211
 212        /* Set RD or WR bits as appropriate */
 213        if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
 214                ctl1 |= (1<<26); /* rd */
 215                /* Always 5 bytes, for now */
 216                cafe->datalen = 4;
 217                /* And one address cycle -- even for STATUS, since the controller doesn't work without */
 218                adrbytes = 1;
 219        } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 220                   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
 221                ctl1 |= 1<<26; /* rd */
 222                /* For now, assume just read to end of page */
 223                cafe->datalen = mtd->writesize + mtd->oobsize - column;
 224        } else if (command == NAND_CMD_SEQIN)
 225                ctl1 |= 1<<25; /* wr */
 226
 227        /* Set number of address bytes */
 228        if (adrbytes)
 229                ctl1 |= ((adrbytes-1)|8) << 27;
 230
 231        if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
 232                /* Ignore the first command of a pair; the hardware
 233                   deals with them both at once, later */
 234                cafe->ctl1 = ctl1;
 235                cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
 236                          cafe->ctl1, cafe->datalen);
 237                return;
 238        }
 239        /* RNDOUT and READ0 commands need a following byte */
 240        if (command == NAND_CMD_RNDOUT)
 241                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
 242        else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
 243                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
 244
 245 do_command:
 246        cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
 247                cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
 248
 249        /* NB: The datasheet lies -- we really should be subtracting 1 here */
 250        cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
 251        cafe_writel(cafe, 0x90000000, NAND_IRQ);
 252        if (usedma && (ctl1 & (3<<25))) {
 253                uint32_t dmactl = 0xc0000000 + cafe->datalen;
 254                /* If WR or RD bits set, set up DMA */
 255                if (ctl1 & (1<<26)) {
 256                        /* It's a read */
 257                        dmactl |= (1<<29);
 258                        /* ... so it's done when the DMA is done, not just
 259                           the command. */
 260                        doneint = 0x10000000;
 261                }
 262                cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
 263        }
 264        cafe->datalen = 0;
 265
 266        if (unlikely(regdebug)) {
 267                int i;
 268                printk("About to write command %08x to register 0\n", ctl1);
 269                for (i=4; i< 0x5c; i+=4)
 270                        printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 271        }
 272
 273        cafe_writel(cafe, ctl1, NAND_CTRL1);
 274        /* Apply this short delay always to ensure that we do wait tWB in
 275         * any case on any machine. */
 276        ndelay(100);
 277
 278        if (1) {
 279                int c;
 280                uint32_t irqs;
 281
 282                for (c = 500000; c != 0; c--) {
 283                        irqs = cafe_readl(cafe, NAND_IRQ);
 284                        if (irqs & doneint)
 285                                break;
 286                        udelay(1);
 287                        if (!(c % 100000))
 288                                cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
 289                        cpu_relax();
 290                }
 291                cafe_writel(cafe, doneint, NAND_IRQ);
 292                cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
 293                             command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
 294        }
 295
 296        WARN_ON(cafe->ctl2 & (1<<30));
 297
 298        switch (command) {
 299
 300        case NAND_CMD_CACHEDPROG:
 301        case NAND_CMD_PAGEPROG:
 302        case NAND_CMD_ERASE1:
 303        case NAND_CMD_ERASE2:
 304        case NAND_CMD_SEQIN:
 305        case NAND_CMD_RNDIN:
 306        case NAND_CMD_STATUS:
 307        case NAND_CMD_DEPLETE1:
 308        case NAND_CMD_RNDOUT:
 309        case NAND_CMD_STATUS_ERROR:
 310        case NAND_CMD_STATUS_ERROR0:
 311        case NAND_CMD_STATUS_ERROR1:
 312        case NAND_CMD_STATUS_ERROR2:
 313        case NAND_CMD_STATUS_ERROR3:
 314                cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 315                return;
 316        }
 317        nand_wait_ready(mtd);
 318        cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 319}
 320
 321static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
 322{
 323        struct cafe_priv *cafe = mtd->priv;
 324
 325        cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
 326
 327        /* Mask the appropriate bit into the stored value of ctl1
 328           which will be used by cafe_nand_cmdfunc() */
 329        if (chipnr)
 330                cafe->ctl1 |= CTRL1_CHIPSELECT;
 331        else
 332                cafe->ctl1 &= ~CTRL1_CHIPSELECT;
 333}
 334
 335static irqreturn_t cafe_nand_interrupt(int irq, void *id)
 336{
 337        struct mtd_info *mtd = id;
 338        struct cafe_priv *cafe = mtd->priv;
 339        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 340        cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
 341        if (!irqs)
 342                return IRQ_NONE;
 343
 344        cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
 345        return IRQ_HANDLED;
 346}
 347
 348static void cafe_nand_bug(struct mtd_info *mtd)
 349{
 350        BUG();
 351}
 352
 353static int cafe_nand_write_oob(struct mtd_info *mtd,
 354                               struct nand_chip *chip, int page)
 355{
 356        int status = 0;
 357
 358        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 359        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 360        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 361        status = chip->waitfunc(mtd, chip);
 362
 363        return status & NAND_STATUS_FAIL ? -EIO : 0;
 364}
 365
 366/* Don't use -- use nand_read_oob_std for now */
 367static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 368                              int page, int sndcmd)
 369{
 370        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 371        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 372        return 1;
 373}
 374/**
 375 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
 376 * @mtd:        mtd info structure
 377 * @chip:       nand chip info structure
 378 * @buf:        buffer to store read data
 379 *
 380 * The hw generator calculates the error syndrome automatically. Therefor
 381 * we need a special oob layout and handling.
 382 */
 383static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 384                               uint8_t *buf, int page)
 385{
 386        struct cafe_priv *cafe = mtd->priv;
 387
 388        cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
 389                     cafe_readl(cafe, NAND_ECC_RESULT),
 390                     cafe_readl(cafe, NAND_ECC_SYN01));
 391
 392        chip->read_buf(mtd, buf, mtd->writesize);
 393        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 394
 395        if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
 396                unsigned short syn[8], pat[4];
 397                int pos[4];
 398                u8 *oob = chip->oob_poi;
 399                int i, n;
 400
 401                for (i=0; i<8; i+=2) {
 402                        uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
 403                        syn[i] = cafe->rs->index_of[tmp & 0xfff];
 404                        syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
 405                }
 406
 407                n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
 408                                pat);
 409
 410                for (i = 0; i < n; i++) {
 411                        int p = pos[i];
 412
 413                        /* The 12-bit symbols are mapped to bytes here */
 414
 415                        if (p > 1374) {
 416                                /* out of range */
 417                                n = -1374;
 418                        } else if (p == 0) {
 419                                /* high four bits do not correspond to data */
 420                                if (pat[i] > 0xff)
 421                                        n = -2048;
 422                                else
 423                                        buf[0] ^= pat[i];
 424                        } else if (p == 1365) {
 425                                buf[2047] ^= pat[i] >> 4;
 426                                oob[0] ^= pat[i] << 4;
 427                        } else if (p > 1365) {
 428                                if ((p & 1) == 1) {
 429                                        oob[3*p/2 - 2048] ^= pat[i] >> 4;
 430                                        oob[3*p/2 - 2047] ^= pat[i] << 4;
 431                                } else {
 432                                        oob[3*p/2 - 2049] ^= pat[i] >> 8;
 433                                        oob[3*p/2 - 2048] ^= pat[i];
 434                                }
 435                        } else if ((p & 1) == 1) {
 436                                buf[3*p/2] ^= pat[i] >> 4;
 437                                buf[3*p/2 + 1] ^= pat[i] << 4;
 438                        } else {
 439                                buf[3*p/2 - 1] ^= pat[i] >> 8;
 440                                buf[3*p/2] ^= pat[i];
 441                        }
 442                }
 443
 444                if (n < 0) {
 445                        dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
 446                                cafe_readl(cafe, NAND_ADDR2) * 2048);
 447                        for (i = 0; i < 0x5c; i += 4)
 448                                printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 449                        mtd->ecc_stats.failed++;
 450                } else {
 451                        dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
 452                        mtd->ecc_stats.corrected += n;
 453                }
 454        }
 455
 456        return 0;
 457}
 458
 459static struct nand_ecclayout cafe_oobinfo_2048 = {
 460        .eccbytes = 14,
 461        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 462        .oobfree = {{14, 50}}
 463};
 464
 465/* Ick. The BBT code really ought to be able to work this bit out
 466   for itself from the above, at least for the 2KiB case */
 467static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
 468static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
 469
 470static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
 471static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
 472
 473
 474static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
 475        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 476                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 477        .offs = 14,
 478        .len = 4,
 479        .veroffs = 18,
 480        .maxblocks = 4,
 481        .pattern = cafe_bbt_pattern_2048
 482};
 483
 484static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
 485        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 486                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 487        .offs = 14,
 488        .len = 4,
 489        .veroffs = 18,
 490        .maxblocks = 4,
 491        .pattern = cafe_mirror_pattern_2048
 492};
 493
 494static struct nand_ecclayout cafe_oobinfo_512 = {
 495        .eccbytes = 14,
 496        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 497        .oobfree = {{14, 2}}
 498};
 499
 500static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
 501        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 502                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 503        .offs = 14,
 504        .len = 1,
 505        .veroffs = 15,
 506        .maxblocks = 4,
 507        .pattern = cafe_bbt_pattern_512
 508};
 509
 510static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
 511        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 512                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 513        .offs = 14,
 514        .len = 1,
 515        .veroffs = 15,
 516        .maxblocks = 4,
 517        .pattern = cafe_mirror_pattern_512
 518};
 519
 520
 521static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
 522                                          struct nand_chip *chip, const uint8_t *buf)
 523{
 524        struct cafe_priv *cafe = mtd->priv;
 525
 526        chip->write_buf(mtd, buf, mtd->writesize);
 527        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 528
 529        /* Set up ECC autogeneration */
 530        cafe->ctl2 |= (1<<30);
 531}
 532
 533static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 534                                const uint8_t *buf, int page, int cached, int raw)
 535{
 536        int status;
 537
 538        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
 539
 540        if (unlikely(raw))
 541                chip->ecc.write_page_raw(mtd, chip, buf);
 542        else
 543                chip->ecc.write_page(mtd, chip, buf);
 544
 545        /*
 546         * Cached progamming disabled for now, Not sure if its worth the
 547         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
 548         */
 549        cached = 0;
 550
 551        if (!cached || !(chip->options & NAND_CACHEPRG)) {
 552
 553                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 554                status = chip->waitfunc(mtd, chip);
 555                /*
 556                 * See if operation failed and additional status checks are
 557                 * available
 558                 */
 559                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
 560                        status = chip->errstat(mtd, chip, FL_WRITING, status,
 561                                               page);
 562
 563                if (status & NAND_STATUS_FAIL)
 564                        return -EIO;
 565        } else {
 566                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
 567                status = chip->waitfunc(mtd, chip);
 568        }
 569
 570#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
 571        /* Send command to read back the data */
 572        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 573
 574        if (chip->verify_buf(mtd, buf, mtd->writesize))
 575                return -EIO;
 576#endif
 577        return 0;
 578}
 579
 580static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 581{
 582        return 0;
 583}
 584
 585/* F_2[X]/(X**6+X+1)  */
 586static unsigned short __devinit gf64_mul(u8 a, u8 b)
 587{
 588        u8 c;
 589        unsigned int i;
 590
 591        c = 0;
 592        for (i = 0; i < 6; i++) {
 593                if (a & 1)
 594                        c ^= b;
 595                a >>= 1;
 596                b <<= 1;
 597                if ((b & 0x40) != 0)
 598                        b ^= 0x43;
 599        }
 600
 601        return c;
 602}
 603
 604/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
 605static u16 __devinit gf4096_mul(u16 a, u16 b)
 606{
 607        u8 ah, al, bh, bl, ch, cl;
 608
 609        ah = a >> 6;
 610        al = a & 0x3f;
 611        bh = b >> 6;
 612        bl = b & 0x3f;
 613
 614        ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
 615        cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
 616
 617        return (ch << 6) ^ cl;
 618}
 619
 620static int __devinit cafe_mul(int x)
 621{
 622        if (x == 0)
 623                return 1;
 624        return gf4096_mul(x, 0xe01);
 625}
 626
 627static int __devinit cafe_nand_probe(struct pci_dev *pdev,
 628                                     const struct pci_device_id *ent)
 629{
 630        struct mtd_info *mtd;
 631        struct cafe_priv *cafe;
 632        uint32_t ctrl;
 633        int err = 0;
 634#ifdef CONFIG_MTD_PARTITIONS
 635        struct mtd_partition *parts;
 636        int nr_parts;
 637#endif
 638
 639        /* Very old versions shared the same PCI ident for all three
 640           functions on the chip. Verify the class too... */
 641        if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
 642                return -ENODEV;
 643
 644        err = pci_enable_device(pdev);
 645        if (err)
 646                return err;
 647
 648        pci_set_master(pdev);
 649
 650        mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
 651        if (!mtd) {
 652                dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
 653                return  -ENOMEM;
 654        }
 655        cafe = (void *)(&mtd[1]);
 656
 657        mtd->dev.parent = &pdev->dev;
 658        mtd->priv = cafe;
 659        mtd->owner = THIS_MODULE;
 660
 661        cafe->pdev = pdev;
 662        cafe->mmio = pci_iomap(pdev, 0, 0);
 663        if (!cafe->mmio) {
 664                dev_warn(&pdev->dev, "failed to iomap\n");
 665                err = -ENOMEM;
 666                goto out_free_mtd;
 667        }
 668        cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
 669                                          &cafe->dmaaddr, GFP_KERNEL);
 670        if (!cafe->dmabuf) {
 671                err = -ENOMEM;
 672                goto out_ior;
 673        }
 674        cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
 675
 676        cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
 677        if (!cafe->rs) {
 678                err = -ENOMEM;
 679                goto out_ior;
 680        }
 681
 682        cafe->nand.cmdfunc = cafe_nand_cmdfunc;
 683        cafe->nand.dev_ready = cafe_device_ready;
 684        cafe->nand.read_byte = cafe_read_byte;
 685        cafe->nand.read_buf = cafe_read_buf;
 686        cafe->nand.write_buf = cafe_write_buf;
 687        cafe->nand.select_chip = cafe_select_chip;
 688
 689        cafe->nand.chip_delay = 0;
 690
 691        /* Enable the following for a flash based bad block table */
 692        cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
 693
 694        if (skipbbt) {
 695                cafe->nand.options |= NAND_SKIP_BBTSCAN;
 696                cafe->nand.block_bad = cafe_nand_block_bad;
 697        }
 698
 699        if (numtimings && numtimings != 3) {
 700                dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
 701        }
 702
 703        if (numtimings == 3) {
 704                cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
 705                             timing[0], timing[1], timing[2]);
 706        } else {
 707                timing[0] = cafe_readl(cafe, NAND_TIMING1);
 708                timing[1] = cafe_readl(cafe, NAND_TIMING2);
 709                timing[2] = cafe_readl(cafe, NAND_TIMING3);
 710
 711                if (timing[0] | timing[1] | timing[2]) {
 712                        cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
 713                                     timing[0], timing[1], timing[2]);
 714                } else {
 715                        dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
 716                        timing[0] = timing[1] = timing[2] = 0xffffffff;
 717                }
 718        }
 719
 720        /* Start off by resetting the NAND controller completely */
 721        cafe_writel(cafe, 1, NAND_RESET);
 722        cafe_writel(cafe, 0, NAND_RESET);
 723
 724        cafe_writel(cafe, timing[0], NAND_TIMING1);
 725        cafe_writel(cafe, timing[1], NAND_TIMING2);
 726        cafe_writel(cafe, timing[2], NAND_TIMING3);
 727
 728        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 729        err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
 730                          "CAFE NAND", mtd);
 731        if (err) {
 732                dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
 733                goto out_free_dma;
 734        }
 735
 736        /* Disable master reset, enable NAND clock */
 737        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 738        ctrl &= 0xffffeff0;
 739        ctrl |= 0x00007000;
 740        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 741        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 742        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 743
 744        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 745        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 746
 747        /* Set up DMA address */
 748        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 749        if (sizeof(cafe->dmaaddr) > 4)
 750                /* Shift in two parts to shut the compiler up */
 751                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 752        else
 753                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 754
 755        cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
 756                cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
 757
 758        /* Enable NAND IRQ in global IRQ mask register */
 759        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 760        cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
 761                cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 762
 763        /* Scan to find existence of the device */
 764        if (nand_scan_ident(mtd, 2)) {
 765                err = -ENXIO;
 766                goto out_irq;
 767        }
 768
 769        cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
 770        if (mtd->writesize == 2048)
 771                cafe->ctl2 |= 1<<29; /* 2KiB page size */
 772
 773        /* Set up ECC according to the type of chip we found */
 774        if (mtd->writesize == 2048) {
 775                cafe->nand.ecc.layout = &cafe_oobinfo_2048;
 776                cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
 777                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
 778        } else if (mtd->writesize == 512) {
 779                cafe->nand.ecc.layout = &cafe_oobinfo_512;
 780                cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
 781                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
 782        } else {
 783                printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
 784                       mtd->writesize);
 785                goto out_irq;
 786        }
 787        cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
 788        cafe->nand.ecc.size = mtd->writesize;
 789        cafe->nand.ecc.bytes = 14;
 790        cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
 791        cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
 792        cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
 793        cafe->nand.write_page = cafe_nand_write_page;
 794        cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
 795        cafe->nand.ecc.write_oob = cafe_nand_write_oob;
 796        cafe->nand.ecc.read_page = cafe_nand_read_page;
 797        cafe->nand.ecc.read_oob = cafe_nand_read_oob;
 798
 799        err = nand_scan_tail(mtd);
 800        if (err)
 801                goto out_irq;
 802
 803        pci_set_drvdata(pdev, mtd);
 804
 805        /* We register the whole device first, separate from the partitions */
 806        add_mtd_device(mtd);
 807
 808#ifdef CONFIG_MTD_PARTITIONS
 809#ifdef CONFIG_MTD_CMDLINE_PARTS
 810        mtd->name = "cafe_nand";
 811#endif
 812        nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
 813        if (nr_parts > 0) {
 814                cafe->parts = parts;
 815                dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
 816                add_mtd_partitions(mtd, parts, nr_parts);
 817        }
 818#endif
 819        goto out;
 820
 821 out_irq:
 822        /* Disable NAND IRQ in global IRQ mask register */
 823        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 824        free_irq(pdev->irq, mtd);
 825 out_free_dma:
 826        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 827 out_ior:
 828        pci_iounmap(pdev, cafe->mmio);
 829 out_free_mtd:
 830        kfree(mtd);
 831 out:
 832        return err;
 833}
 834
 835static void __devexit cafe_nand_remove(struct pci_dev *pdev)
 836{
 837        struct mtd_info *mtd = pci_get_drvdata(pdev);
 838        struct cafe_priv *cafe = mtd->priv;
 839
 840        del_mtd_device(mtd);
 841        /* Disable NAND IRQ in global IRQ mask register */
 842        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 843        free_irq(pdev->irq, mtd);
 844        nand_release(mtd);
 845        free_rs(cafe->rs);
 846        pci_iounmap(pdev, cafe->mmio);
 847        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 848        kfree(mtd);
 849}
 850
 851static struct pci_device_id cafe_nand_tbl[] = {
 852        { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
 853          PCI_ANY_ID, PCI_ANY_ID },
 854        { }
 855};
 856
 857MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
 858
 859static int cafe_nand_resume(struct pci_dev *pdev)
 860{
 861        uint32_t ctrl;
 862        struct mtd_info *mtd = pci_get_drvdata(pdev);
 863        struct cafe_priv *cafe = mtd->priv;
 864
 865       /* Start off by resetting the NAND controller completely */
 866        cafe_writel(cafe, 1, NAND_RESET);
 867        cafe_writel(cafe, 0, NAND_RESET);
 868        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 869
 870        /* Restore timing configuration */
 871        cafe_writel(cafe, timing[0], NAND_TIMING1);
 872        cafe_writel(cafe, timing[1], NAND_TIMING2);
 873        cafe_writel(cafe, timing[2], NAND_TIMING3);
 874
 875        /* Disable master reset, enable NAND clock */
 876        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 877        ctrl &= 0xffffeff0;
 878        ctrl |= 0x00007000;
 879        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 880        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 881        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 882        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 883        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 884
 885        /* Set up DMA address */
 886        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 887        if (sizeof(cafe->dmaaddr) > 4)
 888        /* Shift in two parts to shut the compiler up */
 889                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 890        else
 891                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 892
 893        /* Enable NAND IRQ in global IRQ mask register */
 894        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 895        return 0;
 896}
 897
 898static struct pci_driver cafe_nand_pci_driver = {
 899        .name = "CAFÉ NAND",
 900        .id_table = cafe_nand_tbl,
 901        .probe = cafe_nand_probe,
 902        .remove = __devexit_p(cafe_nand_remove),
 903        .resume = cafe_nand_resume,
 904};
 905
 906static int __init cafe_nand_init(void)
 907{
 908        return pci_register_driver(&cafe_nand_pci_driver);
 909}
 910
 911static void __exit cafe_nand_exit(void)
 912{
 913        pci_unregister_driver(&cafe_nand_pci_driver);
 914}
 915module_init(cafe_nand_init);
 916module_exit(cafe_nand_exit);
 917
 918MODULE_LICENSE("GPL");
 919MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
 920MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
 921