linux/drivers/mtd/nand/diskonchip.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/rslib.h>
  25#include <linux/moduleparam.h>
  26#include <asm/io.h>
  27
  28#include <linux/mtd/mtd.h>
  29#include <linux/mtd/nand.h>
  30#include <linux/mtd/doc2000.h>
  31#include <linux/mtd/compatmac.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/mtd/inftl.h>
  34
  35/* Where to look for the devices? */
  36#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  37#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  38#endif
  39
  40static unsigned long __initdata doc_locations[] = {
  41#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  42#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  43        0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  44        0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  45        0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  46        0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  47        0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  48#else /*  CONFIG_MTD_DOCPROBE_HIGH */
  49        0xc8000, 0xca000, 0xcc000, 0xce000,
  50        0xd0000, 0xd2000, 0xd4000, 0xd6000,
  51        0xd8000, 0xda000, 0xdc000, 0xde000,
  52        0xe0000, 0xe2000, 0xe4000, 0xe6000,
  53        0xe8000, 0xea000, 0xec000, 0xee000,
  54#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
  55#else
  56#warning Unknown architecture for DiskOnChip. No default probe locations defined
  57#endif
  58        0xffffffff };
  59
  60static struct mtd_info *doclist = NULL;
  61
  62struct doc_priv {
  63        void __iomem *virtadr;
  64        unsigned long physadr;
  65        u_char ChipID;
  66        u_char CDSNControl;
  67        int chips_per_floor;    /* The number of chips detected on each floor */
  68        int curfloor;
  69        int curchip;
  70        int mh0_page;
  71        int mh1_page;
  72        struct mtd_info *nextdoc;
  73};
  74
  75/* This is the syndrome computed by the HW ecc generator upon reading an empty
  76   page, one with all 0xff for data and stored ecc code. */
  77static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  78
  79/* This is the ecc value computed by the HW ecc generator upon writing an empty
  80   page, one with all 0xff for data. */
  81static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  82
  83#define INFTL_BBT_RESERVED_BLOCKS 4
  84
  85#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  86#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  87#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  88
  89static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  90                              unsigned int bitmask);
  91static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  92
  93static int debug = 0;
  94module_param(debug, int, 0);
  95
  96static int try_dword = 1;
  97module_param(try_dword, int, 0);
  98
  99static int no_ecc_failures = 0;
 100module_param(no_ecc_failures, int, 0);
 101
 102static int no_autopart = 0;
 103module_param(no_autopart, int, 0);
 104
 105static int show_firmware_partition = 0;
 106module_param(show_firmware_partition, int, 0);
 107
 108#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 109static int inftl_bbt_write = 1;
 110#else
 111static int inftl_bbt_write = 0;
 112#endif
 113module_param(inftl_bbt_write, int, 0);
 114
 115static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 116module_param(doc_config_location, ulong, 0);
 117MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 118
 119/* Sector size for HW ECC */
 120#define SECTOR_SIZE 512
 121/* The sector bytes are packed into NB_DATA 10 bit words */
 122#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 123/* Number of roots */
 124#define NROOTS 4
 125/* First consective root */
 126#define FCR 510
 127/* Number of symbols */
 128#define NN 1023
 129
 130/* the Reed Solomon control structure */
 131static struct rs_control *rs_decoder;
 132
 133/*
 134 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 135 * which we must convert to a standard syndrom usable by the generic
 136 * Reed-Solomon library code.
 137 *
 138 * Fabrice Bellard figured this out in the old docecc code. I added
 139 * some comments, improved a minor bit and converted it to make use
 140 * of the generic Reed-Solomon libary. tglx
 141 */
 142static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 143{
 144        int i, j, nerr, errpos[8];
 145        uint8_t parity;
 146        uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 147
 148        /* Convert the ecc bytes into words */
 149        ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 150        ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 151        ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 152        ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 153        parity = ecc[1];
 154
 155        /* Initialize the syndrom buffer */
 156        for (i = 0; i < NROOTS; i++)
 157                s[i] = ds[0];
 158        /*
 159         *  Evaluate
 160         *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 161         *  where x = alpha^(FCR + i)
 162         */
 163        for (j = 1; j < NROOTS; j++) {
 164                if (ds[j] == 0)
 165                        continue;
 166                tmp = rs->index_of[ds[j]];
 167                for (i = 0; i < NROOTS; i++)
 168                        s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 169        }
 170
 171        /* Calc s[i] = s[i] / alpha^(v + i) */
 172        for (i = 0; i < NROOTS; i++) {
 173                if (syn[i])
 174                        syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 175        }
 176        /* Call the decoder library */
 177        nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 178
 179        /* Incorrectable errors ? */
 180        if (nerr < 0)
 181                return nerr;
 182
 183        /*
 184         * Correct the errors. The bitpositions are a bit of magic,
 185         * but they are given by the design of the de/encoder circuit
 186         * in the DoC ASIC's.
 187         */
 188        for (i = 0; i < nerr; i++) {
 189                int index, bitpos, pos = 1015 - errpos[i];
 190                uint8_t val;
 191                if (pos >= NB_DATA && pos < 1019)
 192                        continue;
 193                if (pos < NB_DATA) {
 194                        /* extract bit position (MSB first) */
 195                        pos = 10 * (NB_DATA - 1 - pos) - 6;
 196                        /* now correct the following 10 bits. At most two bytes
 197                           can be modified since pos is even */
 198                        index = (pos >> 3) ^ 1;
 199                        bitpos = pos & 7;
 200                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 201                                val = (uint8_t) (errval[i] >> (2 + bitpos));
 202                                parity ^= val;
 203                                if (index < SECTOR_SIZE)
 204                                        data[index] ^= val;
 205                        }
 206                        index = ((pos >> 3) + 1) ^ 1;
 207                        bitpos = (bitpos + 10) & 7;
 208                        if (bitpos == 0)
 209                                bitpos = 8;
 210                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 211                                val = (uint8_t) (errval[i] << (8 - bitpos));
 212                                parity ^= val;
 213                                if (index < SECTOR_SIZE)
 214                                        data[index] ^= val;
 215                        }
 216                }
 217        }
 218        /* If the parity is wrong, no rescue possible */
 219        return parity ? -EBADMSG : nerr;
 220}
 221
 222static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 223{
 224        volatile char dummy;
 225        int i;
 226
 227        for (i = 0; i < cycles; i++) {
 228                if (DoC_is_Millennium(doc))
 229                        dummy = ReadDOC(doc->virtadr, NOP);
 230                else if (DoC_is_MillenniumPlus(doc))
 231                        dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 232                else
 233                        dummy = ReadDOC(doc->virtadr, DOCStatus);
 234        }
 235
 236}
 237
 238#define CDSN_CTRL_FR_B_MASK     (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 239
 240/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 241static int _DoC_WaitReady(struct doc_priv *doc)
 242{
 243        void __iomem *docptr = doc->virtadr;
 244        unsigned long timeo = jiffies + (HZ * 10);
 245
 246        if (debug)
 247                printk("_DoC_WaitReady...\n");
 248        /* Out-of-line routine to wait for chip response */
 249        if (DoC_is_MillenniumPlus(doc)) {
 250                while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 251                        if (time_after(jiffies, timeo)) {
 252                                printk("_DoC_WaitReady timed out.\n");
 253                                return -EIO;
 254                        }
 255                        udelay(1);
 256                        cond_resched();
 257                }
 258        } else {
 259                while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 260                        if (time_after(jiffies, timeo)) {
 261                                printk("_DoC_WaitReady timed out.\n");
 262                                return -EIO;
 263                        }
 264                        udelay(1);
 265                        cond_resched();
 266                }
 267        }
 268
 269        return 0;
 270}
 271
 272static inline int DoC_WaitReady(struct doc_priv *doc)
 273{
 274        void __iomem *docptr = doc->virtadr;
 275        int ret = 0;
 276
 277        if (DoC_is_MillenniumPlus(doc)) {
 278                DoC_Delay(doc, 4);
 279
 280                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 281                        /* Call the out-of-line routine to wait */
 282                        ret = _DoC_WaitReady(doc);
 283        } else {
 284                DoC_Delay(doc, 4);
 285
 286                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 287                        /* Call the out-of-line routine to wait */
 288                        ret = _DoC_WaitReady(doc);
 289                DoC_Delay(doc, 2);
 290        }
 291
 292        if (debug)
 293                printk("DoC_WaitReady OK\n");
 294        return ret;
 295}
 296
 297static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 298{
 299        struct nand_chip *this = mtd->priv;
 300        struct doc_priv *doc = this->priv;
 301        void __iomem *docptr = doc->virtadr;
 302
 303        if (debug)
 304                printk("write_byte %02x\n", datum);
 305        WriteDOC(datum, docptr, CDSNSlowIO);
 306        WriteDOC(datum, docptr, 2k_CDSN_IO);
 307}
 308
 309static u_char doc2000_read_byte(struct mtd_info *mtd)
 310{
 311        struct nand_chip *this = mtd->priv;
 312        struct doc_priv *doc = this->priv;
 313        void __iomem *docptr = doc->virtadr;
 314        u_char ret;
 315
 316        ReadDOC(docptr, CDSNSlowIO);
 317        DoC_Delay(doc, 2);
 318        ret = ReadDOC(docptr, 2k_CDSN_IO);
 319        if (debug)
 320                printk("read_byte returns %02x\n", ret);
 321        return ret;
 322}
 323
 324static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 325{
 326        struct nand_chip *this = mtd->priv;
 327        struct doc_priv *doc = this->priv;
 328        void __iomem *docptr = doc->virtadr;
 329        int i;
 330        if (debug)
 331                printk("writebuf of %d bytes: ", len);
 332        for (i = 0; i < len; i++) {
 333                WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 334                if (debug && i < 16)
 335                        printk("%02x ", buf[i]);
 336        }
 337        if (debug)
 338                printk("\n");
 339}
 340
 341static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 342{
 343        struct nand_chip *this = mtd->priv;
 344        struct doc_priv *doc = this->priv;
 345        void __iomem *docptr = doc->virtadr;
 346        int i;
 347
 348        if (debug)
 349                printk("readbuf of %d bytes: ", len);
 350
 351        for (i = 0; i < len; i++) {
 352                buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 353        }
 354}
 355
 356static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
 357{
 358        struct nand_chip *this = mtd->priv;
 359        struct doc_priv *doc = this->priv;
 360        void __iomem *docptr = doc->virtadr;
 361        int i;
 362
 363        if (debug)
 364                printk("readbuf_dword of %d bytes: ", len);
 365
 366        if (unlikely((((unsigned long)buf) | len) & 3)) {
 367                for (i = 0; i < len; i++) {
 368                        *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 369                }
 370        } else {
 371                for (i = 0; i < len; i += 4) {
 372                        *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 373                }
 374        }
 375}
 376
 377static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 378{
 379        struct nand_chip *this = mtd->priv;
 380        struct doc_priv *doc = this->priv;
 381        void __iomem *docptr = doc->virtadr;
 382        int i;
 383
 384        for (i = 0; i < len; i++)
 385                if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
 386                        return -EFAULT;
 387        return 0;
 388}
 389
 390static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 391{
 392        struct nand_chip *this = mtd->priv;
 393        struct doc_priv *doc = this->priv;
 394        uint16_t ret;
 395
 396        doc200x_select_chip(mtd, nr);
 397        doc200x_hwcontrol(mtd, NAND_CMD_READID,
 398                          NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 399        doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 400        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 401
 402        /* We cant' use dev_ready here, but at least we wait for the
 403         * command to complete
 404         */
 405        udelay(50);
 406
 407        ret = this->read_byte(mtd) << 8;
 408        ret |= this->read_byte(mtd);
 409
 410        if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 411                /* First chip probe. See if we get same results by 32-bit access */
 412                union {
 413                        uint32_t dword;
 414                        uint8_t byte[4];
 415                } ident;
 416                void __iomem *docptr = doc->virtadr;
 417
 418                doc200x_hwcontrol(mtd, NAND_CMD_READID,
 419                                  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 420                doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 421                doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 422                                  NAND_NCE | NAND_CTRL_CHANGE);
 423
 424                udelay(50);
 425
 426                ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 427                if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 428                        printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 429                        this->read_buf = &doc2000_readbuf_dword;
 430                }
 431        }
 432
 433        return ret;
 434}
 435
 436static void __init doc2000_count_chips(struct mtd_info *mtd)
 437{
 438        struct nand_chip *this = mtd->priv;
 439        struct doc_priv *doc = this->priv;
 440        uint16_t mfrid;
 441        int i;
 442
 443        /* Max 4 chips per floor on DiskOnChip 2000 */
 444        doc->chips_per_floor = 4;
 445
 446        /* Find out what the first chip is */
 447        mfrid = doc200x_ident_chip(mtd, 0);
 448
 449        /* Find how many chips in each floor. */
 450        for (i = 1; i < 4; i++) {
 451                if (doc200x_ident_chip(mtd, i) != mfrid)
 452                        break;
 453        }
 454        doc->chips_per_floor = i;
 455        printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 456}
 457
 458static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 459{
 460        struct doc_priv *doc = this->priv;
 461
 462        int status;
 463
 464        DoC_WaitReady(doc);
 465        this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 466        DoC_WaitReady(doc);
 467        status = (int)this->read_byte(mtd);
 468
 469        return status;
 470}
 471
 472static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 473{
 474        struct nand_chip *this = mtd->priv;
 475        struct doc_priv *doc = this->priv;
 476        void __iomem *docptr = doc->virtadr;
 477
 478        WriteDOC(datum, docptr, CDSNSlowIO);
 479        WriteDOC(datum, docptr, Mil_CDSN_IO);
 480        WriteDOC(datum, docptr, WritePipeTerm);
 481}
 482
 483static u_char doc2001_read_byte(struct mtd_info *mtd)
 484{
 485        struct nand_chip *this = mtd->priv;
 486        struct doc_priv *doc = this->priv;
 487        void __iomem *docptr = doc->virtadr;
 488
 489        //ReadDOC(docptr, CDSNSlowIO);
 490        /* 11.4.5 -- delay twice to allow extended length cycle */
 491        DoC_Delay(doc, 2);
 492        ReadDOC(docptr, ReadPipeInit);
 493        //return ReadDOC(docptr, Mil_CDSN_IO);
 494        return ReadDOC(docptr, LastDataRead);
 495}
 496
 497static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 498{
 499        struct nand_chip *this = mtd->priv;
 500        struct doc_priv *doc = this->priv;
 501        void __iomem *docptr = doc->virtadr;
 502        int i;
 503
 504        for (i = 0; i < len; i++)
 505                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 506        /* Terminate write pipeline */
 507        WriteDOC(0x00, docptr, WritePipeTerm);
 508}
 509
 510static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 511{
 512        struct nand_chip *this = mtd->priv;
 513        struct doc_priv *doc = this->priv;
 514        void __iomem *docptr = doc->virtadr;
 515        int i;
 516
 517        /* Start read pipeline */
 518        ReadDOC(docptr, ReadPipeInit);
 519
 520        for (i = 0; i < len - 1; i++)
 521                buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 522
 523        /* Terminate read pipeline */
 524        buf[i] = ReadDOC(docptr, LastDataRead);
 525}
 526
 527static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 528{
 529        struct nand_chip *this = mtd->priv;
 530        struct doc_priv *doc = this->priv;
 531        void __iomem *docptr = doc->virtadr;
 532        int i;
 533
 534        /* Start read pipeline */
 535        ReadDOC(docptr, ReadPipeInit);
 536
 537        for (i = 0; i < len - 1; i++)
 538                if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 539                        ReadDOC(docptr, LastDataRead);
 540                        return i;
 541                }
 542        if (buf[i] != ReadDOC(docptr, LastDataRead))
 543                return i;
 544        return 0;
 545}
 546
 547static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 548{
 549        struct nand_chip *this = mtd->priv;
 550        struct doc_priv *doc = this->priv;
 551        void __iomem *docptr = doc->virtadr;
 552        u_char ret;
 553
 554        ReadDOC(docptr, Mplus_ReadPipeInit);
 555        ReadDOC(docptr, Mplus_ReadPipeInit);
 556        ret = ReadDOC(docptr, Mplus_LastDataRead);
 557        if (debug)
 558                printk("read_byte returns %02x\n", ret);
 559        return ret;
 560}
 561
 562static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 563{
 564        struct nand_chip *this = mtd->priv;
 565        struct doc_priv *doc = this->priv;
 566        void __iomem *docptr = doc->virtadr;
 567        int i;
 568
 569        if (debug)
 570                printk("writebuf of %d bytes: ", len);
 571        for (i = 0; i < len; i++) {
 572                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 573                if (debug && i < 16)
 574                        printk("%02x ", buf[i]);
 575        }
 576        if (debug)
 577                printk("\n");
 578}
 579
 580static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 581{
 582        struct nand_chip *this = mtd->priv;
 583        struct doc_priv *doc = this->priv;
 584        void __iomem *docptr = doc->virtadr;
 585        int i;
 586
 587        if (debug)
 588                printk("readbuf of %d bytes: ", len);
 589
 590        /* Start read pipeline */
 591        ReadDOC(docptr, Mplus_ReadPipeInit);
 592        ReadDOC(docptr, Mplus_ReadPipeInit);
 593
 594        for (i = 0; i < len - 2; i++) {
 595                buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 596                if (debug && i < 16)
 597                        printk("%02x ", buf[i]);
 598        }
 599
 600        /* Terminate read pipeline */
 601        buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 602        if (debug && i < 16)
 603                printk("%02x ", buf[len - 2]);
 604        buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 605        if (debug && i < 16)
 606                printk("%02x ", buf[len - 1]);
 607        if (debug)
 608                printk("\n");
 609}
 610
 611static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
 612{
 613        struct nand_chip *this = mtd->priv;
 614        struct doc_priv *doc = this->priv;
 615        void __iomem *docptr = doc->virtadr;
 616        int i;
 617
 618        if (debug)
 619                printk("verifybuf of %d bytes: ", len);
 620
 621        /* Start read pipeline */
 622        ReadDOC(docptr, Mplus_ReadPipeInit);
 623        ReadDOC(docptr, Mplus_ReadPipeInit);
 624
 625        for (i = 0; i < len - 2; i++)
 626                if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
 627                        ReadDOC(docptr, Mplus_LastDataRead);
 628                        ReadDOC(docptr, Mplus_LastDataRead);
 629                        return i;
 630                }
 631        if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
 632                return len - 2;
 633        if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
 634                return len - 1;
 635        return 0;
 636}
 637
 638static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 639{
 640        struct nand_chip *this = mtd->priv;
 641        struct doc_priv *doc = this->priv;
 642        void __iomem *docptr = doc->virtadr;
 643        int floor = 0;
 644
 645        if (debug)
 646                printk("select chip (%d)\n", chip);
 647
 648        if (chip == -1) {
 649                /* Disable flash internally */
 650                WriteDOC(0, docptr, Mplus_FlashSelect);
 651                return;
 652        }
 653
 654        floor = chip / doc->chips_per_floor;
 655        chip -= (floor * doc->chips_per_floor);
 656
 657        /* Assert ChipEnable and deassert WriteProtect */
 658        WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 659        this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 660
 661        doc->curchip = chip;
 662        doc->curfloor = floor;
 663}
 664
 665static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 666{
 667        struct nand_chip *this = mtd->priv;
 668        struct doc_priv *doc = this->priv;
 669        void __iomem *docptr = doc->virtadr;
 670        int floor = 0;
 671
 672        if (debug)
 673                printk("select chip (%d)\n", chip);
 674
 675        if (chip == -1)
 676                return;
 677
 678        floor = chip / doc->chips_per_floor;
 679        chip -= (floor * doc->chips_per_floor);
 680
 681        /* 11.4.4 -- deassert CE before changing chip */
 682        doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 683
 684        WriteDOC(floor, docptr, FloorSelect);
 685        WriteDOC(chip, docptr, CDSNDeviceSelect);
 686
 687        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 688
 689        doc->curchip = chip;
 690        doc->curfloor = floor;
 691}
 692
 693#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 694
 695static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 696                              unsigned int ctrl)
 697{
 698        struct nand_chip *this = mtd->priv;
 699        struct doc_priv *doc = this->priv;
 700        void __iomem *docptr = doc->virtadr;
 701
 702        if (ctrl & NAND_CTRL_CHANGE) {
 703                doc->CDSNControl &= ~CDSN_CTRL_MSK;
 704                doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 705                if (debug)
 706                        printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 707                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 708                /* 11.4.3 -- 4 NOPs after CSDNControl write */
 709                DoC_Delay(doc, 4);
 710        }
 711        if (cmd != NAND_CMD_NONE) {
 712                if (DoC_is_2000(doc))
 713                        doc2000_write_byte(mtd, cmd);
 714                else
 715                        doc2001_write_byte(mtd, cmd);
 716        }
 717}
 718
 719static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 720{
 721        struct nand_chip *this = mtd->priv;
 722        struct doc_priv *doc = this->priv;
 723        void __iomem *docptr = doc->virtadr;
 724
 725        /*
 726         * Must terminate write pipeline before sending any commands
 727         * to the device.
 728         */
 729        if (command == NAND_CMD_PAGEPROG) {
 730                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 731                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 732        }
 733
 734        /*
 735         * Write out the command to the device.
 736         */
 737        if (command == NAND_CMD_SEQIN) {
 738                int readcmd;
 739
 740                if (column >= mtd->writesize) {
 741                        /* OOB area */
 742                        column -= mtd->writesize;
 743                        readcmd = NAND_CMD_READOOB;
 744                } else if (column < 256) {
 745                        /* First 256 bytes --> READ0 */
 746                        readcmd = NAND_CMD_READ0;
 747                } else {
 748                        column -= 256;
 749                        readcmd = NAND_CMD_READ1;
 750                }
 751                WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 752        }
 753        WriteDOC(command, docptr, Mplus_FlashCmd);
 754        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 755        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 756
 757        if (column != -1 || page_addr != -1) {
 758                /* Serially input address */
 759                if (column != -1) {
 760                        /* Adjust columns for 16 bit buswidth */
 761                        if (this->options & NAND_BUSWIDTH_16)
 762                                column >>= 1;
 763                        WriteDOC(column, docptr, Mplus_FlashAddress);
 764                }
 765                if (page_addr != -1) {
 766                        WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 767                        WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 768                        /* One more address cycle for higher density devices */
 769                        if (this->chipsize & 0x0c000000) {
 770                                WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 771                                printk("high density\n");
 772                        }
 773                }
 774                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 775                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 776                /* deassert ALE */
 777                if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 778                    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 779                        WriteDOC(0, docptr, Mplus_FlashControl);
 780        }
 781
 782        /*
 783         * program and erase have their own busy handlers
 784         * status and sequential in needs no delay
 785         */
 786        switch (command) {
 787
 788        case NAND_CMD_PAGEPROG:
 789        case NAND_CMD_ERASE1:
 790        case NAND_CMD_ERASE2:
 791        case NAND_CMD_SEQIN:
 792        case NAND_CMD_STATUS:
 793                return;
 794
 795        case NAND_CMD_RESET:
 796                if (this->dev_ready)
 797                        break;
 798                udelay(this->chip_delay);
 799                WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 800                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 801                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 802                while (!(this->read_byte(mtd) & 0x40)) ;
 803                return;
 804
 805                /* This applies to read commands */
 806        default:
 807                /*
 808                 * If we don't have access to the busy pin, we apply the given
 809                 * command delay
 810                 */
 811                if (!this->dev_ready) {
 812                        udelay(this->chip_delay);
 813                        return;
 814                }
 815        }
 816
 817        /* Apply this short delay always to ensure that we do wait tWB in
 818         * any case on any machine. */
 819        ndelay(100);
 820        /* wait until command is processed */
 821        while (!this->dev_ready(mtd)) ;
 822}
 823
 824static int doc200x_dev_ready(struct mtd_info *mtd)
 825{
 826        struct nand_chip *this = mtd->priv;
 827        struct doc_priv *doc = this->priv;
 828        void __iomem *docptr = doc->virtadr;
 829
 830        if (DoC_is_MillenniumPlus(doc)) {
 831                /* 11.4.2 -- must NOP four times before checking FR/B# */
 832                DoC_Delay(doc, 4);
 833                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 834                        if (debug)
 835                                printk("not ready\n");
 836                        return 0;
 837                }
 838                if (debug)
 839                        printk("was ready\n");
 840                return 1;
 841        } else {
 842                /* 11.4.2 -- must NOP four times before checking FR/B# */
 843                DoC_Delay(doc, 4);
 844                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 845                        if (debug)
 846                                printk("not ready\n");
 847                        return 0;
 848                }
 849                /* 11.4.2 -- Must NOP twice if it's ready */
 850                DoC_Delay(doc, 2);
 851                if (debug)
 852                        printk("was ready\n");
 853                return 1;
 854        }
 855}
 856
 857static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 858{
 859        /* This is our last resort if we couldn't find or create a BBT.  Just
 860           pretend all blocks are good. */
 861        return 0;
 862}
 863
 864static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 865{
 866        struct nand_chip *this = mtd->priv;
 867        struct doc_priv *doc = this->priv;
 868        void __iomem *docptr = doc->virtadr;
 869
 870        /* Prime the ECC engine */
 871        switch (mode) {
 872        case NAND_ECC_READ:
 873                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 874                WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 875                break;
 876        case NAND_ECC_WRITE:
 877                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 878                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 879                break;
 880        }
 881}
 882
 883static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 884{
 885        struct nand_chip *this = mtd->priv;
 886        struct doc_priv *doc = this->priv;
 887        void __iomem *docptr = doc->virtadr;
 888
 889        /* Prime the ECC engine */
 890        switch (mode) {
 891        case NAND_ECC_READ:
 892                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 893                WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 894                break;
 895        case NAND_ECC_WRITE:
 896                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 897                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 898                break;
 899        }
 900}
 901
 902/* This code is only called on write */
 903static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 904{
 905        struct nand_chip *this = mtd->priv;
 906        struct doc_priv *doc = this->priv;
 907        void __iomem *docptr = doc->virtadr;
 908        int i;
 909        int emptymatch = 1;
 910
 911        /* flush the pipeline */
 912        if (DoC_is_2000(doc)) {
 913                WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 914                WriteDOC(0, docptr, 2k_CDSN_IO);
 915                WriteDOC(0, docptr, 2k_CDSN_IO);
 916                WriteDOC(0, docptr, 2k_CDSN_IO);
 917                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 918        } else if (DoC_is_MillenniumPlus(doc)) {
 919                WriteDOC(0, docptr, Mplus_NOP);
 920                WriteDOC(0, docptr, Mplus_NOP);
 921                WriteDOC(0, docptr, Mplus_NOP);
 922        } else {
 923                WriteDOC(0, docptr, NOP);
 924                WriteDOC(0, docptr, NOP);
 925                WriteDOC(0, docptr, NOP);
 926        }
 927
 928        for (i = 0; i < 6; i++) {
 929                if (DoC_is_MillenniumPlus(doc))
 930                        ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 931                else
 932                        ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 933                if (ecc_code[i] != empty_write_ecc[i])
 934                        emptymatch = 0;
 935        }
 936        if (DoC_is_MillenniumPlus(doc))
 937                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 938        else
 939                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 940#if 0
 941        /* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 942        if (emptymatch) {
 943                /* Note: this somewhat expensive test should not be triggered
 944                   often.  It could be optimized away by examining the data in
 945                   the writebuf routine, and remembering the result. */
 946                for (i = 0; i < 512; i++) {
 947                        if (dat[i] == 0xff)
 948                                continue;
 949                        emptymatch = 0;
 950                        break;
 951                }
 952        }
 953        /* If emptymatch still =1, we do have an all-0xff data buffer.
 954           Return all-0xff ecc value instead of the computed one, so
 955           it'll look just like a freshly-erased page. */
 956        if (emptymatch)
 957                memset(ecc_code, 0xff, 6);
 958#endif
 959        return 0;
 960}
 961
 962static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 963                                u_char *read_ecc, u_char *isnull)
 964{
 965        int i, ret = 0;
 966        struct nand_chip *this = mtd->priv;
 967        struct doc_priv *doc = this->priv;
 968        void __iomem *docptr = doc->virtadr;
 969        uint8_t calc_ecc[6];
 970        volatile u_char dummy;
 971        int emptymatch = 1;
 972
 973        /* flush the pipeline */
 974        if (DoC_is_2000(doc)) {
 975                dummy = ReadDOC(docptr, 2k_ECCStatus);
 976                dummy = ReadDOC(docptr, 2k_ECCStatus);
 977                dummy = ReadDOC(docptr, 2k_ECCStatus);
 978        } else if (DoC_is_MillenniumPlus(doc)) {
 979                dummy = ReadDOC(docptr, Mplus_ECCConf);
 980                dummy = ReadDOC(docptr, Mplus_ECCConf);
 981                dummy = ReadDOC(docptr, Mplus_ECCConf);
 982        } else {
 983                dummy = ReadDOC(docptr, ECCConf);
 984                dummy = ReadDOC(docptr, ECCConf);
 985                dummy = ReadDOC(docptr, ECCConf);
 986        }
 987
 988        /* Error occured ? */
 989        if (dummy & 0x80) {
 990                for (i = 0; i < 6; i++) {
 991                        if (DoC_is_MillenniumPlus(doc))
 992                                calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 993                        else
 994                                calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 995                        if (calc_ecc[i] != empty_read_syndrome[i])
 996                                emptymatch = 0;
 997                }
 998                /* If emptymatch=1, the read syndrome is consistent with an
 999                   all-0xff data and stored ecc block.  Check the stored ecc. */
1000                if (emptymatch) {
1001                        for (i = 0; i < 6; i++) {
1002                                if (read_ecc[i] == 0xff)
1003                                        continue;
1004                                emptymatch = 0;
1005                                break;
1006                        }
1007                }
1008                /* If emptymatch still =1, check the data block. */
1009                if (emptymatch) {
1010                        /* Note: this somewhat expensive test should not be triggered
1011                           often.  It could be optimized away by examining the data in
1012                           the readbuf routine, and remembering the result. */
1013                        for (i = 0; i < 512; i++) {
1014                                if (dat[i] == 0xff)
1015                                        continue;
1016                                emptymatch = 0;
1017                                break;
1018                        }
1019                }
1020                /* If emptymatch still =1, this is almost certainly a freshly-
1021                   erased block, in which case the ECC will not come out right.
1022                   We'll suppress the error and tell the caller everything's
1023                   OK.  Because it is. */
1024                if (!emptymatch)
1025                        ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1026                if (ret > 0)
1027                        printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1028        }
1029        if (DoC_is_MillenniumPlus(doc))
1030                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1031        else
1032                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1033        if (no_ecc_failures && (ret == -EBADMSG)) {
1034                printk(KERN_ERR "suppressing ECC failure\n");
1035                ret = 0;
1036        }
1037        return ret;
1038}
1039
1040//u_char mydatabuf[528];
1041
1042/* The strange out-of-order .oobfree list below is a (possibly unneeded)
1043 * attempt to retain compatibility.  It used to read:
1044 *      .oobfree = { {8, 8} }
1045 * Since that leaves two bytes unusable, it was changed.  But the following
1046 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1047 *      .oobfree = { {6, 10} }
1048 * jffs2 seems to handle the above gracefully, but the current scheme seems
1049 * safer.  The only problem with it is that any code that parses oobfree must
1050 * be able to handle out-of-order segments.
1051 */
1052static struct nand_ecclayout doc200x_oobinfo = {
1053        .eccbytes = 6,
1054        .eccpos = {0, 1, 2, 3, 4, 5},
1055        .oobfree = {{8, 8}, {6, 2}}
1056};
1057
1058/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1059   On sucessful return, buf will contain a copy of the media header for
1060   further processing.  id is the string to scan for, and will presumably be
1061   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1062   header.  The page #s of the found media headers are placed in mh0_page and
1063   mh1_page in the DOC private structure. */
1064static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1065{
1066        struct nand_chip *this = mtd->priv;
1067        struct doc_priv *doc = this->priv;
1068        unsigned offs;
1069        int ret;
1070        size_t retlen;
1071
1072        for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1073                ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1074                if (retlen != mtd->writesize)
1075                        continue;
1076                if (ret) {
1077                        printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1078                }
1079                if (memcmp(buf, id, 6))
1080                        continue;
1081                printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1082                if (doc->mh0_page == -1) {
1083                        doc->mh0_page = offs >> this->page_shift;
1084                        if (!findmirror)
1085                                return 1;
1086                        continue;
1087                }
1088                doc->mh1_page = offs >> this->page_shift;
1089                return 2;
1090        }
1091        if (doc->mh0_page == -1) {
1092                printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1093                return 0;
1094        }
1095        /* Only one mediaheader was found.  We want buf to contain a
1096           mediaheader on return, so we'll have to re-read the one we found. */
1097        offs = doc->mh0_page << this->page_shift;
1098        ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1099        if (retlen != mtd->writesize) {
1100                /* Insanity.  Give up. */
1101                printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1102                return 0;
1103        }
1104        return 1;
1105}
1106
1107static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1108{
1109        struct nand_chip *this = mtd->priv;
1110        struct doc_priv *doc = this->priv;
1111        int ret = 0;
1112        u_char *buf;
1113        struct NFTLMediaHeader *mh;
1114        const unsigned psize = 1 << this->page_shift;
1115        int numparts = 0;
1116        unsigned blocks, maxblocks;
1117        int offs, numheaders;
1118
1119        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1120        if (!buf) {
1121                printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1122                return 0;
1123        }
1124        if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1125                goto out;
1126        mh = (struct NFTLMediaHeader *)buf;
1127
1128        le16_to_cpus(&mh->NumEraseUnits);
1129        le16_to_cpus(&mh->FirstPhysicalEUN);
1130        le32_to_cpus(&mh->FormattedSize);
1131
1132        printk(KERN_INFO "    DataOrgID        = %s\n"
1133                         "    NumEraseUnits    = %d\n"
1134                         "    FirstPhysicalEUN = %d\n"
1135                         "    FormattedSize    = %d\n"
1136                         "    UnitSizeFactor   = %d\n",
1137                mh->DataOrgID, mh->NumEraseUnits,
1138                mh->FirstPhysicalEUN, mh->FormattedSize,
1139                mh->UnitSizeFactor);
1140
1141        blocks = mtd->size >> this->phys_erase_shift;
1142        maxblocks = min(32768U, mtd->erasesize - psize);
1143
1144        if (mh->UnitSizeFactor == 0x00) {
1145                /* Auto-determine UnitSizeFactor.  The constraints are:
1146                   - There can be at most 32768 virtual blocks.
1147                   - There can be at most (virtual block size - page size)
1148                   virtual blocks (because MediaHeader+BBT must fit in 1).
1149                 */
1150                mh->UnitSizeFactor = 0xff;
1151                while (blocks > maxblocks) {
1152                        blocks >>= 1;
1153                        maxblocks = min(32768U, (maxblocks << 1) + psize);
1154                        mh->UnitSizeFactor--;
1155                }
1156                printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1157        }
1158
1159        /* NOTE: The lines below modify internal variables of the NAND and MTD
1160           layers; variables with have already been configured by nand_scan.
1161           Unfortunately, we didn't know before this point what these values
1162           should be.  Thus, this code is somewhat dependant on the exact
1163           implementation of the NAND layer.  */
1164        if (mh->UnitSizeFactor != 0xff) {
1165                this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1166                mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1167                printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1168                blocks = mtd->size >> this->bbt_erase_shift;
1169                maxblocks = min(32768U, mtd->erasesize - psize);
1170        }
1171
1172        if (blocks > maxblocks) {
1173                printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1174                goto out;
1175        }
1176
1177        /* Skip past the media headers. */
1178        offs = max(doc->mh0_page, doc->mh1_page);
1179        offs <<= this->page_shift;
1180        offs += mtd->erasesize;
1181
1182        if (show_firmware_partition == 1) {
1183                parts[0].name = " DiskOnChip Firmware / Media Header partition";
1184                parts[0].offset = 0;
1185                parts[0].size = offs;
1186                numparts = 1;
1187        }
1188
1189        parts[numparts].name = " DiskOnChip BDTL partition";
1190        parts[numparts].offset = offs;
1191        parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1192
1193        offs += parts[numparts].size;
1194        numparts++;
1195
1196        if (offs < mtd->size) {
1197                parts[numparts].name = " DiskOnChip Remainder partition";
1198                parts[numparts].offset = offs;
1199                parts[numparts].size = mtd->size - offs;
1200                numparts++;
1201        }
1202
1203        ret = numparts;
1204 out:
1205        kfree(buf);
1206        return ret;
1207}
1208
1209/* This is a stripped-down copy of the code in inftlmount.c */
1210static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1211{
1212        struct nand_chip *this = mtd->priv;
1213        struct doc_priv *doc = this->priv;
1214        int ret = 0;
1215        u_char *buf;
1216        struct INFTLMediaHeader *mh;
1217        struct INFTLPartition *ip;
1218        int numparts = 0;
1219        int blocks;
1220        int vshift, lastvunit = 0;
1221        int i;
1222        int end = mtd->size;
1223
1224        if (inftl_bbt_write)
1225                end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1226
1227        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1228        if (!buf) {
1229                printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1230                return 0;
1231        }
1232
1233        if (!find_media_headers(mtd, buf, "BNAND", 0))
1234                goto out;
1235        doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1236        mh = (struct INFTLMediaHeader *)buf;
1237
1238        le32_to_cpus(&mh->NoOfBootImageBlocks);
1239        le32_to_cpus(&mh->NoOfBinaryPartitions);
1240        le32_to_cpus(&mh->NoOfBDTLPartitions);
1241        le32_to_cpus(&mh->BlockMultiplierBits);
1242        le32_to_cpus(&mh->FormatFlags);
1243        le32_to_cpus(&mh->PercentUsed);
1244
1245        printk(KERN_INFO "    bootRecordID          = %s\n"
1246                         "    NoOfBootImageBlocks   = %d\n"
1247                         "    NoOfBinaryPartitions  = %d\n"
1248                         "    NoOfBDTLPartitions    = %d\n"
1249                         "    BlockMultiplerBits    = %d\n"
1250                         "    FormatFlgs            = %d\n"
1251                         "    OsakVersion           = %d.%d.%d.%d\n"
1252                         "    PercentUsed           = %d\n",
1253                mh->bootRecordID, mh->NoOfBootImageBlocks,
1254                mh->NoOfBinaryPartitions,
1255                mh->NoOfBDTLPartitions,
1256                mh->BlockMultiplierBits, mh->FormatFlags,
1257                ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1258                ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1259                ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1260                ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1261                mh->PercentUsed);
1262
1263        vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1264
1265        blocks = mtd->size >> vshift;
1266        if (blocks > 32768) {
1267                printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1268                goto out;
1269        }
1270
1271        blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1272        if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1273                printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1274                goto out;
1275        }
1276
1277        /* Scan the partitions */
1278        for (i = 0; (i < 4); i++) {
1279                ip = &(mh->Partitions[i]);
1280                le32_to_cpus(&ip->virtualUnits);
1281                le32_to_cpus(&ip->firstUnit);
1282                le32_to_cpus(&ip->lastUnit);
1283                le32_to_cpus(&ip->flags);
1284                le32_to_cpus(&ip->spareUnits);
1285                le32_to_cpus(&ip->Reserved0);
1286
1287                printk(KERN_INFO        "    PARTITION[%d] ->\n"
1288                        "        virtualUnits    = %d\n"
1289                        "        firstUnit       = %d\n"
1290                        "        lastUnit        = %d\n"
1291                        "        flags           = 0x%x\n"
1292                        "        spareUnits      = %d\n",
1293                        i, ip->virtualUnits, ip->firstUnit,
1294                        ip->lastUnit, ip->flags,
1295                        ip->spareUnits);
1296
1297                if ((show_firmware_partition == 1) &&
1298                    (i == 0) && (ip->firstUnit > 0)) {
1299                        parts[0].name = " DiskOnChip IPL / Media Header partition";
1300                        parts[0].offset = 0;
1301                        parts[0].size = mtd->erasesize * ip->firstUnit;
1302                        numparts = 1;
1303                }
1304
1305                if (ip->flags & INFTL_BINARY)
1306                        parts[numparts].name = " DiskOnChip BDK partition";
1307                else
1308                        parts[numparts].name = " DiskOnChip BDTL partition";
1309                parts[numparts].offset = ip->firstUnit << vshift;
1310                parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1311                numparts++;
1312                if (ip->lastUnit > lastvunit)
1313                        lastvunit = ip->lastUnit;
1314                if (ip->flags & INFTL_LAST)
1315                        break;
1316        }
1317        lastvunit++;
1318        if ((lastvunit << vshift) < end) {
1319                parts[numparts].name = " DiskOnChip Remainder partition";
1320                parts[numparts].offset = lastvunit << vshift;
1321                parts[numparts].size = end - parts[numparts].offset;
1322                numparts++;
1323        }
1324        ret = numparts;
1325 out:
1326        kfree(buf);
1327        return ret;
1328}
1329
1330static int __init nftl_scan_bbt(struct mtd_info *mtd)
1331{
1332        int ret, numparts;
1333        struct nand_chip *this = mtd->priv;
1334        struct doc_priv *doc = this->priv;
1335        struct mtd_partition parts[2];
1336
1337        memset((char *)parts, 0, sizeof(parts));
1338        /* On NFTL, we have to find the media headers before we can read the
1339           BBTs, since they're stored in the media header eraseblocks. */
1340        numparts = nftl_partscan(mtd, parts);
1341        if (!numparts)
1342                return -EIO;
1343        this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1344                                NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1345                                NAND_BBT_VERSION;
1346        this->bbt_td->veroffs = 7;
1347        this->bbt_td->pages[0] = doc->mh0_page + 1;
1348        if (doc->mh1_page != -1) {
1349                this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1350                                        NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1351                                        NAND_BBT_VERSION;
1352                this->bbt_md->veroffs = 7;
1353                this->bbt_md->pages[0] = doc->mh1_page + 1;
1354        } else {
1355                this->bbt_md = NULL;
1356        }
1357
1358        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1359           At least as nand_bbt.c is currently written. */
1360        if ((ret = nand_scan_bbt(mtd, NULL)))
1361                return ret;
1362        add_mtd_device(mtd);
1363#ifdef CONFIG_MTD_PARTITIONS
1364        if (!no_autopart)
1365                add_mtd_partitions(mtd, parts, numparts);
1366#endif
1367        return 0;
1368}
1369
1370static int __init inftl_scan_bbt(struct mtd_info *mtd)
1371{
1372        int ret, numparts;
1373        struct nand_chip *this = mtd->priv;
1374        struct doc_priv *doc = this->priv;
1375        struct mtd_partition parts[5];
1376
1377        if (this->numchips > doc->chips_per_floor) {
1378                printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1379                return -EIO;
1380        }
1381
1382        if (DoC_is_MillenniumPlus(doc)) {
1383                this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1384                if (inftl_bbt_write)
1385                        this->bbt_td->options |= NAND_BBT_WRITE;
1386                this->bbt_td->pages[0] = 2;
1387                this->bbt_md = NULL;
1388        } else {
1389                this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1390                if (inftl_bbt_write)
1391                        this->bbt_td->options |= NAND_BBT_WRITE;
1392                this->bbt_td->offs = 8;
1393                this->bbt_td->len = 8;
1394                this->bbt_td->veroffs = 7;
1395                this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1396                this->bbt_td->reserved_block_code = 0x01;
1397                this->bbt_td->pattern = "MSYS_BBT";
1398
1399                this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1400                if (inftl_bbt_write)
1401                        this->bbt_md->options |= NAND_BBT_WRITE;
1402                this->bbt_md->offs = 8;
1403                this->bbt_md->len = 8;
1404                this->bbt_md->veroffs = 7;
1405                this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1406                this->bbt_md->reserved_block_code = 0x01;
1407                this->bbt_md->pattern = "TBB_SYSM";
1408        }
1409
1410        /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1411           At least as nand_bbt.c is currently written. */
1412        if ((ret = nand_scan_bbt(mtd, NULL)))
1413                return ret;
1414        memset((char *)parts, 0, sizeof(parts));
1415        numparts = inftl_partscan(mtd, parts);
1416        /* At least for now, require the INFTL Media Header.  We could probably
1417           do without it for non-INFTL use, since all it gives us is
1418           autopartitioning, but I want to give it more thought. */
1419        if (!numparts)
1420                return -EIO;
1421        add_mtd_device(mtd);
1422#ifdef CONFIG_MTD_PARTITIONS
1423        if (!no_autopart)
1424                add_mtd_partitions(mtd, parts, numparts);
1425#endif
1426        return 0;
1427}
1428
1429static inline int __init doc2000_init(struct mtd_info *mtd)
1430{
1431        struct nand_chip *this = mtd->priv;
1432        struct doc_priv *doc = this->priv;
1433
1434        this->read_byte = doc2000_read_byte;
1435        this->write_buf = doc2000_writebuf;
1436        this->read_buf = doc2000_readbuf;
1437        this->verify_buf = doc2000_verifybuf;
1438        this->scan_bbt = nftl_scan_bbt;
1439
1440        doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1441        doc2000_count_chips(mtd);
1442        mtd->name = "DiskOnChip 2000 (NFTL Model)";
1443        return (4 * doc->chips_per_floor);
1444}
1445
1446static inline int __init doc2001_init(struct mtd_info *mtd)
1447{
1448        struct nand_chip *this = mtd->priv;
1449        struct doc_priv *doc = this->priv;
1450
1451        this->read_byte = doc2001_read_byte;
1452        this->write_buf = doc2001_writebuf;
1453        this->read_buf = doc2001_readbuf;
1454        this->verify_buf = doc2001_verifybuf;
1455
1456        ReadDOC(doc->virtadr, ChipID);
1457        ReadDOC(doc->virtadr, ChipID);
1458        ReadDOC(doc->virtadr, ChipID);
1459        if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1460                /* It's not a Millennium; it's one of the newer
1461                   DiskOnChip 2000 units with a similar ASIC.
1462                   Treat it like a Millennium, except that it
1463                   can have multiple chips. */
1464                doc2000_count_chips(mtd);
1465                mtd->name = "DiskOnChip 2000 (INFTL Model)";
1466                this->scan_bbt = inftl_scan_bbt;
1467                return (4 * doc->chips_per_floor);
1468        } else {
1469                /* Bog-standard Millennium */
1470                doc->chips_per_floor = 1;
1471                mtd->name = "DiskOnChip Millennium";
1472                this->scan_bbt = nftl_scan_bbt;
1473                return 1;
1474        }
1475}
1476
1477static inline int __init doc2001plus_init(struct mtd_info *mtd)
1478{
1479        struct nand_chip *this = mtd->priv;
1480        struct doc_priv *doc = this->priv;
1481
1482        this->read_byte = doc2001plus_read_byte;
1483        this->write_buf = doc2001plus_writebuf;
1484        this->read_buf = doc2001plus_readbuf;
1485        this->verify_buf = doc2001plus_verifybuf;
1486        this->scan_bbt = inftl_scan_bbt;
1487        this->cmd_ctrl = NULL;
1488        this->select_chip = doc2001plus_select_chip;
1489        this->cmdfunc = doc2001plus_command;
1490        this->ecc.hwctl = doc2001plus_enable_hwecc;
1491
1492        doc->chips_per_floor = 1;
1493        mtd->name = "DiskOnChip Millennium Plus";
1494
1495        return 1;
1496}
1497
1498static int __init doc_probe(unsigned long physadr)
1499{
1500        unsigned char ChipID;
1501        struct mtd_info *mtd;
1502        struct nand_chip *nand;
1503        struct doc_priv *doc;
1504        void __iomem *virtadr;
1505        unsigned char save_control;
1506        unsigned char tmp, tmpb, tmpc;
1507        int reg, len, numchips;
1508        int ret = 0;
1509
1510        virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1511        if (!virtadr) {
1512                printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1513                return -EIO;
1514        }
1515
1516        /* It's not possible to cleanly detect the DiskOnChip - the
1517         * bootup procedure will put the device into reset mode, and
1518         * it's not possible to talk to it without actually writing
1519         * to the DOCControl register. So we store the current contents
1520         * of the DOCControl register's location, in case we later decide
1521         * that it's not a DiskOnChip, and want to put it back how we
1522         * found it.
1523         */
1524        save_control = ReadDOC(virtadr, DOCControl);
1525
1526        /* Reset the DiskOnChip ASIC */
1527        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1528        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1529
1530        /* Enable the DiskOnChip ASIC */
1531        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1532        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1533
1534        ChipID = ReadDOC(virtadr, ChipID);
1535
1536        switch (ChipID) {
1537        case DOC_ChipID_Doc2k:
1538                reg = DoC_2k_ECCStatus;
1539                break;
1540        case DOC_ChipID_DocMil:
1541                reg = DoC_ECCConf;
1542                break;
1543        case DOC_ChipID_DocMilPlus16:
1544        case DOC_ChipID_DocMilPlus32:
1545        case 0:
1546                /* Possible Millennium Plus, need to do more checks */
1547                /* Possibly release from power down mode */
1548                for (tmp = 0; (tmp < 4); tmp++)
1549                        ReadDOC(virtadr, Mplus_Power);
1550
1551                /* Reset the Millennium Plus ASIC */
1552                tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1553                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1554                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1555
1556                mdelay(1);
1557                /* Enable the Millennium Plus ASIC */
1558                tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1559                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1560                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1561                mdelay(1);
1562
1563                ChipID = ReadDOC(virtadr, ChipID);
1564
1565                switch (ChipID) {
1566                case DOC_ChipID_DocMilPlus16:
1567                        reg = DoC_Mplus_Toggle;
1568                        break;
1569                case DOC_ChipID_DocMilPlus32:
1570                        printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1571                default:
1572                        ret = -ENODEV;
1573                        goto notfound;
1574                }
1575                break;
1576
1577        default:
1578                ret = -ENODEV;
1579                goto notfound;
1580        }
1581        /* Check the TOGGLE bit in the ECC register */
1582        tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1583        tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1584        tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1585        if ((tmp == tmpb) || (tmp != tmpc)) {
1586                printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1587                ret = -ENODEV;
1588                goto notfound;
1589        }
1590
1591        for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1592                unsigned char oldval;
1593                unsigned char newval;
1594                nand = mtd->priv;
1595                doc = nand->priv;
1596                /* Use the alias resolution register to determine if this is
1597                   in fact the same DOC aliased to a new address.  If writes
1598                   to one chip's alias resolution register change the value on
1599                   the other chip, they're the same chip. */
1600                if (ChipID == DOC_ChipID_DocMilPlus16) {
1601                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1602                        newval = ReadDOC(virtadr, Mplus_AliasResolution);
1603                } else {
1604                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1605                        newval = ReadDOC(virtadr, AliasResolution);
1606                }
1607                if (oldval != newval)
1608                        continue;
1609                if (ChipID == DOC_ChipID_DocMilPlus16) {
1610                        WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1611                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1612                        WriteDOC(newval, virtadr, Mplus_AliasResolution);       // restore it
1613                } else {
1614                        WriteDOC(~newval, virtadr, AliasResolution);
1615                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1616                        WriteDOC(newval, virtadr, AliasResolution);     // restore it
1617                }
1618                newval = ~newval;
1619                if (oldval == newval) {
1620                        printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1621                        goto notfound;
1622                }
1623        }
1624
1625        printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1626
1627        len = sizeof(struct mtd_info) +
1628            sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1629        mtd = kzalloc(len, GFP_KERNEL);
1630        if (!mtd) {
1631                printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1632                ret = -ENOMEM;
1633                goto fail;
1634        }
1635
1636        nand                    = (struct nand_chip *) (mtd + 1);
1637        doc                     = (struct doc_priv *) (nand + 1);
1638        nand->bbt_td            = (struct nand_bbt_descr *) (doc + 1);
1639        nand->bbt_md            = nand->bbt_td + 1;
1640
1641        mtd->priv               = nand;
1642        mtd->owner              = THIS_MODULE;
1643
1644        nand->priv              = doc;
1645        nand->select_chip       = doc200x_select_chip;
1646        nand->cmd_ctrl          = doc200x_hwcontrol;
1647        nand->dev_ready         = doc200x_dev_ready;
1648        nand->waitfunc          = doc200x_wait;
1649        nand->block_bad         = doc200x_block_bad;
1650        nand->ecc.hwctl         = doc200x_enable_hwecc;
1651        nand->ecc.calculate     = doc200x_calculate_ecc;
1652        nand->ecc.correct       = doc200x_correct_data;
1653
1654        nand->ecc.layout        = &doc200x_oobinfo;
1655        nand->ecc.mode          = NAND_ECC_HW_SYNDROME;
1656        nand->ecc.size          = 512;
1657        nand->ecc.bytes         = 6;
1658        nand->options           = NAND_USE_FLASH_BBT;
1659
1660        doc->physadr            = physadr;
1661        doc->virtadr            = virtadr;
1662        doc->ChipID             = ChipID;
1663        doc->curfloor           = -1;
1664        doc->curchip            = -1;
1665        doc->mh0_page           = -1;
1666        doc->mh1_page           = -1;
1667        doc->nextdoc            = doclist;
1668
1669        if (ChipID == DOC_ChipID_Doc2k)
1670                numchips = doc2000_init(mtd);
1671        else if (ChipID == DOC_ChipID_DocMilPlus16)
1672                numchips = doc2001plus_init(mtd);
1673        else
1674                numchips = doc2001_init(mtd);
1675
1676        if ((ret = nand_scan(mtd, numchips))) {
1677                /* DBB note: i believe nand_release is necessary here, as
1678                   buffers may have been allocated in nand_base.  Check with
1679                   Thomas. FIX ME! */
1680                /* nand_release will call del_mtd_device, but we haven't yet
1681                   added it.  This is handled without incident by
1682                   del_mtd_device, as far as I can tell. */
1683                nand_release(mtd);
1684                kfree(mtd);
1685                goto fail;
1686        }
1687
1688        /* Success! */
1689        doclist = mtd;
1690        return 0;
1691
1692 notfound:
1693        /* Put back the contents of the DOCControl register, in case it's not
1694           actually a DiskOnChip.  */
1695        WriteDOC(save_control, virtadr, DOCControl);
1696 fail:
1697        iounmap(virtadr);
1698        return ret;
1699}
1700
1701static void release_nanddoc(void)
1702{
1703        struct mtd_info *mtd, *nextmtd;
1704        struct nand_chip *nand;
1705        struct doc_priv *doc;
1706
1707        for (mtd = doclist; mtd; mtd = nextmtd) {
1708                nand = mtd->priv;
1709                doc = nand->priv;
1710
1711                nextmtd = doc->nextdoc;
1712                nand_release(mtd);
1713                iounmap(doc->virtadr);
1714                kfree(mtd);
1715        }
1716}
1717
1718static int __init init_nanddoc(void)
1719{
1720        int i, ret = 0;
1721
1722        /* We could create the decoder on demand, if memory is a concern.
1723         * This way we have it handy, if an error happens
1724         *
1725         * Symbolsize is 10 (bits)
1726         * Primitve polynomial is x^10+x^3+1
1727         * first consecutive root is 510
1728         * primitve element to generate roots = 1
1729         * generator polinomial degree = 4
1730         */
1731        rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1732        if (!rs_decoder) {
1733                printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1734                return -ENOMEM;
1735        }
1736
1737        if (doc_config_location) {
1738                printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1739                ret = doc_probe(doc_config_location);
1740                if (ret < 0)
1741                        goto outerr;
1742        } else {
1743                for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1744                        doc_probe(doc_locations[i]);
1745                }
1746        }
1747        /* No banner message any more. Print a message if no DiskOnChip
1748           found, so the user knows we at least tried. */
1749        if (!doclist) {
1750                printk(KERN_INFO "No valid DiskOnChip devices found\n");
1751                ret = -ENODEV;
1752                goto outerr;
1753        }
1754        return 0;
1755 outerr:
1756        free_rs(rs_decoder);
1757        return ret;
1758}
1759
1760static void __exit cleanup_nanddoc(void)
1761{
1762        /* Cleanup the nand/DoC resources */
1763        release_nanddoc();
1764
1765        /* Free the reed solomon resources */
1766        if (rs_decoder) {
1767                free_rs(rs_decoder);
1768        }
1769}
1770
1771module_init(init_nanddoc);
1772module_exit(cleanup_nanddoc);
1773
1774MODULE_LICENSE("GPL");
1775MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1776MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1777