linux/drivers/mtd/nand/fsl_elbc_nand.c
<<
>>
Prefs
   1/* Freescale Enhanced Local Bus Controller NAND driver
   2 *
   3 * Copyright (c) 2006-2007 Freescale Semiconductor
   4 *
   5 * Authors: Nick Spence <nick.spence@freescale.com>,
   6 *          Scott Wood <scottwood@freescale.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/init.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/ioport.h>
  29#include <linux/of_platform.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32
  33#include <linux/mtd/mtd.h>
  34#include <linux/mtd/nand.h>
  35#include <linux/mtd/nand_ecc.h>
  36#include <linux/mtd/partitions.h>
  37
  38#include <asm/io.h>
  39#include <asm/fsl_lbc.h>
  40
  41#define MAX_BANKS 8
  42#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
  43#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
  44
  45struct fsl_elbc_ctrl;
  46
  47/* mtd information per set */
  48
  49struct fsl_elbc_mtd {
  50        struct mtd_info mtd;
  51        struct nand_chip chip;
  52        struct fsl_elbc_ctrl *ctrl;
  53
  54        struct device *dev;
  55        int bank;               /* Chip select bank number           */
  56        u8 __iomem *vbase;      /* Chip select base virtual address  */
  57        int page_size;          /* NAND page size (0=512, 1=2048)    */
  58        unsigned int fmr;       /* FCM Flash Mode Register value     */
  59};
  60
  61/* overview of the fsl elbc controller */
  62
  63struct fsl_elbc_ctrl {
  64        struct nand_hw_control controller;
  65        struct fsl_elbc_mtd *chips[MAX_BANKS];
  66
  67        /* device info */
  68        struct device *dev;
  69        struct fsl_lbc_regs __iomem *regs;
  70        int irq;
  71        wait_queue_head_t irq_wait;
  72        unsigned int irq_status; /* status read from LTESR by irq handler */
  73        u8 __iomem *addr;        /* Address of assigned FCM buffer        */
  74        unsigned int page;       /* Last page written to / read from      */
  75        unsigned int read_bytes; /* Number of bytes read during command   */
  76        unsigned int column;     /* Saved column from SEQIN               */
  77        unsigned int index;      /* Pointer to next byte to 'read'        */
  78        unsigned int status;     /* status read from LTESR after last op  */
  79        unsigned int mdr;        /* UPM/FCM Data Register value           */
  80        unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
  81        unsigned int oob;        /* Non zero if operating on OOB data     */
  82        char *oob_poi;           /* Place to write ECC after read back    */
  83};
  84
  85/* These map to the positions used by the FCM hardware ECC generator */
  86
  87/* Small Page FLASH with FMR[ECCM] = 0 */
  88static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
  89        .eccbytes = 3,
  90        .eccpos = {6, 7, 8},
  91        .oobfree = { {0, 5}, {9, 7} },
  92};
  93
  94/* Small Page FLASH with FMR[ECCM] = 1 */
  95static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
  96        .eccbytes = 3,
  97        .eccpos = {8, 9, 10},
  98        .oobfree = { {0, 5}, {6, 2}, {11, 5} },
  99};
 100
 101/* Large Page FLASH with FMR[ECCM] = 0 */
 102static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
 103        .eccbytes = 12,
 104        .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
 105        .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
 106};
 107
 108/* Large Page FLASH with FMR[ECCM] = 1 */
 109static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
 110        .eccbytes = 12,
 111        .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
 112        .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
 113};
 114
 115/*
 116 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
 117 * 1, so we have to adjust bad block pattern. This pattern should be used for
 118 * x8 chips only. So far hardware does not support x16 chips anyway.
 119 */
 120static u8 scan_ff_pattern[] = { 0xff, };
 121
 122static struct nand_bbt_descr largepage_memorybased = {
 123        .options = 0,
 124        .offs = 0,
 125        .len = 1,
 126        .pattern = scan_ff_pattern,
 127};
 128
 129/*
 130 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
 131 * interfere with ECC positions, that's why we implement our own descriptors.
 132 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
 133 */
 134static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 135static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 136
 137static struct nand_bbt_descr bbt_main_descr = {
 138        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 139                   NAND_BBT_2BIT | NAND_BBT_VERSION,
 140        .offs = 11,
 141        .len = 4,
 142        .veroffs = 15,
 143        .maxblocks = 4,
 144        .pattern = bbt_pattern,
 145};
 146
 147static struct nand_bbt_descr bbt_mirror_descr = {
 148        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
 149                   NAND_BBT_2BIT | NAND_BBT_VERSION,
 150        .offs = 11,
 151        .len = 4,
 152        .veroffs = 15,
 153        .maxblocks = 4,
 154        .pattern = mirror_pattern,
 155};
 156
 157/*=================================*/
 158
 159/*
 160 * Set up the FCM hardware block and page address fields, and the fcm
 161 * structure addr field to point to the correct FCM buffer in memory
 162 */
 163static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 164{
 165        struct nand_chip *chip = mtd->priv;
 166        struct fsl_elbc_mtd *priv = chip->priv;
 167        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 168        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 169        int buf_num;
 170
 171        ctrl->page = page_addr;
 172
 173        out_be32(&lbc->fbar,
 174                 page_addr >> (chip->phys_erase_shift - chip->page_shift));
 175
 176        if (priv->page_size) {
 177                out_be32(&lbc->fpar,
 178                         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
 179                         (oob ? FPAR_LP_MS : 0) | column);
 180                buf_num = (page_addr & 1) << 2;
 181        } else {
 182                out_be32(&lbc->fpar,
 183                         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
 184                         (oob ? FPAR_SP_MS : 0) | column);
 185                buf_num = page_addr & 7;
 186        }
 187
 188        ctrl->addr = priv->vbase + buf_num * 1024;
 189        ctrl->index = column;
 190
 191        /* for OOB data point to the second half of the buffer */
 192        if (oob)
 193                ctrl->index += priv->page_size ? 2048 : 512;
 194
 195        dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
 196                            "index %x, pes %d ps %d\n",
 197                 buf_num, ctrl->addr, priv->vbase, ctrl->index,
 198                 chip->phys_erase_shift, chip->page_shift);
 199}
 200
 201/*
 202 * execute FCM command and wait for it to complete
 203 */
 204static int fsl_elbc_run_command(struct mtd_info *mtd)
 205{
 206        struct nand_chip *chip = mtd->priv;
 207        struct fsl_elbc_mtd *priv = chip->priv;
 208        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 209        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 210
 211        /* Setup the FMR[OP] to execute without write protection */
 212        out_be32(&lbc->fmr, priv->fmr | 3);
 213        if (ctrl->use_mdr)
 214                out_be32(&lbc->mdr, ctrl->mdr);
 215
 216        dev_vdbg(ctrl->dev,
 217                 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
 218                 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
 219        dev_vdbg(ctrl->dev,
 220                 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
 221                 "fbcr=%08x bank=%d\n",
 222                 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
 223                 in_be32(&lbc->fbcr), priv->bank);
 224
 225        ctrl->irq_status = 0;
 226        /* execute special operation */
 227        out_be32(&lbc->lsor, priv->bank);
 228
 229        /* wait for FCM complete flag or timeout */
 230        wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
 231                           FCM_TIMEOUT_MSECS * HZ/1000);
 232        ctrl->status = ctrl->irq_status;
 233
 234        /* store mdr value in case it was needed */
 235        if (ctrl->use_mdr)
 236                ctrl->mdr = in_be32(&lbc->mdr);
 237
 238        ctrl->use_mdr = 0;
 239
 240        dev_vdbg(ctrl->dev,
 241                 "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
 242                 ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
 243
 244        /* returns 0 on success otherwise non-zero) */
 245        return ctrl->status == LTESR_CC ? 0 : -EIO;
 246}
 247
 248static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
 249{
 250        struct fsl_elbc_mtd *priv = chip->priv;
 251        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 252        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 253
 254        if (priv->page_size) {
 255                out_be32(&lbc->fir,
 256                         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 257                         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 258                         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 259                         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
 260                         (FIR_OP_RBW << FIR_OP4_SHIFT));
 261
 262                out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
 263                                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
 264        } else {
 265                out_be32(&lbc->fir,
 266                         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 267                         (FIR_OP_CA  << FIR_OP1_SHIFT) |
 268                         (FIR_OP_PA  << FIR_OP2_SHIFT) |
 269                         (FIR_OP_RBW << FIR_OP3_SHIFT));
 270
 271                if (oob)
 272                        out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
 273                else
 274                        out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
 275        }
 276}
 277
 278/* cmdfunc send commands to the FCM */
 279static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
 280                             int column, int page_addr)
 281{
 282        struct nand_chip *chip = mtd->priv;
 283        struct fsl_elbc_mtd *priv = chip->priv;
 284        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 285        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 286
 287        ctrl->use_mdr = 0;
 288
 289        /* clear the read buffer */
 290        ctrl->read_bytes = 0;
 291        if (command != NAND_CMD_PAGEPROG)
 292                ctrl->index = 0;
 293
 294        switch (command) {
 295        /* READ0 and READ1 read the entire buffer to use hardware ECC. */
 296        case NAND_CMD_READ1:
 297                column += 256;
 298
 299        /* fall-through */
 300        case NAND_CMD_READ0:
 301                dev_dbg(ctrl->dev,
 302                        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
 303                        " 0x%x, column: 0x%x.\n", page_addr, column);
 304
 305
 306                out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
 307                set_addr(mtd, 0, page_addr, 0);
 308
 309                ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 310                ctrl->index += column;
 311
 312                fsl_elbc_do_read(chip, 0);
 313                fsl_elbc_run_command(mtd);
 314                return;
 315
 316        /* READOOB reads only the OOB because no ECC is performed. */
 317        case NAND_CMD_READOOB:
 318                dev_vdbg(ctrl->dev,
 319                         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
 320                         " 0x%x, column: 0x%x.\n", page_addr, column);
 321
 322                out_be32(&lbc->fbcr, mtd->oobsize - column);
 323                set_addr(mtd, column, page_addr, 1);
 324
 325                ctrl->read_bytes = mtd->writesize + mtd->oobsize;
 326
 327                fsl_elbc_do_read(chip, 1);
 328                fsl_elbc_run_command(mtd);
 329                return;
 330
 331        /* READID must read all 5 possible bytes while CEB is active */
 332        case NAND_CMD_READID:
 333                dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
 334
 335                out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 336                                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
 337                                    (FIR_OP_RBW << FIR_OP2_SHIFT));
 338                out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
 339                /* 5 bytes for manuf, device and exts */
 340                out_be32(&lbc->fbcr, 5);
 341                ctrl->read_bytes = 5;
 342                ctrl->use_mdr = 1;
 343                ctrl->mdr = 0;
 344
 345                set_addr(mtd, 0, 0, 0);
 346                fsl_elbc_run_command(mtd);
 347                return;
 348
 349        /* ERASE1 stores the block and page address */
 350        case NAND_CMD_ERASE1:
 351                dev_vdbg(ctrl->dev,
 352                         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
 353                         "page_addr: 0x%x.\n", page_addr);
 354                set_addr(mtd, 0, page_addr, 0);
 355                return;
 356
 357        /* ERASE2 uses the block and page address from ERASE1 */
 358        case NAND_CMD_ERASE2:
 359                dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
 360
 361                out_be32(&lbc->fir,
 362                         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 363                         (FIR_OP_PA  << FIR_OP1_SHIFT) |
 364                         (FIR_OP_CM1 << FIR_OP2_SHIFT));
 365
 366                out_be32(&lbc->fcr,
 367                         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
 368                         (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
 369
 370                out_be32(&lbc->fbcr, 0);
 371                ctrl->read_bytes = 0;
 372
 373                fsl_elbc_run_command(mtd);
 374                return;
 375
 376        /* SEQIN sets up the addr buffer and all registers except the length */
 377        case NAND_CMD_SEQIN: {
 378                __be32 fcr;
 379                dev_vdbg(ctrl->dev,
 380                         "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
 381                         "page_addr: 0x%x, column: 0x%x.\n",
 382                         page_addr, column);
 383
 384                ctrl->column = column;
 385                ctrl->oob = 0;
 386
 387                if (priv->page_size) {
 388                        fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
 389                              (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
 390
 391                        out_be32(&lbc->fir,
 392                                 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 393                                 (FIR_OP_CA  << FIR_OP1_SHIFT) |
 394                                 (FIR_OP_PA  << FIR_OP2_SHIFT) |
 395                                 (FIR_OP_WB  << FIR_OP3_SHIFT) |
 396                                 (FIR_OP_CW1 << FIR_OP4_SHIFT));
 397                } else {
 398                        fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
 399                              (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
 400
 401                        out_be32(&lbc->fir,
 402                                 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 403                                 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
 404                                 (FIR_OP_CA  << FIR_OP2_SHIFT) |
 405                                 (FIR_OP_PA  << FIR_OP3_SHIFT) |
 406                                 (FIR_OP_WB  << FIR_OP4_SHIFT) |
 407                                 (FIR_OP_CW1 << FIR_OP5_SHIFT));
 408
 409                        if (column >= mtd->writesize) {
 410                                /* OOB area --> READOOB */
 411                                column -= mtd->writesize;
 412                                fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
 413                                ctrl->oob = 1;
 414                        } else if (column < 256) {
 415                                /* First 256 bytes --> READ0 */
 416                                fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
 417                        } else {
 418                                /* Second 256 bytes --> READ1 */
 419                                fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
 420                        }
 421                }
 422
 423                out_be32(&lbc->fcr, fcr);
 424                set_addr(mtd, column, page_addr, ctrl->oob);
 425                return;
 426        }
 427
 428        /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
 429        case NAND_CMD_PAGEPROG: {
 430                int full_page;
 431                dev_vdbg(ctrl->dev,
 432                         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
 433                         "writing %d bytes.\n", ctrl->index);
 434
 435                /* if the write did not start at 0 or is not a full page
 436                 * then set the exact length, otherwise use a full page
 437                 * write so the HW generates the ECC.
 438                 */
 439                if (ctrl->oob || ctrl->column != 0 ||
 440                    ctrl->index != mtd->writesize + mtd->oobsize) {
 441                        out_be32(&lbc->fbcr, ctrl->index);
 442                        full_page = 0;
 443                } else {
 444                        out_be32(&lbc->fbcr, 0);
 445                        full_page = 1;
 446                }
 447
 448                fsl_elbc_run_command(mtd);
 449
 450                /* Read back the page in order to fill in the ECC for the
 451                 * caller.  Is this really needed?
 452                 */
 453                if (full_page && ctrl->oob_poi) {
 454                        out_be32(&lbc->fbcr, 3);
 455                        set_addr(mtd, 6, page_addr, 1);
 456
 457                        ctrl->read_bytes = mtd->writesize + 9;
 458
 459                        fsl_elbc_do_read(chip, 1);
 460                        fsl_elbc_run_command(mtd);
 461
 462                        memcpy_fromio(ctrl->oob_poi + 6,
 463                                      &ctrl->addr[ctrl->index], 3);
 464                        ctrl->index += 3;
 465                }
 466
 467                ctrl->oob_poi = NULL;
 468                return;
 469        }
 470
 471        /* CMD_STATUS must read the status byte while CEB is active */
 472        /* Note - it does not wait for the ready line */
 473        case NAND_CMD_STATUS:
 474                out_be32(&lbc->fir,
 475                         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
 476                         (FIR_OP_RBW << FIR_OP1_SHIFT));
 477                out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 478                out_be32(&lbc->fbcr, 1);
 479                set_addr(mtd, 0, 0, 0);
 480                ctrl->read_bytes = 1;
 481
 482                fsl_elbc_run_command(mtd);
 483
 484                /* The chip always seems to report that it is
 485                 * write-protected, even when it is not.
 486                 */
 487                setbits8(ctrl->addr, NAND_STATUS_WP);
 488                return;
 489
 490        /* RESET without waiting for the ready line */
 491        case NAND_CMD_RESET:
 492                dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
 493                out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
 494                out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
 495                fsl_elbc_run_command(mtd);
 496                return;
 497
 498        default:
 499                dev_err(ctrl->dev,
 500                        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
 501                        command);
 502        }
 503}
 504
 505static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
 506{
 507        /* The hardware does not seem to support multiple
 508         * chips per bank.
 509         */
 510}
 511
 512/*
 513 * Write buf to the FCM Controller Data Buffer
 514 */
 515static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 516{
 517        struct nand_chip *chip = mtd->priv;
 518        struct fsl_elbc_mtd *priv = chip->priv;
 519        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 520        unsigned int bufsize = mtd->writesize + mtd->oobsize;
 521
 522        if (len <= 0) {
 523                dev_err(ctrl->dev, "write_buf of %d bytes", len);
 524                ctrl->status = 0;
 525                return;
 526        }
 527
 528        if ((unsigned int)len > bufsize - ctrl->index) {
 529                dev_err(ctrl->dev,
 530                        "write_buf beyond end of buffer "
 531                        "(%d requested, %u available)\n",
 532                        len, bufsize - ctrl->index);
 533                len = bufsize - ctrl->index;
 534        }
 535
 536        memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
 537        /*
 538         * This is workaround for the weird elbc hangs during nand write,
 539         * Scott Wood says: "...perhaps difference in how long it takes a
 540         * write to make it through the localbus compared to a write to IMMR
 541         * is causing problems, and sync isn't helping for some reason."
 542         * Reading back the last byte helps though.
 543         */
 544        in_8(&ctrl->addr[ctrl->index] + len - 1);
 545
 546        ctrl->index += len;
 547}
 548
 549/*
 550 * read a byte from either the FCM hardware buffer if it has any data left
 551 * otherwise issue a command to read a single byte.
 552 */
 553static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
 554{
 555        struct nand_chip *chip = mtd->priv;
 556        struct fsl_elbc_mtd *priv = chip->priv;
 557        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 558
 559        /* If there are still bytes in the FCM, then use the next byte. */
 560        if (ctrl->index < ctrl->read_bytes)
 561                return in_8(&ctrl->addr[ctrl->index++]);
 562
 563        dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
 564        return ERR_BYTE;
 565}
 566
 567/*
 568 * Read from the FCM Controller Data Buffer
 569 */
 570static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 571{
 572        struct nand_chip *chip = mtd->priv;
 573        struct fsl_elbc_mtd *priv = chip->priv;
 574        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 575        int avail;
 576
 577        if (len < 0)
 578                return;
 579
 580        avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
 581        memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
 582        ctrl->index += avail;
 583
 584        if (len > avail)
 585                dev_err(ctrl->dev,
 586                        "read_buf beyond end of buffer "
 587                        "(%d requested, %d available)\n",
 588                        len, avail);
 589}
 590
 591/*
 592 * Verify buffer against the FCM Controller Data Buffer
 593 */
 594static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
 595{
 596        struct nand_chip *chip = mtd->priv;
 597        struct fsl_elbc_mtd *priv = chip->priv;
 598        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 599        int i;
 600
 601        if (len < 0) {
 602                dev_err(ctrl->dev, "write_buf of %d bytes", len);
 603                return -EINVAL;
 604        }
 605
 606        if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
 607                dev_err(ctrl->dev,
 608                        "verify_buf beyond end of buffer "
 609                        "(%d requested, %u available)\n",
 610                        len, ctrl->read_bytes - ctrl->index);
 611
 612                ctrl->index = ctrl->read_bytes;
 613                return -EINVAL;
 614        }
 615
 616        for (i = 0; i < len; i++)
 617                if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
 618                        break;
 619
 620        ctrl->index += len;
 621        return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
 622}
 623
 624/* This function is called after Program and Erase Operations to
 625 * check for success or failure.
 626 */
 627static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 628{
 629        struct fsl_elbc_mtd *priv = chip->priv;
 630        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 631        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 632
 633        if (ctrl->status != LTESR_CC)
 634                return NAND_STATUS_FAIL;
 635
 636        /* Use READ_STATUS command, but wait for the device to be ready */
 637        ctrl->use_mdr = 0;
 638        out_be32(&lbc->fir,
 639                 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
 640                 (FIR_OP_RBW << FIR_OP1_SHIFT));
 641        out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
 642        out_be32(&lbc->fbcr, 1);
 643        set_addr(mtd, 0, 0, 0);
 644        ctrl->read_bytes = 1;
 645
 646        fsl_elbc_run_command(mtd);
 647
 648        if (ctrl->status != LTESR_CC)
 649                return NAND_STATUS_FAIL;
 650
 651        /* The chip always seems to report that it is
 652         * write-protected, even when it is not.
 653         */
 654        setbits8(ctrl->addr, NAND_STATUS_WP);
 655        return fsl_elbc_read_byte(mtd);
 656}
 657
 658static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
 659{
 660        struct nand_chip *chip = mtd->priv;
 661        struct fsl_elbc_mtd *priv = chip->priv;
 662        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 663        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 664        unsigned int al;
 665
 666        /* calculate FMR Address Length field */
 667        al = 0;
 668        if (chip->pagemask & 0xffff0000)
 669                al++;
 670        if (chip->pagemask & 0xff000000)
 671                al++;
 672
 673        /* add to ECCM mode set in fsl_elbc_init */
 674        priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
 675                     (al << FMR_AL_SHIFT);
 676
 677        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
 678                chip->numchips);
 679        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
 680                chip->chipsize);
 681        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 682                chip->pagemask);
 683        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
 684                chip->chip_delay);
 685        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 686                chip->badblockpos);
 687        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
 688                chip->chip_shift);
 689        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
 690                chip->page_shift);
 691        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
 692                chip->phys_erase_shift);
 693        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
 694                chip->ecclayout);
 695        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
 696                chip->ecc.mode);
 697        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
 698                chip->ecc.steps);
 699        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
 700                chip->ecc.bytes);
 701        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
 702                chip->ecc.total);
 703        dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
 704                chip->ecc.layout);
 705        dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
 706        dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
 707        dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
 708                mtd->erasesize);
 709        dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
 710                mtd->writesize);
 711        dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
 712                mtd->oobsize);
 713
 714        /* adjust Option Register and ECC to match Flash page size */
 715        if (mtd->writesize == 512) {
 716                priv->page_size = 0;
 717                clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 718        } else if (mtd->writesize == 2048) {
 719                priv->page_size = 1;
 720                setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
 721                /* adjust ecc setup if needed */
 722                if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 723                    BR_DECC_CHK_GEN) {
 724                        chip->ecc.size = 512;
 725                        chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 726                                           &fsl_elbc_oob_lp_eccm1 :
 727                                           &fsl_elbc_oob_lp_eccm0;
 728                        chip->badblock_pattern = &largepage_memorybased;
 729                }
 730        } else {
 731                dev_err(ctrl->dev,
 732                        "fsl_elbc_init: page size %d is not supported\n",
 733                        mtd->writesize);
 734                return -1;
 735        }
 736
 737        return 0;
 738}
 739
 740static int fsl_elbc_read_page(struct mtd_info *mtd,
 741                              struct nand_chip *chip,
 742                              uint8_t *buf,
 743                              int page)
 744{
 745        fsl_elbc_read_buf(mtd, buf, mtd->writesize);
 746        fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 747
 748        if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
 749                mtd->ecc_stats.failed++;
 750
 751        return 0;
 752}
 753
 754/* ECC will be calculated automatically, and errors will be detected in
 755 * waitfunc.
 756 */
 757static void fsl_elbc_write_page(struct mtd_info *mtd,
 758                                struct nand_chip *chip,
 759                                const uint8_t *buf)
 760{
 761        struct fsl_elbc_mtd *priv = chip->priv;
 762        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 763
 764        fsl_elbc_write_buf(mtd, buf, mtd->writesize);
 765        fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
 766
 767        ctrl->oob_poi = chip->oob_poi;
 768}
 769
 770static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 771{
 772        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 773        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 774        struct nand_chip *chip = &priv->chip;
 775
 776        dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
 777
 778        /* Fill in fsl_elbc_mtd structure */
 779        priv->mtd.priv = chip;
 780        priv->mtd.owner = THIS_MODULE;
 781
 782        /* Set the ECCM according to the settings in bootloader.*/
 783        priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
 784
 785        /* fill in nand_chip structure */
 786        /* set up function call table */
 787        chip->read_byte = fsl_elbc_read_byte;
 788        chip->write_buf = fsl_elbc_write_buf;
 789        chip->read_buf = fsl_elbc_read_buf;
 790        chip->verify_buf = fsl_elbc_verify_buf;
 791        chip->select_chip = fsl_elbc_select_chip;
 792        chip->cmdfunc = fsl_elbc_cmdfunc;
 793        chip->waitfunc = fsl_elbc_wait;
 794
 795        chip->bbt_td = &bbt_main_descr;
 796        chip->bbt_md = &bbt_mirror_descr;
 797
 798        /* set up nand options */
 799        chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
 800                        NAND_USE_FLASH_BBT;
 801
 802        chip->controller = &ctrl->controller;
 803        chip->priv = priv;
 804
 805        chip->ecc.read_page = fsl_elbc_read_page;
 806        chip->ecc.write_page = fsl_elbc_write_page;
 807
 808        /* If CS Base Register selects full hardware ECC then use it */
 809        if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
 810            BR_DECC_CHK_GEN) {
 811                chip->ecc.mode = NAND_ECC_HW;
 812                /* put in small page settings and adjust later if needed */
 813                chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
 814                                &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
 815                chip->ecc.size = 512;
 816                chip->ecc.bytes = 3;
 817        } else {
 818                /* otherwise fall back to default software ECC */
 819                chip->ecc.mode = NAND_ECC_SOFT;
 820        }
 821
 822        return 0;
 823}
 824
 825static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 826{
 827        struct fsl_elbc_ctrl *ctrl = priv->ctrl;
 828
 829        nand_release(&priv->mtd);
 830
 831        kfree(priv->mtd.name);
 832
 833        if (priv->vbase)
 834                iounmap(priv->vbase);
 835
 836        ctrl->chips[priv->bank] = NULL;
 837        kfree(priv);
 838
 839        return 0;
 840}
 841
 842static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
 843                                         struct device_node *node)
 844{
 845        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 846        struct fsl_elbc_mtd *priv;
 847        struct resource res;
 848#ifdef CONFIG_MTD_PARTITIONS
 849        static const char *part_probe_types[]
 850                = { "cmdlinepart", "RedBoot", NULL };
 851        struct mtd_partition *parts;
 852#endif
 853        int ret;
 854        int bank;
 855
 856        /* get, allocate and map the memory resource */
 857        ret = of_address_to_resource(node, 0, &res);
 858        if (ret) {
 859                dev_err(ctrl->dev, "failed to get resource\n");
 860                return ret;
 861        }
 862
 863        /* find which chip select it is connected to */
 864        for (bank = 0; bank < MAX_BANKS; bank++)
 865                if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
 866                    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
 867                    (in_be32(&lbc->bank[bank].br) &
 868                     in_be32(&lbc->bank[bank].or) & BR_BA)
 869                     == res.start)
 870                        break;
 871
 872        if (bank >= MAX_BANKS) {
 873                dev_err(ctrl->dev, "address did not match any chip selects\n");
 874                return -ENODEV;
 875        }
 876
 877        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 878        if (!priv)
 879                return -ENOMEM;
 880
 881        ctrl->chips[bank] = priv;
 882        priv->bank = bank;
 883        priv->ctrl = ctrl;
 884        priv->dev = ctrl->dev;
 885
 886        priv->vbase = ioremap(res.start, res.end - res.start + 1);
 887        if (!priv->vbase) {
 888                dev_err(ctrl->dev, "failed to map chip region\n");
 889                ret = -ENOMEM;
 890                goto err;
 891        }
 892
 893        priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
 894        if (!priv->mtd.name) {
 895                ret = -ENOMEM;
 896                goto err;
 897        }
 898
 899        ret = fsl_elbc_chip_init(priv);
 900        if (ret)
 901                goto err;
 902
 903        ret = nand_scan_ident(&priv->mtd, 1);
 904        if (ret)
 905                goto err;
 906
 907        ret = fsl_elbc_chip_init_tail(&priv->mtd);
 908        if (ret)
 909                goto err;
 910
 911        ret = nand_scan_tail(&priv->mtd);
 912        if (ret)
 913                goto err;
 914
 915#ifdef CONFIG_MTD_PARTITIONS
 916        /* First look for RedBoot table or partitions on the command
 917         * line, these take precedence over device tree information */
 918        ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
 919        if (ret < 0)
 920                goto err;
 921
 922#ifdef CONFIG_MTD_OF_PARTS
 923        if (ret == 0) {
 924                ret = of_mtd_parse_partitions(priv->dev, node, &parts);
 925                if (ret < 0)
 926                        goto err;
 927        }
 928#endif
 929
 930        if (ret > 0)
 931                add_mtd_partitions(&priv->mtd, parts, ret);
 932        else
 933#endif
 934                add_mtd_device(&priv->mtd);
 935
 936        printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
 937               (unsigned long long)res.start, priv->bank);
 938        return 0;
 939
 940err:
 941        fsl_elbc_chip_remove(priv);
 942        return ret;
 943}
 944
 945static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
 946{
 947        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 948
 949        /* clear event registers */
 950        setbits32(&lbc->ltesr, LTESR_NAND_MASK);
 951        out_be32(&lbc->lteatr, 0);
 952
 953        /* Enable interrupts for any detected events */
 954        out_be32(&lbc->lteir, LTESR_NAND_MASK);
 955
 956        ctrl->read_bytes = 0;
 957        ctrl->index = 0;
 958        ctrl->addr = NULL;
 959
 960        return 0;
 961}
 962
 963static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
 964{
 965        struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
 966        int i;
 967
 968        for (i = 0; i < MAX_BANKS; i++)
 969                if (ctrl->chips[i])
 970                        fsl_elbc_chip_remove(ctrl->chips[i]);
 971
 972        if (ctrl->irq)
 973                free_irq(ctrl->irq, ctrl);
 974
 975        if (ctrl->regs)
 976                iounmap(ctrl->regs);
 977
 978        dev_set_drvdata(&ofdev->dev, NULL);
 979        kfree(ctrl);
 980        return 0;
 981}
 982
 983/* NOTE: This interrupt is also used to report other localbus events,
 984 * such as transaction errors on other chipselects.  If we want to
 985 * capture those, we'll need to move the IRQ code into a shared
 986 * LBC driver.
 987 */
 988
 989static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
 990{
 991        struct fsl_elbc_ctrl *ctrl = data;
 992        struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 993        __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
 994
 995        if (status) {
 996                out_be32(&lbc->ltesr, status);
 997                out_be32(&lbc->lteatr, 0);
 998
 999                ctrl->irq_status = status;
1000                smp_wmb();
1001                wake_up(&ctrl->irq_wait);
1002
1003                return IRQ_HANDLED;
1004        }
1005
1006        return IRQ_NONE;
1007}
1008
1009/* fsl_elbc_ctrl_probe
1010 *
1011 * called by device layer when it finds a device matching
1012 * one our driver can handled. This code allocates all of
1013 * the resources needed for the controller only.  The
1014 * resources for the NAND banks themselves are allocated
1015 * in the chip probe function.
1016*/
1017
1018static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
1019                                         const struct of_device_id *match)
1020{
1021        struct device_node *child;
1022        struct fsl_elbc_ctrl *ctrl;
1023        int ret;
1024
1025        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1026        if (!ctrl)
1027                return -ENOMEM;
1028
1029        dev_set_drvdata(&ofdev->dev, ctrl);
1030
1031        spin_lock_init(&ctrl->controller.lock);
1032        init_waitqueue_head(&ctrl->controller.wq);
1033        init_waitqueue_head(&ctrl->irq_wait);
1034
1035        ctrl->regs = of_iomap(ofdev->node, 0);
1036        if (!ctrl->regs) {
1037                dev_err(&ofdev->dev, "failed to get memory region\n");
1038                ret = -ENODEV;
1039                goto err;
1040        }
1041
1042        ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1043        if (ctrl->irq == NO_IRQ) {
1044                dev_err(&ofdev->dev, "failed to get irq resource\n");
1045                ret = -ENODEV;
1046                goto err;
1047        }
1048
1049        ctrl->dev = &ofdev->dev;
1050
1051        ret = fsl_elbc_ctrl_init(ctrl);
1052        if (ret < 0)
1053                goto err;
1054
1055        ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1056        if (ret != 0) {
1057                dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1058                        ctrl->irq);
1059                ret = ctrl->irq;
1060                goto err;
1061        }
1062
1063        for_each_child_of_node(ofdev->node, child)
1064                if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1065                        fsl_elbc_chip_probe(ctrl, child);
1066
1067        return 0;
1068
1069err:
1070        fsl_elbc_ctrl_remove(ofdev);
1071        return ret;
1072}
1073
1074static const struct of_device_id fsl_elbc_match[] = {
1075        {
1076                .compatible = "fsl,elbc",
1077        },
1078        {}
1079};
1080
1081static struct of_platform_driver fsl_elbc_ctrl_driver = {
1082        .driver = {
1083                .name   = "fsl-elbc",
1084        },
1085        .match_table = fsl_elbc_match,
1086        .probe = fsl_elbc_ctrl_probe,
1087        .remove = fsl_elbc_ctrl_remove,
1088};
1089
1090static int __init fsl_elbc_init(void)
1091{
1092        return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1093}
1094
1095static void __exit fsl_elbc_exit(void)
1096{
1097        of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1098}
1099
1100module_init(fsl_elbc_init);
1101module_exit(fsl_elbc_exit);
1102
1103MODULE_LICENSE("GPL");
1104MODULE_AUTHOR("Freescale");
1105MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
1106