linux/drivers/mtd/nand/nandsim.c
<<
>>
Prefs
   1/*
   2 * NAND flash simulator.
   3 *
   4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
   5 *
   6 * Copyright (C) 2004 Nokia Corporation
   7 *
   8 * Note: NS means "NAND Simulator".
   9 * Note: Input means input TO flash chip, output means output FROM chip.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2, or (at your option) any later
  14 * version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19 * Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/types.h>
  28#include <linux/module.h>
  29#include <linux/moduleparam.h>
  30#include <linux/vmalloc.h>
  31#include <asm/div64.h>
  32#include <linux/slab.h>
  33#include <linux/errno.h>
  34#include <linux/string.h>
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/nand.h>
  37#include <linux/mtd/partitions.h>
  38#include <linux/delay.h>
  39#include <linux/list.h>
  40#include <linux/random.h>
  41#include <linux/sched.h>
  42#include <linux/fs.h>
  43#include <linux/pagemap.h>
  44
  45/* Default simulator parameters values */
  46#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
  47    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  48    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
  49    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  50#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
  51#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  52#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
  53#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  54#endif
  55
  56#ifndef CONFIG_NANDSIM_ACCESS_DELAY
  57#define CONFIG_NANDSIM_ACCESS_DELAY 25
  58#endif
  59#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  60#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  61#endif
  62#ifndef CONFIG_NANDSIM_ERASE_DELAY
  63#define CONFIG_NANDSIM_ERASE_DELAY 2
  64#endif
  65#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  66#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  67#endif
  68#ifndef CONFIG_NANDSIM_INPUT_CYCLE
  69#define CONFIG_NANDSIM_INPUT_CYCLE  50
  70#endif
  71#ifndef CONFIG_NANDSIM_BUS_WIDTH
  72#define CONFIG_NANDSIM_BUS_WIDTH  8
  73#endif
  74#ifndef CONFIG_NANDSIM_DO_DELAYS
  75#define CONFIG_NANDSIM_DO_DELAYS  0
  76#endif
  77#ifndef CONFIG_NANDSIM_LOG
  78#define CONFIG_NANDSIM_LOG        0
  79#endif
  80#ifndef CONFIG_NANDSIM_DBG
  81#define CONFIG_NANDSIM_DBG        0
  82#endif
  83
  84static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
  85static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
  86static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
  87static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
  88static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
  89static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  90static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
  91static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
  92static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
  93static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
  94static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
  95static uint log            = CONFIG_NANDSIM_LOG;
  96static uint dbg            = CONFIG_NANDSIM_DBG;
  97static unsigned long parts[MAX_MTD_DEVICES];
  98static unsigned int parts_num;
  99static char *badblocks = NULL;
 100static char *weakblocks = NULL;
 101static char *weakpages = NULL;
 102static unsigned int bitflips = 0;
 103static char *gravepages = NULL;
 104static unsigned int rptwear = 0;
 105static unsigned int overridesize = 0;
 106static char *cache_file = NULL;
 107
 108module_param(first_id_byte,  uint, 0400);
 109module_param(second_id_byte, uint, 0400);
 110module_param(third_id_byte,  uint, 0400);
 111module_param(fourth_id_byte, uint, 0400);
 112module_param(access_delay,   uint, 0400);
 113module_param(programm_delay, uint, 0400);
 114module_param(erase_delay,    uint, 0400);
 115module_param(output_cycle,   uint, 0400);
 116module_param(input_cycle,    uint, 0400);
 117module_param(bus_width,      uint, 0400);
 118module_param(do_delays,      uint, 0400);
 119module_param(log,            uint, 0400);
 120module_param(dbg,            uint, 0400);
 121module_param_array(parts, ulong, &parts_num, 0400);
 122module_param(badblocks,      charp, 0400);
 123module_param(weakblocks,     charp, 0400);
 124module_param(weakpages,      charp, 0400);
 125module_param(bitflips,       uint, 0400);
 126module_param(gravepages,     charp, 0400);
 127module_param(rptwear,        uint, 0400);
 128module_param(overridesize,   uint, 0400);
 129module_param(cache_file,     charp, 0400);
 130
 131MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
 132MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
 133MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
 134MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
 135MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
 136MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
 137MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
 138MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
 139MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
 140MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
 141MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
 142MODULE_PARM_DESC(log,            "Perform logging if not zero");
 143MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
 144MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
 145/* Page and erase block positions for the following parameters are independent of any partitions */
 146MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
 147MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
 148                                 " separated by commas e.g. 113:2 means eb 113"
 149                                 " can be erased only twice before failing");
 150MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
 151                                 " separated by commas e.g. 1401:2 means page 1401"
 152                                 " can be written only twice before failing");
 153MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
 154MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
 155                                 " separated by commas e.g. 1401:2 means page 1401"
 156                                 " can be read only twice before failing");
 157MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
 158MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
 159                                 "The size is specified in erase blocks and as the exponent of a power of two"
 160                                 " e.g. 5 means a size of 32 erase blocks");
 161MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
 162
 163/* The largest possible page size */
 164#define NS_LARGEST_PAGE_SIZE    2048
 165
 166/* The prefix for simulator output */
 167#define NS_OUTPUT_PREFIX "[nandsim]"
 168
 169/* Simulator's output macros (logging, debugging, warning, error) */
 170#define NS_LOG(args...) \
 171        do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
 172#define NS_DBG(args...) \
 173        do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
 174#define NS_WARN(args...) \
 175        do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
 176#define NS_ERR(args...) \
 177        do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
 178#define NS_INFO(args...) \
 179        do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
 180
 181/* Busy-wait delay macros (microseconds, milliseconds) */
 182#define NS_UDELAY(us) \
 183        do { if (do_delays) udelay(us); } while(0)
 184#define NS_MDELAY(us) \
 185        do { if (do_delays) mdelay(us); } while(0)
 186
 187/* Is the nandsim structure initialized ? */
 188#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
 189
 190/* Good operation completion status */
 191#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
 192
 193/* Operation failed completion status */
 194#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
 195
 196/* Calculate the page offset in flash RAM image by (row, column) address */
 197#define NS_RAW_OFFSET(ns) \
 198        (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
 199
 200/* Calculate the OOB offset in flash RAM image by (row, column) address */
 201#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
 202
 203/* After a command is input, the simulator goes to one of the following states */
 204#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
 205#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
 206#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
 207#define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
 208#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
 209#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
 210#define STATE_CMD_STATUS       0x00000007 /* read status */
 211#define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
 212#define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
 213#define STATE_CMD_READID       0x0000000A /* read ID */
 214#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
 215#define STATE_CMD_RESET        0x0000000C /* reset */
 216#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
 217#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
 218#define STATE_CMD_MASK         0x0000000F /* command states mask */
 219
 220/* After an address is input, the simulator goes to one of these states */
 221#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
 222#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
 223#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
 224#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
 225#define STATE_ADDR_MASK        0x00000070 /* address states mask */
 226
 227/* Durind data input/output the simulator is in these states */
 228#define STATE_DATAIN           0x00000100 /* waiting for data input */
 229#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
 230
 231#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
 232#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
 233#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
 234#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
 235#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
 236
 237/* Previous operation is done, ready to accept new requests */
 238#define STATE_READY            0x00000000
 239
 240/* This state is used to mark that the next state isn't known yet */
 241#define STATE_UNKNOWN          0x10000000
 242
 243/* Simulator's actions bit masks */
 244#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
 245#define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
 246#define ACTION_SECERASE  0x00300000 /* erase sector */
 247#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
 248#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
 249#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
 250#define ACTION_MASK      0x00700000 /* action mask */
 251
 252#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
 253#define NS_OPER_STATES   6  /* Maximum number of states in operation */
 254
 255#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
 256#define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
 257#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
 258#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
 259#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
 260#define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
 261#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
 262#define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
 263#define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
 264
 265/* Remove action bits ftom state */
 266#define NS_STATE(x) ((x) & ~ACTION_MASK)
 267
 268/*
 269 * Maximum previous states which need to be saved. Currently saving is
 270 * only needed for page programm operation with preceeded read command
 271 * (which is only valid for 512-byte pages).
 272 */
 273#define NS_MAX_PREVSTATES 1
 274
 275/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
 276#define NS_MAX_HELD_PAGES 16
 277
 278/*
 279 * A union to represent flash memory contents and flash buffer.
 280 */
 281union ns_mem {
 282        u_char *byte;    /* for byte access */
 283        uint16_t *word;  /* for 16-bit word access */
 284};
 285
 286/*
 287 * The structure which describes all the internal simulator data.
 288 */
 289struct nandsim {
 290        struct mtd_partition partitions[MAX_MTD_DEVICES];
 291        unsigned int nbparts;
 292
 293        uint busw;              /* flash chip bus width (8 or 16) */
 294        u_char ids[4];          /* chip's ID bytes */
 295        uint32_t options;       /* chip's characteristic bits */
 296        uint32_t state;         /* current chip state */
 297        uint32_t nxstate;       /* next expected state */
 298
 299        uint32_t *op;           /* current operation, NULL operations isn't known yet  */
 300        uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
 301        uint16_t npstates;      /* number of previous states saved */
 302        uint16_t stateidx;      /* current state index */
 303
 304        /* The simulated NAND flash pages array */
 305        union ns_mem *pages;
 306
 307        /* Slab allocator for nand pages */
 308        struct kmem_cache *nand_pages_slab;
 309
 310        /* Internal buffer of page + OOB size bytes */
 311        union ns_mem buf;
 312
 313        /* NAND flash "geometry" */
 314        struct nandsin_geometry {
 315                uint64_t totsz;     /* total flash size, bytes */
 316                uint32_t secsz;     /* flash sector (erase block) size, bytes */
 317                uint pgsz;          /* NAND flash page size, bytes */
 318                uint oobsz;         /* page OOB area size, bytes */
 319                uint64_t totszoob;  /* total flash size including OOB, bytes */
 320                uint pgszoob;       /* page size including OOB , bytes*/
 321                uint secszoob;      /* sector size including OOB, bytes */
 322                uint pgnum;         /* total number of pages */
 323                uint pgsec;         /* number of pages per sector */
 324                uint secshift;      /* bits number in sector size */
 325                uint pgshift;       /* bits number in page size */
 326                uint oobshift;      /* bits number in OOB size */
 327                uint pgaddrbytes;   /* bytes per page address */
 328                uint secaddrbytes;  /* bytes per sector address */
 329                uint idbytes;       /* the number ID bytes that this chip outputs */
 330        } geom;
 331
 332        /* NAND flash internal registers */
 333        struct nandsim_regs {
 334                unsigned command; /* the command register */
 335                u_char   status;  /* the status register */
 336                uint     row;     /* the page number */
 337                uint     column;  /* the offset within page */
 338                uint     count;   /* internal counter */
 339                uint     num;     /* number of bytes which must be processed */
 340                uint     off;     /* fixed page offset */
 341        } regs;
 342
 343        /* NAND flash lines state */
 344        struct ns_lines_status {
 345                int ce;  /* chip Enable */
 346                int cle; /* command Latch Enable */
 347                int ale; /* address Latch Enable */
 348                int wp;  /* write Protect */
 349        } lines;
 350
 351        /* Fields needed when using a cache file */
 352        struct file *cfile; /* Open file */
 353        unsigned char *pages_written; /* Which pages have been written */
 354        void *file_buf;
 355        struct page *held_pages[NS_MAX_HELD_PAGES];
 356        int held_cnt;
 357};
 358
 359/*
 360 * Operations array. To perform any operation the simulator must pass
 361 * through the correspondent states chain.
 362 */
 363static struct nandsim_operations {
 364        uint32_t reqopts;  /* options which are required to perform the operation */
 365        uint32_t states[NS_OPER_STATES]; /* operation's states */
 366} ops[NS_OPER_NUM] = {
 367        /* Read page + OOB from the beginning */
 368        {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
 369                        STATE_DATAOUT, STATE_READY}},
 370        /* Read page + OOB from the second half */
 371        {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
 372                        STATE_DATAOUT, STATE_READY}},
 373        /* Read OOB */
 374        {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
 375                        STATE_DATAOUT, STATE_READY}},
 376        /* Programm page starting from the beginning */
 377        {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
 378                        STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 379        /* Programm page starting from the beginning */
 380        {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
 381                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 382        /* Programm page starting from the second half */
 383        {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
 384                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 385        /* Programm OOB */
 386        {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
 387                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 388        /* Erase sector */
 389        {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
 390        /* Read status */
 391        {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
 392        /* Read multi-plane status */
 393        {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
 394        /* Read ID */
 395        {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
 396        /* Large page devices read page */
 397        {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
 398                               STATE_DATAOUT, STATE_READY}},
 399        /* Large page devices random page read */
 400        {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
 401                               STATE_DATAOUT, STATE_READY}},
 402};
 403
 404struct weak_block {
 405        struct list_head list;
 406        unsigned int erase_block_no;
 407        unsigned int max_erases;
 408        unsigned int erases_done;
 409};
 410
 411static LIST_HEAD(weak_blocks);
 412
 413struct weak_page {
 414        struct list_head list;
 415        unsigned int page_no;
 416        unsigned int max_writes;
 417        unsigned int writes_done;
 418};
 419
 420static LIST_HEAD(weak_pages);
 421
 422struct grave_page {
 423        struct list_head list;
 424        unsigned int page_no;
 425        unsigned int max_reads;
 426        unsigned int reads_done;
 427};
 428
 429static LIST_HEAD(grave_pages);
 430
 431static unsigned long *erase_block_wear = NULL;
 432static unsigned int wear_eb_count = 0;
 433static unsigned long total_wear = 0;
 434static unsigned int rptwear_cnt = 0;
 435
 436/* MTD structure for NAND controller */
 437static struct mtd_info *nsmtd;
 438
 439static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
 440
 441/*
 442 * Allocate array of page pointers, create slab allocation for an array
 443 * and initialize the array by NULL pointers.
 444 *
 445 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 446 */
 447static int alloc_device(struct nandsim *ns)
 448{
 449        struct file *cfile;
 450        int i, err;
 451
 452        if (cache_file) {
 453                cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
 454                if (IS_ERR(cfile))
 455                        return PTR_ERR(cfile);
 456                if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
 457                        NS_ERR("alloc_device: cache file not readable\n");
 458                        err = -EINVAL;
 459                        goto err_close;
 460                }
 461                if (!cfile->f_op->write && !cfile->f_op->aio_write) {
 462                        NS_ERR("alloc_device: cache file not writeable\n");
 463                        err = -EINVAL;
 464                        goto err_close;
 465                }
 466                ns->pages_written = vmalloc(ns->geom.pgnum);
 467                if (!ns->pages_written) {
 468                        NS_ERR("alloc_device: unable to allocate pages written array\n");
 469                        err = -ENOMEM;
 470                        goto err_close;
 471                }
 472                ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 473                if (!ns->file_buf) {
 474                        NS_ERR("alloc_device: unable to allocate file buf\n");
 475                        err = -ENOMEM;
 476                        goto err_free;
 477                }
 478                ns->cfile = cfile;
 479                memset(ns->pages_written, 0, ns->geom.pgnum);
 480                return 0;
 481        }
 482
 483        ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
 484        if (!ns->pages) {
 485                NS_ERR("alloc_device: unable to allocate page array\n");
 486                return -ENOMEM;
 487        }
 488        for (i = 0; i < ns->geom.pgnum; i++) {
 489                ns->pages[i].byte = NULL;
 490        }
 491        ns->nand_pages_slab = kmem_cache_create("nandsim",
 492                                                ns->geom.pgszoob, 0, 0, NULL);
 493        if (!ns->nand_pages_slab) {
 494                NS_ERR("cache_create: unable to create kmem_cache\n");
 495                return -ENOMEM;
 496        }
 497
 498        return 0;
 499
 500err_free:
 501        vfree(ns->pages_written);
 502err_close:
 503        filp_close(cfile, NULL);
 504        return err;
 505}
 506
 507/*
 508 * Free any allocated pages, and free the array of page pointers.
 509 */
 510static void free_device(struct nandsim *ns)
 511{
 512        int i;
 513
 514        if (ns->cfile) {
 515                kfree(ns->file_buf);
 516                vfree(ns->pages_written);
 517                filp_close(ns->cfile, NULL);
 518                return;
 519        }
 520
 521        if (ns->pages) {
 522                for (i = 0; i < ns->geom.pgnum; i++) {
 523                        if (ns->pages[i].byte)
 524                                kmem_cache_free(ns->nand_pages_slab,
 525                                                ns->pages[i].byte);
 526                }
 527                kmem_cache_destroy(ns->nand_pages_slab);
 528                vfree(ns->pages);
 529        }
 530}
 531
 532static char *get_partition_name(int i)
 533{
 534        char buf[64];
 535        sprintf(buf, "NAND simulator partition %d", i);
 536        return kstrdup(buf, GFP_KERNEL);
 537}
 538
 539static uint64_t divide(uint64_t n, uint32_t d)
 540{
 541        do_div(n, d);
 542        return n;
 543}
 544
 545/*
 546 * Initialize the nandsim structure.
 547 *
 548 * RETURNS: 0 if success, -ERRNO if failure.
 549 */
 550static int init_nandsim(struct mtd_info *mtd)
 551{
 552        struct nand_chip *chip = (struct nand_chip *)mtd->priv;
 553        struct nandsim   *ns   = (struct nandsim *)(chip->priv);
 554        int i, ret = 0;
 555        uint64_t remains;
 556        uint64_t next_offset;
 557
 558        if (NS_IS_INITIALIZED(ns)) {
 559                NS_ERR("init_nandsim: nandsim is already initialized\n");
 560                return -EIO;
 561        }
 562
 563        /* Force mtd to not do delays */
 564        chip->chip_delay = 0;
 565
 566        /* Initialize the NAND flash parameters */
 567        ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 568        ns->geom.totsz    = mtd->size;
 569        ns->geom.pgsz     = mtd->writesize;
 570        ns->geom.oobsz    = mtd->oobsize;
 571        ns->geom.secsz    = mtd->erasesize;
 572        ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
 573        ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
 574        ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
 575        ns->geom.secshift = ffs(ns->geom.secsz) - 1;
 576        ns->geom.pgshift  = chip->page_shift;
 577        ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
 578        ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
 579        ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
 580        ns->options = 0;
 581
 582        if (ns->geom.pgsz == 256) {
 583                ns->options |= OPT_PAGE256;
 584        }
 585        else if (ns->geom.pgsz == 512) {
 586                ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
 587                if (ns->busw == 8)
 588                        ns->options |= OPT_PAGE512_8BIT;
 589        } else if (ns->geom.pgsz == 2048) {
 590                ns->options |= OPT_PAGE2048;
 591        } else {
 592                NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
 593                return -EIO;
 594        }
 595
 596        if (ns->options & OPT_SMALLPAGE) {
 597                if (ns->geom.totsz <= (32 << 20)) {
 598                        ns->geom.pgaddrbytes  = 3;
 599                        ns->geom.secaddrbytes = 2;
 600                } else {
 601                        ns->geom.pgaddrbytes  = 4;
 602                        ns->geom.secaddrbytes = 3;
 603                }
 604        } else {
 605                if (ns->geom.totsz <= (128 << 20)) {
 606                        ns->geom.pgaddrbytes  = 4;
 607                        ns->geom.secaddrbytes = 2;
 608                } else {
 609                        ns->geom.pgaddrbytes  = 5;
 610                        ns->geom.secaddrbytes = 3;
 611                }
 612        }
 613
 614        /* Fill the partition_info structure */
 615        if (parts_num > ARRAY_SIZE(ns->partitions)) {
 616                NS_ERR("too many partitions.\n");
 617                ret = -EINVAL;
 618                goto error;
 619        }
 620        remains = ns->geom.totsz;
 621        next_offset = 0;
 622        for (i = 0; i < parts_num; ++i) {
 623                uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
 624
 625                if (!part_sz || part_sz > remains) {
 626                        NS_ERR("bad partition size.\n");
 627                        ret = -EINVAL;
 628                        goto error;
 629                }
 630                ns->partitions[i].name   = get_partition_name(i);
 631                ns->partitions[i].offset = next_offset;
 632                ns->partitions[i].size   = part_sz;
 633                next_offset += ns->partitions[i].size;
 634                remains -= ns->partitions[i].size;
 635        }
 636        ns->nbparts = parts_num;
 637        if (remains) {
 638                if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
 639                        NS_ERR("too many partitions.\n");
 640                        ret = -EINVAL;
 641                        goto error;
 642                }
 643                ns->partitions[i].name   = get_partition_name(i);
 644                ns->partitions[i].offset = next_offset;
 645                ns->partitions[i].size   = remains;
 646                ns->nbparts += 1;
 647        }
 648
 649        /* Detect how many ID bytes the NAND chip outputs */
 650        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 651                if (second_id_byte != nand_flash_ids[i].id)
 652                        continue;
 653                if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
 654                        ns->options |= OPT_AUTOINCR;
 655        }
 656
 657        if (ns->busw == 16)
 658                NS_WARN("16-bit flashes support wasn't tested\n");
 659
 660        printk("flash size: %llu MiB\n",
 661                        (unsigned long long)ns->geom.totsz >> 20);
 662        printk("page size: %u bytes\n",         ns->geom.pgsz);
 663        printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
 664        printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
 665        printk("pages number: %u\n",            ns->geom.pgnum);
 666        printk("pages per sector: %u\n",        ns->geom.pgsec);
 667        printk("bus width: %u\n",               ns->busw);
 668        printk("bits in sector size: %u\n",     ns->geom.secshift);
 669        printk("bits in page size: %u\n",       ns->geom.pgshift);
 670        printk("bits in OOB size: %u\n",        ns->geom.oobshift);
 671        printk("flash size with OOB: %llu KiB\n",
 672                        (unsigned long long)ns->geom.totszoob >> 10);
 673        printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
 674        printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
 675        printk("options: %#x\n",                ns->options);
 676
 677        if ((ret = alloc_device(ns)) != 0)
 678                goto error;
 679
 680        /* Allocate / initialize the internal buffer */
 681        ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 682        if (!ns->buf.byte) {
 683                NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
 684                        ns->geom.pgszoob);
 685                ret = -ENOMEM;
 686                goto error;
 687        }
 688        memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
 689
 690        return 0;
 691
 692error:
 693        free_device(ns);
 694
 695        return ret;
 696}
 697
 698/*
 699 * Free the nandsim structure.
 700 */
 701static void free_nandsim(struct nandsim *ns)
 702{
 703        kfree(ns->buf.byte);
 704        free_device(ns);
 705
 706        return;
 707}
 708
 709static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
 710{
 711        char *w;
 712        int zero_ok;
 713        unsigned int erase_block_no;
 714        loff_t offset;
 715
 716        if (!badblocks)
 717                return 0;
 718        w = badblocks;
 719        do {
 720                zero_ok = (*w == '0' ? 1 : 0);
 721                erase_block_no = simple_strtoul(w, &w, 0);
 722                if (!zero_ok && !erase_block_no) {
 723                        NS_ERR("invalid badblocks.\n");
 724                        return -EINVAL;
 725                }
 726                offset = erase_block_no * ns->geom.secsz;
 727                if (mtd->block_markbad(mtd, offset)) {
 728                        NS_ERR("invalid badblocks.\n");
 729                        return -EINVAL;
 730                }
 731                if (*w == ',')
 732                        w += 1;
 733        } while (*w);
 734        return 0;
 735}
 736
 737static int parse_weakblocks(void)
 738{
 739        char *w;
 740        int zero_ok;
 741        unsigned int erase_block_no;
 742        unsigned int max_erases;
 743        struct weak_block *wb;
 744
 745        if (!weakblocks)
 746                return 0;
 747        w = weakblocks;
 748        do {
 749                zero_ok = (*w == '0' ? 1 : 0);
 750                erase_block_no = simple_strtoul(w, &w, 0);
 751                if (!zero_ok && !erase_block_no) {
 752                        NS_ERR("invalid weakblocks.\n");
 753                        return -EINVAL;
 754                }
 755                max_erases = 3;
 756                if (*w == ':') {
 757                        w += 1;
 758                        max_erases = simple_strtoul(w, &w, 0);
 759                }
 760                if (*w == ',')
 761                        w += 1;
 762                wb = kzalloc(sizeof(*wb), GFP_KERNEL);
 763                if (!wb) {
 764                        NS_ERR("unable to allocate memory.\n");
 765                        return -ENOMEM;
 766                }
 767                wb->erase_block_no = erase_block_no;
 768                wb->max_erases = max_erases;
 769                list_add(&wb->list, &weak_blocks);
 770        } while (*w);
 771        return 0;
 772}
 773
 774static int erase_error(unsigned int erase_block_no)
 775{
 776        struct weak_block *wb;
 777
 778        list_for_each_entry(wb, &weak_blocks, list)
 779                if (wb->erase_block_no == erase_block_no) {
 780                        if (wb->erases_done >= wb->max_erases)
 781                                return 1;
 782                        wb->erases_done += 1;
 783                        return 0;
 784                }
 785        return 0;
 786}
 787
 788static int parse_weakpages(void)
 789{
 790        char *w;
 791        int zero_ok;
 792        unsigned int page_no;
 793        unsigned int max_writes;
 794        struct weak_page *wp;
 795
 796        if (!weakpages)
 797                return 0;
 798        w = weakpages;
 799        do {
 800                zero_ok = (*w == '0' ? 1 : 0);
 801                page_no = simple_strtoul(w, &w, 0);
 802                if (!zero_ok && !page_no) {
 803                        NS_ERR("invalid weakpagess.\n");
 804                        return -EINVAL;
 805                }
 806                max_writes = 3;
 807                if (*w == ':') {
 808                        w += 1;
 809                        max_writes = simple_strtoul(w, &w, 0);
 810                }
 811                if (*w == ',')
 812                        w += 1;
 813                wp = kzalloc(sizeof(*wp), GFP_KERNEL);
 814                if (!wp) {
 815                        NS_ERR("unable to allocate memory.\n");
 816                        return -ENOMEM;
 817                }
 818                wp->page_no = page_no;
 819                wp->max_writes = max_writes;
 820                list_add(&wp->list, &weak_pages);
 821        } while (*w);
 822        return 0;
 823}
 824
 825static int write_error(unsigned int page_no)
 826{
 827        struct weak_page *wp;
 828
 829        list_for_each_entry(wp, &weak_pages, list)
 830                if (wp->page_no == page_no) {
 831                        if (wp->writes_done >= wp->max_writes)
 832                                return 1;
 833                        wp->writes_done += 1;
 834                        return 0;
 835                }
 836        return 0;
 837}
 838
 839static int parse_gravepages(void)
 840{
 841        char *g;
 842        int zero_ok;
 843        unsigned int page_no;
 844        unsigned int max_reads;
 845        struct grave_page *gp;
 846
 847        if (!gravepages)
 848                return 0;
 849        g = gravepages;
 850        do {
 851                zero_ok = (*g == '0' ? 1 : 0);
 852                page_no = simple_strtoul(g, &g, 0);
 853                if (!zero_ok && !page_no) {
 854                        NS_ERR("invalid gravepagess.\n");
 855                        return -EINVAL;
 856                }
 857                max_reads = 3;
 858                if (*g == ':') {
 859                        g += 1;
 860                        max_reads = simple_strtoul(g, &g, 0);
 861                }
 862                if (*g == ',')
 863                        g += 1;
 864                gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 865                if (!gp) {
 866                        NS_ERR("unable to allocate memory.\n");
 867                        return -ENOMEM;
 868                }
 869                gp->page_no = page_no;
 870                gp->max_reads = max_reads;
 871                list_add(&gp->list, &grave_pages);
 872        } while (*g);
 873        return 0;
 874}
 875
 876static int read_error(unsigned int page_no)
 877{
 878        struct grave_page *gp;
 879
 880        list_for_each_entry(gp, &grave_pages, list)
 881                if (gp->page_no == page_no) {
 882                        if (gp->reads_done >= gp->max_reads)
 883                                return 1;
 884                        gp->reads_done += 1;
 885                        return 0;
 886                }
 887        return 0;
 888}
 889
 890static void free_lists(void)
 891{
 892        struct list_head *pos, *n;
 893        list_for_each_safe(pos, n, &weak_blocks) {
 894                list_del(pos);
 895                kfree(list_entry(pos, struct weak_block, list));
 896        }
 897        list_for_each_safe(pos, n, &weak_pages) {
 898                list_del(pos);
 899                kfree(list_entry(pos, struct weak_page, list));
 900        }
 901        list_for_each_safe(pos, n, &grave_pages) {
 902                list_del(pos);
 903                kfree(list_entry(pos, struct grave_page, list));
 904        }
 905        kfree(erase_block_wear);
 906}
 907
 908static int setup_wear_reporting(struct mtd_info *mtd)
 909{
 910        size_t mem;
 911
 912        if (!rptwear)
 913                return 0;
 914        wear_eb_count = divide(mtd->size, mtd->erasesize);
 915        mem = wear_eb_count * sizeof(unsigned long);
 916        if (mem / sizeof(unsigned long) != wear_eb_count) {
 917                NS_ERR("Too many erase blocks for wear reporting\n");
 918                return -ENOMEM;
 919        }
 920        erase_block_wear = kzalloc(mem, GFP_KERNEL);
 921        if (!erase_block_wear) {
 922                NS_ERR("Too many erase blocks for wear reporting\n");
 923                return -ENOMEM;
 924        }
 925        return 0;
 926}
 927
 928static void update_wear(unsigned int erase_block_no)
 929{
 930        unsigned long wmin = -1, wmax = 0, avg;
 931        unsigned long deciles[10], decile_max[10], tot = 0;
 932        unsigned int i;
 933
 934        if (!erase_block_wear)
 935                return;
 936        total_wear += 1;
 937        if (total_wear == 0)
 938                NS_ERR("Erase counter total overflow\n");
 939        erase_block_wear[erase_block_no] += 1;
 940        if (erase_block_wear[erase_block_no] == 0)
 941                NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
 942        rptwear_cnt += 1;
 943        if (rptwear_cnt < rptwear)
 944                return;
 945        rptwear_cnt = 0;
 946        /* Calc wear stats */
 947        for (i = 0; i < wear_eb_count; ++i) {
 948                unsigned long wear = erase_block_wear[i];
 949                if (wear < wmin)
 950                        wmin = wear;
 951                if (wear > wmax)
 952                        wmax = wear;
 953                tot += wear;
 954        }
 955        for (i = 0; i < 9; ++i) {
 956                deciles[i] = 0;
 957                decile_max[i] = (wmax * (i + 1) + 5) / 10;
 958        }
 959        deciles[9] = 0;
 960        decile_max[9] = wmax;
 961        for (i = 0; i < wear_eb_count; ++i) {
 962                int d;
 963                unsigned long wear = erase_block_wear[i];
 964                for (d = 0; d < 10; ++d)
 965                        if (wear <= decile_max[d]) {
 966                                deciles[d] += 1;
 967                                break;
 968                        }
 969        }
 970        avg = tot / wear_eb_count;
 971        /* Output wear report */
 972        NS_INFO("*** Wear Report ***\n");
 973        NS_INFO("Total numbers of erases:  %lu\n", tot);
 974        NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
 975        NS_INFO("Average number of erases: %lu\n", avg);
 976        NS_INFO("Maximum number of erases: %lu\n", wmax);
 977        NS_INFO("Minimum number of erases: %lu\n", wmin);
 978        for (i = 0; i < 10; ++i) {
 979                unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
 980                if (from > decile_max[i])
 981                        continue;
 982                NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
 983                        from,
 984                        decile_max[i],
 985                        deciles[i]);
 986        }
 987        NS_INFO("*** End of Wear Report ***\n");
 988}
 989
 990/*
 991 * Returns the string representation of 'state' state.
 992 */
 993static char *get_state_name(uint32_t state)
 994{
 995        switch (NS_STATE(state)) {
 996                case STATE_CMD_READ0:
 997                        return "STATE_CMD_READ0";
 998                case STATE_CMD_READ1:
 999                        return "STATE_CMD_READ1";
1000                case STATE_CMD_PAGEPROG:
1001                        return "STATE_CMD_PAGEPROG";
1002                case STATE_CMD_READOOB:
1003                        return "STATE_CMD_READOOB";
1004                case STATE_CMD_READSTART:
1005                        return "STATE_CMD_READSTART";
1006                case STATE_CMD_ERASE1:
1007                        return "STATE_CMD_ERASE1";
1008                case STATE_CMD_STATUS:
1009                        return "STATE_CMD_STATUS";
1010                case STATE_CMD_STATUS_M:
1011                        return "STATE_CMD_STATUS_M";
1012                case STATE_CMD_SEQIN:
1013                        return "STATE_CMD_SEQIN";
1014                case STATE_CMD_READID:
1015                        return "STATE_CMD_READID";
1016                case STATE_CMD_ERASE2:
1017                        return "STATE_CMD_ERASE2";
1018                case STATE_CMD_RESET:
1019                        return "STATE_CMD_RESET";
1020                case STATE_CMD_RNDOUT:
1021                        return "STATE_CMD_RNDOUT";
1022                case STATE_CMD_RNDOUTSTART:
1023                        return "STATE_CMD_RNDOUTSTART";
1024                case STATE_ADDR_PAGE:
1025                        return "STATE_ADDR_PAGE";
1026                case STATE_ADDR_SEC:
1027                        return "STATE_ADDR_SEC";
1028                case STATE_ADDR_ZERO:
1029                        return "STATE_ADDR_ZERO";
1030                case STATE_ADDR_COLUMN:
1031                        return "STATE_ADDR_COLUMN";
1032                case STATE_DATAIN:
1033                        return "STATE_DATAIN";
1034                case STATE_DATAOUT:
1035                        return "STATE_DATAOUT";
1036                case STATE_DATAOUT_ID:
1037                        return "STATE_DATAOUT_ID";
1038                case STATE_DATAOUT_STATUS:
1039                        return "STATE_DATAOUT_STATUS";
1040                case STATE_DATAOUT_STATUS_M:
1041                        return "STATE_DATAOUT_STATUS_M";
1042                case STATE_READY:
1043                        return "STATE_READY";
1044                case STATE_UNKNOWN:
1045                        return "STATE_UNKNOWN";
1046        }
1047
1048        NS_ERR("get_state_name: unknown state, BUG\n");
1049        return NULL;
1050}
1051
1052/*
1053 * Check if command is valid.
1054 *
1055 * RETURNS: 1 if wrong command, 0 if right.
1056 */
1057static int check_command(int cmd)
1058{
1059        switch (cmd) {
1060
1061        case NAND_CMD_READ0:
1062        case NAND_CMD_READ1:
1063        case NAND_CMD_READSTART:
1064        case NAND_CMD_PAGEPROG:
1065        case NAND_CMD_READOOB:
1066        case NAND_CMD_ERASE1:
1067        case NAND_CMD_STATUS:
1068        case NAND_CMD_SEQIN:
1069        case NAND_CMD_READID:
1070        case NAND_CMD_ERASE2:
1071        case NAND_CMD_RESET:
1072        case NAND_CMD_RNDOUT:
1073        case NAND_CMD_RNDOUTSTART:
1074                return 0;
1075
1076        case NAND_CMD_STATUS_MULTI:
1077        default:
1078                return 1;
1079        }
1080}
1081
1082/*
1083 * Returns state after command is accepted by command number.
1084 */
1085static uint32_t get_state_by_command(unsigned command)
1086{
1087        switch (command) {
1088                case NAND_CMD_READ0:
1089                        return STATE_CMD_READ0;
1090                case NAND_CMD_READ1:
1091                        return STATE_CMD_READ1;
1092                case NAND_CMD_PAGEPROG:
1093                        return STATE_CMD_PAGEPROG;
1094                case NAND_CMD_READSTART:
1095                        return STATE_CMD_READSTART;
1096                case NAND_CMD_READOOB:
1097                        return STATE_CMD_READOOB;
1098                case NAND_CMD_ERASE1:
1099                        return STATE_CMD_ERASE1;
1100                case NAND_CMD_STATUS:
1101                        return STATE_CMD_STATUS;
1102                case NAND_CMD_STATUS_MULTI:
1103                        return STATE_CMD_STATUS_M;
1104                case NAND_CMD_SEQIN:
1105                        return STATE_CMD_SEQIN;
1106                case NAND_CMD_READID:
1107                        return STATE_CMD_READID;
1108                case NAND_CMD_ERASE2:
1109                        return STATE_CMD_ERASE2;
1110                case NAND_CMD_RESET:
1111                        return STATE_CMD_RESET;
1112                case NAND_CMD_RNDOUT:
1113                        return STATE_CMD_RNDOUT;
1114                case NAND_CMD_RNDOUTSTART:
1115                        return STATE_CMD_RNDOUTSTART;
1116        }
1117
1118        NS_ERR("get_state_by_command: unknown command, BUG\n");
1119        return 0;
1120}
1121
1122/*
1123 * Move an address byte to the correspondent internal register.
1124 */
1125static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1126{
1127        uint byte = (uint)bt;
1128
1129        if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1130                ns->regs.column |= (byte << 8 * ns->regs.count);
1131        else {
1132                ns->regs.row |= (byte << 8 * (ns->regs.count -
1133                                                ns->geom.pgaddrbytes +
1134                                                ns->geom.secaddrbytes));
1135        }
1136
1137        return;
1138}
1139
1140/*
1141 * Switch to STATE_READY state.
1142 */
1143static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1144{
1145        NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1146
1147        ns->state       = STATE_READY;
1148        ns->nxstate     = STATE_UNKNOWN;
1149        ns->op          = NULL;
1150        ns->npstates    = 0;
1151        ns->stateidx    = 0;
1152        ns->regs.num    = 0;
1153        ns->regs.count  = 0;
1154        ns->regs.off    = 0;
1155        ns->regs.row    = 0;
1156        ns->regs.column = 0;
1157        ns->regs.status = status;
1158}
1159
1160/*
1161 * If the operation isn't known yet, try to find it in the global array
1162 * of supported operations.
1163 *
1164 * Operation can be unknown because of the following.
1165 *   1. New command was accepted and this is the firs call to find the
1166 *      correspondent states chain. In this case ns->npstates = 0;
1167 *   2. There is several operations which begin with the same command(s)
1168 *      (for example program from the second half and read from the
1169 *      second half operations both begin with the READ1 command). In this
1170 *      case the ns->pstates[] array contains previous states.
1171 *
1172 * Thus, the function tries to find operation containing the following
1173 * states (if the 'flag' parameter is 0):
1174 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1175 *
1176 * If (one and only one) matching operation is found, it is accepted (
1177 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1178 * zeroed).
1179 *
1180 * If there are several maches, the current state is pushed to the
1181 * ns->pstates.
1182 *
1183 * The operation can be unknown only while commands are input to the chip.
1184 * As soon as address command is accepted, the operation must be known.
1185 * In such situation the function is called with 'flag' != 0, and the
1186 * operation is searched using the following pattern:
1187 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1188 *
1189 * It is supposed that this pattern must either match one operation on
1190 * none. There can't be ambiguity in that case.
1191 *
1192 * If no matches found, the functions does the following:
1193 *   1. if there are saved states present, try to ignore them and search
1194 *      again only using the last command. If nothing was found, switch
1195 *      to the STATE_READY state.
1196 *   2. if there are no saved states, switch to the STATE_READY state.
1197 *
1198 * RETURNS: -2 - no matched operations found.
1199 *          -1 - several matches.
1200 *           0 - operation is found.
1201 */
1202static int find_operation(struct nandsim *ns, uint32_t flag)
1203{
1204        int opsfound = 0;
1205        int i, j, idx = 0;
1206
1207        for (i = 0; i < NS_OPER_NUM; i++) {
1208
1209                int found = 1;
1210
1211                if (!(ns->options & ops[i].reqopts))
1212                        /* Ignore operations we can't perform */
1213                        continue;
1214
1215                if (flag) {
1216                        if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1217                                continue;
1218                } else {
1219                        if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1220                                continue;
1221                }
1222
1223                for (j = 0; j < ns->npstates; j++)
1224                        if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1225                                && (ns->options & ops[idx].reqopts)) {
1226                                found = 0;
1227                                break;
1228                        }
1229
1230                if (found) {
1231                        idx = i;
1232                        opsfound += 1;
1233                }
1234        }
1235
1236        if (opsfound == 1) {
1237                /* Exact match */
1238                ns->op = &ops[idx].states[0];
1239                if (flag) {
1240                        /*
1241                         * In this case the find_operation function was
1242                         * called when address has just began input. But it isn't
1243                         * yet fully input and the current state must
1244                         * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1245                         * state must be the next state (ns->nxstate).
1246                         */
1247                        ns->stateidx = ns->npstates - 1;
1248                } else {
1249                        ns->stateidx = ns->npstates;
1250                }
1251                ns->npstates = 0;
1252                ns->state = ns->op[ns->stateidx];
1253                ns->nxstate = ns->op[ns->stateidx + 1];
1254                NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1255                                idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1256                return 0;
1257        }
1258
1259        if (opsfound == 0) {
1260                /* Nothing was found. Try to ignore previous commands (if any) and search again */
1261                if (ns->npstates != 0) {
1262                        NS_DBG("find_operation: no operation found, try again with state %s\n",
1263                                        get_state_name(ns->state));
1264                        ns->npstates = 0;
1265                        return find_operation(ns, 0);
1266
1267                }
1268                NS_DBG("find_operation: no operations found\n");
1269                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1270                return -2;
1271        }
1272
1273        if (flag) {
1274                /* This shouldn't happen */
1275                NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1276                return -2;
1277        }
1278
1279        NS_DBG("find_operation: there is still ambiguity\n");
1280
1281        ns->pstates[ns->npstates++] = ns->state;
1282
1283        return -1;
1284}
1285
1286static void put_pages(struct nandsim *ns)
1287{
1288        int i;
1289
1290        for (i = 0; i < ns->held_cnt; i++)
1291                page_cache_release(ns->held_pages[i]);
1292}
1293
1294/* Get page cache pages in advance to provide NOFS memory allocation */
1295static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1296{
1297        pgoff_t index, start_index, end_index;
1298        struct page *page;
1299        struct address_space *mapping = file->f_mapping;
1300
1301        start_index = pos >> PAGE_CACHE_SHIFT;
1302        end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1303        if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1304                return -EINVAL;
1305        ns->held_cnt = 0;
1306        for (index = start_index; index <= end_index; index++) {
1307                page = find_get_page(mapping, index);
1308                if (page == NULL) {
1309                        page = find_or_create_page(mapping, index, GFP_NOFS);
1310                        if (page == NULL) {
1311                                write_inode_now(mapping->host, 1);
1312                                page = find_or_create_page(mapping, index, GFP_NOFS);
1313                        }
1314                        if (page == NULL) {
1315                                put_pages(ns);
1316                                return -ENOMEM;
1317                        }
1318                        unlock_page(page);
1319                }
1320                ns->held_pages[ns->held_cnt++] = page;
1321        }
1322        return 0;
1323}
1324
1325static int set_memalloc(void)
1326{
1327        if (current->flags & PF_MEMALLOC)
1328                return 0;
1329        current->flags |= PF_MEMALLOC;
1330        return 1;
1331}
1332
1333static void clear_memalloc(int memalloc)
1334{
1335        if (memalloc)
1336                current->flags &= ~PF_MEMALLOC;
1337}
1338
1339static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1340{
1341        mm_segment_t old_fs;
1342        ssize_t tx;
1343        int err, memalloc;
1344
1345        err = get_pages(ns, file, count, *pos);
1346        if (err)
1347                return err;
1348        old_fs = get_fs();
1349        set_fs(get_ds());
1350        memalloc = set_memalloc();
1351        tx = vfs_read(file, (char __user *)buf, count, pos);
1352        clear_memalloc(memalloc);
1353        set_fs(old_fs);
1354        put_pages(ns);
1355        return tx;
1356}
1357
1358static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1359{
1360        mm_segment_t old_fs;
1361        ssize_t tx;
1362        int err, memalloc;
1363
1364        err = get_pages(ns, file, count, *pos);
1365        if (err)
1366                return err;
1367        old_fs = get_fs();
1368        set_fs(get_ds());
1369        memalloc = set_memalloc();
1370        tx = vfs_write(file, (char __user *)buf, count, pos);
1371        clear_memalloc(memalloc);
1372        set_fs(old_fs);
1373        put_pages(ns);
1374        return tx;
1375}
1376
1377/*
1378 * Returns a pointer to the current page.
1379 */
1380static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1381{
1382        return &(ns->pages[ns->regs.row]);
1383}
1384
1385/*
1386 * Retuns a pointer to the current byte, within the current page.
1387 */
1388static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1389{
1390        return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1391}
1392
1393int do_read_error(struct nandsim *ns, int num)
1394{
1395        unsigned int page_no = ns->regs.row;
1396
1397        if (read_error(page_no)) {
1398                int i;
1399                memset(ns->buf.byte, 0xFF, num);
1400                for (i = 0; i < num; ++i)
1401                        ns->buf.byte[i] = random32();
1402                NS_WARN("simulating read error in page %u\n", page_no);
1403                return 1;
1404        }
1405        return 0;
1406}
1407
1408void do_bit_flips(struct nandsim *ns, int num)
1409{
1410        if (bitflips && random32() < (1 << 22)) {
1411                int flips = 1;
1412                if (bitflips > 1)
1413                        flips = (random32() % (int) bitflips) + 1;
1414                while (flips--) {
1415                        int pos = random32() % (num * 8);
1416                        ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1417                        NS_WARN("read_page: flipping bit %d in page %d "
1418                                "reading from %d ecc: corrected=%u failed=%u\n",
1419                                pos, ns->regs.row, ns->regs.column + ns->regs.off,
1420                                nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1421                }
1422        }
1423}
1424
1425/*
1426 * Fill the NAND buffer with data read from the specified page.
1427 */
1428static void read_page(struct nandsim *ns, int num)
1429{
1430        union ns_mem *mypage;
1431
1432        if (ns->cfile) {
1433                if (!ns->pages_written[ns->regs.row]) {
1434                        NS_DBG("read_page: page %d not written\n", ns->regs.row);
1435                        memset(ns->buf.byte, 0xFF, num);
1436                } else {
1437                        loff_t pos;
1438                        ssize_t tx;
1439
1440                        NS_DBG("read_page: page %d written, reading from %d\n",
1441                                ns->regs.row, ns->regs.column + ns->regs.off);
1442                        if (do_read_error(ns, num))
1443                                return;
1444                        pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1445                        tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1446                        if (tx != num) {
1447                                NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1448                                return;
1449                        }
1450                        do_bit_flips(ns, num);
1451                }
1452                return;
1453        }
1454
1455        mypage = NS_GET_PAGE(ns);
1456        if (mypage->byte == NULL) {
1457                NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1458                memset(ns->buf.byte, 0xFF, num);
1459        } else {
1460                NS_DBG("read_page: page %d allocated, reading from %d\n",
1461                        ns->regs.row, ns->regs.column + ns->regs.off);
1462                if (do_read_error(ns, num))
1463                        return;
1464                memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1465                do_bit_flips(ns, num);
1466        }
1467}
1468
1469/*
1470 * Erase all pages in the specified sector.
1471 */
1472static void erase_sector(struct nandsim *ns)
1473{
1474        union ns_mem *mypage;
1475        int i;
1476
1477        if (ns->cfile) {
1478                for (i = 0; i < ns->geom.pgsec; i++)
1479                        if (ns->pages_written[ns->regs.row + i]) {
1480                                NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1481                                ns->pages_written[ns->regs.row + i] = 0;
1482                        }
1483                return;
1484        }
1485
1486        mypage = NS_GET_PAGE(ns);
1487        for (i = 0; i < ns->geom.pgsec; i++) {
1488                if (mypage->byte != NULL) {
1489                        NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1490                        kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1491                        mypage->byte = NULL;
1492                }
1493                mypage++;
1494        }
1495}
1496
1497/*
1498 * Program the specified page with the contents from the NAND buffer.
1499 */
1500static int prog_page(struct nandsim *ns, int num)
1501{
1502        int i;
1503        union ns_mem *mypage;
1504        u_char *pg_off;
1505
1506        if (ns->cfile) {
1507                loff_t off, pos;
1508                ssize_t tx;
1509                int all;
1510
1511                NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1512                pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1513                off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1514                if (!ns->pages_written[ns->regs.row]) {
1515                        all = 1;
1516                        memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1517                } else {
1518                        all = 0;
1519                        pos = off;
1520                        tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1521                        if (tx != num) {
1522                                NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1523                                return -1;
1524                        }
1525                }
1526                for (i = 0; i < num; i++)
1527                        pg_off[i] &= ns->buf.byte[i];
1528                if (all) {
1529                        pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1530                        tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1531                        if (tx != ns->geom.pgszoob) {
1532                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1533                                return -1;
1534                        }
1535                        ns->pages_written[ns->regs.row] = 1;
1536                } else {
1537                        pos = off;
1538                        tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1539                        if (tx != num) {
1540                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1541                                return -1;
1542                        }
1543                }
1544                return 0;
1545        }
1546
1547        mypage = NS_GET_PAGE(ns);
1548        if (mypage->byte == NULL) {
1549                NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1550                /*
1551                 * We allocate memory with GFP_NOFS because a flash FS may
1552                 * utilize this. If it is holding an FS lock, then gets here,
1553                 * then kernel memory alloc runs writeback which goes to the FS
1554                 * again and deadlocks. This was seen in practice.
1555                 */
1556                mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1557                if (mypage->byte == NULL) {
1558                        NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1559                        return -1;
1560                }
1561                memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1562        }
1563
1564        pg_off = NS_PAGE_BYTE_OFF(ns);
1565        for (i = 0; i < num; i++)
1566                pg_off[i] &= ns->buf.byte[i];
1567
1568        return 0;
1569}
1570
1571/*
1572 * If state has any action bit, perform this action.
1573 *
1574 * RETURNS: 0 if success, -1 if error.
1575 */
1576static int do_state_action(struct nandsim *ns, uint32_t action)
1577{
1578        int num;
1579        int busdiv = ns->busw == 8 ? 1 : 2;
1580        unsigned int erase_block_no, page_no;
1581
1582        action &= ACTION_MASK;
1583
1584        /* Check that page address input is correct */
1585        if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1586                NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1587                return -1;
1588        }
1589
1590        switch (action) {
1591
1592        case ACTION_CPY:
1593                /*
1594                 * Copy page data to the internal buffer.
1595                 */
1596
1597                /* Column shouldn't be very large */
1598                if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1599                        NS_ERR("do_state_action: column number is too large\n");
1600                        break;
1601                }
1602                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1603                read_page(ns, num);
1604
1605                NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1606                        num, NS_RAW_OFFSET(ns) + ns->regs.off);
1607
1608                if (ns->regs.off == 0)
1609                        NS_LOG("read page %d\n", ns->regs.row);
1610                else if (ns->regs.off < ns->geom.pgsz)
1611                        NS_LOG("read page %d (second half)\n", ns->regs.row);
1612                else
1613                        NS_LOG("read OOB of page %d\n", ns->regs.row);
1614
1615                NS_UDELAY(access_delay);
1616                NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1617
1618                break;
1619
1620        case ACTION_SECERASE:
1621                /*
1622                 * Erase sector.
1623                 */
1624
1625                if (ns->lines.wp) {
1626                        NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1627                        return -1;
1628                }
1629
1630                if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1631                        || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1632                        NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1633                        return -1;
1634                }
1635
1636                ns->regs.row = (ns->regs.row <<
1637                                8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1638                ns->regs.column = 0;
1639
1640                erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1641
1642                NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1643                                ns->regs.row, NS_RAW_OFFSET(ns));
1644                NS_LOG("erase sector %u\n", erase_block_no);
1645
1646                erase_sector(ns);
1647
1648                NS_MDELAY(erase_delay);
1649
1650                if (erase_block_wear)
1651                        update_wear(erase_block_no);
1652
1653                if (erase_error(erase_block_no)) {
1654                        NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1655                        return -1;
1656                }
1657
1658                break;
1659
1660        case ACTION_PRGPAGE:
1661                /*
1662                 * Programm page - move internal buffer data to the page.
1663                 */
1664
1665                if (ns->lines.wp) {
1666                        NS_WARN("do_state_action: device is write-protected, programm\n");
1667                        return -1;
1668                }
1669
1670                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1671                if (num != ns->regs.count) {
1672                        NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1673                                        ns->regs.count, num);
1674                        return -1;
1675                }
1676
1677                if (prog_page(ns, num) == -1)
1678                        return -1;
1679
1680                page_no = ns->regs.row;
1681
1682                NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1683                        num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1684                NS_LOG("programm page %d\n", ns->regs.row);
1685
1686                NS_UDELAY(programm_delay);
1687                NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1688
1689                if (write_error(page_no)) {
1690                        NS_WARN("simulating write failure in page %u\n", page_no);
1691                        return -1;
1692                }
1693
1694                break;
1695
1696        case ACTION_ZEROOFF:
1697                NS_DBG("do_state_action: set internal offset to 0\n");
1698                ns->regs.off = 0;
1699                break;
1700
1701        case ACTION_HALFOFF:
1702                if (!(ns->options & OPT_PAGE512_8BIT)) {
1703                        NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1704                                "byte page size 8x chips\n");
1705                        return -1;
1706                }
1707                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1708                ns->regs.off = ns->geom.pgsz/2;
1709                break;
1710
1711        case ACTION_OOBOFF:
1712                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1713                ns->regs.off = ns->geom.pgsz;
1714                break;
1715
1716        default:
1717                NS_DBG("do_state_action: BUG! unknown action\n");
1718        }
1719
1720        return 0;
1721}
1722
1723/*
1724 * Switch simulator's state.
1725 */
1726static void switch_state(struct nandsim *ns)
1727{
1728        if (ns->op) {
1729                /*
1730                 * The current operation have already been identified.
1731                 * Just follow the states chain.
1732                 */
1733
1734                ns->stateidx += 1;
1735                ns->state = ns->nxstate;
1736                ns->nxstate = ns->op[ns->stateidx + 1];
1737
1738                NS_DBG("switch_state: operation is known, switch to the next state, "
1739                        "state: %s, nxstate: %s\n",
1740                        get_state_name(ns->state), get_state_name(ns->nxstate));
1741
1742                /* See, whether we need to do some action */
1743                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1744                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1745                        return;
1746                }
1747
1748        } else {
1749                /*
1750                 * We don't yet know which operation we perform.
1751                 * Try to identify it.
1752                 */
1753
1754                /*
1755                 *  The only event causing the switch_state function to
1756                 *  be called with yet unknown operation is new command.
1757                 */
1758                ns->state = get_state_by_command(ns->regs.command);
1759
1760                NS_DBG("switch_state: operation is unknown, try to find it\n");
1761
1762                if (find_operation(ns, 0) != 0)
1763                        return;
1764
1765                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1766                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1767                        return;
1768                }
1769        }
1770
1771        /* For 16x devices column means the page offset in words */
1772        if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1773                NS_DBG("switch_state: double the column number for 16x device\n");
1774                ns->regs.column <<= 1;
1775        }
1776
1777        if (NS_STATE(ns->nxstate) == STATE_READY) {
1778                /*
1779                 * The current state is the last. Return to STATE_READY
1780                 */
1781
1782                u_char status = NS_STATUS_OK(ns);
1783
1784                /* In case of data states, see if all bytes were input/output */
1785                if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1786                        && ns->regs.count != ns->regs.num) {
1787                        NS_WARN("switch_state: not all bytes were processed, %d left\n",
1788                                        ns->regs.num - ns->regs.count);
1789                        status = NS_STATUS_FAILED(ns);
1790                }
1791
1792                NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1793
1794                switch_to_ready_state(ns, status);
1795
1796                return;
1797        } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1798                /*
1799                 * If the next state is data input/output, switch to it now
1800                 */
1801
1802                ns->state      = ns->nxstate;
1803                ns->nxstate    = ns->op[++ns->stateidx + 1];
1804                ns->regs.num   = ns->regs.count = 0;
1805
1806                NS_DBG("switch_state: the next state is data I/O, switch, "
1807                        "state: %s, nxstate: %s\n",
1808                        get_state_name(ns->state), get_state_name(ns->nxstate));
1809
1810                /*
1811                 * Set the internal register to the count of bytes which
1812                 * are expected to be input or output
1813                 */
1814                switch (NS_STATE(ns->state)) {
1815                        case STATE_DATAIN:
1816                        case STATE_DATAOUT:
1817                                ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1818                                break;
1819
1820                        case STATE_DATAOUT_ID:
1821                                ns->regs.num = ns->geom.idbytes;
1822                                break;
1823
1824                        case STATE_DATAOUT_STATUS:
1825                        case STATE_DATAOUT_STATUS_M:
1826                                ns->regs.count = ns->regs.num = 0;
1827                                break;
1828
1829                        default:
1830                                NS_ERR("switch_state: BUG! unknown data state\n");
1831                }
1832
1833        } else if (ns->nxstate & STATE_ADDR_MASK) {
1834                /*
1835                 * If the next state is address input, set the internal
1836                 * register to the number of expected address bytes
1837                 */
1838
1839                ns->regs.count = 0;
1840
1841                switch (NS_STATE(ns->nxstate)) {
1842                        case STATE_ADDR_PAGE:
1843                                ns->regs.num = ns->geom.pgaddrbytes;
1844
1845                                break;
1846                        case STATE_ADDR_SEC:
1847                                ns->regs.num = ns->geom.secaddrbytes;
1848                                break;
1849
1850                        case STATE_ADDR_ZERO:
1851                                ns->regs.num = 1;
1852                                break;
1853
1854                        case STATE_ADDR_COLUMN:
1855                                /* Column address is always 2 bytes */
1856                                ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1857                                break;
1858
1859                        default:
1860                                NS_ERR("switch_state: BUG! unknown address state\n");
1861                }
1862        } else {
1863                /*
1864                 * Just reset internal counters.
1865                 */
1866
1867                ns->regs.num = 0;
1868                ns->regs.count = 0;
1869        }
1870}
1871
1872static u_char ns_nand_read_byte(struct mtd_info *mtd)
1873{
1874        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1875        u_char outb = 0x00;
1876
1877        /* Sanity and correctness checks */
1878        if (!ns->lines.ce) {
1879                NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1880                return outb;
1881        }
1882        if (ns->lines.ale || ns->lines.cle) {
1883                NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1884                return outb;
1885        }
1886        if (!(ns->state & STATE_DATAOUT_MASK)) {
1887                NS_WARN("read_byte: unexpected data output cycle, state is %s "
1888                        "return %#x\n", get_state_name(ns->state), (uint)outb);
1889                return outb;
1890        }
1891
1892        /* Status register may be read as many times as it is wanted */
1893        if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1894                NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1895                return ns->regs.status;
1896        }
1897
1898        /* Check if there is any data in the internal buffer which may be read */
1899        if (ns->regs.count == ns->regs.num) {
1900                NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1901                return outb;
1902        }
1903
1904        switch (NS_STATE(ns->state)) {
1905                case STATE_DATAOUT:
1906                        if (ns->busw == 8) {
1907                                outb = ns->buf.byte[ns->regs.count];
1908                                ns->regs.count += 1;
1909                        } else {
1910                                outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1911                                ns->regs.count += 2;
1912                        }
1913                        break;
1914                case STATE_DATAOUT_ID:
1915                        NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1916                        outb = ns->ids[ns->regs.count];
1917                        ns->regs.count += 1;
1918                        break;
1919                default:
1920                        BUG();
1921        }
1922
1923        if (ns->regs.count == ns->regs.num) {
1924                NS_DBG("read_byte: all bytes were read\n");
1925
1926                /*
1927                 * The OPT_AUTOINCR allows to read next conseqitive pages without
1928                 * new read operation cycle.
1929                 */
1930                if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1931                        ns->regs.count = 0;
1932                        if (ns->regs.row + 1 < ns->geom.pgnum)
1933                                ns->regs.row += 1;
1934                        NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1935                        do_state_action(ns, ACTION_CPY);
1936                }
1937                else if (NS_STATE(ns->nxstate) == STATE_READY)
1938                        switch_state(ns);
1939
1940        }
1941
1942        return outb;
1943}
1944
1945static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1946{
1947        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1948
1949        /* Sanity and correctness checks */
1950        if (!ns->lines.ce) {
1951                NS_ERR("write_byte: chip is disabled, ignore write\n");
1952                return;
1953        }
1954        if (ns->lines.ale && ns->lines.cle) {
1955                NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1956                return;
1957        }
1958
1959        if (ns->lines.cle == 1) {
1960                /*
1961                 * The byte written is a command.
1962                 */
1963
1964                if (byte == NAND_CMD_RESET) {
1965                        NS_LOG("reset chip\n");
1966                        switch_to_ready_state(ns, NS_STATUS_OK(ns));
1967                        return;
1968                }
1969
1970                /* Check that the command byte is correct */
1971                if (check_command(byte)) {
1972                        NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1973                        return;
1974                }
1975
1976                if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1977                        || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1978                        || NS_STATE(ns->state) == STATE_DATAOUT) {
1979                        int row = ns->regs.row;
1980
1981                        switch_state(ns);
1982                        if (byte == NAND_CMD_RNDOUT)
1983                                ns->regs.row = row;
1984                }
1985
1986                /* Check if chip is expecting command */
1987                if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1988                        /* Do not warn if only 2 id bytes are read */
1989                        if (!(ns->regs.command == NAND_CMD_READID &&
1990                            NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1991                                /*
1992                                 * We are in situation when something else (not command)
1993                                 * was expected but command was input. In this case ignore
1994                                 * previous command(s)/state(s) and accept the last one.
1995                                 */
1996                                NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1997                                        "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1998                        }
1999                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2000                }
2001
2002                NS_DBG("command byte corresponding to %s state accepted\n",
2003                        get_state_name(get_state_by_command(byte)));
2004                ns->regs.command = byte;
2005                switch_state(ns);
2006
2007        } else if (ns->lines.ale == 1) {
2008                /*
2009                 * The byte written is an address.
2010                 */
2011
2012                if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2013
2014                        NS_DBG("write_byte: operation isn't known yet, identify it\n");
2015
2016                        if (find_operation(ns, 1) < 0)
2017                                return;
2018
2019                        if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2020                                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2021                                return;
2022                        }
2023
2024                        ns->regs.count = 0;
2025                        switch (NS_STATE(ns->nxstate)) {
2026                                case STATE_ADDR_PAGE:
2027                                        ns->regs.num = ns->geom.pgaddrbytes;
2028                                        break;
2029                                case STATE_ADDR_SEC:
2030                                        ns->regs.num = ns->geom.secaddrbytes;
2031                                        break;
2032                                case STATE_ADDR_ZERO:
2033                                        ns->regs.num = 1;
2034                                        break;
2035                                default:
2036                                        BUG();
2037                        }
2038                }
2039
2040                /* Check that chip is expecting address */
2041                if (!(ns->nxstate & STATE_ADDR_MASK)) {
2042                        NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2043                                "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2044                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2045                        return;
2046                }
2047
2048                /* Check if this is expected byte */
2049                if (ns->regs.count == ns->regs.num) {
2050                        NS_ERR("write_byte: no more address bytes expected\n");
2051                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2052                        return;
2053                }
2054
2055                accept_addr_byte(ns, byte);
2056
2057                ns->regs.count += 1;
2058
2059                NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2060                                (uint)byte, ns->regs.count, ns->regs.num);
2061
2062                if (ns->regs.count == ns->regs.num) {
2063                        NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2064                        switch_state(ns);
2065                }
2066
2067        } else {
2068                /*
2069                 * The byte written is an input data.
2070                 */
2071
2072                /* Check that chip is expecting data input */
2073                if (!(ns->state & STATE_DATAIN_MASK)) {
2074                        NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2075                                "switch to %s\n", (uint)byte,
2076                                get_state_name(ns->state), get_state_name(STATE_READY));
2077                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2078                        return;
2079                }
2080
2081                /* Check if this is expected byte */
2082                if (ns->regs.count == ns->regs.num) {
2083                        NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2084                                        ns->regs.num);
2085                        return;
2086                }
2087
2088                if (ns->busw == 8) {
2089                        ns->buf.byte[ns->regs.count] = byte;
2090                        ns->regs.count += 1;
2091                } else {
2092                        ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2093                        ns->regs.count += 2;
2094                }
2095        }
2096
2097        return;
2098}
2099
2100static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2101{
2102        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2103
2104        ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2105        ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2106        ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2107
2108        if (cmd != NAND_CMD_NONE)
2109                ns_nand_write_byte(mtd, cmd);
2110}
2111
2112static int ns_device_ready(struct mtd_info *mtd)
2113{
2114        NS_DBG("device_ready\n");
2115        return 1;
2116}
2117
2118static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2119{
2120        struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2121
2122        NS_DBG("read_word\n");
2123
2124        return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2125}
2126
2127static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2128{
2129        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2130
2131        /* Check that chip is expecting data input */
2132        if (!(ns->state & STATE_DATAIN_MASK)) {
2133                NS_ERR("write_buf: data input isn't expected, state is %s, "
2134                        "switch to STATE_READY\n", get_state_name(ns->state));
2135                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2136                return;
2137        }
2138
2139        /* Check if these are expected bytes */
2140        if (ns->regs.count + len > ns->regs.num) {
2141                NS_ERR("write_buf: too many input bytes\n");
2142                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2143                return;
2144        }
2145
2146        memcpy(ns->buf.byte + ns->regs.count, buf, len);
2147        ns->regs.count += len;
2148
2149        if (ns->regs.count == ns->regs.num) {
2150                NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2151        }
2152}
2153
2154static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2155{
2156        struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2157
2158        /* Sanity and correctness checks */
2159        if (!ns->lines.ce) {
2160                NS_ERR("read_buf: chip is disabled\n");
2161                return;
2162        }
2163        if (ns->lines.ale || ns->lines.cle) {
2164                NS_ERR("read_buf: ALE or CLE pin is high\n");
2165                return;
2166        }
2167        if (!(ns->state & STATE_DATAOUT_MASK)) {
2168                NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2169                        get_state_name(ns->state));
2170                return;
2171        }
2172
2173        if (NS_STATE(ns->state) != STATE_DATAOUT) {
2174                int i;
2175
2176                for (i = 0; i < len; i++)
2177                        buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2178
2179                return;
2180        }
2181
2182        /* Check if these are expected bytes */
2183        if (ns->regs.count + len > ns->regs.num) {
2184                NS_ERR("read_buf: too many bytes to read\n");
2185                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2186                return;
2187        }
2188
2189        memcpy(buf, ns->buf.byte + ns->regs.count, len);
2190        ns->regs.count += len;
2191
2192        if (ns->regs.count == ns->regs.num) {
2193                if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2194                        ns->regs.count = 0;
2195                        if (ns->regs.row + 1 < ns->geom.pgnum)
2196                                ns->regs.row += 1;
2197                        NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2198                        do_state_action(ns, ACTION_CPY);
2199                }
2200                else if (NS_STATE(ns->nxstate) == STATE_READY)
2201                        switch_state(ns);
2202        }
2203
2204        return;
2205}
2206
2207static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2208{
2209        ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2210
2211        if (!memcmp(buf, &ns_verify_buf[0], len)) {
2212                NS_DBG("verify_buf: the buffer is OK\n");
2213                return 0;
2214        } else {
2215                NS_DBG("verify_buf: the buffer is wrong\n");
2216                return -EFAULT;
2217        }
2218}
2219
2220/*
2221 * Module initialization function
2222 */
2223static int __init ns_init_module(void)
2224{
2225        struct nand_chip *chip;
2226        struct nandsim *nand;
2227        int retval = -ENOMEM, i;
2228
2229        if (bus_width != 8 && bus_width != 16) {
2230                NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2231                return -EINVAL;
2232        }
2233
2234        /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2235        nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2236                                + sizeof(struct nandsim), GFP_KERNEL);
2237        if (!nsmtd) {
2238                NS_ERR("unable to allocate core structures.\n");
2239                return -ENOMEM;
2240        }
2241        chip        = (struct nand_chip *)(nsmtd + 1);
2242        nsmtd->priv = (void *)chip;
2243        nand        = (struct nandsim *)(chip + 1);
2244        chip->priv  = (void *)nand;
2245
2246        /*
2247         * Register simulator's callbacks.
2248         */
2249        chip->cmd_ctrl   = ns_hwcontrol;
2250        chip->read_byte  = ns_nand_read_byte;
2251        chip->dev_ready  = ns_device_ready;
2252        chip->write_buf  = ns_nand_write_buf;
2253        chip->read_buf   = ns_nand_read_buf;
2254        chip->verify_buf = ns_nand_verify_buf;
2255        chip->read_word  = ns_nand_read_word;
2256        chip->ecc.mode   = NAND_ECC_SOFT;
2257        /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2258        /* and 'badblocks' parameters to work */
2259        chip->options   |= NAND_SKIP_BBTSCAN;
2260
2261        /*
2262         * Perform minimum nandsim structure initialization to handle
2263         * the initial ID read command correctly
2264         */
2265        if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2266                nand->geom.idbytes = 4;
2267        else
2268                nand->geom.idbytes = 2;
2269        nand->regs.status = NS_STATUS_OK(nand);
2270        nand->nxstate = STATE_UNKNOWN;
2271        nand->options |= OPT_PAGE256; /* temporary value */
2272        nand->ids[0] = first_id_byte;
2273        nand->ids[1] = second_id_byte;
2274        nand->ids[2] = third_id_byte;
2275        nand->ids[3] = fourth_id_byte;
2276        if (bus_width == 16) {
2277                nand->busw = 16;
2278                chip->options |= NAND_BUSWIDTH_16;
2279        }
2280
2281        nsmtd->owner = THIS_MODULE;
2282
2283        if ((retval = parse_weakblocks()) != 0)
2284                goto error;
2285
2286        if ((retval = parse_weakpages()) != 0)
2287                goto error;
2288
2289        if ((retval = parse_gravepages()) != 0)
2290                goto error;
2291
2292        if ((retval = nand_scan(nsmtd, 1)) != 0) {
2293                NS_ERR("can't register NAND Simulator\n");
2294                if (retval > 0)
2295                        retval = -ENXIO;
2296                goto error;
2297        }
2298
2299        if (overridesize) {
2300                uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2301                if (new_size >> overridesize != nsmtd->erasesize) {
2302                        NS_ERR("overridesize is too big\n");
2303                        goto err_exit;
2304                }
2305                /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2306                nsmtd->size = new_size;
2307                chip->chipsize = new_size;
2308                chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2309                chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2310        }
2311
2312        if ((retval = setup_wear_reporting(nsmtd)) != 0)
2313                goto err_exit;
2314
2315        if ((retval = init_nandsim(nsmtd)) != 0)
2316                goto err_exit;
2317
2318        if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2319                goto err_exit;
2320
2321        if ((retval = nand_default_bbt(nsmtd)) != 0)
2322                goto err_exit;
2323
2324        /* Register NAND partitions */
2325        if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2326                goto err_exit;
2327
2328        return 0;
2329
2330err_exit:
2331        free_nandsim(nand);
2332        nand_release(nsmtd);
2333        for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2334                kfree(nand->partitions[i].name);
2335error:
2336        kfree(nsmtd);
2337        free_lists();
2338
2339        return retval;
2340}
2341
2342module_init(ns_init_module);
2343
2344/*
2345 * Module clean-up function
2346 */
2347static void __exit ns_cleanup_module(void)
2348{
2349        struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2350        int i;
2351
2352        free_nandsim(ns);    /* Free nandsim private resources */
2353        nand_release(nsmtd); /* Unregister driver */
2354        for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2355                kfree(ns->partitions[i].name);
2356        kfree(nsmtd);        /* Free other structures */
2357        free_lists();
2358}
2359
2360module_exit(ns_cleanup_module);
2361
2362MODULE_LICENSE ("GPL");
2363MODULE_AUTHOR ("Artem B. Bityuckiy");
2364MODULE_DESCRIPTION ("The NAND flash simulator");
2365