linux/drivers/mtd/nand/rtc_from4.c
<<
>>
Prefs
   1/*
   2 *  drivers/mtd/nand/rtc_from4.c
   3 *
   4 *  Copyright (C) 2004  Red Hat, Inc.
   5 *
   6 *  Derived from drivers/mtd/nand/spia.c
   7 *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * Overview:
  14 *   This is a device driver for the AG-AND flash device found on the
  15 *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
  16 *   which utilizes the Renesas HN29V1G91T-30 part.
  17 *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/slab.h>
  24#include <linux/rslib.h>
  25#include <linux/bitrev.h>
  26#include <linux/module.h>
  27#include <linux/mtd/compatmac.h>
  28#include <linux/mtd/mtd.h>
  29#include <linux/mtd/nand.h>
  30#include <linux/mtd/partitions.h>
  31#include <asm/io.h>
  32
  33/*
  34 * MTD structure for Renesas board
  35 */
  36static struct mtd_info *rtc_from4_mtd = NULL;
  37
  38#define RTC_FROM4_MAX_CHIPS     2
  39
  40/* HS77x9 processor register defines */
  41#define SH77X9_BCR1     ((volatile unsigned short *)(0xFFFFFF60))
  42#define SH77X9_BCR2     ((volatile unsigned short *)(0xFFFFFF62))
  43#define SH77X9_WCR1     ((volatile unsigned short *)(0xFFFFFF64))
  44#define SH77X9_WCR2     ((volatile unsigned short *)(0xFFFFFF66))
  45#define SH77X9_MCR      ((volatile unsigned short *)(0xFFFFFF68))
  46#define SH77X9_PCR      ((volatile unsigned short *)(0xFFFFFF6C))
  47#define SH77X9_FRQCR    ((volatile unsigned short *)(0xFFFFFF80))
  48
  49/*
  50 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
  51 */
  52/* Address where flash is mapped */
  53#define RTC_FROM4_FIO_BASE      0x14000000
  54
  55/* CLE and ALE are tied to address lines 5 & 4, respectively */
  56#define RTC_FROM4_CLE           (1 << 5)
  57#define RTC_FROM4_ALE           (1 << 4)
  58
  59/* address lines A24-A22 used for chip selection */
  60#define RTC_FROM4_NAND_ADDR_SLOT3       (0x00800000)
  61#define RTC_FROM4_NAND_ADDR_SLOT4       (0x00C00000)
  62#define RTC_FROM4_NAND_ADDR_FPGA        (0x01000000)
  63/* mask address lines A24-A22 used for chip selection */
  64#define RTC_FROM4_NAND_ADDR_MASK        (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
  65
  66/* FPGA status register for checking device ready (bit zero) */
  67#define RTC_FROM4_FPGA_SR               (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
  68#define RTC_FROM4_DEVICE_READY          0x0001
  69
  70/* FPGA Reed-Solomon ECC Control register */
  71
  72#define RTC_FROM4_RS_ECC_CTL            (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
  73#define RTC_FROM4_RS_ECC_CTL_CLR        (1 << 7)
  74#define RTC_FROM4_RS_ECC_CTL_GEN        (1 << 6)
  75#define RTC_FROM4_RS_ECC_CTL_FD_E       (1 << 5)
  76
  77/* FPGA Reed-Solomon ECC code base */
  78#define RTC_FROM4_RS_ECC                (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
  79#define RTC_FROM4_RS_ECCN               (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
  80
  81/* FPGA Reed-Solomon ECC check register */
  82#define RTC_FROM4_RS_ECC_CHK            (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
  83#define RTC_FROM4_RS_ECC_CHK_ERROR      (1 << 7)
  84
  85#define ERR_STAT_ECC_AVAILABLE          0x20
  86
  87/* Undefine for software ECC */
  88#define RTC_FROM4_HWECC 1
  89
  90/* Define as 1 for no virtual erase blocks (in JFFS2) */
  91#define RTC_FROM4_NO_VIRTBLOCKS 0
  92
  93/*
  94 * Module stuff
  95 */
  96static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
  97
  98static const struct mtd_partition partition_info[] = {
  99        {
 100         .name = "Renesas flash partition 1",
 101         .offset = 0,
 102         .size = MTDPART_SIZ_FULL},
 103};
 104
 105#define NUM_PARTITIONS 1
 106
 107/*
 108 *      hardware specific flash bbt decriptors
 109 *      Note: this is to allow debugging by disabling
 110 *              NAND_BBT_CREATE and/or NAND_BBT_WRITE
 111 *
 112 */
 113static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
 114static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
 115
 116static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
 117        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 118                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 119        .offs = 40,
 120        .len = 4,
 121        .veroffs = 44,
 122        .maxblocks = 4,
 123        .pattern = bbt_pattern
 124};
 125
 126static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
 127        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 128                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 129        .offs = 40,
 130        .len = 4,
 131        .veroffs = 44,
 132        .maxblocks = 4,
 133        .pattern = mirror_pattern
 134};
 135
 136#ifdef RTC_FROM4_HWECC
 137
 138/* the Reed Solomon control structure */
 139static struct rs_control *rs_decoder;
 140
 141/*
 142 *      hardware specific Out Of Band information
 143 */
 144static struct nand_ecclayout rtc_from4_nand_oobinfo = {
 145        .eccbytes = 32,
 146        .eccpos = {
 147                   0, 1, 2, 3, 4, 5, 6, 7,
 148                   8, 9, 10, 11, 12, 13, 14, 15,
 149                   16, 17, 18, 19, 20, 21, 22, 23,
 150                   24, 25, 26, 27, 28, 29, 30, 31},
 151        .oobfree = {{32, 32}}
 152};
 153
 154#endif
 155
 156/*
 157 * rtc_from4_hwcontrol - hardware specific access to control-lines
 158 * @mtd:        MTD device structure
 159 * @cmd:        hardware control command
 160 *
 161 * Address lines (A5 and A4) are used to control Command and Address Latch
 162 * Enable on this board, so set the read/write address appropriately.
 163 *
 164 * Chip Enable is also controlled by the Chip Select (CS5) and
 165 * Address lines (A24-A22), so no action is required here.
 166 *
 167 */
 168static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
 169                                unsigned int ctrl)
 170{
 171        struct nand_chip *chip = (mtd->priv);
 172
 173        if (cmd == NAND_CMD_NONE)
 174                return;
 175
 176        if (ctrl & NAND_CLE)
 177                writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
 178        else
 179                writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
 180}
 181
 182/*
 183 * rtc_from4_nand_select_chip - hardware specific chip select
 184 * @mtd:        MTD device structure
 185 * @chip:       Chip to select (0 == slot 3, 1 == slot 4)
 186 *
 187 * The chip select is based on address lines A24-A22.
 188 * This driver uses flash slots 3 and 4 (A23-A22).
 189 *
 190 */
 191static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
 192{
 193        struct nand_chip *this = mtd->priv;
 194
 195        this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
 196        this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
 197
 198        switch (chip) {
 199
 200        case 0:         /* select slot 3 chip */
 201                this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
 202                this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
 203                break;
 204        case 1:         /* select slot 4 chip */
 205                this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
 206                this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
 207                break;
 208
 209        }
 210}
 211
 212/*
 213 * rtc_from4_nand_device_ready - hardware specific ready/busy check
 214 * @mtd:        MTD device structure
 215 *
 216 * This board provides the Ready/Busy state in the status register
 217 * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal.
 218 *
 219 */
 220static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
 221{
 222        unsigned short status;
 223
 224        status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
 225
 226        return (status & RTC_FROM4_DEVICE_READY);
 227
 228}
 229
 230/*
 231 * deplete - code to perform device recovery in case there was a power loss
 232 * @mtd:        MTD device structure
 233 * @chip:       Chip to select (0 == slot 3, 1 == slot 4)
 234 *
 235 * If there was a sudden loss of power during an erase operation, a
 236 * "device recovery" operation must be performed when power is restored
 237 * to ensure correct operation.  This routine performs the required steps
 238 * for the requested chip.
 239 *
 240 * See page 86 of the data sheet for details.
 241 *
 242 */
 243static void deplete(struct mtd_info *mtd, int chip)
 244{
 245        struct nand_chip *this = mtd->priv;
 246
 247        /* wait until device is ready */
 248        while (!this->dev_ready(mtd)) ;
 249
 250        this->select_chip(mtd, chip);
 251
 252        /* Send the commands for device recovery, phase 1 */
 253        this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
 254        this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
 255
 256        /* Send the commands for device recovery, phase 2 */
 257        this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
 258        this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
 259
 260}
 261
 262#ifdef RTC_FROM4_HWECC
 263/*
 264 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
 265 * @mtd:        MTD device structure
 266 * @mode:       I/O mode; read or write
 267 *
 268 * enable hardware ECC for data read or write
 269 *
 270 */
 271static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
 272{
 273        volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
 274        unsigned short status;
 275
 276        switch (mode) {
 277        case NAND_ECC_READ:
 278                status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
 279
 280                *rs_ecc_ctl = status;
 281                break;
 282
 283        case NAND_ECC_READSYN:
 284                status = 0x00;
 285
 286                *rs_ecc_ctl = status;
 287                break;
 288
 289        case NAND_ECC_WRITE:
 290                status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
 291
 292                *rs_ecc_ctl = status;
 293                break;
 294
 295        default:
 296                BUG();
 297                break;
 298        }
 299
 300}
 301
 302/*
 303 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
 304 * @mtd:        MTD device structure
 305 * @dat:        buffer containing the data to generate ECC codes
 306 * @ecc_code    ECC codes calculated
 307 *
 308 * The ECC code is calculated by the FPGA.  All we have to do is read the values
 309 * from the FPGA registers.
 310 *
 311 * Note: We read from the inverted registers, since data is inverted before
 312 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
 313 *
 314 */
 315static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
 316{
 317        volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
 318        unsigned short value;
 319        int i;
 320
 321        for (i = 0; i < 8; i++) {
 322                value = *rs_eccn;
 323                ecc_code[i] = (unsigned char)value;
 324                rs_eccn++;
 325        }
 326        ecc_code[7] |= 0x0f;    /* set the last four bits (not used) */
 327}
 328
 329/*
 330 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
 331 * @mtd:        MTD device structure
 332 * @buf:        buffer containing the data to generate ECC codes
 333 * @ecc1        ECC codes read
 334 * @ecc2        ECC codes calculated
 335 *
 336 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
 337 * else we read the ecc results from the fpga and call the rs library to decode
 338 * and hopefully correct the error.
 339 *
 340 */
 341static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
 342{
 343        int i, j, res;
 344        unsigned short status;
 345        uint16_t par[6], syn[6];
 346        uint8_t ecc[8];
 347        volatile unsigned short *rs_ecc;
 348
 349        status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
 350
 351        if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
 352                return 0;
 353        }
 354
 355        /* Read the syndrom pattern from the FPGA and correct the bitorder */
 356        rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
 357        for (i = 0; i < 8; i++) {
 358                ecc[i] = bitrev8(*rs_ecc);
 359                rs_ecc++;
 360        }
 361
 362        /* convert into 6 10bit syndrome fields */
 363        par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
 364        par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
 365        par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
 366        par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
 367        par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
 368        par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
 369
 370        /* Convert to computable syndrome */
 371        for (i = 0; i < 6; i++) {
 372                syn[i] = par[0];
 373                for (j = 1; j < 6; j++)
 374                        if (par[j] != rs_decoder->nn)
 375                                syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
 376
 377                /* Convert to index form */
 378                syn[i] = rs_decoder->index_of[syn[i]];
 379        }
 380
 381        /* Let the library code do its magic. */
 382        res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
 383        if (res > 0) {
 384                DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
 385        }
 386        return res;
 387}
 388
 389/**
 390 * rtc_from4_errstat - perform additional error status checks
 391 * @mtd:        MTD device structure
 392 * @this:       NAND chip structure
 393 * @state:      state or the operation
 394 * @status:     status code returned from read status
 395 * @page:       startpage inside the chip, must be called with (page & this->pagemask)
 396 *
 397 * Perform additional error status checks on erase and write failures
 398 * to determine if errors are correctable.  For this device, correctable
 399 * 1-bit errors on erase and write are considered acceptable.
 400 *
 401 * note: see pages 34..37 of data sheet for details.
 402 *
 403 */
 404static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
 405                             int state, int status, int page)
 406{
 407        int er_stat = 0;
 408        int rtn, retlen;
 409        size_t len;
 410        uint8_t *buf;
 411        int i;
 412
 413        this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
 414
 415        if (state == FL_ERASING) {
 416
 417                for (i = 0; i < 4; i++) {
 418                        if (!(status & 1 << (i + 1)))
 419                                continue;
 420                        this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
 421                                      -1, -1);
 422                        rtn = this->read_byte(mtd);
 423                        this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
 424
 425                        /* err_ecc_not_avail */
 426                        if (!(rtn & ERR_STAT_ECC_AVAILABLE))
 427                                er_stat |= 1 << (i + 1);
 428                }
 429
 430        } else if (state == FL_WRITING) {
 431
 432                unsigned long corrected = mtd->ecc_stats.corrected;
 433
 434                /* single bank write logic */
 435                this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
 436                rtn = this->read_byte(mtd);
 437                this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
 438
 439                if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
 440                        /* err_ecc_not_avail */
 441                        er_stat |= 1 << 1;
 442                        goto out;
 443                }
 444
 445                len = mtd->writesize;
 446                buf = kmalloc(len, GFP_KERNEL);
 447                if (!buf) {
 448                        printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
 449                        er_stat = 1;
 450                        goto out;
 451                }
 452
 453                /* recovery read */
 454                rtn = nand_do_read(mtd, page, len, &retlen, buf);
 455
 456                /* if read failed or > 1-bit error corrected */
 457                if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
 458                        er_stat |= 1 << 1;
 459                kfree(buf);
 460        }
 461out:
 462        rtn = status;
 463        if (er_stat == 0) {     /* if ECC is available   */
 464                rtn = (status & ~NAND_STATUS_FAIL);     /*   clear the error bit */
 465        }
 466
 467        return rtn;
 468}
 469#endif
 470
 471/*
 472 * Main initialization routine
 473 */
 474static int __init rtc_from4_init(void)
 475{
 476        struct nand_chip *this;
 477        unsigned short bcr1, bcr2, wcr2;
 478        int i;
 479        int ret;
 480
 481        /* Allocate memory for MTD device structure and private data */
 482        rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
 483        if (!rtc_from4_mtd) {
 484                printk("Unable to allocate Renesas NAND MTD device structure.\n");
 485                return -ENOMEM;
 486        }
 487
 488        /* Get pointer to private data */
 489        this = (struct nand_chip *)(&rtc_from4_mtd[1]);
 490
 491        /* Initialize structures */
 492        memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
 493        memset(this, 0, sizeof(struct nand_chip));
 494
 495        /* Link the private data with the MTD structure */
 496        rtc_from4_mtd->priv = this;
 497        rtc_from4_mtd->owner = THIS_MODULE;
 498
 499        /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
 500        bcr1 = *SH77X9_BCR1 & ~0x0002;
 501        bcr1 |= 0x0002;
 502        *SH77X9_BCR1 = bcr1;
 503
 504        /* set */
 505        bcr2 = *SH77X9_BCR2 & ~0x0c00;
 506        bcr2 |= 0x0800;
 507        *SH77X9_BCR2 = bcr2;
 508
 509        /* set area 5 wait states */
 510        wcr2 = *SH77X9_WCR2 & ~0x1c00;
 511        wcr2 |= 0x1c00;
 512        *SH77X9_WCR2 = wcr2;
 513
 514        /* Set address of NAND IO lines */
 515        this->IO_ADDR_R = rtc_from4_fio_base;
 516        this->IO_ADDR_W = rtc_from4_fio_base;
 517        /* Set address of hardware control function */
 518        this->cmd_ctrl = rtc_from4_hwcontrol;
 519        /* Set address of chip select function */
 520        this->select_chip = rtc_from4_nand_select_chip;
 521        /* command delay time (in us) */
 522        this->chip_delay = 100;
 523        /* return the status of the Ready/Busy line */
 524        this->dev_ready = rtc_from4_nand_device_ready;
 525
 526#ifdef RTC_FROM4_HWECC
 527        printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
 528
 529        this->ecc.mode = NAND_ECC_HW_SYNDROME;
 530        this->ecc.size = 512;
 531        this->ecc.bytes = 8;
 532        /* return the status of extra status and ECC checks */
 533        this->errstat = rtc_from4_errstat;
 534        /* set the nand_oobinfo to support FPGA H/W error detection */
 535        this->ecc.layout = &rtc_from4_nand_oobinfo;
 536        this->ecc.hwctl = rtc_from4_enable_hwecc;
 537        this->ecc.calculate = rtc_from4_calculate_ecc;
 538        this->ecc.correct = rtc_from4_correct_data;
 539
 540        /* We could create the decoder on demand, if memory is a concern.
 541         * This way we have it handy, if an error happens
 542         *
 543         * Symbolsize is 10 (bits)
 544         * Primitve polynomial is x^10+x^3+1
 545         * first consecutive root is 0
 546         * primitve element to generate roots = 1
 547         * generator polinomial degree = 6
 548         */
 549        rs_decoder = init_rs(10, 0x409, 0, 1, 6);
 550        if (!rs_decoder) {
 551                printk(KERN_ERR "Could not create a RS decoder\n");
 552                ret = -ENOMEM;
 553                goto err_1;
 554        }
 555#else
 556        printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
 557
 558        this->ecc.mode = NAND_ECC_SOFT;
 559#endif
 560
 561        /* set the bad block tables to support debugging */
 562        this->bbt_td = &rtc_from4_bbt_main_descr;
 563        this->bbt_md = &rtc_from4_bbt_mirror_descr;
 564
 565        /* Scan to find existence of the device */
 566        if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
 567                ret = -ENXIO;
 568                goto err_2;
 569        }
 570
 571        /* Perform 'device recovery' for each chip in case there was a power loss. */
 572        for (i = 0; i < this->numchips; i++) {
 573                deplete(rtc_from4_mtd, i);
 574        }
 575
 576#if RTC_FROM4_NO_VIRTBLOCKS
 577        /* use a smaller erase block to minimize wasted space when a block is bad */
 578        /* note: this uses eight times as much RAM as using the default and makes */
 579        /*       mounts take four times as long. */
 580        rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
 581#endif
 582
 583        /* Register the partitions */
 584        ret = add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
 585        if (ret)
 586                goto err_3;
 587
 588        /* Return happy */
 589        return 0;
 590err_3:
 591        nand_release(rtc_from4_mtd);
 592err_2:
 593        free_rs(rs_decoder);
 594err_1:
 595        kfree(rtc_from4_mtd);
 596        return ret;
 597}
 598
 599module_init(rtc_from4_init);
 600
 601/*
 602 * Clean up routine
 603 */
 604static void __exit rtc_from4_cleanup(void)
 605{
 606        /* Release resource, unregister partitions */
 607        nand_release(rtc_from4_mtd);
 608
 609        /* Free the MTD device structure */
 610        kfree(rtc_from4_mtd);
 611
 612#ifdef RTC_FROM4_HWECC
 613        /* Free the reed solomon resources */
 614        if (rs_decoder) {
 615                free_rs(rs_decoder);
 616        }
 617#endif
 618}
 619
 620module_exit(rtc_from4_cleanup);
 621
 622MODULE_LICENSE("GPL");
 623MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
 624MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
 625