linux/drivers/mtd/onenand/onenand_base.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mtd/onenand/onenand_base.c
   3 *
   4 *  Copyright (C) 2005-2007 Samsung Electronics
   5 *  Kyungmin Park <kyungmin.park@samsung.com>
   6 *
   7 *  Credits:
   8 *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
   9 *      auto-placement support, read-while load support, various fixes
  10 *      Copyright (C) Nokia Corporation, 2007
  11 *
  12 *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
  13 *      Flex-OneNAND support
  14 *      Copyright (C) Samsung Electronics, 2008
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License version 2 as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/init.h>
  25#include <linux/sched.h>
  26#include <linux/delay.h>
  27#include <linux/interrupt.h>
  28#include <linux/jiffies.h>
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/onenand.h>
  31#include <linux/mtd/partitions.h>
  32
  33#include <asm/io.h>
  34
  35/* Default Flex-OneNAND boundary and lock respectively */
  36static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
  37
  38module_param_array(flex_bdry, int, NULL, 0400);
  39MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
  40                                "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
  41                                "DIE_BDRY: SLC boundary of the die"
  42                                "LOCK: Locking information for SLC boundary"
  43                                "    : 0->Set boundary in unlocked status"
  44                                "    : 1->Set boundary in locked status");
  45
  46/**
  47 *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
  48 *  For now, we expose only 64 out of 80 ecc bytes
  49 */
  50static struct nand_ecclayout onenand_oob_128 = {
  51        .eccbytes       = 64,
  52        .eccpos         = {
  53                6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  54                22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  55                38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  56                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  57                70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  58                86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  59                102, 103, 104, 105
  60                },
  61        .oobfree        = {
  62                {2, 4}, {18, 4}, {34, 4}, {50, 4},
  63                {66, 4}, {82, 4}, {98, 4}, {114, 4}
  64        }
  65};
  66
  67/**
  68 * onenand_oob_64 - oob info for large (2KB) page
  69 */
  70static struct nand_ecclayout onenand_oob_64 = {
  71        .eccbytes       = 20,
  72        .eccpos         = {
  73                8, 9, 10, 11, 12,
  74                24, 25, 26, 27, 28,
  75                40, 41, 42, 43, 44,
  76                56, 57, 58, 59, 60,
  77                },
  78        .oobfree        = {
  79                {2, 3}, {14, 2}, {18, 3}, {30, 2},
  80                {34, 3}, {46, 2}, {50, 3}, {62, 2}
  81        }
  82};
  83
  84/**
  85 * onenand_oob_32 - oob info for middle (1KB) page
  86 */
  87static struct nand_ecclayout onenand_oob_32 = {
  88        .eccbytes       = 10,
  89        .eccpos         = {
  90                8, 9, 10, 11, 12,
  91                24, 25, 26, 27, 28,
  92                },
  93        .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
  94};
  95
  96static const unsigned char ffchars[] = {
  97        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  98        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
  99        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 100        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
 101        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 102        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
 103        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 104        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
 105        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 106        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
 107        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 108        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
 109        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 110        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
 111        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 112        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
 113};
 114
 115/**
 116 * onenand_readw - [OneNAND Interface] Read OneNAND register
 117 * @param addr          address to read
 118 *
 119 * Read OneNAND register
 120 */
 121static unsigned short onenand_readw(void __iomem *addr)
 122{
 123        return readw(addr);
 124}
 125
 126/**
 127 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 128 * @param value         value to write
 129 * @param addr          address to write
 130 *
 131 * Write OneNAND register with value
 132 */
 133static void onenand_writew(unsigned short value, void __iomem *addr)
 134{
 135        writew(value, addr);
 136}
 137
 138/**
 139 * onenand_block_address - [DEFAULT] Get block address
 140 * @param this          onenand chip data structure
 141 * @param block         the block
 142 * @return              translated block address if DDP, otherwise same
 143 *
 144 * Setup Start Address 1 Register (F100h)
 145 */
 146static int onenand_block_address(struct onenand_chip *this, int block)
 147{
 148        /* Device Flash Core select, NAND Flash Block Address */
 149        if (block & this->density_mask)
 150                return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
 151
 152        return block;
 153}
 154
 155/**
 156 * onenand_bufferram_address - [DEFAULT] Get bufferram address
 157 * @param this          onenand chip data structure
 158 * @param block         the block
 159 * @return              set DBS value if DDP, otherwise 0
 160 *
 161 * Setup Start Address 2 Register (F101h) for DDP
 162 */
 163static int onenand_bufferram_address(struct onenand_chip *this, int block)
 164{
 165        /* Device BufferRAM Select */
 166        if (block & this->density_mask)
 167                return ONENAND_DDP_CHIP1;
 168
 169        return ONENAND_DDP_CHIP0;
 170}
 171
 172/**
 173 * onenand_page_address - [DEFAULT] Get page address
 174 * @param page          the page address
 175 * @param sector        the sector address
 176 * @return              combined page and sector address
 177 *
 178 * Setup Start Address 8 Register (F107h)
 179 */
 180static int onenand_page_address(int page, int sector)
 181{
 182        /* Flash Page Address, Flash Sector Address */
 183        int fpa, fsa;
 184
 185        fpa = page & ONENAND_FPA_MASK;
 186        fsa = sector & ONENAND_FSA_MASK;
 187
 188        return ((fpa << ONENAND_FPA_SHIFT) | fsa);
 189}
 190
 191/**
 192 * onenand_buffer_address - [DEFAULT] Get buffer address
 193 * @param dataram1      DataRAM index
 194 * @param sectors       the sector address
 195 * @param count         the number of sectors
 196 * @return              the start buffer value
 197 *
 198 * Setup Start Buffer Register (F200h)
 199 */
 200static int onenand_buffer_address(int dataram1, int sectors, int count)
 201{
 202        int bsa, bsc;
 203
 204        /* BufferRAM Sector Address */
 205        bsa = sectors & ONENAND_BSA_MASK;
 206
 207        if (dataram1)
 208                bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
 209        else
 210                bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
 211
 212        /* BufferRAM Sector Count */
 213        bsc = count & ONENAND_BSC_MASK;
 214
 215        return ((bsa << ONENAND_BSA_SHIFT) | bsc);
 216}
 217
 218/**
 219 * flexonenand_block- For given address return block number
 220 * @param this         - OneNAND device structure
 221 * @param addr          - Address for which block number is needed
 222 */
 223static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
 224{
 225        unsigned boundary, blk, die = 0;
 226
 227        if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
 228                die = 1;
 229                addr -= this->diesize[0];
 230        }
 231
 232        boundary = this->boundary[die];
 233
 234        blk = addr >> (this->erase_shift - 1);
 235        if (blk > boundary)
 236                blk = (blk + boundary + 1) >> 1;
 237
 238        blk += die ? this->density_mask : 0;
 239        return blk;
 240}
 241
 242inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
 243{
 244        if (!FLEXONENAND(this))
 245                return addr >> this->erase_shift;
 246        return flexonenand_block(this, addr);
 247}
 248
 249/**
 250 * flexonenand_addr - Return address of the block
 251 * @this:               OneNAND device structure
 252 * @block:              Block number on Flex-OneNAND
 253 *
 254 * Return address of the block
 255 */
 256static loff_t flexonenand_addr(struct onenand_chip *this, int block)
 257{
 258        loff_t ofs = 0;
 259        int die = 0, boundary;
 260
 261        if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
 262                block -= this->density_mask;
 263                die = 1;
 264                ofs = this->diesize[0];
 265        }
 266
 267        boundary = this->boundary[die];
 268        ofs += (loff_t)block << (this->erase_shift - 1);
 269        if (block > (boundary + 1))
 270                ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
 271        return ofs;
 272}
 273
 274loff_t onenand_addr(struct onenand_chip *this, int block)
 275{
 276        if (!FLEXONENAND(this))
 277                return (loff_t)block << this->erase_shift;
 278        return flexonenand_addr(this, block);
 279}
 280EXPORT_SYMBOL(onenand_addr);
 281
 282/**
 283 * onenand_get_density - [DEFAULT] Get OneNAND density
 284 * @param dev_id        OneNAND device ID
 285 *
 286 * Get OneNAND density from device ID
 287 */
 288static inline int onenand_get_density(int dev_id)
 289{
 290        int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
 291        return (density & ONENAND_DEVICE_DENSITY_MASK);
 292}
 293
 294/**
 295 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
 296 * @param mtd           MTD device structure
 297 * @param addr          address whose erase region needs to be identified
 298 */
 299int flexonenand_region(struct mtd_info *mtd, loff_t addr)
 300{
 301        int i;
 302
 303        for (i = 0; i < mtd->numeraseregions; i++)
 304                if (addr < mtd->eraseregions[i].offset)
 305                        break;
 306        return i - 1;
 307}
 308EXPORT_SYMBOL(flexonenand_region);
 309
 310/**
 311 * onenand_command - [DEFAULT] Send command to OneNAND device
 312 * @param mtd           MTD device structure
 313 * @param cmd           the command to be sent
 314 * @param addr          offset to read from or write to
 315 * @param len           number of bytes to read or write
 316 *
 317 * Send command to OneNAND device. This function is used for middle/large page
 318 * devices (1KB/2KB Bytes per page)
 319 */
 320static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
 321{
 322        struct onenand_chip *this = mtd->priv;
 323        int value, block, page;
 324
 325        /* Address translation */
 326        switch (cmd) {
 327        case ONENAND_CMD_UNLOCK:
 328        case ONENAND_CMD_LOCK:
 329        case ONENAND_CMD_LOCK_TIGHT:
 330        case ONENAND_CMD_UNLOCK_ALL:
 331                block = -1;
 332                page = -1;
 333                break;
 334
 335        case FLEXONENAND_CMD_PI_ACCESS:
 336                /* addr contains die index */
 337                block = addr * this->density_mask;
 338                page = -1;
 339                break;
 340
 341        case ONENAND_CMD_ERASE:
 342        case ONENAND_CMD_BUFFERRAM:
 343        case ONENAND_CMD_OTP_ACCESS:
 344                block = onenand_block(this, addr);
 345                page = -1;
 346                break;
 347
 348        case FLEXONENAND_CMD_READ_PI:
 349                cmd = ONENAND_CMD_READ;
 350                block = addr * this->density_mask;
 351                page = 0;
 352                break;
 353
 354        default:
 355                block = onenand_block(this, addr);
 356                page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
 357
 358                if (ONENAND_IS_2PLANE(this)) {
 359                        /* Make the even block number */
 360                        block &= ~1;
 361                        /* Is it the odd plane? */
 362                        if (addr & this->writesize)
 363                                block++;
 364                        page >>= 1;
 365                }
 366                page &= this->page_mask;
 367                break;
 368        }
 369
 370        /* NOTE: The setting order of the registers is very important! */
 371        if (cmd == ONENAND_CMD_BUFFERRAM) {
 372                /* Select DataRAM for DDP */
 373                value = onenand_bufferram_address(this, block);
 374                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 375
 376                if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this))
 377                        /* It is always BufferRAM0 */
 378                        ONENAND_SET_BUFFERRAM0(this);
 379                else
 380                        /* Switch to the next data buffer */
 381                        ONENAND_SET_NEXT_BUFFERRAM(this);
 382
 383                return 0;
 384        }
 385
 386        if (block != -1) {
 387                /* Write 'DFS, FBA' of Flash */
 388                value = onenand_block_address(this, block);
 389                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
 390
 391                /* Select DataRAM for DDP */
 392                value = onenand_bufferram_address(this, block);
 393                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 394        }
 395
 396        if (page != -1) {
 397                /* Now we use page size operation */
 398                int sectors = 0, count = 0;
 399                int dataram;
 400
 401                switch (cmd) {
 402                case FLEXONENAND_CMD_RECOVER_LSB:
 403                case ONENAND_CMD_READ:
 404                case ONENAND_CMD_READOOB:
 405                        if (ONENAND_IS_MLC(this))
 406                                /* It is always BufferRAM0 */
 407                                dataram = ONENAND_SET_BUFFERRAM0(this);
 408                        else
 409                                dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 410                        break;
 411
 412                default:
 413                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
 414                                cmd = ONENAND_CMD_2X_PROG;
 415                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
 416                        break;
 417                }
 418
 419                /* Write 'FPA, FSA' of Flash */
 420                value = onenand_page_address(page, sectors);
 421                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
 422
 423                /* Write 'BSA, BSC' of DataRAM */
 424                value = onenand_buffer_address(dataram, sectors, count);
 425                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
 426        }
 427
 428        /* Interrupt clear */
 429        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
 430
 431        /* Write command */
 432        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
 433
 434        return 0;
 435}
 436
 437/**
 438 * onenand_read_ecc - return ecc status
 439 * @param this          onenand chip structure
 440 */
 441static inline int onenand_read_ecc(struct onenand_chip *this)
 442{
 443        int ecc, i, result = 0;
 444
 445        if (!FLEXONENAND(this))
 446                return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
 447
 448        for (i = 0; i < 4; i++) {
 449                ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i);
 450                if (likely(!ecc))
 451                        continue;
 452                if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
 453                        return ONENAND_ECC_2BIT_ALL;
 454                else
 455                        result = ONENAND_ECC_1BIT_ALL;
 456        }
 457
 458        return result;
 459}
 460
 461/**
 462 * onenand_wait - [DEFAULT] wait until the command is done
 463 * @param mtd           MTD device structure
 464 * @param state         state to select the max. timeout value
 465 *
 466 * Wait for command done. This applies to all OneNAND command
 467 * Read can take up to 30us, erase up to 2ms and program up to 350us
 468 * according to general OneNAND specs
 469 */
 470static int onenand_wait(struct mtd_info *mtd, int state)
 471{
 472        struct onenand_chip * this = mtd->priv;
 473        unsigned long timeout;
 474        unsigned int flags = ONENAND_INT_MASTER;
 475        unsigned int interrupt = 0;
 476        unsigned int ctrl;
 477
 478        /* The 20 msec is enough */
 479        timeout = jiffies + msecs_to_jiffies(20);
 480        while (time_before(jiffies, timeout)) {
 481                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 482
 483                if (interrupt & flags)
 484                        break;
 485
 486                if (state != FL_READING)
 487                        cond_resched();
 488        }
 489        /* To get correct interrupt status in timeout case */
 490        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 491
 492        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 493
 494        /*
 495         * In the Spec. it checks the controller status first
 496         * However if you get the correct information in case of
 497         * power off recovery (POR) test, it should read ECC status first
 498         */
 499        if (interrupt & ONENAND_INT_READ) {
 500                int ecc = onenand_read_ecc(this);
 501                if (ecc) {
 502                        if (ecc & ONENAND_ECC_2BIT_ALL) {
 503                                printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
 504                                mtd->ecc_stats.failed++;
 505                                return -EBADMSG;
 506                        } else if (ecc & ONENAND_ECC_1BIT_ALL) {
 507                                printk(KERN_DEBUG "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
 508                                mtd->ecc_stats.corrected++;
 509                        }
 510                }
 511        } else if (state == FL_READING) {
 512                printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
 513                return -EIO;
 514        }
 515
 516        /* If there's controller error, it's a real error */
 517        if (ctrl & ONENAND_CTRL_ERROR) {
 518                printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n",
 519                        ctrl);
 520                if (ctrl & ONENAND_CTRL_LOCK)
 521                        printk(KERN_ERR "onenand_wait: it's locked error.\n");
 522                return -EIO;
 523        }
 524
 525        return 0;
 526}
 527
 528/*
 529 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 530 * @param irq           onenand interrupt number
 531 * @param dev_id        interrupt data
 532 *
 533 * complete the work
 534 */
 535static irqreturn_t onenand_interrupt(int irq, void *data)
 536{
 537        struct onenand_chip *this = data;
 538
 539        /* To handle shared interrupt */
 540        if (!this->complete.done)
 541                complete(&this->complete);
 542
 543        return IRQ_HANDLED;
 544}
 545
 546/*
 547 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 548 * @param mtd           MTD device structure
 549 * @param state         state to select the max. timeout value
 550 *
 551 * Wait for command done.
 552 */
 553static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
 554{
 555        struct onenand_chip *this = mtd->priv;
 556
 557        wait_for_completion(&this->complete);
 558
 559        return onenand_wait(mtd, state);
 560}
 561
 562/*
 563 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 564 * @param mtd           MTD device structure
 565 * @param state         state to select the max. timeout value
 566 *
 567 * Try interrupt based wait (It is used one-time)
 568 */
 569static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
 570{
 571        struct onenand_chip *this = mtd->priv;
 572        unsigned long remain, timeout;
 573
 574        /* We use interrupt wait first */
 575        this->wait = onenand_interrupt_wait;
 576
 577        timeout = msecs_to_jiffies(100);
 578        remain = wait_for_completion_timeout(&this->complete, timeout);
 579        if (!remain) {
 580                printk(KERN_INFO "OneNAND: There's no interrupt. "
 581                                "We use the normal wait\n");
 582
 583                /* Release the irq */
 584                free_irq(this->irq, this);
 585
 586                this->wait = onenand_wait;
 587        }
 588
 589        return onenand_wait(mtd, state);
 590}
 591
 592/*
 593 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 594 * @param mtd           MTD device structure
 595 *
 596 * There's two method to wait onenand work
 597 * 1. polling - read interrupt status register
 598 * 2. interrupt - use the kernel interrupt method
 599 */
 600static void onenand_setup_wait(struct mtd_info *mtd)
 601{
 602        struct onenand_chip *this = mtd->priv;
 603        int syscfg;
 604
 605        init_completion(&this->complete);
 606
 607        if (this->irq <= 0) {
 608                this->wait = onenand_wait;
 609                return;
 610        }
 611
 612        if (request_irq(this->irq, &onenand_interrupt,
 613                                IRQF_SHARED, "onenand", this)) {
 614                /* If we can't get irq, use the normal wait */
 615                this->wait = onenand_wait;
 616                return;
 617        }
 618
 619        /* Enable interrupt */
 620        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
 621        syscfg |= ONENAND_SYS_CFG1_IOBE;
 622        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
 623
 624        this->wait = onenand_try_interrupt_wait;
 625}
 626
 627/**
 628 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 629 * @param mtd           MTD data structure
 630 * @param area          BufferRAM area
 631 * @return              offset given area
 632 *
 633 * Return BufferRAM offset given area
 634 */
 635static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
 636{
 637        struct onenand_chip *this = mtd->priv;
 638
 639        if (ONENAND_CURRENT_BUFFERRAM(this)) {
 640                /* Note: the 'this->writesize' is a real page size */
 641                if (area == ONENAND_DATARAM)
 642                        return this->writesize;
 643                if (area == ONENAND_SPARERAM)
 644                        return mtd->oobsize;
 645        }
 646
 647        return 0;
 648}
 649
 650/**
 651 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 652 * @param mtd           MTD data structure
 653 * @param area          BufferRAM area
 654 * @param buffer        the databuffer to put/get data
 655 * @param offset        offset to read from or write to
 656 * @param count         number of bytes to read/write
 657 *
 658 * Read the BufferRAM area
 659 */
 660static int onenand_read_bufferram(struct mtd_info *mtd, int area,
 661                unsigned char *buffer, int offset, size_t count)
 662{
 663        struct onenand_chip *this = mtd->priv;
 664        void __iomem *bufferram;
 665
 666        bufferram = this->base + area;
 667
 668        bufferram += onenand_bufferram_offset(mtd, area);
 669
 670        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 671                unsigned short word;
 672
 673                /* Align with word(16-bit) size */
 674                count--;
 675
 676                /* Read word and save byte */
 677                word = this->read_word(bufferram + offset + count);
 678                buffer[count] = (word & 0xff);
 679        }
 680
 681        memcpy(buffer, bufferram + offset, count);
 682
 683        return 0;
 684}
 685
 686/**
 687 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 688 * @param mtd           MTD data structure
 689 * @param area          BufferRAM area
 690 * @param buffer        the databuffer to put/get data
 691 * @param offset        offset to read from or write to
 692 * @param count         number of bytes to read/write
 693 *
 694 * Read the BufferRAM area with Sync. Burst Mode
 695 */
 696static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
 697                unsigned char *buffer, int offset, size_t count)
 698{
 699        struct onenand_chip *this = mtd->priv;
 700        void __iomem *bufferram;
 701
 702        bufferram = this->base + area;
 703
 704        bufferram += onenand_bufferram_offset(mtd, area);
 705
 706        this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
 707
 708        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 709                unsigned short word;
 710
 711                /* Align with word(16-bit) size */
 712                count--;
 713
 714                /* Read word and save byte */
 715                word = this->read_word(bufferram + offset + count);
 716                buffer[count] = (word & 0xff);
 717        }
 718
 719        memcpy(buffer, bufferram + offset, count);
 720
 721        this->mmcontrol(mtd, 0);
 722
 723        return 0;
 724}
 725
 726/**
 727 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 728 * @param mtd           MTD data structure
 729 * @param area          BufferRAM area
 730 * @param buffer        the databuffer to put/get data
 731 * @param offset        offset to read from or write to
 732 * @param count         number of bytes to read/write
 733 *
 734 * Write the BufferRAM area
 735 */
 736static int onenand_write_bufferram(struct mtd_info *mtd, int area,
 737                const unsigned char *buffer, int offset, size_t count)
 738{
 739        struct onenand_chip *this = mtd->priv;
 740        void __iomem *bufferram;
 741
 742        bufferram = this->base + area;
 743
 744        bufferram += onenand_bufferram_offset(mtd, area);
 745
 746        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 747                unsigned short word;
 748                int byte_offset;
 749
 750                /* Align with word(16-bit) size */
 751                count--;
 752
 753                /* Calculate byte access offset */
 754                byte_offset = offset + count;
 755
 756                /* Read word and save byte */
 757                word = this->read_word(bufferram + byte_offset);
 758                word = (word & ~0xff) | buffer[count];
 759                this->write_word(word, bufferram + byte_offset);
 760        }
 761
 762        memcpy(bufferram + offset, buffer, count);
 763
 764        return 0;
 765}
 766
 767/**
 768 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 769 * @param mtd           MTD data structure
 770 * @param addr          address to check
 771 * @return              blockpage address
 772 *
 773 * Get blockpage address at 2x program mode
 774 */
 775static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
 776{
 777        struct onenand_chip *this = mtd->priv;
 778        int blockpage, block, page;
 779
 780        /* Calculate the even block number */
 781        block = (int) (addr >> this->erase_shift) & ~1;
 782        /* Is it the odd plane? */
 783        if (addr & this->writesize)
 784                block++;
 785        page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
 786        blockpage = (block << 7) | page;
 787
 788        return blockpage;
 789}
 790
 791/**
 792 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 793 * @param mtd           MTD data structure
 794 * @param addr          address to check
 795 * @return              1 if there are valid data, otherwise 0
 796 *
 797 * Check bufferram if there is data we required
 798 */
 799static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
 800{
 801        struct onenand_chip *this = mtd->priv;
 802        int blockpage, found = 0;
 803        unsigned int i;
 804
 805        if (ONENAND_IS_2PLANE(this))
 806                blockpage = onenand_get_2x_blockpage(mtd, addr);
 807        else
 808                blockpage = (int) (addr >> this->page_shift);
 809
 810        /* Is there valid data? */
 811        i = ONENAND_CURRENT_BUFFERRAM(this);
 812        if (this->bufferram[i].blockpage == blockpage)
 813                found = 1;
 814        else {
 815                /* Check another BufferRAM */
 816                i = ONENAND_NEXT_BUFFERRAM(this);
 817                if (this->bufferram[i].blockpage == blockpage) {
 818                        ONENAND_SET_NEXT_BUFFERRAM(this);
 819                        found = 1;
 820                }
 821        }
 822
 823        if (found && ONENAND_IS_DDP(this)) {
 824                /* Select DataRAM for DDP */
 825                int block = onenand_block(this, addr);
 826                int value = onenand_bufferram_address(this, block);
 827                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 828        }
 829
 830        return found;
 831}
 832
 833/**
 834 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 835 * @param mtd           MTD data structure
 836 * @param addr          address to update
 837 * @param valid         valid flag
 838 *
 839 * Update BufferRAM information
 840 */
 841static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
 842                int valid)
 843{
 844        struct onenand_chip *this = mtd->priv;
 845        int blockpage;
 846        unsigned int i;
 847
 848        if (ONENAND_IS_2PLANE(this))
 849                blockpage = onenand_get_2x_blockpage(mtd, addr);
 850        else
 851                blockpage = (int) (addr >> this->page_shift);
 852
 853        /* Invalidate another BufferRAM */
 854        i = ONENAND_NEXT_BUFFERRAM(this);
 855        if (this->bufferram[i].blockpage == blockpage)
 856                this->bufferram[i].blockpage = -1;
 857
 858        /* Update BufferRAM */
 859        i = ONENAND_CURRENT_BUFFERRAM(this);
 860        if (valid)
 861                this->bufferram[i].blockpage = blockpage;
 862        else
 863                this->bufferram[i].blockpage = -1;
 864}
 865
 866/**
 867 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 868 * @param mtd           MTD data structure
 869 * @param addr          start address to invalidate
 870 * @param len           length to invalidate
 871 *
 872 * Invalidate BufferRAM information
 873 */
 874static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
 875                unsigned int len)
 876{
 877        struct onenand_chip *this = mtd->priv;
 878        int i;
 879        loff_t end_addr = addr + len;
 880
 881        /* Invalidate BufferRAM */
 882        for (i = 0; i < MAX_BUFFERRAM; i++) {
 883                loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
 884                if (buf_addr >= addr && buf_addr < end_addr)
 885                        this->bufferram[i].blockpage = -1;
 886        }
 887}
 888
 889/**
 890 * onenand_get_device - [GENERIC] Get chip for selected access
 891 * @param mtd           MTD device structure
 892 * @param new_state     the state which is requested
 893 *
 894 * Get the device and lock it for exclusive access
 895 */
 896static int onenand_get_device(struct mtd_info *mtd, int new_state)
 897{
 898        struct onenand_chip *this = mtd->priv;
 899        DECLARE_WAITQUEUE(wait, current);
 900
 901        /*
 902         * Grab the lock and see if the device is available
 903         */
 904        while (1) {
 905                spin_lock(&this->chip_lock);
 906                if (this->state == FL_READY) {
 907                        this->state = new_state;
 908                        spin_unlock(&this->chip_lock);
 909                        break;
 910                }
 911                if (new_state == FL_PM_SUSPENDED) {
 912                        spin_unlock(&this->chip_lock);
 913                        return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
 914                }
 915                set_current_state(TASK_UNINTERRUPTIBLE);
 916                add_wait_queue(&this->wq, &wait);
 917                spin_unlock(&this->chip_lock);
 918                schedule();
 919                remove_wait_queue(&this->wq, &wait);
 920        }
 921
 922        return 0;
 923}
 924
 925/**
 926 * onenand_release_device - [GENERIC] release chip
 927 * @param mtd           MTD device structure
 928 *
 929 * Deselect, release chip lock and wake up anyone waiting on the device
 930 */
 931static void onenand_release_device(struct mtd_info *mtd)
 932{
 933        struct onenand_chip *this = mtd->priv;
 934
 935        /* Release the chip */
 936        spin_lock(&this->chip_lock);
 937        this->state = FL_READY;
 938        wake_up(&this->wq);
 939        spin_unlock(&this->chip_lock);
 940}
 941
 942/**
 943 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 944 * @param mtd           MTD device structure
 945 * @param buf           destination address
 946 * @param column        oob offset to read from
 947 * @param thislen       oob length to read
 948 */
 949static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
 950                                int thislen)
 951{
 952        struct onenand_chip *this = mtd->priv;
 953        struct nand_oobfree *free;
 954        int readcol = column;
 955        int readend = column + thislen;
 956        int lastgap = 0;
 957        unsigned int i;
 958        uint8_t *oob_buf = this->oob_buf;
 959
 960        free = this->ecclayout->oobfree;
 961        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
 962                if (readcol >= lastgap)
 963                        readcol += free->offset - lastgap;
 964                if (readend >= lastgap)
 965                        readend += free->offset - lastgap;
 966                lastgap = free->offset + free->length;
 967        }
 968        this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
 969        free = this->ecclayout->oobfree;
 970        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
 971                int free_end = free->offset + free->length;
 972                if (free->offset < readend && free_end > readcol) {
 973                        int st = max_t(int,free->offset,readcol);
 974                        int ed = min_t(int,free_end,readend);
 975                        int n = ed - st;
 976                        memcpy(buf, oob_buf + st, n);
 977                        buf += n;
 978                } else if (column == 0)
 979                        break;
 980        }
 981        return 0;
 982}
 983
 984/**
 985 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
 986 * @param mtd           MTD device structure
 987 * @param addr          address to recover
 988 * @param status        return value from onenand_wait / onenand_bbt_wait
 989 *
 990 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
 991 * lower page address and MSB page has higher page address in paired pages.
 992 * If power off occurs during MSB page program, the paired LSB page data can
 993 * become corrupt. LSB page recovery read is a way to read LSB page though page
 994 * data are corrupted. When uncorrectable error occurs as a result of LSB page
 995 * read after power up, issue LSB page recovery read.
 996 */
 997static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
 998{
 999        struct onenand_chip *this = mtd->priv;
1000        int i;
1001
1002        /* Recovery is only for Flex-OneNAND */
1003        if (!FLEXONENAND(this))
1004                return status;
1005
1006        /* check if we failed due to uncorrectable error */
1007        if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
1008                return status;
1009
1010        /* check if address lies in MLC region */
1011        i = flexonenand_region(mtd, addr);
1012        if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1013                return status;
1014
1015        /* We are attempting to reread, so decrement stats.failed
1016         * which was incremented by onenand_wait due to read failure
1017         */
1018        printk(KERN_INFO "onenand_recover_lsb: Attempting to recover from uncorrectable read\n");
1019        mtd->ecc_stats.failed--;
1020
1021        /* Issue the LSB page recovery command */
1022        this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1023        return this->wait(mtd, FL_READING);
1024}
1025
1026/**
1027 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1028 * @param mtd           MTD device structure
1029 * @param from          offset to read from
1030 * @param ops:          oob operation description structure
1031 *
1032 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1033 * So, read-while-load is not present.
1034 */
1035static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1036                                struct mtd_oob_ops *ops)
1037{
1038        struct onenand_chip *this = mtd->priv;
1039        struct mtd_ecc_stats stats;
1040        size_t len = ops->len;
1041        size_t ooblen = ops->ooblen;
1042        u_char *buf = ops->datbuf;
1043        u_char *oobbuf = ops->oobbuf;
1044        int read = 0, column, thislen;
1045        int oobread = 0, oobcolumn, thisooblen, oobsize;
1046        int ret = 0;
1047        int writesize = this->writesize;
1048
1049        DEBUG(MTD_DEBUG_LEVEL3, "onenand_mlc_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1050
1051        if (ops->mode == MTD_OOB_AUTO)
1052                oobsize = this->ecclayout->oobavail;
1053        else
1054                oobsize = mtd->oobsize;
1055
1056        oobcolumn = from & (mtd->oobsize - 1);
1057
1058        /* Do not allow reads past end of device */
1059        if (from + len > mtd->size) {
1060                printk(KERN_ERR "onenand_mlc_read_ops_nolock: Attempt read beyond end of device\n");
1061                ops->retlen = 0;
1062                ops->oobretlen = 0;
1063                return -EINVAL;
1064        }
1065
1066        stats = mtd->ecc_stats;
1067
1068        while (read < len) {
1069                cond_resched();
1070
1071                thislen = min_t(int, writesize, len - read);
1072
1073                column = from & (writesize - 1);
1074                if (column + thislen > writesize)
1075                        thislen = writesize - column;
1076
1077                if (!onenand_check_bufferram(mtd, from)) {
1078                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1079
1080                        ret = this->wait(mtd, FL_READING);
1081                        if (unlikely(ret))
1082                                ret = onenand_recover_lsb(mtd, from, ret);
1083                        onenand_update_bufferram(mtd, from, !ret);
1084                        if (ret == -EBADMSG)
1085                                ret = 0;
1086                }
1087
1088                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1089                if (oobbuf) {
1090                        thisooblen = oobsize - oobcolumn;
1091                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1092
1093                        if (ops->mode == MTD_OOB_AUTO)
1094                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1095                        else
1096                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1097                        oobread += thisooblen;
1098                        oobbuf += thisooblen;
1099                        oobcolumn = 0;
1100                }
1101
1102                read += thislen;
1103                if (read == len)
1104                        break;
1105
1106                from += thislen;
1107                buf += thislen;
1108        }
1109
1110        /*
1111         * Return success, if no ECC failures, else -EBADMSG
1112         * fs driver will take care of that, because
1113         * retlen == desired len and result == -EBADMSG
1114         */
1115        ops->retlen = read;
1116        ops->oobretlen = oobread;
1117
1118        if (ret)
1119                return ret;
1120
1121        if (mtd->ecc_stats.failed - stats.failed)
1122                return -EBADMSG;
1123
1124        return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1125}
1126
1127/**
1128 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1129 * @param mtd           MTD device structure
1130 * @param from          offset to read from
1131 * @param ops:          oob operation description structure
1132 *
1133 * OneNAND read main and/or out-of-band data
1134 */
1135static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1136                                struct mtd_oob_ops *ops)
1137{
1138        struct onenand_chip *this = mtd->priv;
1139        struct mtd_ecc_stats stats;
1140        size_t len = ops->len;
1141        size_t ooblen = ops->ooblen;
1142        u_char *buf = ops->datbuf;
1143        u_char *oobbuf = ops->oobbuf;
1144        int read = 0, column, thislen;
1145        int oobread = 0, oobcolumn, thisooblen, oobsize;
1146        int ret = 0, boundary = 0;
1147        int writesize = this->writesize;
1148
1149        DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1150
1151        if (ops->mode == MTD_OOB_AUTO)
1152                oobsize = this->ecclayout->oobavail;
1153        else
1154                oobsize = mtd->oobsize;
1155
1156        oobcolumn = from & (mtd->oobsize - 1);
1157
1158        /* Do not allow reads past end of device */
1159        if ((from + len) > mtd->size) {
1160                printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
1161                ops->retlen = 0;
1162                ops->oobretlen = 0;
1163                return -EINVAL;
1164        }
1165
1166        stats = mtd->ecc_stats;
1167
1168        /* Read-while-load method */
1169
1170        /* Do first load to bufferRAM */
1171        if (read < len) {
1172                if (!onenand_check_bufferram(mtd, from)) {
1173                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1174                        ret = this->wait(mtd, FL_READING);
1175                        onenand_update_bufferram(mtd, from, !ret);
1176                        if (ret == -EBADMSG)
1177                                ret = 0;
1178                }
1179        }
1180
1181        thislen = min_t(int, writesize, len - read);
1182        column = from & (writesize - 1);
1183        if (column + thislen > writesize)
1184                thislen = writesize - column;
1185
1186        while (!ret) {
1187                /* If there is more to load then start next load */
1188                from += thislen;
1189                if (read + thislen < len) {
1190                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1191                        /*
1192                         * Chip boundary handling in DDP
1193                         * Now we issued chip 1 read and pointed chip 1
1194                         * bufferram so we have to point chip 0 bufferram.
1195                         */
1196                        if (ONENAND_IS_DDP(this) &&
1197                            unlikely(from == (this->chipsize >> 1))) {
1198                                this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1199                                boundary = 1;
1200                        } else
1201                                boundary = 0;
1202                        ONENAND_SET_PREV_BUFFERRAM(this);
1203                }
1204                /* While load is going, read from last bufferRAM */
1205                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1206
1207                /* Read oob area if needed */
1208                if (oobbuf) {
1209                        thisooblen = oobsize - oobcolumn;
1210                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1211
1212                        if (ops->mode == MTD_OOB_AUTO)
1213                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1214                        else
1215                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1216                        oobread += thisooblen;
1217                        oobbuf += thisooblen;
1218                        oobcolumn = 0;
1219                }
1220
1221                /* See if we are done */
1222                read += thislen;
1223                if (read == len)
1224                        break;
1225                /* Set up for next read from bufferRAM */
1226                if (unlikely(boundary))
1227                        this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1228                ONENAND_SET_NEXT_BUFFERRAM(this);
1229                buf += thislen;
1230                thislen = min_t(int, writesize, len - read);
1231                column = 0;
1232                cond_resched();
1233                /* Now wait for load */
1234                ret = this->wait(mtd, FL_READING);
1235                onenand_update_bufferram(mtd, from, !ret);
1236                if (ret == -EBADMSG)
1237                        ret = 0;
1238        }
1239
1240        /*
1241         * Return success, if no ECC failures, else -EBADMSG
1242         * fs driver will take care of that, because
1243         * retlen == desired len and result == -EBADMSG
1244         */
1245        ops->retlen = read;
1246        ops->oobretlen = oobread;
1247
1248        if (ret)
1249                return ret;
1250
1251        if (mtd->ecc_stats.failed - stats.failed)
1252                return -EBADMSG;
1253
1254        return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1255}
1256
1257/**
1258 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1259 * @param mtd           MTD device structure
1260 * @param from          offset to read from
1261 * @param ops:          oob operation description structure
1262 *
1263 * OneNAND read out-of-band data from the spare area
1264 */
1265static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1266                        struct mtd_oob_ops *ops)
1267{
1268        struct onenand_chip *this = mtd->priv;
1269        struct mtd_ecc_stats stats;
1270        int read = 0, thislen, column, oobsize;
1271        size_t len = ops->ooblen;
1272        mtd_oob_mode_t mode = ops->mode;
1273        u_char *buf = ops->oobbuf;
1274        int ret = 0, readcmd;
1275
1276        from += ops->ooboffs;
1277
1278        DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1279
1280        /* Initialize return length value */
1281        ops->oobretlen = 0;
1282
1283        if (mode == MTD_OOB_AUTO)
1284                oobsize = this->ecclayout->oobavail;
1285        else
1286                oobsize = mtd->oobsize;
1287
1288        column = from & (mtd->oobsize - 1);
1289
1290        if (unlikely(column >= oobsize)) {
1291                printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1292                return -EINVAL;
1293        }
1294
1295        /* Do not allow reads past end of device */
1296        if (unlikely(from >= mtd->size ||
1297                     column + len > ((mtd->size >> this->page_shift) -
1298                                     (from >> this->page_shift)) * oobsize)) {
1299                printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1300                return -EINVAL;
1301        }
1302
1303        stats = mtd->ecc_stats;
1304
1305        readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1306
1307        while (read < len) {
1308                cond_resched();
1309
1310                thislen = oobsize - column;
1311                thislen = min_t(int, thislen, len);
1312
1313                this->command(mtd, readcmd, from, mtd->oobsize);
1314
1315                onenand_update_bufferram(mtd, from, 0);
1316
1317                ret = this->wait(mtd, FL_READING);
1318                if (unlikely(ret))
1319                        ret = onenand_recover_lsb(mtd, from, ret);
1320
1321                if (ret && ret != -EBADMSG) {
1322                        printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1323                        break;
1324                }
1325
1326                if (mode == MTD_OOB_AUTO)
1327                        onenand_transfer_auto_oob(mtd, buf, column, thislen);
1328                else
1329                        this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1330
1331                read += thislen;
1332
1333                if (read == len)
1334                        break;
1335
1336                buf += thislen;
1337
1338                /* Read more? */
1339                if (read < len) {
1340                        /* Page size */
1341                        from += mtd->writesize;
1342                        column = 0;
1343                }
1344        }
1345
1346        ops->oobretlen = read;
1347
1348        if (ret)
1349                return ret;
1350
1351        if (mtd->ecc_stats.failed - stats.failed)
1352                return -EBADMSG;
1353
1354        return 0;
1355}
1356
1357/**
1358 * onenand_read - [MTD Interface] Read data from flash
1359 * @param mtd           MTD device structure
1360 * @param from          offset to read from
1361 * @param len           number of bytes to read
1362 * @param retlen        pointer to variable to store the number of read bytes
1363 * @param buf           the databuffer to put data
1364 *
1365 * Read with ecc
1366*/
1367static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1368        size_t *retlen, u_char *buf)
1369{
1370        struct onenand_chip *this = mtd->priv;
1371        struct mtd_oob_ops ops = {
1372                .len    = len,
1373                .ooblen = 0,
1374                .datbuf = buf,
1375                .oobbuf = NULL,
1376        };
1377        int ret;
1378
1379        onenand_get_device(mtd, FL_READING);
1380        ret = ONENAND_IS_MLC(this) ?
1381                onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1382                onenand_read_ops_nolock(mtd, from, &ops);
1383        onenand_release_device(mtd);
1384
1385        *retlen = ops.retlen;
1386        return ret;
1387}
1388
1389/**
1390 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1391 * @param mtd:          MTD device structure
1392 * @param from:         offset to read from
1393 * @param ops:          oob operation description structure
1394
1395 * Read main and/or out-of-band
1396 */
1397static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1398                            struct mtd_oob_ops *ops)
1399{
1400        struct onenand_chip *this = mtd->priv;
1401        int ret;
1402
1403        switch (ops->mode) {
1404        case MTD_OOB_PLACE:
1405        case MTD_OOB_AUTO:
1406                break;
1407        case MTD_OOB_RAW:
1408                /* Not implemented yet */
1409        default:
1410                return -EINVAL;
1411        }
1412
1413        onenand_get_device(mtd, FL_READING);
1414        if (ops->datbuf)
1415                ret = ONENAND_IS_MLC(this) ?
1416                        onenand_mlc_read_ops_nolock(mtd, from, ops) :
1417                        onenand_read_ops_nolock(mtd, from, ops);
1418        else
1419                ret = onenand_read_oob_nolock(mtd, from, ops);
1420        onenand_release_device(mtd);
1421
1422        return ret;
1423}
1424
1425/**
1426 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1427 * @param mtd           MTD device structure
1428 * @param state         state to select the max. timeout value
1429 *
1430 * Wait for command done.
1431 */
1432static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1433{
1434        struct onenand_chip *this = mtd->priv;
1435        unsigned long timeout;
1436        unsigned int interrupt;
1437        unsigned int ctrl;
1438
1439        /* The 20 msec is enough */
1440        timeout = jiffies + msecs_to_jiffies(20);
1441        while (time_before(jiffies, timeout)) {
1442                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1443                if (interrupt & ONENAND_INT_MASTER)
1444                        break;
1445        }
1446        /* To get correct interrupt status in timeout case */
1447        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1448        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1449
1450        if (interrupt & ONENAND_INT_READ) {
1451                int ecc = onenand_read_ecc(this);
1452                if (ecc & ONENAND_ECC_2BIT_ALL) {
1453                        printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1454                                ", controller error 0x%04x\n", ecc, ctrl);
1455                        return ONENAND_BBT_READ_ECC_ERROR;
1456                }
1457        } else {
1458                printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1459                        "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1460                return ONENAND_BBT_READ_FATAL_ERROR;
1461        }
1462
1463        /* Initial bad block case: 0x2400 or 0x0400 */
1464        if (ctrl & ONENAND_CTRL_ERROR) {
1465                printk(KERN_DEBUG "onenand_bbt_wait: "
1466                        "controller error = 0x%04x\n", ctrl);
1467                return ONENAND_BBT_READ_ERROR;
1468        }
1469
1470        return 0;
1471}
1472
1473/**
1474 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1475 * @param mtd           MTD device structure
1476 * @param from          offset to read from
1477 * @param ops           oob operation description structure
1478 *
1479 * OneNAND read out-of-band data from the spare area for bbt scan
1480 */
1481int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1482                            struct mtd_oob_ops *ops)
1483{
1484        struct onenand_chip *this = mtd->priv;
1485        int read = 0, thislen, column;
1486        int ret = 0, readcmd;
1487        size_t len = ops->ooblen;
1488        u_char *buf = ops->oobbuf;
1489
1490        DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1491
1492        /* Initialize return value */
1493        ops->oobretlen = 0;
1494
1495        /* Do not allow reads past end of device */
1496        if (unlikely((from + len) > mtd->size)) {
1497                printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1498                return ONENAND_BBT_READ_FATAL_ERROR;
1499        }
1500
1501        /* Grab the lock and see if the device is available */
1502        onenand_get_device(mtd, FL_READING);
1503
1504        column = from & (mtd->oobsize - 1);
1505
1506        readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1507
1508        while (read < len) {
1509                cond_resched();
1510
1511                thislen = mtd->oobsize - column;
1512                thislen = min_t(int, thislen, len);
1513
1514                this->command(mtd, readcmd, from, mtd->oobsize);
1515
1516                onenand_update_bufferram(mtd, from, 0);
1517
1518                ret = this->bbt_wait(mtd, FL_READING);
1519                if (unlikely(ret))
1520                        ret = onenand_recover_lsb(mtd, from, ret);
1521
1522                if (ret)
1523                        break;
1524
1525                this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1526                read += thislen;
1527                if (read == len)
1528                        break;
1529
1530                buf += thislen;
1531
1532                /* Read more? */
1533                if (read < len) {
1534                        /* Update Page size */
1535                        from += this->writesize;
1536                        column = 0;
1537                }
1538        }
1539
1540        /* Deselect and wake up anyone waiting on the device */
1541        onenand_release_device(mtd);
1542
1543        ops->oobretlen = read;
1544        return ret;
1545}
1546
1547#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1548/**
1549 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1550 * @param mtd           MTD device structure
1551 * @param buf           the databuffer to verify
1552 * @param to            offset to read from
1553 */
1554static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1555{
1556        struct onenand_chip *this = mtd->priv;
1557        u_char *oob_buf = this->oob_buf;
1558        int status, i, readcmd;
1559
1560        readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1561
1562        this->command(mtd, readcmd, to, mtd->oobsize);
1563        onenand_update_bufferram(mtd, to, 0);
1564        status = this->wait(mtd, FL_READING);
1565        if (status)
1566                return status;
1567
1568        this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1569        for (i = 0; i < mtd->oobsize; i++)
1570                if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1571                        return -EBADMSG;
1572
1573        return 0;
1574}
1575
1576/**
1577 * onenand_verify - [GENERIC] verify the chip contents after a write
1578 * @param mtd          MTD device structure
1579 * @param buf          the databuffer to verify
1580 * @param addr         offset to read from
1581 * @param len          number of bytes to read and compare
1582 */
1583static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1584{
1585        struct onenand_chip *this = mtd->priv;
1586        void __iomem *dataram;
1587        int ret = 0;
1588        int thislen, column;
1589
1590        while (len != 0) {
1591                thislen = min_t(int, this->writesize, len);
1592                column = addr & (this->writesize - 1);
1593                if (column + thislen > this->writesize)
1594                        thislen = this->writesize - column;
1595
1596                this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1597
1598                onenand_update_bufferram(mtd, addr, 0);
1599
1600                ret = this->wait(mtd, FL_READING);
1601                if (ret)
1602                        return ret;
1603
1604                onenand_update_bufferram(mtd, addr, 1);
1605
1606                dataram = this->base + ONENAND_DATARAM;
1607                dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1608
1609                if (memcmp(buf, dataram + column, thislen))
1610                        return -EBADMSG;
1611
1612                len -= thislen;
1613                buf += thislen;
1614                addr += thislen;
1615        }
1616
1617        return 0;
1618}
1619#else
1620#define onenand_verify(...)             (0)
1621#define onenand_verify_oob(...)         (0)
1622#endif
1623
1624#define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1625
1626static void onenand_panic_wait(struct mtd_info *mtd)
1627{
1628        struct onenand_chip *this = mtd->priv;
1629        unsigned int interrupt;
1630        int i;
1631        
1632        for (i = 0; i < 2000; i++) {
1633                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1634                if (interrupt & ONENAND_INT_MASTER)
1635                        break;
1636                udelay(10);
1637        }
1638}
1639
1640/**
1641 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1642 * @param mtd           MTD device structure
1643 * @param to            offset to write to
1644 * @param len           number of bytes to write
1645 * @param retlen        pointer to variable to store the number of written bytes
1646 * @param buf           the data to write
1647 *
1648 * Write with ECC
1649 */
1650static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1651                         size_t *retlen, const u_char *buf)
1652{
1653        struct onenand_chip *this = mtd->priv;
1654        int column, subpage;
1655        int written = 0;
1656        int ret = 0;
1657
1658        if (this->state == FL_PM_SUSPENDED)
1659                return -EBUSY;
1660
1661        /* Wait for any existing operation to clear */
1662        onenand_panic_wait(mtd);
1663
1664        DEBUG(MTD_DEBUG_LEVEL3, "onenand_panic_write: to = 0x%08x, len = %i\n",
1665              (unsigned int) to, (int) len);
1666
1667        /* Initialize retlen, in case of early exit */
1668        *retlen = 0;
1669
1670        /* Do not allow writes past end of device */
1671        if (unlikely((to + len) > mtd->size)) {
1672                printk(KERN_ERR "onenand_panic_write: Attempt write to past end of device\n");
1673                return -EINVAL;
1674        }
1675
1676        /* Reject writes, which are not page aligned */
1677        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1678                printk(KERN_ERR "onenand_panic_write: Attempt to write not page aligned data\n");
1679                return -EINVAL;
1680        }
1681
1682        column = to & (mtd->writesize - 1);
1683
1684        /* Loop until all data write */
1685        while (written < len) {
1686                int thislen = min_t(int, mtd->writesize - column, len - written);
1687                u_char *wbuf = (u_char *) buf;
1688
1689                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1690
1691                /* Partial page write */
1692                subpage = thislen < mtd->writesize;
1693                if (subpage) {
1694                        memset(this->page_buf, 0xff, mtd->writesize);
1695                        memcpy(this->page_buf + column, buf, thislen);
1696                        wbuf = this->page_buf;
1697                }
1698
1699                this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1700                this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1701
1702                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1703
1704                onenand_panic_wait(mtd);
1705
1706                /* In partial page write we don't update bufferram */
1707                onenand_update_bufferram(mtd, to, !ret && !subpage);
1708                if (ONENAND_IS_2PLANE(this)) {
1709                        ONENAND_SET_BUFFERRAM1(this);
1710                        onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1711                }
1712
1713                if (ret) {
1714                        printk(KERN_ERR "onenand_panic_write: write failed %d\n", ret);
1715                        break;
1716                }
1717
1718                written += thislen;
1719
1720                if (written == len)
1721                        break;
1722
1723                column = 0;
1724                to += thislen;
1725                buf += thislen;
1726        }
1727
1728        *retlen = written;
1729        return ret;
1730}
1731
1732/**
1733 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1734 * @param mtd           MTD device structure
1735 * @param oob_buf       oob buffer
1736 * @param buf           source address
1737 * @param column        oob offset to write to
1738 * @param thislen       oob length to write
1739 */
1740static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1741                                  const u_char *buf, int column, int thislen)
1742{
1743        struct onenand_chip *this = mtd->priv;
1744        struct nand_oobfree *free;
1745        int writecol = column;
1746        int writeend = column + thislen;
1747        int lastgap = 0;
1748        unsigned int i;
1749
1750        free = this->ecclayout->oobfree;
1751        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1752                if (writecol >= lastgap)
1753                        writecol += free->offset - lastgap;
1754                if (writeend >= lastgap)
1755                        writeend += free->offset - lastgap;
1756                lastgap = free->offset + free->length;
1757        }
1758        free = this->ecclayout->oobfree;
1759        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1760                int free_end = free->offset + free->length;
1761                if (free->offset < writeend && free_end > writecol) {
1762                        int st = max_t(int,free->offset,writecol);
1763                        int ed = min_t(int,free_end,writeend);
1764                        int n = ed - st;
1765                        memcpy(oob_buf + st, buf, n);
1766                        buf += n;
1767                } else if (column == 0)
1768                        break;
1769        }
1770        return 0;
1771}
1772
1773/**
1774 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1775 * @param mtd           MTD device structure
1776 * @param to            offset to write to
1777 * @param ops           oob operation description structure
1778 *
1779 * Write main and/or oob with ECC
1780 */
1781static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1782                                struct mtd_oob_ops *ops)
1783{
1784        struct onenand_chip *this = mtd->priv;
1785        int written = 0, column, thislen = 0, subpage = 0;
1786        int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1787        int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1788        size_t len = ops->len;
1789        size_t ooblen = ops->ooblen;
1790        const u_char *buf = ops->datbuf;
1791        const u_char *oob = ops->oobbuf;
1792        u_char *oobbuf;
1793        int ret = 0;
1794
1795        DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1796
1797        /* Initialize retlen, in case of early exit */
1798        ops->retlen = 0;
1799        ops->oobretlen = 0;
1800
1801        /* Do not allow writes past end of device */
1802        if (unlikely((to + len) > mtd->size)) {
1803                printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1804                return -EINVAL;
1805        }
1806
1807        /* Reject writes, which are not page aligned */
1808        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1809                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1810                return -EINVAL;
1811        }
1812
1813        /* Check zero length */
1814        if (!len)
1815                return 0;
1816
1817        if (ops->mode == MTD_OOB_AUTO)
1818                oobsize = this->ecclayout->oobavail;
1819        else
1820                oobsize = mtd->oobsize;
1821
1822        oobcolumn = to & (mtd->oobsize - 1);
1823
1824        column = to & (mtd->writesize - 1);
1825
1826        /* Loop until all data write */
1827        while (1) {
1828                if (written < len) {
1829                        u_char *wbuf = (u_char *) buf;
1830
1831                        thislen = min_t(int, mtd->writesize - column, len - written);
1832                        thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1833
1834                        cond_resched();
1835
1836                        this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1837
1838                        /* Partial page write */
1839                        subpage = thislen < mtd->writesize;
1840                        if (subpage) {
1841                                memset(this->page_buf, 0xff, mtd->writesize);
1842                                memcpy(this->page_buf + column, buf, thislen);
1843                                wbuf = this->page_buf;
1844                        }
1845
1846                        this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1847
1848                        if (oob) {
1849                                oobbuf = this->oob_buf;
1850
1851                                /* We send data to spare ram with oobsize
1852                                 * to prevent byte access */
1853                                memset(oobbuf, 0xff, mtd->oobsize);
1854                                if (ops->mode == MTD_OOB_AUTO)
1855                                        onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1856                                else
1857                                        memcpy(oobbuf + oobcolumn, oob, thisooblen);
1858
1859                                oobwritten += thisooblen;
1860                                oob += thisooblen;
1861                                oobcolumn = 0;
1862                        } else
1863                                oobbuf = (u_char *) ffchars;
1864
1865                        this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1866                } else
1867                        ONENAND_SET_NEXT_BUFFERRAM(this);
1868
1869                /*
1870                 * 2 PLANE, MLC, and Flex-OneNAND do not support
1871                 * write-while-program feature.
1872                 */
1873                if (!ONENAND_IS_2PLANE(this) && !first) {
1874                        ONENAND_SET_PREV_BUFFERRAM(this);
1875
1876                        ret = this->wait(mtd, FL_WRITING);
1877
1878                        /* In partial page write we don't update bufferram */
1879                        onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1880                        if (ret) {
1881                                written -= prevlen;
1882                                printk(KERN_ERR "onenand_write_ops_nolock: write failed %d\n", ret);
1883                                break;
1884                        }
1885
1886                        if (written == len) {
1887                                /* Only check verify write turn on */
1888                                ret = onenand_verify(mtd, buf - len, to - len, len);
1889                                if (ret)
1890                                        printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1891                                break;
1892                        }
1893
1894                        ONENAND_SET_NEXT_BUFFERRAM(this);
1895                }
1896
1897                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1898
1899                /*
1900                 * 2 PLANE, MLC, and Flex-OneNAND wait here
1901                 */
1902                if (ONENAND_IS_2PLANE(this)) {
1903                        ret = this->wait(mtd, FL_WRITING);
1904
1905                        /* In partial page write we don't update bufferram */
1906                        onenand_update_bufferram(mtd, to, !ret && !subpage);
1907                        if (ret) {
1908                                printk(KERN_ERR "onenand_write_ops_nolock: write failed %d\n", ret);
1909                                break;
1910                        }
1911
1912                        /* Only check verify write turn on */
1913                        ret = onenand_verify(mtd, buf, to, thislen);
1914                        if (ret) {
1915                                printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1916                                break;
1917                        }
1918
1919                        written += thislen;
1920
1921                        if (written == len)
1922                                break;
1923
1924                } else
1925                        written += thislen;
1926
1927                column = 0;
1928                prev_subpage = subpage;
1929                prev = to;
1930                prevlen = thislen;
1931                to += thislen;
1932                buf += thislen;
1933                first = 0;
1934        }
1935
1936        /* In error case, clear all bufferrams */
1937        if (written != len)
1938                onenand_invalidate_bufferram(mtd, 0, -1);
1939
1940        ops->retlen = written;
1941        ops->oobretlen = oobwritten;
1942
1943        return ret;
1944}
1945
1946
1947/**
1948 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1949 * @param mtd           MTD device structure
1950 * @param to            offset to write to
1951 * @param len           number of bytes to write
1952 * @param retlen        pointer to variable to store the number of written bytes
1953 * @param buf           the data to write
1954 * @param mode          operation mode
1955 *
1956 * OneNAND write out-of-band
1957 */
1958static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1959                                    struct mtd_oob_ops *ops)
1960{
1961        struct onenand_chip *this = mtd->priv;
1962        int column, ret = 0, oobsize;
1963        int written = 0, oobcmd;
1964        u_char *oobbuf;
1965        size_t len = ops->ooblen;
1966        const u_char *buf = ops->oobbuf;
1967        mtd_oob_mode_t mode = ops->mode;
1968
1969        to += ops->ooboffs;
1970
1971        DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1972
1973        /* Initialize retlen, in case of early exit */
1974        ops->oobretlen = 0;
1975
1976        if (mode == MTD_OOB_AUTO)
1977                oobsize = this->ecclayout->oobavail;
1978        else
1979                oobsize = mtd->oobsize;
1980
1981        column = to & (mtd->oobsize - 1);
1982
1983        if (unlikely(column >= oobsize)) {
1984                printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1985                return -EINVAL;
1986        }
1987
1988        /* For compatibility with NAND: Do not allow write past end of page */
1989        if (unlikely(column + len > oobsize)) {
1990                printk(KERN_ERR "onenand_write_oob_nolock: "
1991                      "Attempt to write past end of page\n");
1992                return -EINVAL;
1993        }
1994
1995        /* Do not allow reads past end of device */
1996        if (unlikely(to >= mtd->size ||
1997                     column + len > ((mtd->size >> this->page_shift) -
1998                                     (to >> this->page_shift)) * oobsize)) {
1999                printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
2000                return -EINVAL;
2001        }
2002
2003        oobbuf = this->oob_buf;
2004
2005        oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2006
2007        /* Loop until all data write */
2008        while (written < len) {
2009                int thislen = min_t(int, oobsize, len - written);
2010
2011                cond_resched();
2012
2013                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2014
2015                /* We send data to spare ram with oobsize
2016                 * to prevent byte access */
2017                memset(oobbuf, 0xff, mtd->oobsize);
2018                if (mode == MTD_OOB_AUTO)
2019                        onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2020                else
2021                        memcpy(oobbuf + column, buf, thislen);
2022                this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2023
2024                if (ONENAND_IS_MLC(this)) {
2025                        /* Set main area of DataRAM to 0xff*/
2026                        memset(this->page_buf, 0xff, mtd->writesize);
2027                        this->write_bufferram(mtd, ONENAND_DATARAM,
2028                                         this->page_buf, 0, mtd->writesize);
2029                }
2030
2031                this->command(mtd, oobcmd, to, mtd->oobsize);
2032
2033                onenand_update_bufferram(mtd, to, 0);
2034                if (ONENAND_IS_2PLANE(this)) {
2035                        ONENAND_SET_BUFFERRAM1(this);
2036                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2037                }
2038
2039                ret = this->wait(mtd, FL_WRITING);
2040                if (ret) {
2041                        printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
2042                        break;
2043                }
2044
2045                ret = onenand_verify_oob(mtd, oobbuf, to);
2046                if (ret) {
2047                        printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
2048                        break;
2049                }
2050
2051                written += thislen;
2052                if (written == len)
2053                        break;
2054
2055                to += mtd->writesize;
2056                buf += thislen;
2057                column = 0;
2058        }
2059
2060        ops->oobretlen = written;
2061
2062        return ret;
2063}
2064
2065/**
2066 * onenand_write - [MTD Interface] write buffer to FLASH
2067 * @param mtd           MTD device structure
2068 * @param to            offset to write to
2069 * @param len           number of bytes to write
2070 * @param retlen        pointer to variable to store the number of written bytes
2071 * @param buf           the data to write
2072 *
2073 * Write with ECC
2074 */
2075static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2076        size_t *retlen, const u_char *buf)
2077{
2078        struct mtd_oob_ops ops = {
2079                .len    = len,
2080                .ooblen = 0,
2081                .datbuf = (u_char *) buf,
2082                .oobbuf = NULL,
2083        };
2084        int ret;
2085
2086        onenand_get_device(mtd, FL_WRITING);
2087        ret = onenand_write_ops_nolock(mtd, to, &ops);
2088        onenand_release_device(mtd);
2089
2090        *retlen = ops.retlen;
2091        return ret;
2092}
2093
2094/**
2095 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2096 * @param mtd:          MTD device structure
2097 * @param to:           offset to write
2098 * @param ops:          oob operation description structure
2099 */
2100static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2101                             struct mtd_oob_ops *ops)
2102{
2103        int ret;
2104
2105        switch (ops->mode) {
2106        case MTD_OOB_PLACE:
2107        case MTD_OOB_AUTO:
2108                break;
2109        case MTD_OOB_RAW:
2110                /* Not implemented yet */
2111        default:
2112                return -EINVAL;
2113        }
2114
2115        onenand_get_device(mtd, FL_WRITING);
2116        if (ops->datbuf)
2117                ret = onenand_write_ops_nolock(mtd, to, ops);
2118        else
2119                ret = onenand_write_oob_nolock(mtd, to, ops);
2120        onenand_release_device(mtd);
2121
2122        return ret;
2123}
2124
2125/**
2126 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2127 * @param mtd           MTD device structure
2128 * @param ofs           offset from device start
2129 * @param allowbbt      1, if its allowed to access the bbt area
2130 *
2131 * Check, if the block is bad. Either by reading the bad block table or
2132 * calling of the scan function.
2133 */
2134static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2135{
2136        struct onenand_chip *this = mtd->priv;
2137        struct bbm_info *bbm = this->bbm;
2138
2139        /* Return info from the table */
2140        return bbm->isbad_bbt(mtd, ofs, allowbbt);
2141}
2142
2143/**
2144 * onenand_erase - [MTD Interface] erase block(s)
2145 * @param mtd           MTD device structure
2146 * @param instr         erase instruction
2147 *
2148 * Erase one ore more blocks
2149 */
2150static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2151{
2152        struct onenand_chip *this = mtd->priv;
2153        unsigned int block_size;
2154        loff_t addr = instr->addr;
2155        loff_t len = instr->len;
2156        int ret = 0, i;
2157        struct mtd_erase_region_info *region = NULL;
2158        loff_t region_end = 0;
2159
2160        DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%012llx, len = %llu\n", (unsigned long long) instr->addr, (unsigned long long) instr->len);
2161
2162        /* Do not allow erase past end of device */
2163        if (unlikely((len + addr) > mtd->size)) {
2164                printk(KERN_ERR "onenand_erase: Erase past end of device\n");
2165                return -EINVAL;
2166        }
2167
2168        if (FLEXONENAND(this)) {
2169                /* Find the eraseregion of this address */
2170                i = flexonenand_region(mtd, addr);
2171                region = &mtd->eraseregions[i];
2172
2173                block_size = region->erasesize;
2174                region_end = region->offset + region->erasesize * region->numblocks;
2175
2176                /* Start address within region must align on block boundary.
2177                 * Erase region's start offset is always block start address.
2178                 */
2179                if (unlikely((addr - region->offset) & (block_size - 1))) {
2180                        printk(KERN_ERR "onenand_erase: Unaligned address\n");
2181                        return -EINVAL;
2182                }
2183        } else {
2184                block_size = 1 << this->erase_shift;
2185
2186                /* Start address must align on block boundary */
2187                if (unlikely(addr & (block_size - 1))) {
2188                        printk(KERN_ERR "onenand_erase: Unaligned address\n");
2189                        return -EINVAL;
2190                }
2191        }
2192
2193        /* Length must align on block boundary */
2194        if (unlikely(len & (block_size - 1))) {
2195                printk(KERN_ERR "onenand_erase: Length not block aligned\n");
2196                return -EINVAL;
2197        }
2198
2199        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2200
2201        /* Grab the lock and see if the device is available */
2202        onenand_get_device(mtd, FL_ERASING);
2203
2204        /* Loop through the blocks */
2205        instr->state = MTD_ERASING;
2206
2207        while (len) {
2208                cond_resched();
2209
2210                /* Check if we have a bad block, we do not erase bad blocks */
2211                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2212                        printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%012llx\n", (unsigned long long) addr);
2213                        instr->state = MTD_ERASE_FAILED;
2214                        goto erase_exit;
2215                }
2216
2217                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2218
2219                onenand_invalidate_bufferram(mtd, addr, block_size);
2220
2221                ret = this->wait(mtd, FL_ERASING);
2222                /* Check, if it is write protected */
2223                if (ret) {
2224                        printk(KERN_ERR "onenand_erase: Failed erase, block %d\n",
2225                                                 onenand_block(this, addr));
2226                        instr->state = MTD_ERASE_FAILED;
2227                        instr->fail_addr = addr;
2228                        goto erase_exit;
2229                }
2230
2231                len -= block_size;
2232                addr += block_size;
2233
2234                if (addr == region_end) {
2235                        if (!len)
2236                                break;
2237                        region++;
2238
2239                        block_size = region->erasesize;
2240                        region_end = region->offset + region->erasesize * region->numblocks;
2241
2242                        if (len & (block_size - 1)) {
2243                                /* FIXME: This should be handled at MTD partitioning level. */
2244                                printk(KERN_ERR "onenand_erase: Unaligned address\n");
2245                                goto erase_exit;
2246                        }
2247                }
2248
2249        }
2250
2251        instr->state = MTD_ERASE_DONE;
2252
2253erase_exit:
2254
2255        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2256
2257        /* Deselect and wake up anyone waiting on the device */
2258        onenand_release_device(mtd);
2259
2260        /* Do call back function */
2261        if (!ret)
2262                mtd_erase_callback(instr);
2263
2264        return ret;
2265}
2266
2267/**
2268 * onenand_sync - [MTD Interface] sync
2269 * @param mtd           MTD device structure
2270 *
2271 * Sync is actually a wait for chip ready function
2272 */
2273static void onenand_sync(struct mtd_info *mtd)
2274{
2275        DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
2276
2277        /* Grab the lock and see if the device is available */
2278        onenand_get_device(mtd, FL_SYNCING);
2279
2280        /* Release it and go back */
2281        onenand_release_device(mtd);
2282}
2283
2284/**
2285 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2286 * @param mtd           MTD device structure
2287 * @param ofs           offset relative to mtd start
2288 *
2289 * Check whether the block is bad
2290 */
2291static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2292{
2293        int ret;
2294
2295        /* Check for invalid offset */
2296        if (ofs > mtd->size)
2297                return -EINVAL;
2298
2299        onenand_get_device(mtd, FL_READING);
2300        ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2301        onenand_release_device(mtd);
2302        return ret;
2303}
2304
2305/**
2306 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2307 * @param mtd           MTD device structure
2308 * @param ofs           offset from device start
2309 *
2310 * This is the default implementation, which can be overridden by
2311 * a hardware specific driver.
2312 */
2313static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2314{
2315        struct onenand_chip *this = mtd->priv;
2316        struct bbm_info *bbm = this->bbm;
2317        u_char buf[2] = {0, 0};
2318        struct mtd_oob_ops ops = {
2319                .mode = MTD_OOB_PLACE,
2320                .ooblen = 2,
2321                .oobbuf = buf,
2322                .ooboffs = 0,
2323        };
2324        int block;
2325
2326        /* Get block number */
2327        block = onenand_block(this, ofs);
2328        if (bbm->bbt)
2329                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2330
2331        /* We write two bytes, so we don't have to mess with 16-bit access */
2332        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2333        /* FIXME : What to do when marking SLC block in partition
2334         *         with MLC erasesize? For now, it is not advisable to
2335         *         create partitions containing both SLC and MLC regions.
2336         */
2337        return onenand_write_oob_nolock(mtd, ofs, &ops);
2338}
2339
2340/**
2341 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2342 * @param mtd           MTD device structure
2343 * @param ofs           offset relative to mtd start
2344 *
2345 * Mark the block as bad
2346 */
2347static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2348{
2349        struct onenand_chip *this = mtd->priv;
2350        int ret;
2351
2352        ret = onenand_block_isbad(mtd, ofs);
2353        if (ret) {
2354                /* If it was bad already, return success and do nothing */
2355                if (ret > 0)
2356                        return 0;
2357                return ret;
2358        }
2359
2360        onenand_get_device(mtd, FL_WRITING);
2361        ret = this->block_markbad(mtd, ofs);
2362        onenand_release_device(mtd);
2363        return ret;
2364}
2365
2366/**
2367 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2368 * @param mtd           MTD device structure
2369 * @param ofs           offset relative to mtd start
2370 * @param len           number of bytes to lock or unlock
2371 * @param cmd           lock or unlock command
2372 *
2373 * Lock or unlock one or more blocks
2374 */
2375static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2376{
2377        struct onenand_chip *this = mtd->priv;
2378        int start, end, block, value, status;
2379        int wp_status_mask;
2380
2381        start = onenand_block(this, ofs);
2382        end = onenand_block(this, ofs + len) - 1;
2383
2384        if (cmd == ONENAND_CMD_LOCK)
2385                wp_status_mask = ONENAND_WP_LS;
2386        else
2387                wp_status_mask = ONENAND_WP_US;
2388
2389        /* Continuous lock scheme */
2390        if (this->options & ONENAND_HAS_CONT_LOCK) {
2391                /* Set start block address */
2392                this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2393                /* Set end block address */
2394                this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2395                /* Write lock command */
2396                this->command(mtd, cmd, 0, 0);
2397
2398                /* There's no return value */
2399                this->wait(mtd, FL_LOCKING);
2400
2401                /* Sanity check */
2402                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2403                    & ONENAND_CTRL_ONGO)
2404                        continue;
2405
2406                /* Check lock status */
2407                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2408                if (!(status & wp_status_mask))
2409                        printk(KERN_ERR "wp status = 0x%x\n", status);
2410
2411                return 0;
2412        }
2413
2414        /* Block lock scheme */
2415        for (block = start; block < end + 1; block++) {
2416                /* Set block address */
2417                value = onenand_block_address(this, block);
2418                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2419                /* Select DataRAM for DDP */
2420                value = onenand_bufferram_address(this, block);
2421                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2422                /* Set start block address */
2423                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2424                /* Write lock command */
2425                this->command(mtd, cmd, 0, 0);
2426
2427                /* There's no return value */
2428                this->wait(mtd, FL_LOCKING);
2429
2430                /* Sanity check */
2431                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2432                    & ONENAND_CTRL_ONGO)
2433                        continue;
2434
2435                /* Check lock status */
2436                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2437                if (!(status & wp_status_mask))
2438                        printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2439        }
2440
2441        return 0;
2442}
2443
2444/**
2445 * onenand_lock - [MTD Interface] Lock block(s)
2446 * @param mtd           MTD device structure
2447 * @param ofs           offset relative to mtd start
2448 * @param len           number of bytes to unlock
2449 *
2450 * Lock one or more blocks
2451 */
2452static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2453{
2454        int ret;
2455
2456        onenand_get_device(mtd, FL_LOCKING);
2457        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2458        onenand_release_device(mtd);
2459        return ret;
2460}
2461
2462/**
2463 * onenand_unlock - [MTD Interface] Unlock block(s)
2464 * @param mtd           MTD device structure
2465 * @param ofs           offset relative to mtd start
2466 * @param len           number of bytes to unlock
2467 *
2468 * Unlock one or more blocks
2469 */
2470static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2471{
2472        int ret;
2473
2474        onenand_get_device(mtd, FL_LOCKING);
2475        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2476        onenand_release_device(mtd);
2477        return ret;
2478}
2479
2480/**
2481 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2482 * @param this          onenand chip data structure
2483 *
2484 * Check lock status
2485 */
2486static int onenand_check_lock_status(struct onenand_chip *this)
2487{
2488        unsigned int value, block, status;
2489        unsigned int end;
2490
2491        end = this->chipsize >> this->erase_shift;
2492        for (block = 0; block < end; block++) {
2493                /* Set block address */
2494                value = onenand_block_address(this, block);
2495                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2496                /* Select DataRAM for DDP */
2497                value = onenand_bufferram_address(this, block);
2498                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2499                /* Set start block address */
2500                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2501
2502                /* Check lock status */
2503                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2504                if (!(status & ONENAND_WP_US)) {
2505                        printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2506                        return 0;
2507                }
2508        }
2509
2510        return 1;
2511}
2512
2513/**
2514 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2515 * @param mtd           MTD device structure
2516 *
2517 * Unlock all blocks
2518 */
2519static void onenand_unlock_all(struct mtd_info *mtd)
2520{
2521        struct onenand_chip *this = mtd->priv;
2522        loff_t ofs = 0;
2523        loff_t len = mtd->size;
2524
2525        if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2526                /* Set start block address */
2527                this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2528                /* Write unlock command */
2529                this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2530
2531                /* There's no return value */
2532                this->wait(mtd, FL_LOCKING);
2533
2534                /* Sanity check */
2535                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2536                    & ONENAND_CTRL_ONGO)
2537                        continue;
2538
2539                /* Don't check lock status */
2540                if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2541                        return;
2542
2543                /* Check lock status */
2544                if (onenand_check_lock_status(this))
2545                        return;
2546
2547                /* Workaround for all block unlock in DDP */
2548                if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2549                        /* All blocks on another chip */
2550                        ofs = this->chipsize >> 1;
2551                        len = this->chipsize >> 1;
2552                }
2553        }
2554
2555        onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2556}
2557
2558#ifdef CONFIG_MTD_ONENAND_OTP
2559
2560/* Internal OTP operation */
2561typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2562                size_t *retlen, u_char *buf);
2563
2564/**
2565 * do_otp_read - [DEFAULT] Read OTP block area
2566 * @param mtd           MTD device structure
2567 * @param from          The offset to read
2568 * @param len           number of bytes to read
2569 * @param retlen        pointer to variable to store the number of readbytes
2570 * @param buf           the databuffer to put/get data
2571 *
2572 * Read OTP block area.
2573 */
2574static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2575                size_t *retlen, u_char *buf)
2576{
2577        struct onenand_chip *this = mtd->priv;
2578        struct mtd_oob_ops ops = {
2579                .len    = len,
2580                .ooblen = 0,
2581                .datbuf = buf,
2582                .oobbuf = NULL,
2583        };
2584        int ret;
2585
2586        /* Enter OTP access mode */
2587        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2588        this->wait(mtd, FL_OTPING);
2589
2590        ret = ONENAND_IS_MLC(this) ?
2591                onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2592                onenand_read_ops_nolock(mtd, from, &ops);
2593
2594        /* Exit OTP access mode */
2595        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2596        this->wait(mtd, FL_RESETING);
2597
2598        return ret;
2599}
2600
2601/**
2602 * do_otp_write - [DEFAULT] Write OTP block area
2603 * @param mtd           MTD device structure
2604 * @param to            The offset to write
2605 * @param len           number of bytes to write
2606 * @param retlen        pointer to variable to store the number of write bytes
2607 * @param buf           the databuffer to put/get data
2608 *
2609 * Write OTP block area.
2610 */
2611static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2612                size_t *retlen, u_char *buf)
2613{
2614        struct onenand_chip *this = mtd->priv;
2615        unsigned char *pbuf = buf;
2616        int ret;
2617        struct mtd_oob_ops ops;
2618
2619        /* Force buffer page aligned */
2620        if (len < mtd->writesize) {
2621                memcpy(this->page_buf, buf, len);
2622                memset(this->page_buf + len, 0xff, mtd->writesize - len);
2623                pbuf = this->page_buf;
2624                len = mtd->writesize;
2625        }
2626
2627        /* Enter OTP access mode */
2628        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2629        this->wait(mtd, FL_OTPING);
2630
2631        ops.len = len;
2632        ops.ooblen = 0;
2633        ops.datbuf = pbuf;
2634        ops.oobbuf = NULL;
2635        ret = onenand_write_ops_nolock(mtd, to, &ops);
2636        *retlen = ops.retlen;
2637
2638        /* Exit OTP access mode */
2639        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2640        this->wait(mtd, FL_RESETING);
2641
2642        return ret;
2643}
2644
2645/**
2646 * do_otp_lock - [DEFAULT] Lock OTP block area
2647 * @param mtd           MTD device structure
2648 * @param from          The offset to lock
2649 * @param len           number of bytes to lock
2650 * @param retlen        pointer to variable to store the number of lock bytes
2651 * @param buf           the databuffer to put/get data
2652 *
2653 * Lock OTP block area.
2654 */
2655static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2656                size_t *retlen, u_char *buf)
2657{
2658        struct onenand_chip *this = mtd->priv;
2659        struct mtd_oob_ops ops;
2660        int ret;
2661
2662        /* Enter OTP access mode */
2663        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2664        this->wait(mtd, FL_OTPING);
2665
2666        if (FLEXONENAND(this)) {
2667                /*
2668                 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2669                 * main area of page 49.
2670                 */
2671                ops.len = mtd->writesize;
2672                ops.ooblen = 0;
2673                ops.datbuf = buf;
2674                ops.oobbuf = NULL;
2675                ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
2676                *retlen = ops.retlen;
2677        } else {
2678                ops.mode = MTD_OOB_PLACE;
2679                ops.ooblen = len;
2680                ops.oobbuf = buf;
2681                ops.ooboffs = 0;
2682                ret = onenand_write_oob_nolock(mtd, from, &ops);
2683                *retlen = ops.oobretlen;
2684        }
2685
2686        /* Exit OTP access mode */
2687        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2688        this->wait(mtd, FL_RESETING);
2689
2690        return ret;
2691}
2692
2693/**
2694 * onenand_otp_walk - [DEFAULT] Handle OTP operation
2695 * @param mtd           MTD device structure
2696 * @param from          The offset to read/write
2697 * @param len           number of bytes to read/write
2698 * @param retlen        pointer to variable to store the number of read bytes
2699 * @param buf           the databuffer to put/get data
2700 * @param action        do given action
2701 * @param mode          specify user and factory
2702 *
2703 * Handle OTP operation.
2704 */
2705static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2706                        size_t *retlen, u_char *buf,
2707                        otp_op_t action, int mode)
2708{
2709        struct onenand_chip *this = mtd->priv;
2710        int otp_pages;
2711        int density;
2712        int ret = 0;
2713
2714        *retlen = 0;
2715
2716        density = onenand_get_density(this->device_id);
2717        if (density < ONENAND_DEVICE_DENSITY_512Mb)
2718                otp_pages = 20;
2719        else
2720                otp_pages = 10;
2721
2722        if (mode == MTD_OTP_FACTORY) {
2723                from += mtd->writesize * otp_pages;
2724                otp_pages = 64 - otp_pages;
2725        }
2726
2727        /* Check User/Factory boundary */
2728        if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2729                return 0;
2730
2731        onenand_get_device(mtd, FL_OTPING);
2732        while (len > 0 && otp_pages > 0) {
2733                if (!action) {  /* OTP Info functions */
2734                        struct otp_info *otpinfo;
2735
2736                        len -= sizeof(struct otp_info);
2737                        if (len <= 0) {
2738                                ret = -ENOSPC;
2739                                break;
2740                        }
2741
2742                        otpinfo = (struct otp_info *) buf;
2743                        otpinfo->start = from;
2744                        otpinfo->length = mtd->writesize;
2745                        otpinfo->locked = 0;
2746
2747                        from += mtd->writesize;
2748                        buf += sizeof(struct otp_info);
2749                        *retlen += sizeof(struct otp_info);
2750                } else {
2751                        size_t tmp_retlen;
2752                        int size = len;
2753
2754                        ret = action(mtd, from, len, &tmp_retlen, buf);
2755
2756                        buf += size;
2757                        len -= size;
2758                        *retlen += size;
2759
2760                        if (ret)
2761                                break;
2762                }
2763                otp_pages--;
2764        }
2765        onenand_release_device(mtd);
2766
2767        return ret;
2768}
2769
2770/**
2771 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2772 * @param mtd           MTD device structure
2773 * @param buf           the databuffer to put/get data
2774 * @param len           number of bytes to read
2775 *
2776 * Read factory OTP info.
2777 */
2778static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2779                        struct otp_info *buf, size_t len)
2780{
2781        size_t retlen;
2782        int ret;
2783
2784        ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2785
2786        return ret ? : retlen;
2787}
2788
2789/**
2790 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2791 * @param mtd           MTD device structure
2792 * @param from          The offset to read
2793 * @param len           number of bytes to read
2794 * @param retlen        pointer to variable to store the number of read bytes
2795 * @param buf           the databuffer to put/get data
2796 *
2797 * Read factory OTP area.
2798 */
2799static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2800                        size_t len, size_t *retlen, u_char *buf)
2801{
2802        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2803}
2804
2805/**
2806 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2807 * @param mtd           MTD device structure
2808 * @param buf           the databuffer to put/get data
2809 * @param len           number of bytes to read
2810 *
2811 * Read user OTP info.
2812 */
2813static int onenand_get_user_prot_info(struct mtd_info *mtd,
2814                        struct otp_info *buf, size_t len)
2815{
2816        size_t retlen;
2817        int ret;
2818
2819        ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2820
2821        return ret ? : retlen;
2822}
2823
2824/**
2825 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2826 * @param mtd           MTD device structure
2827 * @param from          The offset to read
2828 * @param len           number of bytes to read
2829 * @param retlen        pointer to variable to store the number of read bytes
2830 * @param buf           the databuffer to put/get data
2831 *
2832 * Read user OTP area.
2833 */
2834static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2835                        size_t len, size_t *retlen, u_char *buf)
2836{
2837        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2838}
2839
2840/**
2841 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2842 * @param mtd           MTD device structure
2843 * @param from          The offset to write
2844 * @param len           number of bytes to write
2845 * @param retlen        pointer to variable to store the number of write bytes
2846 * @param buf           the databuffer to put/get data
2847 *
2848 * Write user OTP area.
2849 */
2850static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2851                        size_t len, size_t *retlen, u_char *buf)
2852{
2853        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2854}
2855
2856/**
2857 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2858 * @param mtd           MTD device structure
2859 * @param from          The offset to lock
2860 * @param len           number of bytes to unlock
2861 *
2862 * Write lock mark on spare area in page 0 in OTP block
2863 */
2864static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2865                        size_t len)
2866{
2867        struct onenand_chip *this = mtd->priv;
2868        u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
2869        size_t retlen;
2870        int ret;
2871
2872        memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
2873                                                 : mtd->oobsize);
2874        /*
2875         * Note: OTP lock operation
2876         *       OTP block : 0xXXFC
2877         *       1st block : 0xXXF3 (If chip support)
2878         *       Both      : 0xXXF0 (If chip support)
2879         */
2880        if (FLEXONENAND(this))
2881                buf[FLEXONENAND_OTP_LOCK_OFFSET] = 0xFC;
2882        else
2883                buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2884
2885        /*
2886         * Write lock mark to 8th word of sector0 of page0 of the spare0.
2887         * We write 16 bytes spare area instead of 2 bytes.
2888         * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2889         * main area of page 49.
2890         */
2891
2892        from = 0;
2893        len = FLEXONENAND(this) ? mtd->writesize : 16;
2894
2895        ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
2896
2897        return ret ? : retlen;
2898}
2899#endif  /* CONFIG_MTD_ONENAND_OTP */
2900
2901/**
2902 * onenand_check_features - Check and set OneNAND features
2903 * @param mtd           MTD data structure
2904 *
2905 * Check and set OneNAND features
2906 * - lock scheme
2907 * - two plane
2908 */
2909static void onenand_check_features(struct mtd_info *mtd)
2910{
2911        struct onenand_chip *this = mtd->priv;
2912        unsigned int density, process;
2913
2914        /* Lock scheme depends on density and process */
2915        density = onenand_get_density(this->device_id);
2916        process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2917
2918        /* Lock scheme */
2919        switch (density) {
2920        case ONENAND_DEVICE_DENSITY_4Gb:
2921                this->options |= ONENAND_HAS_2PLANE;
2922
2923        case ONENAND_DEVICE_DENSITY_2Gb:
2924                /* 2Gb DDP does not have 2 plane */
2925                if (!ONENAND_IS_DDP(this))
2926                        this->options |= ONENAND_HAS_2PLANE;
2927                this->options |= ONENAND_HAS_UNLOCK_ALL;
2928
2929        case ONENAND_DEVICE_DENSITY_1Gb:
2930                /* A-Die has all block unlock */
2931                if (process)
2932                        this->options |= ONENAND_HAS_UNLOCK_ALL;
2933                break;
2934
2935        default:
2936                /* Some OneNAND has continuous lock scheme */
2937                if (!process)
2938                        this->options |= ONENAND_HAS_CONT_LOCK;
2939                break;
2940        }
2941
2942        if (ONENAND_IS_MLC(this))
2943                this->options &= ~ONENAND_HAS_2PLANE;
2944
2945        if (FLEXONENAND(this)) {
2946                this->options &= ~ONENAND_HAS_CONT_LOCK;
2947                this->options |= ONENAND_HAS_UNLOCK_ALL;
2948        }
2949
2950        if (this->options & ONENAND_HAS_CONT_LOCK)
2951                printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2952        if (this->options & ONENAND_HAS_UNLOCK_ALL)
2953                printk(KERN_DEBUG "Chip support all block unlock\n");
2954        if (this->options & ONENAND_HAS_2PLANE)
2955                printk(KERN_DEBUG "Chip has 2 plane\n");
2956}
2957
2958/**
2959 * onenand_print_device_info - Print device & version ID
2960 * @param device        device ID
2961 * @param version       version ID
2962 *
2963 * Print device & version ID
2964 */
2965static void onenand_print_device_info(int device, int version)
2966{
2967        int vcc, demuxed, ddp, density, flexonenand;
2968
2969        vcc = device & ONENAND_DEVICE_VCC_MASK;
2970        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2971        ddp = device & ONENAND_DEVICE_IS_DDP;
2972        density = onenand_get_density(device);
2973        flexonenand = device & DEVICE_IS_FLEXONENAND;
2974        printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2975                demuxed ? "" : "Muxed ",
2976                flexonenand ? "Flex-" : "",
2977                ddp ? "(DDP)" : "",
2978                (16 << density),
2979                vcc ? "2.65/3.3" : "1.8",
2980                device);
2981        printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2982}
2983
2984static const struct onenand_manufacturers onenand_manuf_ids[] = {
2985        {ONENAND_MFR_SAMSUNG, "Samsung"},
2986        {ONENAND_MFR_NUMONYX, "Numonyx"},
2987};
2988
2989/**
2990 * onenand_check_maf - Check manufacturer ID
2991 * @param manuf         manufacturer ID
2992 *
2993 * Check manufacturer ID
2994 */
2995static int onenand_check_maf(int manuf)
2996{
2997        int size = ARRAY_SIZE(onenand_manuf_ids);
2998        char *name;
2999        int i;
3000
3001        for (i = 0; i < size; i++)
3002                if (manuf == onenand_manuf_ids[i].id)
3003                        break;
3004
3005        if (i < size)
3006                name = onenand_manuf_ids[i].name;
3007        else
3008                name = "Unknown";
3009
3010        printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3011
3012        return (i == size);
3013}
3014
3015/**
3016* flexonenand_get_boundary      - Reads the SLC boundary
3017* @param onenand_info           - onenand info structure
3018**/
3019static int flexonenand_get_boundary(struct mtd_info *mtd)
3020{
3021        struct onenand_chip *this = mtd->priv;
3022        unsigned die, bdry;
3023        int ret, syscfg, locked;
3024
3025        /* Disable ECC */
3026        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3027        this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3028
3029        for (die = 0; die < this->dies; die++) {
3030                this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3031                this->wait(mtd, FL_SYNCING);
3032
3033                this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3034                ret = this->wait(mtd, FL_READING);
3035
3036                bdry = this->read_word(this->base + ONENAND_DATARAM);
3037                if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3038                        locked = 0;
3039                else
3040                        locked = 1;
3041                this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3042
3043                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3044                ret = this->wait(mtd, FL_RESETING);
3045
3046                printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3047                       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3048        }
3049
3050        /* Enable ECC */
3051        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3052        return 0;
3053}
3054
3055/**
3056 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3057 *                        boundary[], diesize[], mtd->size, mtd->erasesize
3058 * @param mtd           - MTD device structure
3059 */
3060static void flexonenand_get_size(struct mtd_info *mtd)
3061{
3062        struct onenand_chip *this = mtd->priv;
3063        int die, i, eraseshift, density;
3064        int blksperdie, maxbdry;
3065        loff_t ofs;
3066
3067        density = onenand_get_density(this->device_id);
3068        blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3069        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3070        maxbdry = blksperdie - 1;
3071        eraseshift = this->erase_shift - 1;
3072
3073        mtd->numeraseregions = this->dies << 1;
3074
3075        /* This fills up the device boundary */
3076        flexonenand_get_boundary(mtd);
3077        die = ofs = 0;
3078        i = -1;
3079        for (; die < this->dies; die++) {
3080                if (!die || this->boundary[die-1] != maxbdry) {
3081                        i++;
3082                        mtd->eraseregions[i].offset = ofs;
3083                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3084                        mtd->eraseregions[i].numblocks =
3085                                                        this->boundary[die] + 1;
3086                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3087                        eraseshift++;
3088                } else {
3089                        mtd->numeraseregions -= 1;
3090                        mtd->eraseregions[i].numblocks +=
3091                                                        this->boundary[die] + 1;
3092                        ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3093                }
3094                if (this->boundary[die] != maxbdry) {
3095                        i++;
3096                        mtd->eraseregions[i].offset = ofs;
3097                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3098                        mtd->eraseregions[i].numblocks = maxbdry ^
3099                                                         this->boundary[die];
3100                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3101                        eraseshift--;
3102                } else
3103                        mtd->numeraseregions -= 1;
3104        }
3105
3106        /* Expose MLC erase size except when all blocks are SLC */
3107        mtd->erasesize = 1 << this->erase_shift;
3108        if (mtd->numeraseregions == 1)
3109                mtd->erasesize >>= 1;
3110
3111        printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3112        for (i = 0; i < mtd->numeraseregions; i++)
3113                printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3114                        " numblocks: %04u]\n",
3115                        (unsigned int) mtd->eraseregions[i].offset,
3116                        mtd->eraseregions[i].erasesize,
3117                        mtd->eraseregions[i].numblocks);
3118
3119        for (die = 0, mtd->size = 0; die < this->dies; die++) {
3120                this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3121                this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3122                                                 << (this->erase_shift - 1);
3123                mtd->size += this->diesize[die];
3124        }
3125}
3126
3127/**
3128 * flexonenand_check_blocks_erased - Check if blocks are erased
3129 * @param mtd_info      - mtd info structure
3130 * @param start         - first erase block to check
3131 * @param end           - last erase block to check
3132 *
3133 * Converting an unerased block from MLC to SLC
3134 * causes byte values to change. Since both data and its ECC
3135 * have changed, reads on the block give uncorrectable error.
3136 * This might lead to the block being detected as bad.
3137 *
3138 * Avoid this by ensuring that the block to be converted is
3139 * erased.
3140 */
3141static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3142{
3143        struct onenand_chip *this = mtd->priv;
3144        int i, ret;
3145        int block;
3146        struct mtd_oob_ops ops = {
3147                .mode = MTD_OOB_PLACE,
3148                .ooboffs = 0,
3149                .ooblen = mtd->oobsize,
3150                .datbuf = NULL,
3151                .oobbuf = this->oob_buf,
3152        };
3153        loff_t addr;
3154
3155        printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3156
3157        for (block = start; block <= end; block++) {
3158                addr = flexonenand_addr(this, block);
3159                if (onenand_block_isbad_nolock(mtd, addr, 0))
3160                        continue;
3161
3162                /*
3163                 * Since main area write results in ECC write to spare,
3164                 * it is sufficient to check only ECC bytes for change.
3165                 */
3166                ret = onenand_read_oob_nolock(mtd, addr, &ops);
3167                if (ret)
3168                        return ret;
3169
3170                for (i = 0; i < mtd->oobsize; i++)
3171                        if (this->oob_buf[i] != 0xff)
3172                                break;
3173
3174                if (i != mtd->oobsize) {
3175                        printk(KERN_WARNING "Block %d not erased.\n", block);
3176                        return 1;
3177                }
3178        }
3179
3180        return 0;
3181}
3182
3183/**
3184 * flexonenand_set_boundary     - Writes the SLC boundary
3185 * @param mtd                   - mtd info structure
3186 */
3187int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3188                                    int boundary, int lock)
3189{
3190        struct onenand_chip *this = mtd->priv;
3191        int ret, density, blksperdie, old, new, thisboundary;
3192        loff_t addr;
3193
3194        /* Change only once for SDP Flex-OneNAND */
3195        if (die && (!ONENAND_IS_DDP(this)))
3196                return 0;
3197
3198        /* boundary value of -1 indicates no required change */
3199        if (boundary < 0 || boundary == this->boundary[die])
3200                return 0;
3201
3202        density = onenand_get_density(this->device_id);
3203        blksperdie = ((16 << density) << 20) >> this->erase_shift;
3204        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3205
3206        if (boundary >= blksperdie) {
3207                printk(KERN_ERR "flexonenand_set_boundary: Invalid boundary value. "
3208                                "Boundary not changed.\n");
3209                return -EINVAL;
3210        }
3211
3212        /* Check if converting blocks are erased */
3213        old = this->boundary[die] + (die * this->density_mask);
3214        new = boundary + (die * this->density_mask);
3215        ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3216        if (ret) {
3217                printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
3218                return ret;
3219        }
3220
3221        this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3222        this->wait(mtd, FL_SYNCING);
3223
3224        /* Check is boundary is locked */
3225        this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3226        ret = this->wait(mtd, FL_READING);
3227
3228        thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3229        if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3230                printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
3231                ret = 1;
3232                goto out;
3233        }
3234
3235        printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
3236                        die, boundary, lock ? "(Locked)" : "(Unlocked)");
3237
3238        addr = die ? this->diesize[0] : 0;
3239
3240        boundary &= FLEXONENAND_PI_MASK;
3241        boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3242
3243        this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3244        ret = this->wait(mtd, FL_ERASING);
3245        if (ret) {
3246                printk(KERN_ERR "flexonenand_set_boundary: Failed PI erase for Die %d\n", die);
3247                goto out;
3248        }
3249
3250        this->write_word(boundary, this->base + ONENAND_DATARAM);
3251        this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3252        ret = this->wait(mtd, FL_WRITING);
3253        if (ret) {
3254                printk(KERN_ERR "flexonenand_set_boundary: Failed PI write for Die %d\n", die);
3255                goto out;
3256        }
3257
3258        this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3259        ret = this->wait(mtd, FL_WRITING);
3260out:
3261        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3262        this->wait(mtd, FL_RESETING);
3263        if (!ret)
3264                /* Recalculate device size on boundary change*/
3265                flexonenand_get_size(mtd);
3266
3267        return ret;
3268}
3269
3270/**
3271 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3272 * @param mtd           MTD device structure
3273 *
3274 * OneNAND detection method:
3275 *   Compare the values from command with ones from register
3276 */
3277static int onenand_probe(struct mtd_info *mtd)
3278{
3279        struct onenand_chip *this = mtd->priv;
3280        int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
3281        int density;
3282        int syscfg;
3283
3284        /* Save system configuration 1 */
3285        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3286        /* Clear Sync. Burst Read mode to read BootRAM */
3287        this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3288
3289        /* Send the command for reading device ID from BootRAM */
3290        this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3291
3292        /* Read manufacturer and device IDs from BootRAM */
3293        bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3294        bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3295
3296        /* Reset OneNAND to read default register values */
3297        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3298        /* Wait reset */
3299        this->wait(mtd, FL_RESETING);
3300
3301        /* Restore system configuration 1 */
3302        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3303
3304        /* Check manufacturer ID */
3305        if (onenand_check_maf(bram_maf_id))
3306                return -ENXIO;
3307
3308        /* Read manufacturer and device IDs from Register */
3309        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3310        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3311        ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3312        this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3313
3314        /* Check OneNAND device */
3315        if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3316                return -ENXIO;
3317
3318        /* Flash device information */
3319        onenand_print_device_info(dev_id, ver_id);
3320        this->device_id = dev_id;
3321        this->version_id = ver_id;
3322
3323        density = onenand_get_density(dev_id);
3324        if (FLEXONENAND(this)) {
3325                this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3326                /* Maximum possible erase regions */
3327                mtd->numeraseregions = this->dies << 1;
3328                mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3329                                        * (this->dies << 1), GFP_KERNEL);
3330                if (!mtd->eraseregions)
3331                        return -ENOMEM;
3332        }
3333
3334        /*
3335         * For Flex-OneNAND, chipsize represents maximum possible device size.
3336         * mtd->size represents the actual device size.
3337         */
3338        this->chipsize = (16 << density) << 20;
3339
3340        /* OneNAND page size & block size */
3341        /* The data buffer size is equal to page size */
3342        mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3343        /* We use the full BufferRAM */
3344        if (ONENAND_IS_MLC(this))
3345                mtd->writesize <<= 1;
3346
3347        mtd->oobsize = mtd->writesize >> 5;
3348        /* Pages per a block are always 64 in OneNAND */
3349        mtd->erasesize = mtd->writesize << 6;
3350        /*
3351         * Flex-OneNAND SLC area has 64 pages per block.
3352         * Flex-OneNAND MLC area has 128 pages per block.
3353         * Expose MLC erase size to find erase_shift and page_mask.
3354         */
3355        if (FLEXONENAND(this))
3356                mtd->erasesize <<= 1;
3357
3358        this->erase_shift = ffs(mtd->erasesize) - 1;
3359        this->page_shift = ffs(mtd->writesize) - 1;
3360        this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3361        /* Set density mask. it is used for DDP */
3362        if (ONENAND_IS_DDP(this))
3363                this->density_mask = this->chipsize >> (this->erase_shift + 1);
3364        /* It's real page size */
3365        this->writesize = mtd->writesize;
3366
3367        /* REVISIT: Multichip handling */
3368
3369        if (FLEXONENAND(this))
3370                flexonenand_get_size(mtd);
3371        else
3372                mtd->size = this->chipsize;
3373
3374        /* Check OneNAND features */
3375        onenand_check_features(mtd);
3376
3377        /*
3378         * We emulate the 4KiB page and 256KiB erase block size
3379         * But oobsize is still 64 bytes.
3380         * It is only valid if you turn on 2X program support,
3381         * Otherwise it will be ignored by compiler.
3382         */
3383        if (ONENAND_IS_2PLANE(this)) {
3384                mtd->writesize <<= 1;
3385                mtd->erasesize <<= 1;
3386        }
3387
3388        return 0;
3389}
3390
3391/**
3392 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3393 * @param mtd           MTD device structure
3394 */
3395static int onenand_suspend(struct mtd_info *mtd)
3396{
3397        return onenand_get_device(mtd, FL_PM_SUSPENDED);
3398}
3399
3400/**
3401 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3402 * @param mtd           MTD device structure
3403 */
3404static void onenand_resume(struct mtd_info *mtd)
3405{
3406        struct onenand_chip *this = mtd->priv;
3407
3408        if (this->state == FL_PM_SUSPENDED)
3409                onenand_release_device(mtd);
3410        else
3411                printk(KERN_ERR "resume() called for the chip which is not"
3412                                "in suspended state\n");
3413}
3414
3415/**
3416 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3417 * @param mtd           MTD device structure
3418 * @param maxchips      Number of chips to scan for
3419 *
3420 * This fills out all the not initialized function pointers
3421 * with the defaults.
3422 * The flash ID is read and the mtd/chip structures are
3423 * filled with the appropriate values.
3424 */
3425int onenand_scan(struct mtd_info *mtd, int maxchips)
3426{
3427        int i, ret;
3428        struct onenand_chip *this = mtd->priv;
3429
3430        if (!this->read_word)
3431                this->read_word = onenand_readw;
3432        if (!this->write_word)
3433                this->write_word = onenand_writew;
3434
3435        if (!this->command)
3436                this->command = onenand_command;
3437        if (!this->wait)
3438                onenand_setup_wait(mtd);
3439        if (!this->bbt_wait)
3440                this->bbt_wait = onenand_bbt_wait;
3441        if (!this->unlock_all)
3442                this->unlock_all = onenand_unlock_all;
3443
3444        if (!this->read_bufferram)
3445                this->read_bufferram = onenand_read_bufferram;
3446        if (!this->write_bufferram)
3447                this->write_bufferram = onenand_write_bufferram;
3448
3449        if (!this->block_markbad)
3450                this->block_markbad = onenand_default_block_markbad;
3451        if (!this->scan_bbt)
3452                this->scan_bbt = onenand_default_bbt;
3453
3454        if (onenand_probe(mtd))
3455                return -ENXIO;
3456
3457        /* Set Sync. Burst Read after probing */
3458        if (this->mmcontrol) {
3459                printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3460                this->read_bufferram = onenand_sync_read_bufferram;
3461        }
3462
3463        /* Allocate buffers, if necessary */
3464        if (!this->page_buf) {
3465                this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3466                if (!this->page_buf) {
3467                        printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
3468                        return -ENOMEM;
3469                }
3470                this->options |= ONENAND_PAGEBUF_ALLOC;
3471        }
3472        if (!this->oob_buf) {
3473                this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3474                if (!this->oob_buf) {
3475                        printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
3476                        if (this->options & ONENAND_PAGEBUF_ALLOC) {
3477                                this->options &= ~ONENAND_PAGEBUF_ALLOC;
3478                                kfree(this->page_buf);
3479                        }
3480                        return -ENOMEM;
3481                }
3482                this->options |= ONENAND_OOBBUF_ALLOC;
3483        }
3484
3485        this->state = FL_READY;
3486        init_waitqueue_head(&this->wq);
3487        spin_lock_init(&this->chip_lock);
3488
3489        /*
3490         * Allow subpage writes up to oobsize.
3491         */
3492        switch (mtd->oobsize) {
3493        case 128:
3494                this->ecclayout = &onenand_oob_128;
3495                mtd->subpage_sft = 0;
3496                break;
3497        case 64:
3498                this->ecclayout = &onenand_oob_64;
3499                mtd->subpage_sft = 2;
3500                break;
3501
3502        case 32:
3503                this->ecclayout = &onenand_oob_32;
3504                mtd->subpage_sft = 1;
3505                break;
3506
3507        default:
3508                printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
3509                        mtd->oobsize);
3510                mtd->subpage_sft = 0;
3511                /* To prevent kernel oops */
3512                this->ecclayout = &onenand_oob_32;
3513                break;
3514        }
3515
3516        this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3517
3518        /*
3519         * The number of bytes available for a client to place data into
3520         * the out of band area
3521         */
3522        this->ecclayout->oobavail = 0;
3523        for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
3524            this->ecclayout->oobfree[i].length; i++)
3525                this->ecclayout->oobavail +=
3526                        this->ecclayout->oobfree[i].length;
3527        mtd->oobavail = this->ecclayout->oobavail;
3528
3529        mtd->ecclayout = this->ecclayout;
3530
3531        /* Fill in remaining MTD driver data */
3532        mtd->type = MTD_NANDFLASH;
3533        mtd->flags = MTD_CAP_NANDFLASH;
3534        mtd->erase = onenand_erase;
3535        mtd->point = NULL;
3536        mtd->unpoint = NULL;
3537        mtd->read = onenand_read;
3538        mtd->write = onenand_write;
3539        mtd->read_oob = onenand_read_oob;
3540        mtd->write_oob = onenand_write_oob;
3541        mtd->panic_write = onenand_panic_write;
3542#ifdef CONFIG_MTD_ONENAND_OTP
3543        mtd->get_fact_prot_info = onenand_get_fact_prot_info;
3544        mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
3545        mtd->get_user_prot_info = onenand_get_user_prot_info;
3546        mtd->read_user_prot_reg = onenand_read_user_prot_reg;
3547        mtd->write_user_prot_reg = onenand_write_user_prot_reg;
3548        mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
3549#endif
3550        mtd->sync = onenand_sync;
3551        mtd->lock = onenand_lock;
3552        mtd->unlock = onenand_unlock;
3553        mtd->suspend = onenand_suspend;
3554        mtd->resume = onenand_resume;
3555        mtd->block_isbad = onenand_block_isbad;
3556        mtd->block_markbad = onenand_block_markbad;
3557        mtd->owner = THIS_MODULE;
3558
3559        /* Unlock whole block */
3560        this->unlock_all(mtd);
3561
3562        ret = this->scan_bbt(mtd);
3563        if ((!FLEXONENAND(this)) || ret)
3564                return ret;
3565
3566        /* Change Flex-OneNAND boundaries if required */
3567        for (i = 0; i < MAX_DIES; i++)
3568                flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3569                                                 flex_bdry[(2 * i) + 1]);
3570
3571        return 0;
3572}
3573
3574/**
3575 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3576 * @param mtd           MTD device structure
3577 */
3578void onenand_release(struct mtd_info *mtd)
3579{
3580        struct onenand_chip *this = mtd->priv;
3581
3582#ifdef CONFIG_MTD_PARTITIONS
3583        /* Deregister partitions */
3584        del_mtd_partitions (mtd);
3585#endif
3586        /* Deregister the device */
3587        del_mtd_device (mtd);
3588
3589        /* Free bad block table memory, if allocated */
3590        if (this->bbm) {
3591                struct bbm_info *bbm = this->bbm;
3592                kfree(bbm->bbt);
3593                kfree(this->bbm);
3594        }
3595        /* Buffers allocated by onenand_scan */
3596        if (this->options & ONENAND_PAGEBUF_ALLOC)
3597                kfree(this->page_buf);
3598        if (this->options & ONENAND_OOBBUF_ALLOC)
3599                kfree(this->oob_buf);
3600        kfree(mtd->eraseregions);
3601}
3602
3603EXPORT_SYMBOL_GPL(onenand_scan);
3604EXPORT_SYMBOL_GPL(onenand_release);
3605
3606MODULE_LICENSE("GPL");
3607MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
3608MODULE_DESCRIPTION("Generic OneNAND flash driver code");
3609