linux/drivers/mtd/ubi/scan.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI scanning sub-system.
  23 *
  24 * This sub-system is responsible for scanning the flash media, checking UBI
  25 * headers and providing complete information about the UBI flash image.
  26 *
  27 * The scanning information is represented by a &struct ubi_scan_info' object.
  28 * Information about found volumes is represented by &struct ubi_scan_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
  33 * These objects are kept in per-volume RB-trees with the root at the
  34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
  35 * an RB-tree of per-volume objects and each of these objects is the root of
  36 * RB-tree of per-eraseblock objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 */
  42
  43#include <linux/err.h>
  44#include <linux/crc32.h>
  45#include <linux/math64.h>
  46#include "ubi.h"
  47
  48#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  49static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
  50#else
  51#define paranoid_check_si(ubi, si) 0
  52#endif
  53
  54/* Temporary variables used during scanning */
  55static struct ubi_ec_hdr *ech;
  56static struct ubi_vid_hdr *vidh;
  57
  58/**
  59 * add_to_list - add physical eraseblock to a list.
  60 * @si: scanning information
  61 * @pnum: physical eraseblock number to add
  62 * @ec: erase counter of the physical eraseblock
  63 * @list: the list to add to
  64 *
  65 * This function adds physical eraseblock @pnum to free, erase, corrupted or
  66 * alien lists. Returns zero in case of success and a negative error code in
  67 * case of failure.
  68 */
  69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
  70                       struct list_head *list)
  71{
  72        struct ubi_scan_leb *seb;
  73
  74        if (list == &si->free)
  75                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
  76        else if (list == &si->erase)
  77                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
  78        else if (list == &si->corr) {
  79                dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
  80                si->corr_count += 1;
  81        } else if (list == &si->alien)
  82                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
  83        else
  84                BUG();
  85
  86        seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
  87        if (!seb)
  88                return -ENOMEM;
  89
  90        seb->pnum = pnum;
  91        seb->ec = ec;
  92        list_add_tail(&seb->u.list, list);
  93        return 0;
  94}
  95
  96/**
  97 * validate_vid_hdr - check volume identifier header.
  98 * @vid_hdr: the volume identifier header to check
  99 * @sv: information about the volume this logical eraseblock belongs to
 100 * @pnum: physical eraseblock number the VID header came from
 101 *
 102 * This function checks that data stored in @vid_hdr is consistent. Returns
 103 * non-zero if an inconsistency was found and zero if not.
 104 *
 105 * Note, UBI does sanity check of everything it reads from the flash media.
 106 * Most of the checks are done in the I/O sub-system. Here we check that the
 107 * information in the VID header is consistent to the information in other VID
 108 * headers of the same volume.
 109 */
 110static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
 111                            const struct ubi_scan_volume *sv, int pnum)
 112{
 113        int vol_type = vid_hdr->vol_type;
 114        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 115        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 116        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 117
 118        if (sv->leb_count != 0) {
 119                int sv_vol_type;
 120
 121                /*
 122                 * This is not the first logical eraseblock belonging to this
 123                 * volume. Ensure that the data in its VID header is consistent
 124                 * to the data in previous logical eraseblock headers.
 125                 */
 126
 127                if (vol_id != sv->vol_id) {
 128                        dbg_err("inconsistent vol_id");
 129                        goto bad;
 130                }
 131
 132                if (sv->vol_type == UBI_STATIC_VOLUME)
 133                        sv_vol_type = UBI_VID_STATIC;
 134                else
 135                        sv_vol_type = UBI_VID_DYNAMIC;
 136
 137                if (vol_type != sv_vol_type) {
 138                        dbg_err("inconsistent vol_type");
 139                        goto bad;
 140                }
 141
 142                if (used_ebs != sv->used_ebs) {
 143                        dbg_err("inconsistent used_ebs");
 144                        goto bad;
 145                }
 146
 147                if (data_pad != sv->data_pad) {
 148                        dbg_err("inconsistent data_pad");
 149                        goto bad;
 150                }
 151        }
 152
 153        return 0;
 154
 155bad:
 156        ubi_err("inconsistent VID header at PEB %d", pnum);
 157        ubi_dbg_dump_vid_hdr(vid_hdr);
 158        ubi_dbg_dump_sv(sv);
 159        return -EINVAL;
 160}
 161
 162/**
 163 * add_volume - add volume to the scanning information.
 164 * @si: scanning information
 165 * @vol_id: ID of the volume to add
 166 * @pnum: physical eraseblock number
 167 * @vid_hdr: volume identifier header
 168 *
 169 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 170 * present in the scanning information, this function does nothing. Otherwise
 171 * it adds corresponding volume to the scanning information. Returns a pointer
 172 * to the scanning volume object in case of success and a negative error code
 173 * in case of failure.
 174 */
 175static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
 176                                          int pnum,
 177                                          const struct ubi_vid_hdr *vid_hdr)
 178{
 179        struct ubi_scan_volume *sv;
 180        struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
 181
 182        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 183
 184        /* Walk the volume RB-tree to look if this volume is already present */
 185        while (*p) {
 186                parent = *p;
 187                sv = rb_entry(parent, struct ubi_scan_volume, rb);
 188
 189                if (vol_id == sv->vol_id)
 190                        return sv;
 191
 192                if (vol_id > sv->vol_id)
 193                        p = &(*p)->rb_left;
 194                else
 195                        p = &(*p)->rb_right;
 196        }
 197
 198        /* The volume is absent - add it */
 199        sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
 200        if (!sv)
 201                return ERR_PTR(-ENOMEM);
 202
 203        sv->highest_lnum = sv->leb_count = 0;
 204        sv->vol_id = vol_id;
 205        sv->root = RB_ROOT;
 206        sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 207        sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
 208        sv->compat = vid_hdr->compat;
 209        sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 210                                                            : UBI_STATIC_VOLUME;
 211        if (vol_id > si->highest_vol_id)
 212                si->highest_vol_id = vol_id;
 213
 214        rb_link_node(&sv->rb, parent, p);
 215        rb_insert_color(&sv->rb, &si->volumes);
 216        si->vols_found += 1;
 217        dbg_bld("added volume %d", vol_id);
 218        return sv;
 219}
 220
 221/**
 222 * compare_lebs - find out which logical eraseblock is newer.
 223 * @ubi: UBI device description object
 224 * @seb: first logical eraseblock to compare
 225 * @pnum: physical eraseblock number of the second logical eraseblock to
 226 * compare
 227 * @vid_hdr: volume identifier header of the second logical eraseblock
 228 *
 229 * This function compares 2 copies of a LEB and informs which one is newer. In
 230 * case of success this function returns a positive value, in case of failure, a
 231 * negative error code is returned. The success return codes use the following
 232 * bits:
 233 *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
 234 *       second PEB (described by @pnum and @vid_hdr);
 235 *     o bit 0 is set: the second PEB is newer;
 236 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 237 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 238 *     o bit 2 is cleared: the older LEB is not corrupted;
 239 *     o bit 2 is set: the older LEB is corrupted.
 240 */
 241static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
 242                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 243{
 244        void *buf;
 245        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 246        uint32_t data_crc, crc;
 247        struct ubi_vid_hdr *vh = NULL;
 248        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 249
 250        if (sqnum2 == seb->sqnum) {
 251                /*
 252                 * This must be a really ancient UBI image which has been
 253                 * created before sequence numbers support has been added. At
 254                 * that times we used 32-bit LEB versions stored in logical
 255                 * eraseblocks. That was before UBI got into mainline. We do not
 256                 * support these images anymore. Well, those images will work
 257                 * still work, but only if no unclean reboots happened.
 258                 */
 259                ubi_err("unsupported on-flash UBI format\n");
 260                return -EINVAL;
 261        }
 262
 263        /* Obviously the LEB with lower sequence counter is older */
 264        second_is_newer = !!(sqnum2 > seb->sqnum);
 265
 266        /*
 267         * Now we know which copy is newer. If the copy flag of the PEB with
 268         * newer version is not set, then we just return, otherwise we have to
 269         * check data CRC. For the second PEB we already have the VID header,
 270         * for the first one - we'll need to re-read it from flash.
 271         *
 272         * Note: this may be optimized so that we wouldn't read twice.
 273         */
 274
 275        if (second_is_newer) {
 276                if (!vid_hdr->copy_flag) {
 277                        /* It is not a copy, so it is newer */
 278                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 279                                pnum);
 280                        return 1;
 281                }
 282        } else {
 283                pnum = seb->pnum;
 284
 285                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 286                if (!vh)
 287                        return -ENOMEM;
 288
 289                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 290                if (err) {
 291                        if (err == UBI_IO_BITFLIPS)
 292                                bitflips = 1;
 293                        else {
 294                                dbg_err("VID of PEB %d header is bad, but it "
 295                                        "was OK earlier", pnum);
 296                                if (err > 0)
 297                                        err = -EIO;
 298
 299                                goto out_free_vidh;
 300                        }
 301                }
 302
 303                if (!vh->copy_flag) {
 304                        /* It is not a copy, so it is newer */
 305                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 306                                pnum);
 307                        err = bitflips << 1;
 308                        goto out_free_vidh;
 309                }
 310
 311                vid_hdr = vh;
 312        }
 313
 314        /* Read the data of the copy and check the CRC */
 315
 316        len = be32_to_cpu(vid_hdr->data_size);
 317        buf = vmalloc(len);
 318        if (!buf) {
 319                err = -ENOMEM;
 320                goto out_free_vidh;
 321        }
 322
 323        err = ubi_io_read_data(ubi, buf, pnum, 0, len);
 324        if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
 325                goto out_free_buf;
 326
 327        data_crc = be32_to_cpu(vid_hdr->data_crc);
 328        crc = crc32(UBI_CRC32_INIT, buf, len);
 329        if (crc != data_crc) {
 330                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 331                        pnum, crc, data_crc);
 332                corrupted = 1;
 333                bitflips = 0;
 334                second_is_newer = !second_is_newer;
 335        } else {
 336                dbg_bld("PEB %d CRC is OK", pnum);
 337                bitflips = !!err;
 338        }
 339
 340        vfree(buf);
 341        ubi_free_vid_hdr(ubi, vh);
 342
 343        if (second_is_newer)
 344                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 345        else
 346                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 347
 348        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 349
 350out_free_buf:
 351        vfree(buf);
 352out_free_vidh:
 353        ubi_free_vid_hdr(ubi, vh);
 354        return err;
 355}
 356
 357/**
 358 * ubi_scan_add_used - add physical eraseblock to the scanning information.
 359 * @ubi: UBI device description object
 360 * @si: scanning information
 361 * @pnum: the physical eraseblock number
 362 * @ec: erase counter
 363 * @vid_hdr: the volume identifier header
 364 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 365 *
 366 * This function adds information about a used physical eraseblock to the
 367 * 'used' tree of the corresponding volume. The function is rather complex
 368 * because it has to handle cases when this is not the first physical
 369 * eraseblock belonging to the same logical eraseblock, and the newer one has
 370 * to be picked, while the older one has to be dropped. This function returns
 371 * zero in case of success and a negative error code in case of failure.
 372 */
 373int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
 374                      int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
 375                      int bitflips)
 376{
 377        int err, vol_id, lnum;
 378        unsigned long long sqnum;
 379        struct ubi_scan_volume *sv;
 380        struct ubi_scan_leb *seb;
 381        struct rb_node **p, *parent = NULL;
 382
 383        vol_id = be32_to_cpu(vid_hdr->vol_id);
 384        lnum = be32_to_cpu(vid_hdr->lnum);
 385        sqnum = be64_to_cpu(vid_hdr->sqnum);
 386
 387        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 388                pnum, vol_id, lnum, ec, sqnum, bitflips);
 389
 390        sv = add_volume(si, vol_id, pnum, vid_hdr);
 391        if (IS_ERR(sv))
 392                return PTR_ERR(sv);
 393
 394        if (si->max_sqnum < sqnum)
 395                si->max_sqnum = sqnum;
 396
 397        /*
 398         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 399         * if this is the first instance of this logical eraseblock or not.
 400         */
 401        p = &sv->root.rb_node;
 402        while (*p) {
 403                int cmp_res;
 404
 405                parent = *p;
 406                seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
 407                if (lnum != seb->lnum) {
 408                        if (lnum < seb->lnum)
 409                                p = &(*p)->rb_left;
 410                        else
 411                                p = &(*p)->rb_right;
 412                        continue;
 413                }
 414
 415                /*
 416                 * There is already a physical eraseblock describing the same
 417                 * logical eraseblock present.
 418                 */
 419
 420                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
 421                        "EC %d", seb->pnum, seb->sqnum, seb->ec);
 422
 423                /*
 424                 * Make sure that the logical eraseblocks have different
 425                 * sequence numbers. Otherwise the image is bad.
 426                 *
 427                 * However, if the sequence number is zero, we assume it must
 428                 * be an ancient UBI image from the era when UBI did not have
 429                 * sequence numbers. We still can attach these images, unless
 430                 * there is a need to distinguish between old and new
 431                 * eraseblocks, in which case we'll refuse the image in
 432                 * 'compare_lebs()'. In other words, we attach old clean
 433                 * images, but refuse attaching old images with duplicated
 434                 * logical eraseblocks because there was an unclean reboot.
 435                 */
 436                if (seb->sqnum == sqnum && sqnum != 0) {
 437                        ubi_err("two LEBs with same sequence number %llu",
 438                                sqnum);
 439                        ubi_dbg_dump_seb(seb, 0);
 440                        ubi_dbg_dump_vid_hdr(vid_hdr);
 441                        return -EINVAL;
 442                }
 443
 444                /*
 445                 * Now we have to drop the older one and preserve the newer
 446                 * one.
 447                 */
 448                cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
 449                if (cmp_res < 0)
 450                        return cmp_res;
 451
 452                if (cmp_res & 1) {
 453                        /*
 454                         * This logical eraseblock is newer then the one
 455                         * found earlier.
 456                         */
 457                        err = validate_vid_hdr(vid_hdr, sv, pnum);
 458                        if (err)
 459                                return err;
 460
 461                        if (cmp_res & 4)
 462                                err = add_to_list(si, seb->pnum, seb->ec,
 463                                                  &si->corr);
 464                        else
 465                                err = add_to_list(si, seb->pnum, seb->ec,
 466                                                  &si->erase);
 467                        if (err)
 468                                return err;
 469
 470                        seb->ec = ec;
 471                        seb->pnum = pnum;
 472                        seb->scrub = ((cmp_res & 2) || bitflips);
 473                        seb->sqnum = sqnum;
 474
 475                        if (sv->highest_lnum == lnum)
 476                                sv->last_data_size =
 477                                        be32_to_cpu(vid_hdr->data_size);
 478
 479                        return 0;
 480                } else {
 481                        /*
 482                         * This logical eraseblock is older than the one found
 483                         * previously.
 484                         */
 485                        if (cmp_res & 4)
 486                                return add_to_list(si, pnum, ec, &si->corr);
 487                        else
 488                                return add_to_list(si, pnum, ec, &si->erase);
 489                }
 490        }
 491
 492        /*
 493         * We've met this logical eraseblock for the first time, add it to the
 494         * scanning information.
 495         */
 496
 497        err = validate_vid_hdr(vid_hdr, sv, pnum);
 498        if (err)
 499                return err;
 500
 501        seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
 502        if (!seb)
 503                return -ENOMEM;
 504
 505        seb->ec = ec;
 506        seb->pnum = pnum;
 507        seb->lnum = lnum;
 508        seb->sqnum = sqnum;
 509        seb->scrub = bitflips;
 510
 511        if (sv->highest_lnum <= lnum) {
 512                sv->highest_lnum = lnum;
 513                sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
 514        }
 515
 516        sv->leb_count += 1;
 517        rb_link_node(&seb->u.rb, parent, p);
 518        rb_insert_color(&seb->u.rb, &sv->root);
 519        return 0;
 520}
 521
 522/**
 523 * ubi_scan_find_sv - find volume in the scanning information.
 524 * @si: scanning information
 525 * @vol_id: the requested volume ID
 526 *
 527 * This function returns a pointer to the volume description or %NULL if there
 528 * are no data about this volume in the scanning information.
 529 */
 530struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
 531                                         int vol_id)
 532{
 533        struct ubi_scan_volume *sv;
 534        struct rb_node *p = si->volumes.rb_node;
 535
 536        while (p) {
 537                sv = rb_entry(p, struct ubi_scan_volume, rb);
 538
 539                if (vol_id == sv->vol_id)
 540                        return sv;
 541
 542                if (vol_id > sv->vol_id)
 543                        p = p->rb_left;
 544                else
 545                        p = p->rb_right;
 546        }
 547
 548        return NULL;
 549}
 550
 551/**
 552 * ubi_scan_find_seb - find LEB in the volume scanning information.
 553 * @sv: a pointer to the volume scanning information
 554 * @lnum: the requested logical eraseblock
 555 *
 556 * This function returns a pointer to the scanning logical eraseblock or %NULL
 557 * if there are no data about it in the scanning volume information.
 558 */
 559struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
 560                                       int lnum)
 561{
 562        struct ubi_scan_leb *seb;
 563        struct rb_node *p = sv->root.rb_node;
 564
 565        while (p) {
 566                seb = rb_entry(p, struct ubi_scan_leb, u.rb);
 567
 568                if (lnum == seb->lnum)
 569                        return seb;
 570
 571                if (lnum > seb->lnum)
 572                        p = p->rb_left;
 573                else
 574                        p = p->rb_right;
 575        }
 576
 577        return NULL;
 578}
 579
 580/**
 581 * ubi_scan_rm_volume - delete scanning information about a volume.
 582 * @si: scanning information
 583 * @sv: the volume scanning information to delete
 584 */
 585void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
 586{
 587        struct rb_node *rb;
 588        struct ubi_scan_leb *seb;
 589
 590        dbg_bld("remove scanning information about volume %d", sv->vol_id);
 591
 592        while ((rb = rb_first(&sv->root))) {
 593                seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
 594                rb_erase(&seb->u.rb, &sv->root);
 595                list_add_tail(&seb->u.list, &si->erase);
 596        }
 597
 598        rb_erase(&sv->rb, &si->volumes);
 599        kfree(sv);
 600        si->vols_found -= 1;
 601}
 602
 603/**
 604 * ubi_scan_erase_peb - erase a physical eraseblock.
 605 * @ubi: UBI device description object
 606 * @si: scanning information
 607 * @pnum: physical eraseblock number to erase;
 608 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
 609 *
 610 * This function erases physical eraseblock 'pnum', and writes the erase
 611 * counter header to it. This function should only be used on UBI device
 612 * initialization stages, when the EBA sub-system had not been yet initialized.
 613 * This function returns zero in case of success and a negative error code in
 614 * case of failure.
 615 */
 616int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
 617                       int pnum, int ec)
 618{
 619        int err;
 620        struct ubi_ec_hdr *ec_hdr;
 621
 622        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 623                /*
 624                 * Erase counter overflow. Upgrade UBI and use 64-bit
 625                 * erase counters internally.
 626                 */
 627                ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
 628                return -EINVAL;
 629        }
 630
 631        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 632        if (!ec_hdr)
 633                return -ENOMEM;
 634
 635        ec_hdr->ec = cpu_to_be64(ec);
 636
 637        err = ubi_io_sync_erase(ubi, pnum, 0);
 638        if (err < 0)
 639                goto out_free;
 640
 641        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 642
 643out_free:
 644        kfree(ec_hdr);
 645        return err;
 646}
 647
 648/**
 649 * ubi_scan_get_free_peb - get a free physical eraseblock.
 650 * @ubi: UBI device description object
 651 * @si: scanning information
 652 *
 653 * This function returns a free physical eraseblock. It is supposed to be
 654 * called on the UBI initialization stages when the wear-leveling sub-system is
 655 * not initialized yet. This function picks a physical eraseblocks from one of
 656 * the lists, writes the EC header if it is needed, and removes it from the
 657 * list.
 658 *
 659 * This function returns scanning physical eraseblock information in case of
 660 * success and an error code in case of failure.
 661 */
 662struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
 663                                           struct ubi_scan_info *si)
 664{
 665        int err = 0, i;
 666        struct ubi_scan_leb *seb;
 667
 668        if (!list_empty(&si->free)) {
 669                seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
 670                list_del(&seb->u.list);
 671                dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
 672                return seb;
 673        }
 674
 675        for (i = 0; i < 2; i++) {
 676                struct list_head *head;
 677                struct ubi_scan_leb *tmp_seb;
 678
 679                if (i == 0)
 680                        head = &si->erase;
 681                else
 682                        head = &si->corr;
 683
 684                /*
 685                 * We try to erase the first physical eraseblock from the @head
 686                 * list and pick it if we succeed, or try to erase the
 687                 * next one if not. And so forth. We don't want to take care
 688                 * about bad eraseblocks here - they'll be handled later.
 689                 */
 690                list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
 691                        if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 692                                seb->ec = si->mean_ec;
 693
 694                        err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
 695                        if (err)
 696                                continue;
 697
 698                        seb->ec += 1;
 699                        list_del(&seb->u.list);
 700                        dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
 701                        return seb;
 702                }
 703        }
 704
 705        ubi_err("no eraseblocks found");
 706        return ERR_PTR(-ENOSPC);
 707}
 708
 709/**
 710 * process_eb - read, check UBI headers, and add them to scanning information.
 711 * @ubi: UBI device description object
 712 * @si: scanning information
 713 * @pnum: the physical eraseblock number
 714 *
 715 * This function returns a zero if the physical eraseblock was successfully
 716 * handled and a negative error code in case of failure.
 717 */
 718static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
 719                      int pnum)
 720{
 721        long long uninitialized_var(ec);
 722        int err, bitflips = 0, vol_id, ec_corr = 0;
 723
 724        dbg_bld("scan PEB %d", pnum);
 725
 726        /* Skip bad physical eraseblocks */
 727        err = ubi_io_is_bad(ubi, pnum);
 728        if (err < 0)
 729                return err;
 730        else if (err) {
 731                /*
 732                 * FIXME: this is actually duty of the I/O sub-system to
 733                 * initialize this, but MTD does not provide enough
 734                 * information.
 735                 */
 736                si->bad_peb_count += 1;
 737                return 0;
 738        }
 739
 740        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 741        if (err < 0)
 742                return err;
 743        else if (err == UBI_IO_BITFLIPS)
 744                bitflips = 1;
 745        else if (err == UBI_IO_PEB_EMPTY)
 746                return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
 747        else if (err == UBI_IO_BAD_EC_HDR) {
 748                /*
 749                 * We have to also look at the VID header, possibly it is not
 750                 * corrupted. Set %bitflips flag in order to make this PEB be
 751                 * moved and EC be re-created.
 752                 */
 753                ec_corr = 1;
 754                ec = UBI_SCAN_UNKNOWN_EC;
 755                bitflips = 1;
 756        }
 757
 758        si->is_empty = 0;
 759
 760        if (!ec_corr) {
 761                int image_seq;
 762
 763                /* Make sure UBI version is OK */
 764                if (ech->version != UBI_VERSION) {
 765                        ubi_err("this UBI version is %d, image version is %d",
 766                                UBI_VERSION, (int)ech->version);
 767                        return -EINVAL;
 768                }
 769
 770                ec = be64_to_cpu(ech->ec);
 771                if (ec > UBI_MAX_ERASECOUNTER) {
 772                        /*
 773                         * Erase counter overflow. The EC headers have 64 bits
 774                         * reserved, but we anyway make use of only 31 bit
 775                         * values, as this seems to be enough for any existing
 776                         * flash. Upgrade UBI and use 64-bit erase counters
 777                         * internally.
 778                         */
 779                        ubi_err("erase counter overflow, max is %d",
 780                                UBI_MAX_ERASECOUNTER);
 781                        ubi_dbg_dump_ec_hdr(ech);
 782                        return -EINVAL;
 783                }
 784
 785                /*
 786                 * Make sure that all PEBs have the same image sequence number.
 787                 * This allows us to detect situations when users flash UBI
 788                 * images incorrectly, so that the flash has the new UBI image
 789                 * and leftovers from the old one. This feature was added
 790                 * relatively recently, and the sequence number was always
 791                 * zero, because old UBI implementations always set it to zero.
 792                 * For this reasons, we do not panic if some PEBs have zero
 793                 * sequence number, while other PEBs have non-zero sequence
 794                 * number.
 795                 */
 796                image_seq = be32_to_cpu(ech->image_seq);
 797                if (!ubi->image_seq && image_seq)
 798                        ubi->image_seq = image_seq;
 799                if (ubi->image_seq && image_seq &&
 800                    ubi->image_seq != image_seq) {
 801                        ubi_err("bad image sequence number %d in PEB %d, "
 802                                "expected %d", image_seq, pnum, ubi->image_seq);
 803                        ubi_dbg_dump_ec_hdr(ech);
 804                        return -EINVAL;
 805                }
 806        }
 807
 808        /* OK, we've done with the EC header, let's look at the VID header */
 809
 810        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 811        if (err < 0)
 812                return err;
 813        else if (err == UBI_IO_BITFLIPS)
 814                bitflips = 1;
 815        else if (err == UBI_IO_BAD_VID_HDR ||
 816                 (err == UBI_IO_PEB_FREE && ec_corr)) {
 817                /* VID header is corrupted */
 818                err = add_to_list(si, pnum, ec, &si->corr);
 819                if (err)
 820                        return err;
 821                goto adjust_mean_ec;
 822        } else if (err == UBI_IO_PEB_FREE) {
 823                /* No VID header - the physical eraseblock is free */
 824                err = add_to_list(si, pnum, ec, &si->free);
 825                if (err)
 826                        return err;
 827                goto adjust_mean_ec;
 828        }
 829
 830        vol_id = be32_to_cpu(vidh->vol_id);
 831        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 832                int lnum = be32_to_cpu(vidh->lnum);
 833
 834                /* Unsupported internal volume */
 835                switch (vidh->compat) {
 836                case UBI_COMPAT_DELETE:
 837                        ubi_msg("\"delete\" compatible internal volume %d:%d"
 838                                " found, remove it", vol_id, lnum);
 839                        err = add_to_list(si, pnum, ec, &si->corr);
 840                        if (err)
 841                                return err;
 842                        break;
 843
 844                case UBI_COMPAT_RO:
 845                        ubi_msg("read-only compatible internal volume %d:%d"
 846                                " found, switch to read-only mode",
 847                                vol_id, lnum);
 848                        ubi->ro_mode = 1;
 849                        break;
 850
 851                case UBI_COMPAT_PRESERVE:
 852                        ubi_msg("\"preserve\" compatible internal volume %d:%d"
 853                                " found", vol_id, lnum);
 854                        err = add_to_list(si, pnum, ec, &si->alien);
 855                        if (err)
 856                                return err;
 857                        si->alien_peb_count += 1;
 858                        return 0;
 859
 860                case UBI_COMPAT_REJECT:
 861                        ubi_err("incompatible internal volume %d:%d found",
 862                                vol_id, lnum);
 863                        return -EINVAL;
 864                }
 865        }
 866
 867        if (ec_corr)
 868                ubi_warn("valid VID header but corrupted EC header at PEB %d",
 869                         pnum);
 870        err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
 871        if (err)
 872                return err;
 873
 874adjust_mean_ec:
 875        if (!ec_corr) {
 876                si->ec_sum += ec;
 877                si->ec_count += 1;
 878                if (ec > si->max_ec)
 879                        si->max_ec = ec;
 880                if (ec < si->min_ec)
 881                        si->min_ec = ec;
 882        }
 883
 884        return 0;
 885}
 886
 887/**
 888 * ubi_scan - scan an MTD device.
 889 * @ubi: UBI device description object
 890 *
 891 * This function does full scanning of an MTD device and returns complete
 892 * information about it. In case of failure, an error code is returned.
 893 */
 894struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
 895{
 896        int err, pnum;
 897        struct rb_node *rb1, *rb2;
 898        struct ubi_scan_volume *sv;
 899        struct ubi_scan_leb *seb;
 900        struct ubi_scan_info *si;
 901
 902        si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
 903        if (!si)
 904                return ERR_PTR(-ENOMEM);
 905
 906        INIT_LIST_HEAD(&si->corr);
 907        INIT_LIST_HEAD(&si->free);
 908        INIT_LIST_HEAD(&si->erase);
 909        INIT_LIST_HEAD(&si->alien);
 910        si->volumes = RB_ROOT;
 911        si->is_empty = 1;
 912
 913        err = -ENOMEM;
 914        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 915        if (!ech)
 916                goto out_si;
 917
 918        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 919        if (!vidh)
 920                goto out_ech;
 921
 922        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
 923                cond_resched();
 924
 925                dbg_gen("process PEB %d", pnum);
 926                err = process_eb(ubi, si, pnum);
 927                if (err < 0)
 928                        goto out_vidh;
 929        }
 930
 931        dbg_msg("scanning is finished");
 932
 933        /* Calculate mean erase counter */
 934        if (si->ec_count)
 935                si->mean_ec = div_u64(si->ec_sum, si->ec_count);
 936
 937        if (si->is_empty)
 938                ubi_msg("empty MTD device detected");
 939
 940        /*
 941         * Few corrupted PEBs are not a problem and may be just a result of
 942         * unclean reboots. However, many of them may indicate some problems
 943         * with the flash HW or driver. Print a warning in this case.
 944         */
 945        if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) {
 946                ubi_warn("%d PEBs are corrupted", si->corr_count);
 947                printk(KERN_WARNING "corrupted PEBs are:");
 948                list_for_each_entry(seb, &si->corr, u.list)
 949                        printk(KERN_CONT " %d", seb->pnum);
 950                printk(KERN_CONT "\n");
 951        }
 952
 953        /*
 954         * In case of unknown erase counter we use the mean erase counter
 955         * value.
 956         */
 957        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
 958                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
 959                        if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 960                                seb->ec = si->mean_ec;
 961        }
 962
 963        list_for_each_entry(seb, &si->free, u.list) {
 964                if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 965                        seb->ec = si->mean_ec;
 966        }
 967
 968        list_for_each_entry(seb, &si->corr, u.list)
 969                if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 970                        seb->ec = si->mean_ec;
 971
 972        list_for_each_entry(seb, &si->erase, u.list)
 973                if (seb->ec == UBI_SCAN_UNKNOWN_EC)
 974                        seb->ec = si->mean_ec;
 975
 976        err = paranoid_check_si(ubi, si);
 977        if (err) {
 978                if (err > 0)
 979                        err = -EINVAL;
 980                goto out_vidh;
 981        }
 982
 983        ubi_free_vid_hdr(ubi, vidh);
 984        kfree(ech);
 985
 986        return si;
 987
 988out_vidh:
 989        ubi_free_vid_hdr(ubi, vidh);
 990out_ech:
 991        kfree(ech);
 992out_si:
 993        ubi_scan_destroy_si(si);
 994        return ERR_PTR(err);
 995}
 996
 997/**
 998 * destroy_sv - free the scanning volume information
 999 * @sv: scanning volume information
1000 *
1001 * This function destroys the volume RB-tree (@sv->root) and the scanning
1002 * volume information.
1003 */
1004static void destroy_sv(struct ubi_scan_volume *sv)
1005{
1006        struct ubi_scan_leb *seb;
1007        struct rb_node *this = sv->root.rb_node;
1008
1009        while (this) {
1010                if (this->rb_left)
1011                        this = this->rb_left;
1012                else if (this->rb_right)
1013                        this = this->rb_right;
1014                else {
1015                        seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1016                        this = rb_parent(this);
1017                        if (this) {
1018                                if (this->rb_left == &seb->u.rb)
1019                                        this->rb_left = NULL;
1020                                else
1021                                        this->rb_right = NULL;
1022                        }
1023
1024                        kfree(seb);
1025                }
1026        }
1027        kfree(sv);
1028}
1029
1030/**
1031 * ubi_scan_destroy_si - destroy scanning information.
1032 * @si: scanning information
1033 */
1034void ubi_scan_destroy_si(struct ubi_scan_info *si)
1035{
1036        struct ubi_scan_leb *seb, *seb_tmp;
1037        struct ubi_scan_volume *sv;
1038        struct rb_node *rb;
1039
1040        list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1041                list_del(&seb->u.list);
1042                kfree(seb);
1043        }
1044        list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1045                list_del(&seb->u.list);
1046                kfree(seb);
1047        }
1048        list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1049                list_del(&seb->u.list);
1050                kfree(seb);
1051        }
1052        list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1053                list_del(&seb->u.list);
1054                kfree(seb);
1055        }
1056
1057        /* Destroy the volume RB-tree */
1058        rb = si->volumes.rb_node;
1059        while (rb) {
1060                if (rb->rb_left)
1061                        rb = rb->rb_left;
1062                else if (rb->rb_right)
1063                        rb = rb->rb_right;
1064                else {
1065                        sv = rb_entry(rb, struct ubi_scan_volume, rb);
1066
1067                        rb = rb_parent(rb);
1068                        if (rb) {
1069                                if (rb->rb_left == &sv->rb)
1070                                        rb->rb_left = NULL;
1071                                else
1072                                        rb->rb_right = NULL;
1073                        }
1074
1075                        destroy_sv(sv);
1076                }
1077        }
1078
1079        kfree(si);
1080}
1081
1082#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1083
1084/**
1085 * paranoid_check_si - check the scanning information.
1086 * @ubi: UBI device description object
1087 * @si: scanning information
1088 *
1089 * This function returns zero if the scanning information is all right, %1 if
1090 * not and a negative error code if an error occurred.
1091 */
1092static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1093{
1094        int pnum, err, vols_found = 0;
1095        struct rb_node *rb1, *rb2;
1096        struct ubi_scan_volume *sv;
1097        struct ubi_scan_leb *seb, *last_seb;
1098        uint8_t *buf;
1099
1100        /*
1101         * At first, check that scanning information is OK.
1102         */
1103        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1104                int leb_count = 0;
1105
1106                cond_resched();
1107
1108                vols_found += 1;
1109
1110                if (si->is_empty) {
1111                        ubi_err("bad is_empty flag");
1112                        goto bad_sv;
1113                }
1114
1115                if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1116                    sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1117                    sv->data_pad < 0 || sv->last_data_size < 0) {
1118                        ubi_err("negative values");
1119                        goto bad_sv;
1120                }
1121
1122                if (sv->vol_id >= UBI_MAX_VOLUMES &&
1123                    sv->vol_id < UBI_INTERNAL_VOL_START) {
1124                        ubi_err("bad vol_id");
1125                        goto bad_sv;
1126                }
1127
1128                if (sv->vol_id > si->highest_vol_id) {
1129                        ubi_err("highest_vol_id is %d, but vol_id %d is there",
1130                                si->highest_vol_id, sv->vol_id);
1131                        goto out;
1132                }
1133
1134                if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1135                    sv->vol_type != UBI_STATIC_VOLUME) {
1136                        ubi_err("bad vol_type");
1137                        goto bad_sv;
1138                }
1139
1140                if (sv->data_pad > ubi->leb_size / 2) {
1141                        ubi_err("bad data_pad");
1142                        goto bad_sv;
1143                }
1144
1145                last_seb = NULL;
1146                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1147                        cond_resched();
1148
1149                        last_seb = seb;
1150                        leb_count += 1;
1151
1152                        if (seb->pnum < 0 || seb->ec < 0) {
1153                                ubi_err("negative values");
1154                                goto bad_seb;
1155                        }
1156
1157                        if (seb->ec < si->min_ec) {
1158                                ubi_err("bad si->min_ec (%d), %d found",
1159                                        si->min_ec, seb->ec);
1160                                goto bad_seb;
1161                        }
1162
1163                        if (seb->ec > si->max_ec) {
1164                                ubi_err("bad si->max_ec (%d), %d found",
1165                                        si->max_ec, seb->ec);
1166                                goto bad_seb;
1167                        }
1168
1169                        if (seb->pnum >= ubi->peb_count) {
1170                                ubi_err("too high PEB number %d, total PEBs %d",
1171                                        seb->pnum, ubi->peb_count);
1172                                goto bad_seb;
1173                        }
1174
1175                        if (sv->vol_type == UBI_STATIC_VOLUME) {
1176                                if (seb->lnum >= sv->used_ebs) {
1177                                        ubi_err("bad lnum or used_ebs");
1178                                        goto bad_seb;
1179                                }
1180                        } else {
1181                                if (sv->used_ebs != 0) {
1182                                        ubi_err("non-zero used_ebs");
1183                                        goto bad_seb;
1184                                }
1185                        }
1186
1187                        if (seb->lnum > sv->highest_lnum) {
1188                                ubi_err("incorrect highest_lnum or lnum");
1189                                goto bad_seb;
1190                        }
1191                }
1192
1193                if (sv->leb_count != leb_count) {
1194                        ubi_err("bad leb_count, %d objects in the tree",
1195                                leb_count);
1196                        goto bad_sv;
1197                }
1198
1199                if (!last_seb)
1200                        continue;
1201
1202                seb = last_seb;
1203
1204                if (seb->lnum != sv->highest_lnum) {
1205                        ubi_err("bad highest_lnum");
1206                        goto bad_seb;
1207                }
1208        }
1209
1210        if (vols_found != si->vols_found) {
1211                ubi_err("bad si->vols_found %d, should be %d",
1212                        si->vols_found, vols_found);
1213                goto out;
1214        }
1215
1216        /* Check that scanning information is correct */
1217        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1218                last_seb = NULL;
1219                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1220                        int vol_type;
1221
1222                        cond_resched();
1223
1224                        last_seb = seb;
1225
1226                        err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1227                        if (err && err != UBI_IO_BITFLIPS) {
1228                                ubi_err("VID header is not OK (%d)", err);
1229                                if (err > 0)
1230                                        err = -EIO;
1231                                return err;
1232                        }
1233
1234                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1235                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1236                        if (sv->vol_type != vol_type) {
1237                                ubi_err("bad vol_type");
1238                                goto bad_vid_hdr;
1239                        }
1240
1241                        if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1242                                ubi_err("bad sqnum %llu", seb->sqnum);
1243                                goto bad_vid_hdr;
1244                        }
1245
1246                        if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1247                                ubi_err("bad vol_id %d", sv->vol_id);
1248                                goto bad_vid_hdr;
1249                        }
1250
1251                        if (sv->compat != vidh->compat) {
1252                                ubi_err("bad compat %d", vidh->compat);
1253                                goto bad_vid_hdr;
1254                        }
1255
1256                        if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1257                                ubi_err("bad lnum %d", seb->lnum);
1258                                goto bad_vid_hdr;
1259                        }
1260
1261                        if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1262                                ubi_err("bad used_ebs %d", sv->used_ebs);
1263                                goto bad_vid_hdr;
1264                        }
1265
1266                        if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1267                                ubi_err("bad data_pad %d", sv->data_pad);
1268                                goto bad_vid_hdr;
1269                        }
1270                }
1271
1272                if (!last_seb)
1273                        continue;
1274
1275                if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1276                        ubi_err("bad highest_lnum %d", sv->highest_lnum);
1277                        goto bad_vid_hdr;
1278                }
1279
1280                if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1281                        ubi_err("bad last_data_size %d", sv->last_data_size);
1282                        goto bad_vid_hdr;
1283                }
1284        }
1285
1286        /*
1287         * Make sure that all the physical eraseblocks are in one of the lists
1288         * or trees.
1289         */
1290        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1291        if (!buf)
1292                return -ENOMEM;
1293
1294        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1295                err = ubi_io_is_bad(ubi, pnum);
1296                if (err < 0) {
1297                        kfree(buf);
1298                        return err;
1299                } else if (err)
1300                        buf[pnum] = 1;
1301        }
1302
1303        ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1304                ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1305                        buf[seb->pnum] = 1;
1306
1307        list_for_each_entry(seb, &si->free, u.list)
1308                buf[seb->pnum] = 1;
1309
1310        list_for_each_entry(seb, &si->corr, u.list)
1311                buf[seb->pnum] = 1;
1312
1313        list_for_each_entry(seb, &si->erase, u.list)
1314                buf[seb->pnum] = 1;
1315
1316        list_for_each_entry(seb, &si->alien, u.list)
1317                buf[seb->pnum] = 1;
1318
1319        err = 0;
1320        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1321                if (!buf[pnum]) {
1322                        ubi_err("PEB %d is not referred", pnum);
1323                        err = 1;
1324                }
1325
1326        kfree(buf);
1327        if (err)
1328                goto out;
1329        return 0;
1330
1331bad_seb:
1332        ubi_err("bad scanning information about LEB %d", seb->lnum);
1333        ubi_dbg_dump_seb(seb, 0);
1334        ubi_dbg_dump_sv(sv);
1335        goto out;
1336
1337bad_sv:
1338        ubi_err("bad scanning information about volume %d", sv->vol_id);
1339        ubi_dbg_dump_sv(sv);
1340        goto out;
1341
1342bad_vid_hdr:
1343        ubi_err("bad scanning information about volume %d", sv->vol_id);
1344        ubi_dbg_dump_sv(sv);
1345        ubi_dbg_dump_vid_hdr(vidh);
1346
1347out:
1348        ubi_dbg_dump_stack();
1349        return 1;
1350}
1351
1352#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1353