linux/drivers/mtd/ubi/upd.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 *
  21 * Jan 2007: Alexander Schmidt, hacked per-volume update.
  22 */
  23
  24/*
  25 * This file contains implementation of the volume update and atomic LEB change
  26 * functionality.
  27 *
  28 * The update operation is based on the per-volume update marker which is
  29 * stored in the volume table. The update marker is set before the update
  30 * starts, and removed after the update has been finished. So if the update was
  31 * interrupted by an unclean re-boot or due to some other reasons, the update
  32 * marker stays on the flash media and UBI finds it when it attaches the MTD
  33 * device next time. If the update marker is set for a volume, the volume is
  34 * treated as damaged and most I/O operations are prohibited. Only a new update
  35 * operation is allowed.
  36 *
  37 * Note, in general it is possible to implement the update operation as a
  38 * transaction with a roll-back capability.
  39 */
  40
  41#include <linux/err.h>
  42#include <linux/uaccess.h>
  43#include <linux/math64.h>
  44#include "ubi.h"
  45
  46/**
  47 * set_update_marker - set update marker.
  48 * @ubi: UBI device description object
  49 * @vol: volume description object
  50 *
  51 * This function sets the update marker flag for volume @vol. Returns zero
  52 * in case of success and a negative error code in case of failure.
  53 */
  54static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
  55{
  56        int err;
  57        struct ubi_vtbl_record vtbl_rec;
  58
  59        dbg_gen("set update marker for volume %d", vol->vol_id);
  60
  61        if (vol->upd_marker) {
  62                ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
  63                dbg_gen("already set");
  64                return 0;
  65        }
  66
  67        memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
  68               sizeof(struct ubi_vtbl_record));
  69        vtbl_rec.upd_marker = 1;
  70
  71        mutex_lock(&ubi->device_mutex);
  72        err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
  73        vol->upd_marker = 1;
  74        mutex_unlock(&ubi->device_mutex);
  75        return err;
  76}
  77
  78/**
  79 * clear_update_marker - clear update marker.
  80 * @ubi: UBI device description object
  81 * @vol: volume description object
  82 * @bytes: new data size in bytes
  83 *
  84 * This function clears the update marker for volume @vol, sets new volume
  85 * data size and clears the "corrupted" flag (static volumes only). Returns
  86 * zero in case of success and a negative error code in case of failure.
  87 */
  88static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
  89                               long long bytes)
  90{
  91        int err;
  92        struct ubi_vtbl_record vtbl_rec;
  93
  94        dbg_gen("clear update marker for volume %d", vol->vol_id);
  95
  96        memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
  97               sizeof(struct ubi_vtbl_record));
  98        ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
  99        vtbl_rec.upd_marker = 0;
 100
 101        if (vol->vol_type == UBI_STATIC_VOLUME) {
 102                vol->corrupted = 0;
 103                vol->used_bytes = bytes;
 104                vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
 105                                            &vol->last_eb_bytes);
 106                if (vol->last_eb_bytes)
 107                        vol->used_ebs += 1;
 108                else
 109                        vol->last_eb_bytes = vol->usable_leb_size;
 110        }
 111
 112        mutex_lock(&ubi->device_mutex);
 113        err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
 114        vol->upd_marker = 0;
 115        mutex_unlock(&ubi->device_mutex);
 116        return err;
 117}
 118
 119/**
 120 * ubi_start_update - start volume update.
 121 * @ubi: UBI device description object
 122 * @vol: volume description object
 123 * @bytes: update bytes
 124 *
 125 * This function starts volume update operation. If @bytes is zero, the volume
 126 * is just wiped out. Returns zero in case of success and a negative error code
 127 * in case of failure.
 128 */
 129int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
 130                     long long bytes)
 131{
 132        int i, err;
 133
 134        dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
 135        ubi_assert(!vol->updating && !vol->changing_leb);
 136        vol->updating = 1;
 137
 138        err = set_update_marker(ubi, vol);
 139        if (err)
 140                return err;
 141
 142        /* Before updating - wipe out the volume */
 143        for (i = 0; i < vol->reserved_pebs; i++) {
 144                err = ubi_eba_unmap_leb(ubi, vol, i);
 145                if (err)
 146                        return err;
 147        }
 148
 149        if (bytes == 0) {
 150                err = clear_update_marker(ubi, vol, 0);
 151                if (err)
 152                        return err;
 153                err = ubi_wl_flush(ubi);
 154                if (!err)
 155                        vol->updating = 0;
 156        }
 157
 158        vol->upd_buf = vmalloc(ubi->leb_size);
 159        if (!vol->upd_buf)
 160                return -ENOMEM;
 161
 162        vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
 163                               vol->usable_leb_size);
 164        vol->upd_bytes = bytes;
 165        vol->upd_received = 0;
 166        return 0;
 167}
 168
 169/**
 170 * ubi_start_leb_change - start atomic LEB change.
 171 * @ubi: UBI device description object
 172 * @vol: volume description object
 173 * @req: operation request
 174 *
 175 * This function starts atomic LEB change operation. Returns zero in case of
 176 * success and a negative error code in case of failure.
 177 */
 178int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
 179                         const struct ubi_leb_change_req *req)
 180{
 181        ubi_assert(!vol->updating && !vol->changing_leb);
 182
 183        dbg_gen("start changing LEB %d:%d, %u bytes",
 184                vol->vol_id, req->lnum, req->bytes);
 185        if (req->bytes == 0)
 186                return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0,
 187                                                 req->dtype);
 188
 189        vol->upd_bytes = req->bytes;
 190        vol->upd_received = 0;
 191        vol->changing_leb = 1;
 192        vol->ch_lnum = req->lnum;
 193        vol->ch_dtype = req->dtype;
 194
 195        vol->upd_buf = vmalloc(req->bytes);
 196        if (!vol->upd_buf)
 197                return -ENOMEM;
 198
 199        return 0;
 200}
 201
 202/**
 203 * write_leb - write update data.
 204 * @ubi: UBI device description object
 205 * @vol: volume description object
 206 * @lnum: logical eraseblock number
 207 * @buf: data to write
 208 * @len: data size
 209 * @used_ebs: how many logical eraseblocks will this volume contain (static
 210 * volumes only)
 211 *
 212 * This function writes update data to corresponding logical eraseblock. In
 213 * case of dynamic volume, this function checks if the data contains 0xFF bytes
 214 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
 215 * buffer contains only 0xFF bytes, the LEB is left unmapped.
 216 *
 217 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
 218 * that we want to make sure that more data may be appended to the logical
 219 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
 220 * this PEB won't be writable anymore. So if one writes the file-system image
 221 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
 222 * space is writable after the update.
 223 *
 224 * We do not do this for static volumes because they are read-only. But this
 225 * also cannot be done because we have to store per-LEB CRC and the correct
 226 * data length.
 227 *
 228 * This function returns zero in case of success and a negative error code in
 229 * case of failure.
 230 */
 231static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
 232                     void *buf, int len, int used_ebs)
 233{
 234        int err;
 235
 236        if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
 237                int l = ALIGN(len, ubi->min_io_size);
 238
 239                memset(buf + len, 0xFF, l - len);
 240                len = ubi_calc_data_len(ubi, buf, l);
 241                if (len == 0) {
 242                        dbg_gen("all %d bytes contain 0xFF - skip", len);
 243                        return 0;
 244                }
 245
 246                err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len,
 247                                        UBI_UNKNOWN);
 248        } else {
 249                /*
 250                 * When writing static volume, and this is the last logical
 251                 * eraseblock, the length (@len) does not have to be aligned to
 252                 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
 253                 * function accepts exact (unaligned) length and stores it in
 254                 * the VID header. And it takes care of proper alignment by
 255                 * padding the buffer. Here we just make sure the padding will
 256                 * contain zeros, not random trash.
 257                 */
 258                memset(buf + len, 0, vol->usable_leb_size - len);
 259                err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len,
 260                                           UBI_UNKNOWN, used_ebs);
 261        }
 262
 263        return err;
 264}
 265
 266/**
 267 * ubi_more_update_data - write more update data.
 268 * @ubi: UBI device description object
 269 * @vol: volume description object
 270 * @buf: write data (user-space memory buffer)
 271 * @count: how much bytes to write
 272 *
 273 * This function writes more data to the volume which is being updated. It may
 274 * be called arbitrary number of times until all the update data arriveis. This
 275 * function returns %0 in case of success, number of bytes written during the
 276 * last call if the whole volume update has been successfully finished, and a
 277 * negative error code in case of failure.
 278 */
 279int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
 280                         const void __user *buf, int count)
 281{
 282        int lnum, offs, err = 0, len, to_write = count;
 283
 284        dbg_gen("write %d of %lld bytes, %lld already passed",
 285                count, vol->upd_bytes, vol->upd_received);
 286
 287        if (ubi->ro_mode)
 288                return -EROFS;
 289
 290        lnum = div_u64_rem(vol->upd_received,  vol->usable_leb_size, &offs);
 291        if (vol->upd_received + count > vol->upd_bytes)
 292                to_write = count = vol->upd_bytes - vol->upd_received;
 293
 294        /*
 295         * When updating volumes, we accumulate whole logical eraseblock of
 296         * data and write it at once.
 297         */
 298        if (offs != 0) {
 299                /*
 300                 * This is a write to the middle of the logical eraseblock. We
 301                 * copy the data to our update buffer and wait for more data or
 302                 * flush it if the whole eraseblock is written or the update
 303                 * is finished.
 304                 */
 305
 306                len = vol->usable_leb_size - offs;
 307                if (len > count)
 308                        len = count;
 309
 310                err = copy_from_user(vol->upd_buf + offs, buf, len);
 311                if (err)
 312                        return -EFAULT;
 313
 314                if (offs + len == vol->usable_leb_size ||
 315                    vol->upd_received + len == vol->upd_bytes) {
 316                        int flush_len = offs + len;
 317
 318                        /*
 319                         * OK, we gathered either the whole eraseblock or this
 320                         * is the last chunk, it's time to flush the buffer.
 321                         */
 322                        ubi_assert(flush_len <= vol->usable_leb_size);
 323                        err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
 324                                        vol->upd_ebs);
 325                        if (err)
 326                                return err;
 327                }
 328
 329                vol->upd_received += len;
 330                count -= len;
 331                buf += len;
 332                lnum += 1;
 333        }
 334
 335        /*
 336         * If we've got more to write, let's continue. At this point we know we
 337         * are starting from the beginning of an eraseblock.
 338         */
 339        while (count) {
 340                if (count > vol->usable_leb_size)
 341                        len = vol->usable_leb_size;
 342                else
 343                        len = count;
 344
 345                err = copy_from_user(vol->upd_buf, buf, len);
 346                if (err)
 347                        return -EFAULT;
 348
 349                if (len == vol->usable_leb_size ||
 350                    vol->upd_received + len == vol->upd_bytes) {
 351                        err = write_leb(ubi, vol, lnum, vol->upd_buf,
 352                                        len, vol->upd_ebs);
 353                        if (err)
 354                                break;
 355                }
 356
 357                vol->upd_received += len;
 358                count -= len;
 359                lnum += 1;
 360                buf += len;
 361        }
 362
 363        ubi_assert(vol->upd_received <= vol->upd_bytes);
 364        if (vol->upd_received == vol->upd_bytes) {
 365                /* The update is finished, clear the update marker */
 366                err = clear_update_marker(ubi, vol, vol->upd_bytes);
 367                if (err)
 368                        return err;
 369                err = ubi_wl_flush(ubi);
 370                if (err == 0) {
 371                        vol->updating = 0;
 372                        err = to_write;
 373                        vfree(vol->upd_buf);
 374                }
 375        }
 376
 377        return err;
 378}
 379
 380/**
 381 * ubi_more_leb_change_data - accept more data for atomic LEB change.
 382 * @ubi: UBI device description object
 383 * @vol: volume description object
 384 * @buf: write data (user-space memory buffer)
 385 * @count: how much bytes to write
 386 *
 387 * This function accepts more data to the volume which is being under the
 388 * "atomic LEB change" operation. It may be called arbitrary number of times
 389 * until all data arrives. This function returns %0 in case of success, number
 390 * of bytes written during the last call if the whole "atomic LEB change"
 391 * operation has been successfully finished, and a negative error code in case
 392 * of failure.
 393 */
 394int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
 395                             const void __user *buf, int count)
 396{
 397        int err;
 398
 399        dbg_gen("write %d of %lld bytes, %lld already passed",
 400                count, vol->upd_bytes, vol->upd_received);
 401
 402        if (ubi->ro_mode)
 403                return -EROFS;
 404
 405        if (vol->upd_received + count > vol->upd_bytes)
 406                count = vol->upd_bytes - vol->upd_received;
 407
 408        err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
 409        if (err)
 410                return -EFAULT;
 411
 412        vol->upd_received += count;
 413
 414        if (vol->upd_received == vol->upd_bytes) {
 415                int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
 416
 417                memset(vol->upd_buf + vol->upd_bytes, 0xFF,
 418                       len - vol->upd_bytes);
 419                len = ubi_calc_data_len(ubi, vol->upd_buf, len);
 420                err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
 421                                                vol->upd_buf, len, UBI_UNKNOWN);
 422                if (err)
 423                        return err;
 424        }
 425
 426        ubi_assert(vol->upd_received <= vol->upd_bytes);
 427        if (vol->upd_received == vol->upd_bytes) {
 428                vol->changing_leb = 0;
 429                err = count;
 430                vfree(vol->upd_buf);
 431        }
 432
 433        return err;
 434}
 435