linux/drivers/mtd/ubi/vtbl.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 */
  21
  22/*
  23 * This file includes volume table manipulation code. The volume table is an
  24 * on-flash table containing volume meta-data like name, number of reserved
  25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
  26 * "layout volume".
  27 *
  28 * The layout volume is an internal volume which is organized as follows. It
  29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
  30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
  31 * other. This redundancy guarantees robustness to unclean reboots. The volume
  32 * table is basically an array of volume table records. Each record contains
  33 * full information about the volume and protected by a CRC checksum.
  34 *
  35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
  36 * erased, and the updated volume table is written back to LEB 0. Then same for
  37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
  38 *
  39 * In this UBI implementation the on-flash volume table does not contain any
  40 * information about how many data static volumes contain. This information may
  41 * be found from the scanning data.
  42 *
  43 * But it would still be beneficial to store this information in the volume
  44 * table. For example, suppose we have a static volume X, and all its physical
  45 * eraseblocks became bad for some reasons. Suppose we are attaching the
  46 * corresponding MTD device, the scanning has found no logical eraseblocks
  47 * corresponding to the volume X. According to the volume table volume X does
  48 * exist. So we don't know whether it is just empty or all its physical
  49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
  50 *
  51 * The volume table also stores so-called "update marker", which is used for
  52 * volume updates. Before updating the volume, the update marker is set, and
  53 * after the update operation is finished, the update marker is cleared. So if
  54 * the update operation was interrupted (e.g. by an unclean reboot) - the
  55 * update marker is still there and we know that the volume's contents is
  56 * damaged.
  57 */
  58
  59#include <linux/crc32.h>
  60#include <linux/err.h>
  61#include <asm/div64.h>
  62#include "ubi.h"
  63
  64#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  65static void paranoid_vtbl_check(const struct ubi_device *ubi);
  66#else
  67#define paranoid_vtbl_check(ubi)
  68#endif
  69
  70/* Empty volume table record */
  71static struct ubi_vtbl_record empty_vtbl_record;
  72
  73/**
  74 * ubi_change_vtbl_record - change volume table record.
  75 * @ubi: UBI device description object
  76 * @idx: table index to change
  77 * @vtbl_rec: new volume table record
  78 *
  79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
  80 * volume table record is written. The caller does not have to calculate CRC of
  81 * the record as it is done by this function. Returns zero in case of success
  82 * and a negative error code in case of failure.
  83 */
  84int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
  85                           struct ubi_vtbl_record *vtbl_rec)
  86{
  87        int i, err;
  88        uint32_t crc;
  89        struct ubi_volume *layout_vol;
  90
  91        ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
  92        layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
  93
  94        if (!vtbl_rec)
  95                vtbl_rec = &empty_vtbl_record;
  96        else {
  97                crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
  98                vtbl_rec->crc = cpu_to_be32(crc);
  99        }
 100
 101        memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
 102        for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 103                err = ubi_eba_unmap_leb(ubi, layout_vol, i);
 104                if (err)
 105                        return err;
 106
 107                err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
 108                                        ubi->vtbl_size, UBI_LONGTERM);
 109                if (err)
 110                        return err;
 111        }
 112
 113        paranoid_vtbl_check(ubi);
 114        return 0;
 115}
 116
 117/**
 118 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
 119 * @ubi: UBI device description object
 120 * @rename_list: list of &struct ubi_rename_entry objects
 121 *
 122 * This function re-names multiple volumes specified in @req in the volume
 123 * table. Returns zero in case of success and a negative error code in case of
 124 * failure.
 125 */
 126int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
 127                            struct list_head *rename_list)
 128{
 129        int i, err;
 130        struct ubi_rename_entry *re;
 131        struct ubi_volume *layout_vol;
 132
 133        list_for_each_entry(re, rename_list, list) {
 134                uint32_t crc;
 135                struct ubi_volume *vol = re->desc->vol;
 136                struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
 137
 138                if (re->remove) {
 139                        memcpy(vtbl_rec, &empty_vtbl_record,
 140                               sizeof(struct ubi_vtbl_record));
 141                        continue;
 142                }
 143
 144                vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
 145                memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
 146                memset(vtbl_rec->name + re->new_name_len, 0,
 147                       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
 148                crc = crc32(UBI_CRC32_INIT, vtbl_rec,
 149                            UBI_VTBL_RECORD_SIZE_CRC);
 150                vtbl_rec->crc = cpu_to_be32(crc);
 151        }
 152
 153        layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
 154        for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 155                err = ubi_eba_unmap_leb(ubi, layout_vol, i);
 156                if (err)
 157                        return err;
 158
 159                err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
 160                                        ubi->vtbl_size, UBI_LONGTERM);
 161                if (err)
 162                        return err;
 163        }
 164
 165        return 0;
 166}
 167
 168/**
 169 * vtbl_check - check if volume table is not corrupted and sensible.
 170 * @ubi: UBI device description object
 171 * @vtbl: volume table
 172 *
 173 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
 174 * and %-EINVAL if it contains inconsistent data.
 175 */
 176static int vtbl_check(const struct ubi_device *ubi,
 177                      const struct ubi_vtbl_record *vtbl)
 178{
 179        int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
 180        int upd_marker, err;
 181        uint32_t crc;
 182        const char *name;
 183
 184        for (i = 0; i < ubi->vtbl_slots; i++) {
 185                cond_resched();
 186
 187                reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
 188                alignment = be32_to_cpu(vtbl[i].alignment);
 189                data_pad = be32_to_cpu(vtbl[i].data_pad);
 190                upd_marker = vtbl[i].upd_marker;
 191                vol_type = vtbl[i].vol_type;
 192                name_len = be16_to_cpu(vtbl[i].name_len);
 193                name = &vtbl[i].name[0];
 194
 195                crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
 196                if (be32_to_cpu(vtbl[i].crc) != crc) {
 197                        ubi_err("bad CRC at record %u: %#08x, not %#08x",
 198                                 i, crc, be32_to_cpu(vtbl[i].crc));
 199                        ubi_dbg_dump_vtbl_record(&vtbl[i], i);
 200                        return 1;
 201                }
 202
 203                if (reserved_pebs == 0) {
 204                        if (memcmp(&vtbl[i], &empty_vtbl_record,
 205                                                UBI_VTBL_RECORD_SIZE)) {
 206                                err = 2;
 207                                goto bad;
 208                        }
 209                        continue;
 210                }
 211
 212                if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
 213                    name_len < 0) {
 214                        err = 3;
 215                        goto bad;
 216                }
 217
 218                if (alignment > ubi->leb_size || alignment == 0) {
 219                        err = 4;
 220                        goto bad;
 221                }
 222
 223                n = alignment & (ubi->min_io_size - 1);
 224                if (alignment != 1 && n) {
 225                        err = 5;
 226                        goto bad;
 227                }
 228
 229                n = ubi->leb_size % alignment;
 230                if (data_pad != n) {
 231                        dbg_err("bad data_pad, has to be %d", n);
 232                        err = 6;
 233                        goto bad;
 234                }
 235
 236                if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 237                        err = 7;
 238                        goto bad;
 239                }
 240
 241                if (upd_marker != 0 && upd_marker != 1) {
 242                        err = 8;
 243                        goto bad;
 244                }
 245
 246                if (reserved_pebs > ubi->good_peb_count) {
 247                        dbg_err("too large reserved_pebs %d, good PEBs %d",
 248                                reserved_pebs, ubi->good_peb_count);
 249                        err = 9;
 250                        goto bad;
 251                }
 252
 253                if (name_len > UBI_VOL_NAME_MAX) {
 254                        err = 10;
 255                        goto bad;
 256                }
 257
 258                if (name[0] == '\0') {
 259                        err = 11;
 260                        goto bad;
 261                }
 262
 263                if (name_len != strnlen(name, name_len + 1)) {
 264                        err = 12;
 265                        goto bad;
 266                }
 267        }
 268
 269        /* Checks that all names are unique */
 270        for (i = 0; i < ubi->vtbl_slots - 1; i++) {
 271                for (n = i + 1; n < ubi->vtbl_slots; n++) {
 272                        int len1 = be16_to_cpu(vtbl[i].name_len);
 273                        int len2 = be16_to_cpu(vtbl[n].name_len);
 274
 275                        if (len1 > 0 && len1 == len2 &&
 276                            !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
 277                                ubi_err("volumes %d and %d have the same name"
 278                                        " \"%s\"", i, n, vtbl[i].name);
 279                                ubi_dbg_dump_vtbl_record(&vtbl[i], i);
 280                                ubi_dbg_dump_vtbl_record(&vtbl[n], n);
 281                                return -EINVAL;
 282                        }
 283                }
 284        }
 285
 286        return 0;
 287
 288bad:
 289        ubi_err("volume table check failed: record %d, error %d", i, err);
 290        ubi_dbg_dump_vtbl_record(&vtbl[i], i);
 291        return -EINVAL;
 292}
 293
 294/**
 295 * create_vtbl - create a copy of volume table.
 296 * @ubi: UBI device description object
 297 * @si: scanning information
 298 * @copy: number of the volume table copy
 299 * @vtbl: contents of the volume table
 300 *
 301 * This function returns zero in case of success and a negative error code in
 302 * case of failure.
 303 */
 304static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
 305                       int copy, void *vtbl)
 306{
 307        int err, tries = 0;
 308        static struct ubi_vid_hdr *vid_hdr;
 309        struct ubi_scan_volume *sv;
 310        struct ubi_scan_leb *new_seb, *old_seb = NULL;
 311
 312        ubi_msg("create volume table (copy #%d)", copy + 1);
 313
 314        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 315        if (!vid_hdr)
 316                return -ENOMEM;
 317
 318        /*
 319         * Check if there is a logical eraseblock which would have to contain
 320         * this volume table copy was found during scanning. It has to be wiped
 321         * out.
 322         */
 323        sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
 324        if (sv)
 325                old_seb = ubi_scan_find_seb(sv, copy);
 326
 327retry:
 328        new_seb = ubi_scan_get_free_peb(ubi, si);
 329        if (IS_ERR(new_seb)) {
 330                err = PTR_ERR(new_seb);
 331                goto out_free;
 332        }
 333
 334        vid_hdr->vol_type = UBI_VID_DYNAMIC;
 335        vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
 336        vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
 337        vid_hdr->data_size = vid_hdr->used_ebs =
 338                             vid_hdr->data_pad = cpu_to_be32(0);
 339        vid_hdr->lnum = cpu_to_be32(copy);
 340        vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
 341
 342        /* The EC header is already there, write the VID header */
 343        err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
 344        if (err)
 345                goto write_error;
 346
 347        /* Write the layout volume contents */
 348        err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
 349        if (err)
 350                goto write_error;
 351
 352        /*
 353         * And add it to the scanning information. Don't delete the old
 354         * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
 355         */
 356        err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
 357                                vid_hdr, 0);
 358        kfree(new_seb);
 359        ubi_free_vid_hdr(ubi, vid_hdr);
 360        return err;
 361
 362write_error:
 363        if (err == -EIO && ++tries <= 5) {
 364                /*
 365                 * Probably this physical eraseblock went bad, try to pick
 366                 * another one.
 367                 */
 368                list_add_tail(&new_seb->u.list, &si->corr);
 369                goto retry;
 370        }
 371        kfree(new_seb);
 372out_free:
 373        ubi_free_vid_hdr(ubi, vid_hdr);
 374        return err;
 375
 376}
 377
 378/**
 379 * process_lvol - process the layout volume.
 380 * @ubi: UBI device description object
 381 * @si: scanning information
 382 * @sv: layout volume scanning information
 383 *
 384 * This function is responsible for reading the layout volume, ensuring it is
 385 * not corrupted, and recovering from corruptions if needed. Returns volume
 386 * table in case of success and a negative error code in case of failure.
 387 */
 388static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
 389                                            struct ubi_scan_info *si,
 390                                            struct ubi_scan_volume *sv)
 391{
 392        int err;
 393        struct rb_node *rb;
 394        struct ubi_scan_leb *seb;
 395        struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
 396        int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
 397
 398        /*
 399         * UBI goes through the following steps when it changes the layout
 400         * volume:
 401         * a. erase LEB 0;
 402         * b. write new data to LEB 0;
 403         * c. erase LEB 1;
 404         * d. write new data to LEB 1.
 405         *
 406         * Before the change, both LEBs contain the same data.
 407         *
 408         * Due to unclean reboots, the contents of LEB 0 may be lost, but there
 409         * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
 410         * Similarly, LEB 1 may be lost, but there should be LEB 0. And
 411         * finally, unclean reboots may result in a situation when neither LEB
 412         * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
 413         * 0 contains more recent information.
 414         *
 415         * So the plan is to first check LEB 0. Then
 416         * a. if LEB 0 is OK, it must be containing the most resent data; then
 417         *    we compare it with LEB 1, and if they are different, we copy LEB
 418         *    0 to LEB 1;
 419         * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
 420         *    to LEB 0.
 421         */
 422
 423        dbg_gen("check layout volume");
 424
 425        /* Read both LEB 0 and LEB 1 into memory */
 426        ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
 427                leb[seb->lnum] = vmalloc(ubi->vtbl_size);
 428                if (!leb[seb->lnum]) {
 429                        err = -ENOMEM;
 430                        goto out_free;
 431                }
 432                memset(leb[seb->lnum], 0, ubi->vtbl_size);
 433
 434                err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
 435                                       ubi->vtbl_size);
 436                if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
 437                        /*
 438                         * Scrub the PEB later. Note, -EBADMSG indicates an
 439                         * uncorrectable ECC error, but we have our own CRC and
 440                         * the data will be checked later. If the data is OK,
 441                         * the PEB will be scrubbed (because we set
 442                         * seb->scrub). If the data is not OK, the contents of
 443                         * the PEB will be recovered from the second copy, and
 444                         * seb->scrub will be cleared in
 445                         * 'ubi_scan_add_used()'.
 446                         */
 447                        seb->scrub = 1;
 448                else if (err)
 449                        goto out_free;
 450        }
 451
 452        err = -EINVAL;
 453        if (leb[0]) {
 454                leb_corrupted[0] = vtbl_check(ubi, leb[0]);
 455                if (leb_corrupted[0] < 0)
 456                        goto out_free;
 457        }
 458
 459        if (!leb_corrupted[0]) {
 460                /* LEB 0 is OK */
 461                if (leb[1])
 462                        leb_corrupted[1] = memcmp(leb[0], leb[1],
 463                                                  ubi->vtbl_size);
 464                if (leb_corrupted[1]) {
 465                        ubi_warn("volume table copy #2 is corrupted");
 466                        err = create_vtbl(ubi, si, 1, leb[0]);
 467                        if (err)
 468                                goto out_free;
 469                        ubi_msg("volume table was restored");
 470                }
 471
 472                /* Both LEB 1 and LEB 2 are OK and consistent */
 473                vfree(leb[1]);
 474                return leb[0];
 475        } else {
 476                /* LEB 0 is corrupted or does not exist */
 477                if (leb[1]) {
 478                        leb_corrupted[1] = vtbl_check(ubi, leb[1]);
 479                        if (leb_corrupted[1] < 0)
 480                                goto out_free;
 481                }
 482                if (leb_corrupted[1]) {
 483                        /* Both LEB 0 and LEB 1 are corrupted */
 484                        ubi_err("both volume tables are corrupted");
 485                        goto out_free;
 486                }
 487
 488                ubi_warn("volume table copy #1 is corrupted");
 489                err = create_vtbl(ubi, si, 0, leb[1]);
 490                if (err)
 491                        goto out_free;
 492                ubi_msg("volume table was restored");
 493
 494                vfree(leb[0]);
 495                return leb[1];
 496        }
 497
 498out_free:
 499        vfree(leb[0]);
 500        vfree(leb[1]);
 501        return ERR_PTR(err);
 502}
 503
 504/**
 505 * create_empty_lvol - create empty layout volume.
 506 * @ubi: UBI device description object
 507 * @si: scanning information
 508 *
 509 * This function returns volume table contents in case of success and a
 510 * negative error code in case of failure.
 511 */
 512static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
 513                                                 struct ubi_scan_info *si)
 514{
 515        int i;
 516        struct ubi_vtbl_record *vtbl;
 517
 518        vtbl = vmalloc(ubi->vtbl_size);
 519        if (!vtbl)
 520                return ERR_PTR(-ENOMEM);
 521        memset(vtbl, 0, ubi->vtbl_size);
 522
 523        for (i = 0; i < ubi->vtbl_slots; i++)
 524                memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
 525
 526        for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 527                int err;
 528
 529                err = create_vtbl(ubi, si, i, vtbl);
 530                if (err) {
 531                        vfree(vtbl);
 532                        return ERR_PTR(err);
 533                }
 534        }
 535
 536        return vtbl;
 537}
 538
 539/**
 540 * init_volumes - initialize volume information for existing volumes.
 541 * @ubi: UBI device description object
 542 * @si: scanning information
 543 * @vtbl: volume table
 544 *
 545 * This function allocates volume description objects for existing volumes.
 546 * Returns zero in case of success and a negative error code in case of
 547 * failure.
 548 */
 549static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
 550                        const struct ubi_vtbl_record *vtbl)
 551{
 552        int i, reserved_pebs = 0;
 553        struct ubi_scan_volume *sv;
 554        struct ubi_volume *vol;
 555
 556        for (i = 0; i < ubi->vtbl_slots; i++) {
 557                cond_resched();
 558
 559                if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
 560                        continue; /* Empty record */
 561
 562                vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
 563                if (!vol)
 564                        return -ENOMEM;
 565
 566                vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
 567                vol->alignment = be32_to_cpu(vtbl[i].alignment);
 568                vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
 569                vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
 570                                        UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
 571                vol->name_len = be16_to_cpu(vtbl[i].name_len);
 572                vol->usable_leb_size = ubi->leb_size - vol->data_pad;
 573                memcpy(vol->name, vtbl[i].name, vol->name_len);
 574                vol->name[vol->name_len] = '\0';
 575                vol->vol_id = i;
 576
 577                if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
 578                        /* Auto re-size flag may be set only for one volume */
 579                        if (ubi->autoresize_vol_id != -1) {
 580                                ubi_err("more than one auto-resize volume (%d "
 581                                        "and %d)", ubi->autoresize_vol_id, i);
 582                                kfree(vol);
 583                                return -EINVAL;
 584                        }
 585
 586                        ubi->autoresize_vol_id = i;
 587                }
 588
 589                ubi_assert(!ubi->volumes[i]);
 590                ubi->volumes[i] = vol;
 591                ubi->vol_count += 1;
 592                vol->ubi = ubi;
 593                reserved_pebs += vol->reserved_pebs;
 594
 595                /*
 596                 * In case of dynamic volume UBI knows nothing about how many
 597                 * data is stored there. So assume the whole volume is used.
 598                 */
 599                if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
 600                        vol->used_ebs = vol->reserved_pebs;
 601                        vol->last_eb_bytes = vol->usable_leb_size;
 602                        vol->used_bytes =
 603                                (long long)vol->used_ebs * vol->usable_leb_size;
 604                        continue;
 605                }
 606
 607                /* Static volumes only */
 608                sv = ubi_scan_find_sv(si, i);
 609                if (!sv) {
 610                        /*
 611                         * No eraseblocks belonging to this volume found. We
 612                         * don't actually know whether this static volume is
 613                         * completely corrupted or just contains no data. And
 614                         * we cannot know this as long as data size is not
 615                         * stored on flash. So we just assume the volume is
 616                         * empty. FIXME: this should be handled.
 617                         */
 618                        continue;
 619                }
 620
 621                if (sv->leb_count != sv->used_ebs) {
 622                        /*
 623                         * We found a static volume which misses several
 624                         * eraseblocks. Treat it as corrupted.
 625                         */
 626                        ubi_warn("static volume %d misses %d LEBs - corrupted",
 627                                 sv->vol_id, sv->used_ebs - sv->leb_count);
 628                        vol->corrupted = 1;
 629                        continue;
 630                }
 631
 632                vol->used_ebs = sv->used_ebs;
 633                vol->used_bytes =
 634                        (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
 635                vol->used_bytes += sv->last_data_size;
 636                vol->last_eb_bytes = sv->last_data_size;
 637        }
 638
 639        /* And add the layout volume */
 640        vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
 641        if (!vol)
 642                return -ENOMEM;
 643
 644        vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
 645        vol->alignment = 1;
 646        vol->vol_type = UBI_DYNAMIC_VOLUME;
 647        vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
 648        memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
 649        vol->usable_leb_size = ubi->leb_size;
 650        vol->used_ebs = vol->reserved_pebs;
 651        vol->last_eb_bytes = vol->reserved_pebs;
 652        vol->used_bytes =
 653                (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
 654        vol->vol_id = UBI_LAYOUT_VOLUME_ID;
 655        vol->ref_count = 1;
 656
 657        ubi_assert(!ubi->volumes[i]);
 658        ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
 659        reserved_pebs += vol->reserved_pebs;
 660        ubi->vol_count += 1;
 661        vol->ubi = ubi;
 662
 663        if (reserved_pebs > ubi->avail_pebs)
 664                ubi_err("not enough PEBs, required %d, available %d",
 665                        reserved_pebs, ubi->avail_pebs);
 666        ubi->rsvd_pebs += reserved_pebs;
 667        ubi->avail_pebs -= reserved_pebs;
 668
 669        return 0;
 670}
 671
 672/**
 673 * check_sv - check volume scanning information.
 674 * @vol: UBI volume description object
 675 * @sv: volume scanning information
 676 *
 677 * This function returns zero if the volume scanning information is consistent
 678 * to the data read from the volume tabla, and %-EINVAL if not.
 679 */
 680static int check_sv(const struct ubi_volume *vol,
 681                    const struct ubi_scan_volume *sv)
 682{
 683        int err;
 684
 685        if (sv->highest_lnum >= vol->reserved_pebs) {
 686                err = 1;
 687                goto bad;
 688        }
 689        if (sv->leb_count > vol->reserved_pebs) {
 690                err = 2;
 691                goto bad;
 692        }
 693        if (sv->vol_type != vol->vol_type) {
 694                err = 3;
 695                goto bad;
 696        }
 697        if (sv->used_ebs > vol->reserved_pebs) {
 698                err = 4;
 699                goto bad;
 700        }
 701        if (sv->data_pad != vol->data_pad) {
 702                err = 5;
 703                goto bad;
 704        }
 705        return 0;
 706
 707bad:
 708        ubi_err("bad scanning information, error %d", err);
 709        ubi_dbg_dump_sv(sv);
 710        ubi_dbg_dump_vol_info(vol);
 711        return -EINVAL;
 712}
 713
 714/**
 715 * check_scanning_info - check that scanning information.
 716 * @ubi: UBI device description object
 717 * @si: scanning information
 718 *
 719 * Even though we protect on-flash data by CRC checksums, we still don't trust
 720 * the media. This function ensures that scanning information is consistent to
 721 * the information read from the volume table. Returns zero if the scanning
 722 * information is OK and %-EINVAL if it is not.
 723 */
 724static int check_scanning_info(const struct ubi_device *ubi,
 725                               struct ubi_scan_info *si)
 726{
 727        int err, i;
 728        struct ubi_scan_volume *sv;
 729        struct ubi_volume *vol;
 730
 731        if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
 732                ubi_err("scanning found %d volumes, maximum is %d + %d",
 733                        si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
 734                return -EINVAL;
 735        }
 736
 737        if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
 738            si->highest_vol_id < UBI_INTERNAL_VOL_START) {
 739                ubi_err("too large volume ID %d found by scanning",
 740                        si->highest_vol_id);
 741                return -EINVAL;
 742        }
 743
 744        for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 745                cond_resched();
 746
 747                sv = ubi_scan_find_sv(si, i);
 748                vol = ubi->volumes[i];
 749                if (!vol) {
 750                        if (sv)
 751                                ubi_scan_rm_volume(si, sv);
 752                        continue;
 753                }
 754
 755                if (vol->reserved_pebs == 0) {
 756                        ubi_assert(i < ubi->vtbl_slots);
 757
 758                        if (!sv)
 759                                continue;
 760
 761                        /*
 762                         * During scanning we found a volume which does not
 763                         * exist according to the information in the volume
 764                         * table. This must have happened due to an unclean
 765                         * reboot while the volume was being removed. Discard
 766                         * these eraseblocks.
 767                         */
 768                        ubi_msg("finish volume %d removal", sv->vol_id);
 769                        ubi_scan_rm_volume(si, sv);
 770                } else if (sv) {
 771                        err = check_sv(vol, sv);
 772                        if (err)
 773                                return err;
 774                }
 775        }
 776
 777        return 0;
 778}
 779
 780/**
 781 * ubi_read_volume_table - read the volume table.
 782 * @ubi: UBI device description object
 783 * @si: scanning information
 784 *
 785 * This function reads volume table, checks it, recover from errors if needed,
 786 * or creates it if needed. Returns zero in case of success and a negative
 787 * error code in case of failure.
 788 */
 789int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
 790{
 791        int i, err;
 792        struct ubi_scan_volume *sv;
 793
 794        empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
 795
 796        /*
 797         * The number of supported volumes is limited by the eraseblock size
 798         * and by the UBI_MAX_VOLUMES constant.
 799         */
 800        ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
 801        if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
 802                ubi->vtbl_slots = UBI_MAX_VOLUMES;
 803
 804        ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
 805        ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
 806
 807        sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
 808        if (!sv) {
 809                /*
 810                 * No logical eraseblocks belonging to the layout volume were
 811                 * found. This could mean that the flash is just empty. In
 812                 * this case we create empty layout volume.
 813                 *
 814                 * But if flash is not empty this must be a corruption or the
 815                 * MTD device just contains garbage.
 816                 */
 817                if (si->is_empty) {
 818                        ubi->vtbl = create_empty_lvol(ubi, si);
 819                        if (IS_ERR(ubi->vtbl))
 820                                return PTR_ERR(ubi->vtbl);
 821                } else {
 822                        ubi_err("the layout volume was not found");
 823                        return -EINVAL;
 824                }
 825        } else {
 826                if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
 827                        /* This must not happen with proper UBI images */
 828                        dbg_err("too many LEBs (%d) in layout volume",
 829                                sv->leb_count);
 830                        return -EINVAL;
 831                }
 832
 833                ubi->vtbl = process_lvol(ubi, si, sv);
 834                if (IS_ERR(ubi->vtbl))
 835                        return PTR_ERR(ubi->vtbl);
 836        }
 837
 838        ubi->avail_pebs = ubi->good_peb_count;
 839
 840        /*
 841         * The layout volume is OK, initialize the corresponding in-RAM data
 842         * structures.
 843         */
 844        err = init_volumes(ubi, si, ubi->vtbl);
 845        if (err)
 846                goto out_free;
 847
 848        /*
 849         * Get sure that the scanning information is consistent to the
 850         * information stored in the volume table.
 851         */
 852        err = check_scanning_info(ubi, si);
 853        if (err)
 854                goto out_free;
 855
 856        return 0;
 857
 858out_free:
 859        vfree(ubi->vtbl);
 860        for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 861                kfree(ubi->volumes[i]);
 862                ubi->volumes[i] = NULL;
 863        }
 864        return err;
 865}
 866
 867#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
 868
 869/**
 870 * paranoid_vtbl_check - check volume table.
 871 * @ubi: UBI device description object
 872 */
 873static void paranoid_vtbl_check(const struct ubi_device *ubi)
 874{
 875        if (vtbl_check(ubi, ubi->vtbl)) {
 876                ubi_err("paranoid check failed");
 877                BUG();
 878        }
 879}
 880
 881#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
 882