linux/drivers/net/cassini.c
<<
>>
Prefs
   1/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
   2 *
   3 * Copyright (C) 2004 Sun Microsystems Inc.
   4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 of the
   9 * License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  19 * 02111-1307, USA.
  20 *
  21 * This driver uses the sungem driver (c) David Miller
  22 * (davem@redhat.com) as its basis.
  23 *
  24 * The cassini chip has a number of features that distinguish it from
  25 * the gem chip:
  26 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
  27 *      load balancing (non-VLAN mode)
  28 *  batching of multiple packets
  29 *  multiple CPU dispatching
  30 *  page-based RX descriptor engine with separate completion rings
  31 *  Gigabit support (GMII and PCS interface)
  32 *  MIF link up/down detection works
  33 *
  34 * RX is handled by page sized buffers that are attached as fragments to
  35 * the skb. here's what's done:
  36 *  -- driver allocates pages at a time and keeps reference counts
  37 *     on them.
  38 *  -- the upper protocol layers assume that the header is in the skb
  39 *     itself. as a result, cassini will copy a small amount (64 bytes)
  40 *     to make them happy.
  41 *  -- driver appends the rest of the data pages as frags to skbuffs
  42 *     and increments the reference count
  43 *  -- on page reclamation, the driver swaps the page with a spare page.
  44 *     if that page is still in use, it frees its reference to that page,
  45 *     and allocates a new page for use. otherwise, it just recycles the
  46 *     the page.
  47 *
  48 * NOTE: cassini can parse the header. however, it's not worth it
  49 *       as long as the network stack requires a header copy.
  50 *
  51 * TX has 4 queues. currently these queues are used in a round-robin
  52 * fashion for load balancing. They can also be used for QoS. for that
  53 * to work, however, QoS information needs to be exposed down to the driver
  54 * level so that subqueues get targetted to particular transmit rings.
  55 * alternatively, the queues can be configured via use of the all-purpose
  56 * ioctl.
  57 *
  58 * RX DATA: the rx completion ring has all the info, but the rx desc
  59 * ring has all of the data. RX can conceivably come in under multiple
  60 * interrupts, but the INT# assignment needs to be set up properly by
  61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
  62 * that. also, the two descriptor rings are designed to distinguish between
  63 * encrypted and non-encrypted packets, but we use them for buffering
  64 * instead.
  65 *
  66 * by default, the selective clear mask is set up to process rx packets.
  67 */
  68
  69
  70#include <linux/module.h>
  71#include <linux/kernel.h>
  72#include <linux/types.h>
  73#include <linux/compiler.h>
  74#include <linux/slab.h>
  75#include <linux/delay.h>
  76#include <linux/init.h>
  77#include <linux/vmalloc.h>
  78#include <linux/ioport.h>
  79#include <linux/pci.h>
  80#include <linux/mm.h>
  81#include <linux/highmem.h>
  82#include <linux/list.h>
  83#include <linux/dma-mapping.h>
  84
  85#include <linux/netdevice.h>
  86#include <linux/etherdevice.h>
  87#include <linux/skbuff.h>
  88#include <linux/ethtool.h>
  89#include <linux/crc32.h>
  90#include <linux/random.h>
  91#include <linux/mii.h>
  92#include <linux/ip.h>
  93#include <linux/tcp.h>
  94#include <linux/mutex.h>
  95#include <linux/firmware.h>
  96
  97#include <net/checksum.h>
  98
  99#include <asm/atomic.h>
 100#include <asm/system.h>
 101#include <asm/io.h>
 102#include <asm/byteorder.h>
 103#include <asm/uaccess.h>
 104
 105#define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
 106#define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
 107#define CAS_NCPUS            num_online_cpus()
 108
 109#if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
 110#define USE_NAPI
 111#define cas_skb_release(x)  netif_receive_skb(x)
 112#else
 113#define cas_skb_release(x)  netif_rx(x)
 114#endif
 115
 116/* select which firmware to use */
 117#define USE_HP_WORKAROUND
 118#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
 119#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
 120
 121#include "cassini.h"
 122
 123#define USE_TX_COMPWB      /* use completion writeback registers */
 124#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
 125#define USE_RX_BLANK       /* hw interrupt mitigation */
 126#undef USE_ENTROPY_DEV     /* don't test for entropy device */
 127
 128/* NOTE: these aren't useable unless PCI interrupts can be assigned.
 129 * also, we need to make cp->lock finer-grained.
 130 */
 131#undef  USE_PCI_INTB
 132#undef  USE_PCI_INTC
 133#undef  USE_PCI_INTD
 134#undef  USE_QOS
 135
 136#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
 137
 138/* rx processing options */
 139#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
 140#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
 141#define RX_COPY_ALWAYS 0    /* if 0, use frags */
 142#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
 143#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
 144
 145#define DRV_MODULE_NAME         "cassini"
 146#define PFX DRV_MODULE_NAME     ": "
 147#define DRV_MODULE_VERSION      "1.6"
 148#define DRV_MODULE_RELDATE      "21 May 2008"
 149
 150#define CAS_DEF_MSG_ENABLE        \
 151        (NETIF_MSG_DRV          | \
 152         NETIF_MSG_PROBE        | \
 153         NETIF_MSG_LINK         | \
 154         NETIF_MSG_TIMER        | \
 155         NETIF_MSG_IFDOWN       | \
 156         NETIF_MSG_IFUP         | \
 157         NETIF_MSG_RX_ERR       | \
 158         NETIF_MSG_TX_ERR)
 159
 160/* length of time before we decide the hardware is borked,
 161 * and dev->tx_timeout() should be called to fix the problem
 162 */
 163#define CAS_TX_TIMEOUT                  (HZ)
 164#define CAS_LINK_TIMEOUT                (22*HZ/10)
 165#define CAS_LINK_FAST_TIMEOUT           (1)
 166
 167/* timeout values for state changing. these specify the number
 168 * of 10us delays to be used before giving up.
 169 */
 170#define STOP_TRIES_PHY 1000
 171#define STOP_TRIES     5000
 172
 173/* specify a minimum frame size to deal with some fifo issues
 174 * max mtu == 2 * page size - ethernet header - 64 - swivel =
 175 *            2 * page_size - 0x50
 176 */
 177#define CAS_MIN_FRAME                   97
 178#define CAS_1000MB_MIN_FRAME            255
 179#define CAS_MIN_MTU                     60
 180#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
 181
 182#if 1
 183/*
 184 * Eliminate these and use separate atomic counters for each, to
 185 * avoid a race condition.
 186 */
 187#else
 188#define CAS_RESET_MTU                   1
 189#define CAS_RESET_ALL                   2
 190#define CAS_RESET_SPARE                 3
 191#endif
 192
 193static char version[] __devinitdata =
 194        DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 195
 196static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
 197static int link_mode;
 198
 199MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
 200MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
 201MODULE_LICENSE("GPL");
 202MODULE_FIRMWARE("sun/cassini.bin");
 203module_param(cassini_debug, int, 0);
 204MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
 205module_param(link_mode, int, 0);
 206MODULE_PARM_DESC(link_mode, "default link mode");
 207
 208/*
 209 * Work around for a PCS bug in which the link goes down due to the chip
 210 * being confused and never showing a link status of "up."
 211 */
 212#define DEFAULT_LINKDOWN_TIMEOUT 5
 213/*
 214 * Value in seconds, for user input.
 215 */
 216static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
 217module_param(linkdown_timeout, int, 0);
 218MODULE_PARM_DESC(linkdown_timeout,
 219"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
 220
 221/*
 222 * value in 'ticks' (units used by jiffies). Set when we init the
 223 * module because 'HZ' in actually a function call on some flavors of
 224 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 225 */
 226static int link_transition_timeout;
 227
 228
 229
 230static u16 link_modes[] __devinitdata = {
 231        BMCR_ANENABLE,                   /* 0 : autoneg */
 232        0,                               /* 1 : 10bt half duplex */
 233        BMCR_SPEED100,                   /* 2 : 100bt half duplex */
 234        BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
 235        BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
 236        CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
 237};
 238
 239static struct pci_device_id cas_pci_tbl[] __devinitdata = {
 240        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
 241          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 242        { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
 243          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 244        { 0, }
 245};
 246
 247MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
 248
 249static void cas_set_link_modes(struct cas *cp);
 250
 251static inline void cas_lock_tx(struct cas *cp)
 252{
 253        int i;
 254
 255        for (i = 0; i < N_TX_RINGS; i++)
 256                spin_lock(&cp->tx_lock[i]);
 257}
 258
 259static inline void cas_lock_all(struct cas *cp)
 260{
 261        spin_lock_irq(&cp->lock);
 262        cas_lock_tx(cp);
 263}
 264
 265/* WTZ: QA was finding deadlock problems with the previous
 266 * versions after long test runs with multiple cards per machine.
 267 * See if replacing cas_lock_all with safer versions helps. The
 268 * symptoms QA is reporting match those we'd expect if interrupts
 269 * aren't being properly restored, and we fixed a previous deadlock
 270 * with similar symptoms by using save/restore versions in other
 271 * places.
 272 */
 273#define cas_lock_all_save(cp, flags) \
 274do { \
 275        struct cas *xxxcp = (cp); \
 276        spin_lock_irqsave(&xxxcp->lock, flags); \
 277        cas_lock_tx(xxxcp); \
 278} while (0)
 279
 280static inline void cas_unlock_tx(struct cas *cp)
 281{
 282        int i;
 283
 284        for (i = N_TX_RINGS; i > 0; i--)
 285                spin_unlock(&cp->tx_lock[i - 1]);
 286}
 287
 288static inline void cas_unlock_all(struct cas *cp)
 289{
 290        cas_unlock_tx(cp);
 291        spin_unlock_irq(&cp->lock);
 292}
 293
 294#define cas_unlock_all_restore(cp, flags) \
 295do { \
 296        struct cas *xxxcp = (cp); \
 297        cas_unlock_tx(xxxcp); \
 298        spin_unlock_irqrestore(&xxxcp->lock, flags); \
 299} while (0)
 300
 301static void cas_disable_irq(struct cas *cp, const int ring)
 302{
 303        /* Make sure we won't get any more interrupts */
 304        if (ring == 0) {
 305                writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
 306                return;
 307        }
 308
 309        /* disable completion interrupts and selectively mask */
 310        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 311                switch (ring) {
 312#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 313#ifdef USE_PCI_INTB
 314                case 1:
 315#endif
 316#ifdef USE_PCI_INTC
 317                case 2:
 318#endif
 319#ifdef USE_PCI_INTD
 320                case 3:
 321#endif
 322                        writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
 323                               cp->regs + REG_PLUS_INTRN_MASK(ring));
 324                        break;
 325#endif
 326                default:
 327                        writel(INTRN_MASK_CLEAR_ALL, cp->regs +
 328                               REG_PLUS_INTRN_MASK(ring));
 329                        break;
 330                }
 331        }
 332}
 333
 334static inline void cas_mask_intr(struct cas *cp)
 335{
 336        int i;
 337
 338        for (i = 0; i < N_RX_COMP_RINGS; i++)
 339                cas_disable_irq(cp, i);
 340}
 341
 342static void cas_enable_irq(struct cas *cp, const int ring)
 343{
 344        if (ring == 0) { /* all but TX_DONE */
 345                writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
 346                return;
 347        }
 348
 349        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 350                switch (ring) {
 351#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 352#ifdef USE_PCI_INTB
 353                case 1:
 354#endif
 355#ifdef USE_PCI_INTC
 356                case 2:
 357#endif
 358#ifdef USE_PCI_INTD
 359                case 3:
 360#endif
 361                        writel(INTRN_MASK_RX_EN, cp->regs +
 362                               REG_PLUS_INTRN_MASK(ring));
 363                        break;
 364#endif
 365                default:
 366                        break;
 367                }
 368        }
 369}
 370
 371static inline void cas_unmask_intr(struct cas *cp)
 372{
 373        int i;
 374
 375        for (i = 0; i < N_RX_COMP_RINGS; i++)
 376                cas_enable_irq(cp, i);
 377}
 378
 379static inline void cas_entropy_gather(struct cas *cp)
 380{
 381#ifdef USE_ENTROPY_DEV
 382        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 383                return;
 384
 385        batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
 386                            readl(cp->regs + REG_ENTROPY_IV),
 387                            sizeof(uint64_t)*8);
 388#endif
 389}
 390
 391static inline void cas_entropy_reset(struct cas *cp)
 392{
 393#ifdef USE_ENTROPY_DEV
 394        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 395                return;
 396
 397        writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
 398               cp->regs + REG_BIM_LOCAL_DEV_EN);
 399        writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
 400        writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
 401
 402        /* if we read back 0x0, we don't have an entropy device */
 403        if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
 404                cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
 405#endif
 406}
 407
 408/* access to the phy. the following assumes that we've initialized the MIF to
 409 * be in frame rather than bit-bang mode
 410 */
 411static u16 cas_phy_read(struct cas *cp, int reg)
 412{
 413        u32 cmd;
 414        int limit = STOP_TRIES_PHY;
 415
 416        cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
 417        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 418        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 419        cmd |= MIF_FRAME_TURN_AROUND_MSB;
 420        writel(cmd, cp->regs + REG_MIF_FRAME);
 421
 422        /* poll for completion */
 423        while (limit-- > 0) {
 424                udelay(10);
 425                cmd = readl(cp->regs + REG_MIF_FRAME);
 426                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 427                        return (cmd & MIF_FRAME_DATA_MASK);
 428        }
 429        return 0xFFFF; /* -1 */
 430}
 431
 432static int cas_phy_write(struct cas *cp, int reg, u16 val)
 433{
 434        int limit = STOP_TRIES_PHY;
 435        u32 cmd;
 436
 437        cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
 438        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 439        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 440        cmd |= MIF_FRAME_TURN_AROUND_MSB;
 441        cmd |= val & MIF_FRAME_DATA_MASK;
 442        writel(cmd, cp->regs + REG_MIF_FRAME);
 443
 444        /* poll for completion */
 445        while (limit-- > 0) {
 446                udelay(10);
 447                cmd = readl(cp->regs + REG_MIF_FRAME);
 448                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 449                        return 0;
 450        }
 451        return -1;
 452}
 453
 454static void cas_phy_powerup(struct cas *cp)
 455{
 456        u16 ctl = cas_phy_read(cp, MII_BMCR);
 457
 458        if ((ctl & BMCR_PDOWN) == 0)
 459                return;
 460        ctl &= ~BMCR_PDOWN;
 461        cas_phy_write(cp, MII_BMCR, ctl);
 462}
 463
 464static void cas_phy_powerdown(struct cas *cp)
 465{
 466        u16 ctl = cas_phy_read(cp, MII_BMCR);
 467
 468        if (ctl & BMCR_PDOWN)
 469                return;
 470        ctl |= BMCR_PDOWN;
 471        cas_phy_write(cp, MII_BMCR, ctl);
 472}
 473
 474/* cp->lock held. note: the last put_page will free the buffer */
 475static int cas_page_free(struct cas *cp, cas_page_t *page)
 476{
 477        pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
 478                       PCI_DMA_FROMDEVICE);
 479        __free_pages(page->buffer, cp->page_order);
 480        kfree(page);
 481        return 0;
 482}
 483
 484#ifdef RX_COUNT_BUFFERS
 485#define RX_USED_ADD(x, y)       ((x)->used += (y))
 486#define RX_USED_SET(x, y)       ((x)->used  = (y))
 487#else
 488#define RX_USED_ADD(x, y)
 489#define RX_USED_SET(x, y)
 490#endif
 491
 492/* local page allocation routines for the receive buffers. jumbo pages
 493 * require at least 8K contiguous and 8K aligned buffers.
 494 */
 495static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
 496{
 497        cas_page_t *page;
 498
 499        page = kmalloc(sizeof(cas_page_t), flags);
 500        if (!page)
 501                return NULL;
 502
 503        INIT_LIST_HEAD(&page->list);
 504        RX_USED_SET(page, 0);
 505        page->buffer = alloc_pages(flags, cp->page_order);
 506        if (!page->buffer)
 507                goto page_err;
 508        page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
 509                                      cp->page_size, PCI_DMA_FROMDEVICE);
 510        return page;
 511
 512page_err:
 513        kfree(page);
 514        return NULL;
 515}
 516
 517/* initialize spare pool of rx buffers, but allocate during the open */
 518static void cas_spare_init(struct cas *cp)
 519{
 520        spin_lock(&cp->rx_inuse_lock);
 521        INIT_LIST_HEAD(&cp->rx_inuse_list);
 522        spin_unlock(&cp->rx_inuse_lock);
 523
 524        spin_lock(&cp->rx_spare_lock);
 525        INIT_LIST_HEAD(&cp->rx_spare_list);
 526        cp->rx_spares_needed = RX_SPARE_COUNT;
 527        spin_unlock(&cp->rx_spare_lock);
 528}
 529
 530/* used on close. free all the spare buffers. */
 531static void cas_spare_free(struct cas *cp)
 532{
 533        struct list_head list, *elem, *tmp;
 534
 535        /* free spare buffers */
 536        INIT_LIST_HEAD(&list);
 537        spin_lock(&cp->rx_spare_lock);
 538        list_splice_init(&cp->rx_spare_list, &list);
 539        spin_unlock(&cp->rx_spare_lock);
 540        list_for_each_safe(elem, tmp, &list) {
 541                cas_page_free(cp, list_entry(elem, cas_page_t, list));
 542        }
 543
 544        INIT_LIST_HEAD(&list);
 545#if 1
 546        /*
 547         * Looks like Adrian had protected this with a different
 548         * lock than used everywhere else to manipulate this list.
 549         */
 550        spin_lock(&cp->rx_inuse_lock);
 551        list_splice_init(&cp->rx_inuse_list, &list);
 552        spin_unlock(&cp->rx_inuse_lock);
 553#else
 554        spin_lock(&cp->rx_spare_lock);
 555        list_splice_init(&cp->rx_inuse_list, &list);
 556        spin_unlock(&cp->rx_spare_lock);
 557#endif
 558        list_for_each_safe(elem, tmp, &list) {
 559                cas_page_free(cp, list_entry(elem, cas_page_t, list));
 560        }
 561}
 562
 563/* replenish spares if needed */
 564static void cas_spare_recover(struct cas *cp, const gfp_t flags)
 565{
 566        struct list_head list, *elem, *tmp;
 567        int needed, i;
 568
 569        /* check inuse list. if we don't need any more free buffers,
 570         * just free it
 571         */
 572
 573        /* make a local copy of the list */
 574        INIT_LIST_HEAD(&list);
 575        spin_lock(&cp->rx_inuse_lock);
 576        list_splice_init(&cp->rx_inuse_list, &list);
 577        spin_unlock(&cp->rx_inuse_lock);
 578
 579        list_for_each_safe(elem, tmp, &list) {
 580                cas_page_t *page = list_entry(elem, cas_page_t, list);
 581
 582                /*
 583                 * With the lockless pagecache, cassini buffering scheme gets
 584                 * slightly less accurate: we might find that a page has an
 585                 * elevated reference count here, due to a speculative ref,
 586                 * and skip it as in-use. Ideally we would be able to reclaim
 587                 * it. However this would be such a rare case, it doesn't
 588                 * matter too much as we should pick it up the next time round.
 589                 *
 590                 * Importantly, if we find that the page has a refcount of 1
 591                 * here (our refcount), then we know it is definitely not inuse
 592                 * so we can reuse it.
 593                 */
 594                if (page_count(page->buffer) > 1)
 595                        continue;
 596
 597                list_del(elem);
 598                spin_lock(&cp->rx_spare_lock);
 599                if (cp->rx_spares_needed > 0) {
 600                        list_add(elem, &cp->rx_spare_list);
 601                        cp->rx_spares_needed--;
 602                        spin_unlock(&cp->rx_spare_lock);
 603                } else {
 604                        spin_unlock(&cp->rx_spare_lock);
 605                        cas_page_free(cp, page);
 606                }
 607        }
 608
 609        /* put any inuse buffers back on the list */
 610        if (!list_empty(&list)) {
 611                spin_lock(&cp->rx_inuse_lock);
 612                list_splice(&list, &cp->rx_inuse_list);
 613                spin_unlock(&cp->rx_inuse_lock);
 614        }
 615
 616        spin_lock(&cp->rx_spare_lock);
 617        needed = cp->rx_spares_needed;
 618        spin_unlock(&cp->rx_spare_lock);
 619        if (!needed)
 620                return;
 621
 622        /* we still need spares, so try to allocate some */
 623        INIT_LIST_HEAD(&list);
 624        i = 0;
 625        while (i < needed) {
 626                cas_page_t *spare = cas_page_alloc(cp, flags);
 627                if (!spare)
 628                        break;
 629                list_add(&spare->list, &list);
 630                i++;
 631        }
 632
 633        spin_lock(&cp->rx_spare_lock);
 634        list_splice(&list, &cp->rx_spare_list);
 635        cp->rx_spares_needed -= i;
 636        spin_unlock(&cp->rx_spare_lock);
 637}
 638
 639/* pull a page from the list. */
 640static cas_page_t *cas_page_dequeue(struct cas *cp)
 641{
 642        struct list_head *entry;
 643        int recover;
 644
 645        spin_lock(&cp->rx_spare_lock);
 646        if (list_empty(&cp->rx_spare_list)) {
 647                /* try to do a quick recovery */
 648                spin_unlock(&cp->rx_spare_lock);
 649                cas_spare_recover(cp, GFP_ATOMIC);
 650                spin_lock(&cp->rx_spare_lock);
 651                if (list_empty(&cp->rx_spare_list)) {
 652                        if (netif_msg_rx_err(cp))
 653                                printk(KERN_ERR "%s: no spare buffers "
 654                                       "available.\n", cp->dev->name);
 655                        spin_unlock(&cp->rx_spare_lock);
 656                        return NULL;
 657                }
 658        }
 659
 660        entry = cp->rx_spare_list.next;
 661        list_del(entry);
 662        recover = ++cp->rx_spares_needed;
 663        spin_unlock(&cp->rx_spare_lock);
 664
 665        /* trigger the timer to do the recovery */
 666        if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
 667#if 1
 668                atomic_inc(&cp->reset_task_pending);
 669                atomic_inc(&cp->reset_task_pending_spare);
 670                schedule_work(&cp->reset_task);
 671#else
 672                atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
 673                schedule_work(&cp->reset_task);
 674#endif
 675        }
 676        return list_entry(entry, cas_page_t, list);
 677}
 678
 679
 680static void cas_mif_poll(struct cas *cp, const int enable)
 681{
 682        u32 cfg;
 683
 684        cfg  = readl(cp->regs + REG_MIF_CFG);
 685        cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
 686
 687        if (cp->phy_type & CAS_PHY_MII_MDIO1)
 688                cfg |= MIF_CFG_PHY_SELECT;
 689
 690        /* poll and interrupt on link status change. */
 691        if (enable) {
 692                cfg |= MIF_CFG_POLL_EN;
 693                cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
 694                cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
 695        }
 696        writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
 697               cp->regs + REG_MIF_MASK);
 698        writel(cfg, cp->regs + REG_MIF_CFG);
 699}
 700
 701/* Must be invoked under cp->lock */
 702static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
 703{
 704        u16 ctl;
 705#if 1
 706        int lcntl;
 707        int changed = 0;
 708        int oldstate = cp->lstate;
 709        int link_was_not_down = !(oldstate == link_down);
 710#endif
 711        /* Setup link parameters */
 712        if (!ep)
 713                goto start_aneg;
 714        lcntl = cp->link_cntl;
 715        if (ep->autoneg == AUTONEG_ENABLE)
 716                cp->link_cntl = BMCR_ANENABLE;
 717        else {
 718                cp->link_cntl = 0;
 719                if (ep->speed == SPEED_100)
 720                        cp->link_cntl |= BMCR_SPEED100;
 721                else if (ep->speed == SPEED_1000)
 722                        cp->link_cntl |= CAS_BMCR_SPEED1000;
 723                if (ep->duplex == DUPLEX_FULL)
 724                        cp->link_cntl |= BMCR_FULLDPLX;
 725        }
 726#if 1
 727        changed = (lcntl != cp->link_cntl);
 728#endif
 729start_aneg:
 730        if (cp->lstate == link_up) {
 731                printk(KERN_INFO "%s: PCS link down.\n",
 732                       cp->dev->name);
 733        } else {
 734                if (changed) {
 735                        printk(KERN_INFO "%s: link configuration changed\n",
 736                               cp->dev->name);
 737                }
 738        }
 739        cp->lstate = link_down;
 740        cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 741        if (!cp->hw_running)
 742                return;
 743#if 1
 744        /*
 745         * WTZ: If the old state was link_up, we turn off the carrier
 746         * to replicate everything we do elsewhere on a link-down
 747         * event when we were already in a link-up state..
 748         */
 749        if (oldstate == link_up)
 750                netif_carrier_off(cp->dev);
 751        if (changed  && link_was_not_down) {
 752                /*
 753                 * WTZ: This branch will simply schedule a full reset after
 754                 * we explicitly changed link modes in an ioctl. See if this
 755                 * fixes the link-problems we were having for forced mode.
 756                 */
 757                atomic_inc(&cp->reset_task_pending);
 758                atomic_inc(&cp->reset_task_pending_all);
 759                schedule_work(&cp->reset_task);
 760                cp->timer_ticks = 0;
 761                mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 762                return;
 763        }
 764#endif
 765        if (cp->phy_type & CAS_PHY_SERDES) {
 766                u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
 767
 768                if (cp->link_cntl & BMCR_ANENABLE) {
 769                        val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
 770                        cp->lstate = link_aneg;
 771                } else {
 772                        if (cp->link_cntl & BMCR_FULLDPLX)
 773                                val |= PCS_MII_CTRL_DUPLEX;
 774                        val &= ~PCS_MII_AUTONEG_EN;
 775                        cp->lstate = link_force_ok;
 776                }
 777                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 778                writel(val, cp->regs + REG_PCS_MII_CTRL);
 779
 780        } else {
 781                cas_mif_poll(cp, 0);
 782                ctl = cas_phy_read(cp, MII_BMCR);
 783                ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
 784                         CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
 785                ctl |= cp->link_cntl;
 786                if (ctl & BMCR_ANENABLE) {
 787                        ctl |= BMCR_ANRESTART;
 788                        cp->lstate = link_aneg;
 789                } else {
 790                        cp->lstate = link_force_ok;
 791                }
 792                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 793                cas_phy_write(cp, MII_BMCR, ctl);
 794                cas_mif_poll(cp, 1);
 795        }
 796
 797        cp->timer_ticks = 0;
 798        mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 799}
 800
 801/* Must be invoked under cp->lock. */
 802static int cas_reset_mii_phy(struct cas *cp)
 803{
 804        int limit = STOP_TRIES_PHY;
 805        u16 val;
 806
 807        cas_phy_write(cp, MII_BMCR, BMCR_RESET);
 808        udelay(100);
 809        while (--limit) {
 810                val = cas_phy_read(cp, MII_BMCR);
 811                if ((val & BMCR_RESET) == 0)
 812                        break;
 813                udelay(10);
 814        }
 815        return (limit <= 0);
 816}
 817
 818static int cas_saturn_firmware_init(struct cas *cp)
 819{
 820        const struct firmware *fw;
 821        const char fw_name[] = "sun/cassini.bin";
 822        int err;
 823
 824        if (PHY_NS_DP83065 != cp->phy_id)
 825                return 0;
 826
 827        err = request_firmware(&fw, fw_name, &cp->pdev->dev);
 828        if (err) {
 829                printk(KERN_ERR "cassini: Failed to load firmware \"%s\"\n",
 830                       fw_name);
 831                return err;
 832        }
 833        if (fw->size < 2) {
 834                printk(KERN_ERR "cassini: bogus length %zu in \"%s\"\n",
 835                       fw->size, fw_name);
 836                err = -EINVAL;
 837                goto out;
 838        }
 839        cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
 840        cp->fw_size = fw->size - 2;
 841        cp->fw_data = vmalloc(cp->fw_size);
 842        if (!cp->fw_data) {
 843                err = -ENOMEM;
 844                printk(KERN_ERR "cassini: \"%s\" Failed %d\n", fw_name, err);
 845                goto out;
 846        }
 847        memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
 848out:
 849        release_firmware(fw);
 850        return err;
 851}
 852
 853static void cas_saturn_firmware_load(struct cas *cp)
 854{
 855        int i;
 856
 857        cas_phy_powerdown(cp);
 858
 859        /* expanded memory access mode */
 860        cas_phy_write(cp, DP83065_MII_MEM, 0x0);
 861
 862        /* pointer configuration for new firmware */
 863        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
 864        cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
 865        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
 866        cas_phy_write(cp, DP83065_MII_REGD, 0x82);
 867        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
 868        cas_phy_write(cp, DP83065_MII_REGD, 0x0);
 869        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
 870        cas_phy_write(cp, DP83065_MII_REGD, 0x39);
 871
 872        /* download new firmware */
 873        cas_phy_write(cp, DP83065_MII_MEM, 0x1);
 874        cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
 875        for (i = 0; i < cp->fw_size; i++)
 876                cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
 877
 878        /* enable firmware */
 879        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
 880        cas_phy_write(cp, DP83065_MII_REGD, 0x1);
 881}
 882
 883
 884/* phy initialization */
 885static void cas_phy_init(struct cas *cp)
 886{
 887        u16 val;
 888
 889        /* if we're in MII/GMII mode, set up phy */
 890        if (CAS_PHY_MII(cp->phy_type)) {
 891                writel(PCS_DATAPATH_MODE_MII,
 892                       cp->regs + REG_PCS_DATAPATH_MODE);
 893
 894                cas_mif_poll(cp, 0);
 895                cas_reset_mii_phy(cp); /* take out of isolate mode */
 896
 897                if (PHY_LUCENT_B0 == cp->phy_id) {
 898                        /* workaround link up/down issue with lucent */
 899                        cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
 900                        cas_phy_write(cp, MII_BMCR, 0x00f1);
 901                        cas_phy_write(cp, LUCENT_MII_REG, 0x0);
 902
 903                } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
 904                        /* workarounds for broadcom phy */
 905                        cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
 906                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
 907                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
 908                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
 909                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
 910                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 911                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
 912                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 913                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
 914                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
 915                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
 916
 917                } else if (PHY_BROADCOM_5411 == cp->phy_id) {
 918                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
 919                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
 920                        if (val & 0x0080) {
 921                                /* link workaround */
 922                                cas_phy_write(cp, BROADCOM_MII_REG4,
 923                                              val & ~0x0080);
 924                        }
 925
 926                } else if (cp->cas_flags & CAS_FLAG_SATURN) {
 927                        writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
 928                               SATURN_PCFG_FSI : 0x0,
 929                               cp->regs + REG_SATURN_PCFG);
 930
 931                        /* load firmware to address 10Mbps auto-negotiation
 932                         * issue. NOTE: this will need to be changed if the
 933                         * default firmware gets fixed.
 934                         */
 935                        if (PHY_NS_DP83065 == cp->phy_id) {
 936                                cas_saturn_firmware_load(cp);
 937                        }
 938                        cas_phy_powerup(cp);
 939                }
 940
 941                /* advertise capabilities */
 942                val = cas_phy_read(cp, MII_BMCR);
 943                val &= ~BMCR_ANENABLE;
 944                cas_phy_write(cp, MII_BMCR, val);
 945                udelay(10);
 946
 947                cas_phy_write(cp, MII_ADVERTISE,
 948                              cas_phy_read(cp, MII_ADVERTISE) |
 949                              (ADVERTISE_10HALF | ADVERTISE_10FULL |
 950                               ADVERTISE_100HALF | ADVERTISE_100FULL |
 951                               CAS_ADVERTISE_PAUSE |
 952                               CAS_ADVERTISE_ASYM_PAUSE));
 953
 954                if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 955                        /* make sure that we don't advertise half
 956                         * duplex to avoid a chip issue
 957                         */
 958                        val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
 959                        val &= ~CAS_ADVERTISE_1000HALF;
 960                        val |= CAS_ADVERTISE_1000FULL;
 961                        cas_phy_write(cp, CAS_MII_1000_CTRL, val);
 962                }
 963
 964        } else {
 965                /* reset pcs for serdes */
 966                u32 val;
 967                int limit;
 968
 969                writel(PCS_DATAPATH_MODE_SERDES,
 970                       cp->regs + REG_PCS_DATAPATH_MODE);
 971
 972                /* enable serdes pins on saturn */
 973                if (cp->cas_flags & CAS_FLAG_SATURN)
 974                        writel(0, cp->regs + REG_SATURN_PCFG);
 975
 976                /* Reset PCS unit. */
 977                val = readl(cp->regs + REG_PCS_MII_CTRL);
 978                val |= PCS_MII_RESET;
 979                writel(val, cp->regs + REG_PCS_MII_CTRL);
 980
 981                limit = STOP_TRIES;
 982                while (--limit > 0) {
 983                        udelay(10);
 984                        if ((readl(cp->regs + REG_PCS_MII_CTRL) &
 985                             PCS_MII_RESET) == 0)
 986                                break;
 987                }
 988                if (limit <= 0)
 989                        printk(KERN_WARNING "%s: PCS reset bit would not "
 990                               "clear [%08x].\n", cp->dev->name,
 991                               readl(cp->regs + REG_PCS_STATE_MACHINE));
 992
 993                /* Make sure PCS is disabled while changing advertisement
 994                 * configuration.
 995                 */
 996                writel(0x0, cp->regs + REG_PCS_CFG);
 997
 998                /* Advertise all capabilities except half-duplex. */
 999                val  = readl(cp->regs + REG_PCS_MII_ADVERT);
1000                val &= ~PCS_MII_ADVERT_HD;
1001                val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
1002                        PCS_MII_ADVERT_ASYM_PAUSE);
1003                writel(val, cp->regs + REG_PCS_MII_ADVERT);
1004
1005                /* enable PCS */
1006                writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1007
1008                /* pcs workaround: enable sync detect */
1009                writel(PCS_SERDES_CTRL_SYNCD_EN,
1010                       cp->regs + REG_PCS_SERDES_CTRL);
1011        }
1012}
1013
1014
1015static int cas_pcs_link_check(struct cas *cp)
1016{
1017        u32 stat, state_machine;
1018        int retval = 0;
1019
1020        /* The link status bit latches on zero, so you must
1021         * read it twice in such a case to see a transition
1022         * to the link being up.
1023         */
1024        stat = readl(cp->regs + REG_PCS_MII_STATUS);
1025        if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1026                stat = readl(cp->regs + REG_PCS_MII_STATUS);
1027
1028        /* The remote-fault indication is only valid
1029         * when autoneg has completed.
1030         */
1031        if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1032                     PCS_MII_STATUS_REMOTE_FAULT)) ==
1033            (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1034                if (netif_msg_link(cp))
1035                        printk(KERN_INFO "%s: PCS RemoteFault\n",
1036                               cp->dev->name);
1037        }
1038
1039        /* work around link detection issue by querying the PCS state
1040         * machine directly.
1041         */
1042        state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1043        if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1044                stat &= ~PCS_MII_STATUS_LINK_STATUS;
1045        } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1046                stat |= PCS_MII_STATUS_LINK_STATUS;
1047        }
1048
1049        if (stat & PCS_MII_STATUS_LINK_STATUS) {
1050                if (cp->lstate != link_up) {
1051                        if (cp->opened) {
1052                                cp->lstate = link_up;
1053                                cp->link_transition = LINK_TRANSITION_LINK_UP;
1054
1055                                cas_set_link_modes(cp);
1056                                netif_carrier_on(cp->dev);
1057                        }
1058                }
1059        } else if (cp->lstate == link_up) {
1060                cp->lstate = link_down;
1061                if (link_transition_timeout != 0 &&
1062                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1063                    !cp->link_transition_jiffies_valid) {
1064                        /*
1065                         * force a reset, as a workaround for the
1066                         * link-failure problem. May want to move this to a
1067                         * point a bit earlier in the sequence. If we had
1068                         * generated a reset a short time ago, we'll wait for
1069                         * the link timer to check the status until a
1070                         * timer expires (link_transistion_jiffies_valid is
1071                         * true when the timer is running.)  Instead of using
1072                         * a system timer, we just do a check whenever the
1073                         * link timer is running - this clears the flag after
1074                         * a suitable delay.
1075                         */
1076                        retval = 1;
1077                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1078                        cp->link_transition_jiffies = jiffies;
1079                        cp->link_transition_jiffies_valid = 1;
1080                } else {
1081                        cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1082                }
1083                netif_carrier_off(cp->dev);
1084                if (cp->opened && netif_msg_link(cp)) {
1085                        printk(KERN_INFO "%s: PCS link down.\n",
1086                               cp->dev->name);
1087                }
1088
1089                /* Cassini only: if you force a mode, there can be
1090                 * sync problems on link down. to fix that, the following
1091                 * things need to be checked:
1092                 * 1) read serialink state register
1093                 * 2) read pcs status register to verify link down.
1094                 * 3) if link down and serial link == 0x03, then you need
1095                 *    to global reset the chip.
1096                 */
1097                if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1098                        /* should check to see if we're in a forced mode */
1099                        stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1100                        if (stat == 0x03)
1101                                return 1;
1102                }
1103        } else if (cp->lstate == link_down) {
1104                if (link_transition_timeout != 0 &&
1105                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1106                    !cp->link_transition_jiffies_valid) {
1107                        /* force a reset, as a workaround for the
1108                         * link-failure problem.  May want to move
1109                         * this to a point a bit earlier in the
1110                         * sequence.
1111                         */
1112                        retval = 1;
1113                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1114                        cp->link_transition_jiffies = jiffies;
1115                        cp->link_transition_jiffies_valid = 1;
1116                } else {
1117                        cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1118                }
1119        }
1120
1121        return retval;
1122}
1123
1124static int cas_pcs_interrupt(struct net_device *dev,
1125                             struct cas *cp, u32 status)
1126{
1127        u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1128
1129        if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1130                return 0;
1131        return cas_pcs_link_check(cp);
1132}
1133
1134static int cas_txmac_interrupt(struct net_device *dev,
1135                               struct cas *cp, u32 status)
1136{
1137        u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1138
1139        if (!txmac_stat)
1140                return 0;
1141
1142        if (netif_msg_intr(cp))
1143                printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1144                        cp->dev->name, txmac_stat);
1145
1146        /* Defer timer expiration is quite normal,
1147         * don't even log the event.
1148         */
1149        if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1150            !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1151                return 0;
1152
1153        spin_lock(&cp->stat_lock[0]);
1154        if (txmac_stat & MAC_TX_UNDERRUN) {
1155                printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1156                       dev->name);
1157                cp->net_stats[0].tx_fifo_errors++;
1158        }
1159
1160        if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1161                printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1162                       dev->name);
1163                cp->net_stats[0].tx_errors++;
1164        }
1165
1166        /* The rest are all cases of one of the 16-bit TX
1167         * counters expiring.
1168         */
1169        if (txmac_stat & MAC_TX_COLL_NORMAL)
1170                cp->net_stats[0].collisions += 0x10000;
1171
1172        if (txmac_stat & MAC_TX_COLL_EXCESS) {
1173                cp->net_stats[0].tx_aborted_errors += 0x10000;
1174                cp->net_stats[0].collisions += 0x10000;
1175        }
1176
1177        if (txmac_stat & MAC_TX_COLL_LATE) {
1178                cp->net_stats[0].tx_aborted_errors += 0x10000;
1179                cp->net_stats[0].collisions += 0x10000;
1180        }
1181        spin_unlock(&cp->stat_lock[0]);
1182
1183        /* We do not keep track of MAC_TX_COLL_FIRST and
1184         * MAC_TX_PEAK_ATTEMPTS events.
1185         */
1186        return 0;
1187}
1188
1189static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1190{
1191        cas_hp_inst_t *inst;
1192        u32 val;
1193        int i;
1194
1195        i = 0;
1196        while ((inst = firmware) && inst->note) {
1197                writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1198
1199                val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1200                val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1201                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1202
1203                val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1204                val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1205                val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1206                val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1207                val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1208                val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1209                val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1210                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1211
1212                val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1213                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1214                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1215                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1216                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1217                ++firmware;
1218                ++i;
1219        }
1220}
1221
1222static void cas_init_rx_dma(struct cas *cp)
1223{
1224        u64 desc_dma = cp->block_dvma;
1225        u32 val;
1226        int i, size;
1227
1228        /* rx free descriptors */
1229        val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1230        val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1231        val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1232        if ((N_RX_DESC_RINGS > 1) &&
1233            (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1234                val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1235        writel(val, cp->regs + REG_RX_CFG);
1236
1237        val = (unsigned long) cp->init_rxds[0] -
1238                (unsigned long) cp->init_block;
1239        writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1240        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1241        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1242
1243        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1244                /* rx desc 2 is for IPSEC packets. however,
1245                 * we don't it that for that purpose.
1246                 */
1247                val = (unsigned long) cp->init_rxds[1] -
1248                        (unsigned long) cp->init_block;
1249                writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1250                writel((desc_dma + val) & 0xffffffff, cp->regs +
1251                       REG_PLUS_RX_DB1_LOW);
1252                writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1253                       REG_PLUS_RX_KICK1);
1254        }
1255
1256        /* rx completion registers */
1257        val = (unsigned long) cp->init_rxcs[0] -
1258                (unsigned long) cp->init_block;
1259        writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1260        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1261
1262        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263                /* rx comp 2-4 */
1264                for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1265                        val = (unsigned long) cp->init_rxcs[i] -
1266                                (unsigned long) cp->init_block;
1267                        writel((desc_dma + val) >> 32, cp->regs +
1268                               REG_PLUS_RX_CBN_HI(i));
1269                        writel((desc_dma + val) & 0xffffffff, cp->regs +
1270                               REG_PLUS_RX_CBN_LOW(i));
1271                }
1272        }
1273
1274        /* read selective clear regs to prevent spurious interrupts
1275         * on reset because complete == kick.
1276         * selective clear set up to prevent interrupts on resets
1277         */
1278        readl(cp->regs + REG_INTR_STATUS_ALIAS);
1279        writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1280        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1281                for (i = 1; i < N_RX_COMP_RINGS; i++)
1282                        readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1283
1284                /* 2 is different from 3 and 4 */
1285                if (N_RX_COMP_RINGS > 1)
1286                        writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1287                               cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1288
1289                for (i = 2; i < N_RX_COMP_RINGS; i++)
1290                        writel(INTR_RX_DONE_ALT,
1291                               cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1292        }
1293
1294        /* set up pause thresholds */
1295        val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1296                        cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1297        val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1298                        cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1299        writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1300
1301        /* zero out dma reassembly buffers */
1302        for (i = 0; i < 64; i++) {
1303                writel(i, cp->regs + REG_RX_TABLE_ADDR);
1304                writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1305                writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1306                writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1307        }
1308
1309        /* make sure address register is 0 for normal operation */
1310        writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1311        writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1312
1313        /* interrupt mitigation */
1314#ifdef USE_RX_BLANK
1315        val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1316        val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1317        writel(val, cp->regs + REG_RX_BLANK);
1318#else
1319        writel(0x0, cp->regs + REG_RX_BLANK);
1320#endif
1321
1322        /* interrupt generation as a function of low water marks for
1323         * free desc and completion entries. these are used to trigger
1324         * housekeeping for rx descs. we don't use the free interrupt
1325         * as it's not very useful
1326         */
1327        /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1328        val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1329        writel(val, cp->regs + REG_RX_AE_THRESH);
1330        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1331                val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1332                writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1333        }
1334
1335        /* Random early detect registers. useful for congestion avoidance.
1336         * this should be tunable.
1337         */
1338        writel(0x0, cp->regs + REG_RX_RED);
1339
1340        /* receive page sizes. default == 2K (0x800) */
1341        val = 0;
1342        if (cp->page_size == 0x1000)
1343                val = 0x1;
1344        else if (cp->page_size == 0x2000)
1345                val = 0x2;
1346        else if (cp->page_size == 0x4000)
1347                val = 0x3;
1348
1349        /* round mtu + offset. constrain to page size. */
1350        size = cp->dev->mtu + 64;
1351        if (size > cp->page_size)
1352                size = cp->page_size;
1353
1354        if (size <= 0x400)
1355                i = 0x0;
1356        else if (size <= 0x800)
1357                i = 0x1;
1358        else if (size <= 0x1000)
1359                i = 0x2;
1360        else
1361                i = 0x3;
1362
1363        cp->mtu_stride = 1 << (i + 10);
1364        val  = CAS_BASE(RX_PAGE_SIZE, val);
1365        val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1366        val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1367        val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1368        writel(val, cp->regs + REG_RX_PAGE_SIZE);
1369
1370        /* enable the header parser if desired */
1371        if (CAS_HP_FIRMWARE == cas_prog_null)
1372                return;
1373
1374        val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1375        val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1376        val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1377        writel(val, cp->regs + REG_HP_CFG);
1378}
1379
1380static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1381{
1382        memset(rxc, 0, sizeof(*rxc));
1383        rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1384}
1385
1386/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1387 * flipping is protected by the fact that the chip will not
1388 * hand back the same page index while it's being processed.
1389 */
1390static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1391{
1392        cas_page_t *page = cp->rx_pages[1][index];
1393        cas_page_t *new;
1394
1395        if (page_count(page->buffer) == 1)
1396                return page;
1397
1398        new = cas_page_dequeue(cp);
1399        if (new) {
1400                spin_lock(&cp->rx_inuse_lock);
1401                list_add(&page->list, &cp->rx_inuse_list);
1402                spin_unlock(&cp->rx_inuse_lock);
1403        }
1404        return new;
1405}
1406
1407/* this needs to be changed if we actually use the ENC RX DESC ring */
1408static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1409                                 const int index)
1410{
1411        cas_page_t **page0 = cp->rx_pages[0];
1412        cas_page_t **page1 = cp->rx_pages[1];
1413
1414        /* swap if buffer is in use */
1415        if (page_count(page0[index]->buffer) > 1) {
1416                cas_page_t *new = cas_page_spare(cp, index);
1417                if (new) {
1418                        page1[index] = page0[index];
1419                        page0[index] = new;
1420                }
1421        }
1422        RX_USED_SET(page0[index], 0);
1423        return page0[index];
1424}
1425
1426static void cas_clean_rxds(struct cas *cp)
1427{
1428        /* only clean ring 0 as ring 1 is used for spare buffers */
1429        struct cas_rx_desc *rxd = cp->init_rxds[0];
1430        int i, size;
1431
1432        /* release all rx flows */
1433        for (i = 0; i < N_RX_FLOWS; i++) {
1434                struct sk_buff *skb;
1435                while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1436                        cas_skb_release(skb);
1437                }
1438        }
1439
1440        /* initialize descriptors */
1441        size = RX_DESC_RINGN_SIZE(0);
1442        for (i = 0; i < size; i++) {
1443                cas_page_t *page = cas_page_swap(cp, 0, i);
1444                rxd[i].buffer = cpu_to_le64(page->dma_addr);
1445                rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1446                                            CAS_BASE(RX_INDEX_RING, 0));
1447        }
1448
1449        cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1450        cp->rx_last[0] = 0;
1451        cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1452}
1453
1454static void cas_clean_rxcs(struct cas *cp)
1455{
1456        int i, j;
1457
1458        /* take ownership of rx comp descriptors */
1459        memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1460        memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1461        for (i = 0; i < N_RX_COMP_RINGS; i++) {
1462                struct cas_rx_comp *rxc = cp->init_rxcs[i];
1463                for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1464                        cas_rxc_init(rxc + j);
1465                }
1466        }
1467}
1468
1469#if 0
1470/* When we get a RX fifo overflow, the RX unit is probably hung
1471 * so we do the following.
1472 *
1473 * If any part of the reset goes wrong, we return 1 and that causes the
1474 * whole chip to be reset.
1475 */
1476static int cas_rxmac_reset(struct cas *cp)
1477{
1478        struct net_device *dev = cp->dev;
1479        int limit;
1480        u32 val;
1481
1482        /* First, reset MAC RX. */
1483        writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1484        for (limit = 0; limit < STOP_TRIES; limit++) {
1485                if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1486                        break;
1487                udelay(10);
1488        }
1489        if (limit == STOP_TRIES) {
1490                printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1491                       "chip.\n", dev->name);
1492                return 1;
1493        }
1494
1495        /* Second, disable RX DMA. */
1496        writel(0, cp->regs + REG_RX_CFG);
1497        for (limit = 0; limit < STOP_TRIES; limit++) {
1498                if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1499                        break;
1500                udelay(10);
1501        }
1502        if (limit == STOP_TRIES) {
1503                printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1504                       "chip.\n", dev->name);
1505                return 1;
1506        }
1507
1508        mdelay(5);
1509
1510        /* Execute RX reset command. */
1511        writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1512        for (limit = 0; limit < STOP_TRIES; limit++) {
1513                if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1514                        break;
1515                udelay(10);
1516        }
1517        if (limit == STOP_TRIES) {
1518                printk(KERN_ERR "%s: RX reset command will not execute, "
1519                       "resetting whole chip.\n", dev->name);
1520                return 1;
1521        }
1522
1523        /* reset driver rx state */
1524        cas_clean_rxds(cp);
1525        cas_clean_rxcs(cp);
1526
1527        /* Now, reprogram the rest of RX unit. */
1528        cas_init_rx_dma(cp);
1529
1530        /* re-enable */
1531        val = readl(cp->regs + REG_RX_CFG);
1532        writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1533        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1534        val = readl(cp->regs + REG_MAC_RX_CFG);
1535        writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1536        return 0;
1537}
1538#endif
1539
1540static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1541                               u32 status)
1542{
1543        u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1544
1545        if (!stat)
1546                return 0;
1547
1548        if (netif_msg_intr(cp))
1549                printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1550                        cp->dev->name, stat);
1551
1552        /* these are all rollovers */
1553        spin_lock(&cp->stat_lock[0]);
1554        if (stat & MAC_RX_ALIGN_ERR)
1555                cp->net_stats[0].rx_frame_errors += 0x10000;
1556
1557        if (stat & MAC_RX_CRC_ERR)
1558                cp->net_stats[0].rx_crc_errors += 0x10000;
1559
1560        if (stat & MAC_RX_LEN_ERR)
1561                cp->net_stats[0].rx_length_errors += 0x10000;
1562
1563        if (stat & MAC_RX_OVERFLOW) {
1564                cp->net_stats[0].rx_over_errors++;
1565                cp->net_stats[0].rx_fifo_errors++;
1566        }
1567
1568        /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1569         * events.
1570         */
1571        spin_unlock(&cp->stat_lock[0]);
1572        return 0;
1573}
1574
1575static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1576                             u32 status)
1577{
1578        u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1579
1580        if (!stat)
1581                return 0;
1582
1583        if (netif_msg_intr(cp))
1584                printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1585                        cp->dev->name, stat);
1586
1587        /* This interrupt is just for pause frame and pause
1588         * tracking.  It is useful for diagnostics and debug
1589         * but probably by default we will mask these events.
1590         */
1591        if (stat & MAC_CTRL_PAUSE_STATE)
1592                cp->pause_entered++;
1593
1594        if (stat & MAC_CTRL_PAUSE_RECEIVED)
1595                cp->pause_last_time_recvd = (stat >> 16);
1596
1597        return 0;
1598}
1599
1600
1601/* Must be invoked under cp->lock. */
1602static inline int cas_mdio_link_not_up(struct cas *cp)
1603{
1604        u16 val;
1605
1606        switch (cp->lstate) {
1607        case link_force_ret:
1608                if (netif_msg_link(cp))
1609                        printk(KERN_INFO "%s: Autoneg failed again, keeping"
1610                                " forced mode\n", cp->dev->name);
1611                cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1612                cp->timer_ticks = 5;
1613                cp->lstate = link_force_ok;
1614                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1615                break;
1616
1617        case link_aneg:
1618                val = cas_phy_read(cp, MII_BMCR);
1619
1620                /* Try forced modes. we try things in the following order:
1621                 * 1000 full -> 100 full/half -> 10 half
1622                 */
1623                val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1624                val |= BMCR_FULLDPLX;
1625                val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1626                        CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1627                cas_phy_write(cp, MII_BMCR, val);
1628                cp->timer_ticks = 5;
1629                cp->lstate = link_force_try;
1630                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1631                break;
1632
1633        case link_force_try:
1634                /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1635                val = cas_phy_read(cp, MII_BMCR);
1636                cp->timer_ticks = 5;
1637                if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1638                        val &= ~CAS_BMCR_SPEED1000;
1639                        val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1640                        cas_phy_write(cp, MII_BMCR, val);
1641                        break;
1642                }
1643
1644                if (val & BMCR_SPEED100) {
1645                        if (val & BMCR_FULLDPLX) /* fd failed */
1646                                val &= ~BMCR_FULLDPLX;
1647                        else { /* 100Mbps failed */
1648                                val &= ~BMCR_SPEED100;
1649                        }
1650                        cas_phy_write(cp, MII_BMCR, val);
1651                        break;
1652                }
1653        default:
1654                break;
1655        }
1656        return 0;
1657}
1658
1659
1660/* must be invoked with cp->lock held */
1661static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1662{
1663        int restart;
1664
1665        if (bmsr & BMSR_LSTATUS) {
1666                /* Ok, here we got a link. If we had it due to a forced
1667                 * fallback, and we were configured for autoneg, we
1668                 * retry a short autoneg pass. If you know your hub is
1669                 * broken, use ethtool ;)
1670                 */
1671                if ((cp->lstate == link_force_try) &&
1672                    (cp->link_cntl & BMCR_ANENABLE)) {
1673                        cp->lstate = link_force_ret;
1674                        cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1675                        cas_mif_poll(cp, 0);
1676                        cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1677                        cp->timer_ticks = 5;
1678                        if (cp->opened && netif_msg_link(cp))
1679                                printk(KERN_INFO "%s: Got link after fallback, retrying"
1680                                       " autoneg once...\n", cp->dev->name);
1681                        cas_phy_write(cp, MII_BMCR,
1682                                      cp->link_fcntl | BMCR_ANENABLE |
1683                                      BMCR_ANRESTART);
1684                        cas_mif_poll(cp, 1);
1685
1686                } else if (cp->lstate != link_up) {
1687                        cp->lstate = link_up;
1688                        cp->link_transition = LINK_TRANSITION_LINK_UP;
1689
1690                        if (cp->opened) {
1691                                cas_set_link_modes(cp);
1692                                netif_carrier_on(cp->dev);
1693                        }
1694                }
1695                return 0;
1696        }
1697
1698        /* link not up. if the link was previously up, we restart the
1699         * whole process
1700         */
1701        restart = 0;
1702        if (cp->lstate == link_up) {
1703                cp->lstate = link_down;
1704                cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1705
1706                netif_carrier_off(cp->dev);
1707                if (cp->opened && netif_msg_link(cp))
1708                        printk(KERN_INFO "%s: Link down\n",
1709                               cp->dev->name);
1710                restart = 1;
1711
1712        } else if (++cp->timer_ticks > 10)
1713                cas_mdio_link_not_up(cp);
1714
1715        return restart;
1716}
1717
1718static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1719                             u32 status)
1720{
1721        u32 stat = readl(cp->regs + REG_MIF_STATUS);
1722        u16 bmsr;
1723
1724        /* check for a link change */
1725        if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1726                return 0;
1727
1728        bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1729        return cas_mii_link_check(cp, bmsr);
1730}
1731
1732static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1733                             u32 status)
1734{
1735        u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1736
1737        if (!stat)
1738                return 0;
1739
1740        printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1741               readl(cp->regs + REG_BIM_DIAG));
1742
1743        /* cassini+ has this reserved */
1744        if ((stat & PCI_ERR_BADACK) &&
1745            ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1746                printk("<No ACK64# during ABS64 cycle> ");
1747
1748        if (stat & PCI_ERR_DTRTO)
1749                printk("<Delayed transaction timeout> ");
1750        if (stat & PCI_ERR_OTHER)
1751                printk("<other> ");
1752        if (stat & PCI_ERR_BIM_DMA_WRITE)
1753                printk("<BIM DMA 0 write req> ");
1754        if (stat & PCI_ERR_BIM_DMA_READ)
1755                printk("<BIM DMA 0 read req> ");
1756        printk("\n");
1757
1758        if (stat & PCI_ERR_OTHER) {
1759                u16 cfg;
1760
1761                /* Interrogate PCI config space for the
1762                 * true cause.
1763                 */
1764                pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1765                printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1766                       dev->name, cfg);
1767                if (cfg & PCI_STATUS_PARITY)
1768                        printk(KERN_ERR "%s: PCI parity error detected.\n",
1769                               dev->name);
1770                if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1771                        printk(KERN_ERR "%s: PCI target abort.\n",
1772                               dev->name);
1773                if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1774                        printk(KERN_ERR "%s: PCI master acks target abort.\n",
1775                               dev->name);
1776                if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1777                        printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1778                if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1779                        printk(KERN_ERR "%s: PCI system error SERR#.\n",
1780                               dev->name);
1781                if (cfg & PCI_STATUS_DETECTED_PARITY)
1782                        printk(KERN_ERR "%s: PCI parity error.\n",
1783                               dev->name);
1784
1785                /* Write the error bits back to clear them. */
1786                cfg &= (PCI_STATUS_PARITY |
1787                        PCI_STATUS_SIG_TARGET_ABORT |
1788                        PCI_STATUS_REC_TARGET_ABORT |
1789                        PCI_STATUS_REC_MASTER_ABORT |
1790                        PCI_STATUS_SIG_SYSTEM_ERROR |
1791                        PCI_STATUS_DETECTED_PARITY);
1792                pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1793        }
1794
1795        /* For all PCI errors, we should reset the chip. */
1796        return 1;
1797}
1798
1799/* All non-normal interrupt conditions get serviced here.
1800 * Returns non-zero if we should just exit the interrupt
1801 * handler right now (ie. if we reset the card which invalidates
1802 * all of the other original irq status bits).
1803 */
1804static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1805                            u32 status)
1806{
1807        if (status & INTR_RX_TAG_ERROR) {
1808                /* corrupt RX tag framing */
1809                if (netif_msg_rx_err(cp))
1810                        printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1811                                cp->dev->name);
1812                spin_lock(&cp->stat_lock[0]);
1813                cp->net_stats[0].rx_errors++;
1814                spin_unlock(&cp->stat_lock[0]);
1815                goto do_reset;
1816        }
1817
1818        if (status & INTR_RX_LEN_MISMATCH) {
1819                /* length mismatch. */
1820                if (netif_msg_rx_err(cp))
1821                        printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1822                                cp->dev->name);
1823                spin_lock(&cp->stat_lock[0]);
1824                cp->net_stats[0].rx_errors++;
1825                spin_unlock(&cp->stat_lock[0]);
1826                goto do_reset;
1827        }
1828
1829        if (status & INTR_PCS_STATUS) {
1830                if (cas_pcs_interrupt(dev, cp, status))
1831                        goto do_reset;
1832        }
1833
1834        if (status & INTR_TX_MAC_STATUS) {
1835                if (cas_txmac_interrupt(dev, cp, status))
1836                        goto do_reset;
1837        }
1838
1839        if (status & INTR_RX_MAC_STATUS) {
1840                if (cas_rxmac_interrupt(dev, cp, status))
1841                        goto do_reset;
1842        }
1843
1844        if (status & INTR_MAC_CTRL_STATUS) {
1845                if (cas_mac_interrupt(dev, cp, status))
1846                        goto do_reset;
1847        }
1848
1849        if (status & INTR_MIF_STATUS) {
1850                if (cas_mif_interrupt(dev, cp, status))
1851                        goto do_reset;
1852        }
1853
1854        if (status & INTR_PCI_ERROR_STATUS) {
1855                if (cas_pci_interrupt(dev, cp, status))
1856                        goto do_reset;
1857        }
1858        return 0;
1859
1860do_reset:
1861#if 1
1862        atomic_inc(&cp->reset_task_pending);
1863        atomic_inc(&cp->reset_task_pending_all);
1864        printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1865               dev->name, status);
1866        schedule_work(&cp->reset_task);
1867#else
1868        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1869        printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1870        schedule_work(&cp->reset_task);
1871#endif
1872        return 1;
1873}
1874
1875/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1876 *       determining whether to do a netif_stop/wakeup
1877 */
1878#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1879#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1880static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1881                                  const int len)
1882{
1883        unsigned long off = addr + len;
1884
1885        if (CAS_TABORT(cp) == 1)
1886                return 0;
1887        if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1888                return 0;
1889        return TX_TARGET_ABORT_LEN;
1890}
1891
1892static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1893{
1894        struct cas_tx_desc *txds;
1895        struct sk_buff **skbs;
1896        struct net_device *dev = cp->dev;
1897        int entry, count;
1898
1899        spin_lock(&cp->tx_lock[ring]);
1900        txds = cp->init_txds[ring];
1901        skbs = cp->tx_skbs[ring];
1902        entry = cp->tx_old[ring];
1903
1904        count = TX_BUFF_COUNT(ring, entry, limit);
1905        while (entry != limit) {
1906                struct sk_buff *skb = skbs[entry];
1907                dma_addr_t daddr;
1908                u32 dlen;
1909                int frag;
1910
1911                if (!skb) {
1912                        /* this should never occur */
1913                        entry = TX_DESC_NEXT(ring, entry);
1914                        continue;
1915                }
1916
1917                /* however, we might get only a partial skb release. */
1918                count -= skb_shinfo(skb)->nr_frags +
1919                        + cp->tx_tiny_use[ring][entry].nbufs + 1;
1920                if (count < 0)
1921                        break;
1922
1923                if (netif_msg_tx_done(cp))
1924                        printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1925                               cp->dev->name, ring, entry);
1926
1927                skbs[entry] = NULL;
1928                cp->tx_tiny_use[ring][entry].nbufs = 0;
1929
1930                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1931                        struct cas_tx_desc *txd = txds + entry;
1932
1933                        daddr = le64_to_cpu(txd->buffer);
1934                        dlen = CAS_VAL(TX_DESC_BUFLEN,
1935                                       le64_to_cpu(txd->control));
1936                        pci_unmap_page(cp->pdev, daddr, dlen,
1937                                       PCI_DMA_TODEVICE);
1938                        entry = TX_DESC_NEXT(ring, entry);
1939
1940                        /* tiny buffer may follow */
1941                        if (cp->tx_tiny_use[ring][entry].used) {
1942                                cp->tx_tiny_use[ring][entry].used = 0;
1943                                entry = TX_DESC_NEXT(ring, entry);
1944                        }
1945                }
1946
1947                spin_lock(&cp->stat_lock[ring]);
1948                cp->net_stats[ring].tx_packets++;
1949                cp->net_stats[ring].tx_bytes += skb->len;
1950                spin_unlock(&cp->stat_lock[ring]);
1951                dev_kfree_skb_irq(skb);
1952        }
1953        cp->tx_old[ring] = entry;
1954
1955        /* this is wrong for multiple tx rings. the net device needs
1956         * multiple queues for this to do the right thing.  we wait
1957         * for 2*packets to be available when using tiny buffers
1958         */
1959        if (netif_queue_stopped(dev) &&
1960            (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1961                netif_wake_queue(dev);
1962        spin_unlock(&cp->tx_lock[ring]);
1963}
1964
1965static void cas_tx(struct net_device *dev, struct cas *cp,
1966                   u32 status)
1967{
1968        int limit, ring;
1969#ifdef USE_TX_COMPWB
1970        u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1971#endif
1972        if (netif_msg_intr(cp))
1973                printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1974                        cp->dev->name, status, (unsigned long long)compwb);
1975        /* process all the rings */
1976        for (ring = 0; ring < N_TX_RINGS; ring++) {
1977#ifdef USE_TX_COMPWB
1978                /* use the completion writeback registers */
1979                limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1980                        CAS_VAL(TX_COMPWB_LSB, compwb);
1981                compwb = TX_COMPWB_NEXT(compwb);
1982#else
1983                limit = readl(cp->regs + REG_TX_COMPN(ring));
1984#endif
1985                if (cp->tx_old[ring] != limit)
1986                        cas_tx_ringN(cp, ring, limit);
1987        }
1988}
1989
1990
1991static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1992                              int entry, const u64 *words,
1993                              struct sk_buff **skbref)
1994{
1995        int dlen, hlen, len, i, alloclen;
1996        int off, swivel = RX_SWIVEL_OFF_VAL;
1997        struct cas_page *page;
1998        struct sk_buff *skb;
1999        void *addr, *crcaddr;
2000        __sum16 csum;
2001        char *p;
2002
2003        hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
2004        dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
2005        len  = hlen + dlen;
2006
2007        if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
2008                alloclen = len;
2009        else
2010                alloclen = max(hlen, RX_COPY_MIN);
2011
2012        skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
2013        if (skb == NULL)
2014                return -1;
2015
2016        *skbref = skb;
2017        skb_reserve(skb, swivel);
2018
2019        p = skb->data;
2020        addr = crcaddr = NULL;
2021        if (hlen) { /* always copy header pages */
2022                i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2023                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2024                off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
2025                        swivel;
2026
2027                i = hlen;
2028                if (!dlen) /* attach FCS */
2029                        i += cp->crc_size;
2030                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2031                                    PCI_DMA_FROMDEVICE);
2032                addr = cas_page_map(page->buffer);
2033                memcpy(p, addr + off, i);
2034                pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2035                                    PCI_DMA_FROMDEVICE);
2036                cas_page_unmap(addr);
2037                RX_USED_ADD(page, 0x100);
2038                p += hlen;
2039                swivel = 0;
2040        }
2041
2042
2043        if (alloclen < (hlen + dlen)) {
2044                skb_frag_t *frag = skb_shinfo(skb)->frags;
2045
2046                /* normal or jumbo packets. we use frags */
2047                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2048                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2049                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2050
2051                hlen = min(cp->page_size - off, dlen);
2052                if (hlen < 0) {
2053                        if (netif_msg_rx_err(cp)) {
2054                                printk(KERN_DEBUG "%s: rx page overflow: "
2055                                       "%d\n", cp->dev->name, hlen);
2056                        }
2057                        dev_kfree_skb_irq(skb);
2058                        return -1;
2059                }
2060                i = hlen;
2061                if (i == dlen)  /* attach FCS */
2062                        i += cp->crc_size;
2063                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2064                                    PCI_DMA_FROMDEVICE);
2065
2066                /* make sure we always copy a header */
2067                swivel = 0;
2068                if (p == (char *) skb->data) { /* not split */
2069                        addr = cas_page_map(page->buffer);
2070                        memcpy(p, addr + off, RX_COPY_MIN);
2071                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2072                                        PCI_DMA_FROMDEVICE);
2073                        cas_page_unmap(addr);
2074                        off += RX_COPY_MIN;
2075                        swivel = RX_COPY_MIN;
2076                        RX_USED_ADD(page, cp->mtu_stride);
2077                } else {
2078                        RX_USED_ADD(page, hlen);
2079                }
2080                skb_put(skb, alloclen);
2081
2082                skb_shinfo(skb)->nr_frags++;
2083                skb->data_len += hlen - swivel;
2084                skb->truesize += hlen - swivel;
2085                skb->len      += hlen - swivel;
2086
2087                get_page(page->buffer);
2088                frag->page = page->buffer;
2089                frag->page_offset = off;
2090                frag->size = hlen - swivel;
2091
2092                /* any more data? */
2093                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2094                        hlen = dlen;
2095                        off = 0;
2096
2097                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2098                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2099                        pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2100                                            hlen + cp->crc_size,
2101                                            PCI_DMA_FROMDEVICE);
2102                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2103                                            hlen + cp->crc_size,
2104                                            PCI_DMA_FROMDEVICE);
2105
2106                        skb_shinfo(skb)->nr_frags++;
2107                        skb->data_len += hlen;
2108                        skb->len      += hlen;
2109                        frag++;
2110
2111                        get_page(page->buffer);
2112                        frag->page = page->buffer;
2113                        frag->page_offset = 0;
2114                        frag->size = hlen;
2115                        RX_USED_ADD(page, hlen + cp->crc_size);
2116                }
2117
2118                if (cp->crc_size) {
2119                        addr = cas_page_map(page->buffer);
2120                        crcaddr  = addr + off + hlen;
2121                }
2122
2123        } else {
2124                /* copying packet */
2125                if (!dlen)
2126                        goto end_copy_pkt;
2127
2128                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2129                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2130                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2131                hlen = min(cp->page_size - off, dlen);
2132                if (hlen < 0) {
2133                        if (netif_msg_rx_err(cp)) {
2134                                printk(KERN_DEBUG "%s: rx page overflow: "
2135                                       "%d\n", cp->dev->name, hlen);
2136                        }
2137                        dev_kfree_skb_irq(skb);
2138                        return -1;
2139                }
2140                i = hlen;
2141                if (i == dlen) /* attach FCS */
2142                        i += cp->crc_size;
2143                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2144                                    PCI_DMA_FROMDEVICE);
2145                addr = cas_page_map(page->buffer);
2146                memcpy(p, addr + off, i);
2147                pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2148                                    PCI_DMA_FROMDEVICE);
2149                cas_page_unmap(addr);
2150                if (p == (char *) skb->data) /* not split */
2151                        RX_USED_ADD(page, cp->mtu_stride);
2152                else
2153                        RX_USED_ADD(page, i);
2154
2155                /* any more data? */
2156                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2157                        p += hlen;
2158                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2159                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2160                        pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2161                                            dlen + cp->crc_size,
2162                                            PCI_DMA_FROMDEVICE);
2163                        addr = cas_page_map(page->buffer);
2164                        memcpy(p, addr, dlen + cp->crc_size);
2165                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2166                                            dlen + cp->crc_size,
2167                                            PCI_DMA_FROMDEVICE);
2168                        cas_page_unmap(addr);
2169                        RX_USED_ADD(page, dlen + cp->crc_size);
2170                }
2171end_copy_pkt:
2172                if (cp->crc_size) {
2173                        addr    = NULL;
2174                        crcaddr = skb->data + alloclen;
2175                }
2176                skb_put(skb, alloclen);
2177        }
2178
2179        csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2180        if (cp->crc_size) {
2181                /* checksum includes FCS. strip it out. */
2182                csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2183                                              csum_unfold(csum)));
2184                if (addr)
2185                        cas_page_unmap(addr);
2186        }
2187        skb->protocol = eth_type_trans(skb, cp->dev);
2188        if (skb->protocol == htons(ETH_P_IP)) {
2189                skb->csum = csum_unfold(~csum);
2190                skb->ip_summed = CHECKSUM_COMPLETE;
2191        } else
2192                skb->ip_summed = CHECKSUM_NONE;
2193        return len;
2194}
2195
2196
2197/* we can handle up to 64 rx flows at a time. we do the same thing
2198 * as nonreassm except that we batch up the buffers.
2199 * NOTE: we currently just treat each flow as a bunch of packets that
2200 *       we pass up. a better way would be to coalesce the packets
2201 *       into a jumbo packet. to do that, we need to do the following:
2202 *       1) the first packet will have a clean split between header and
2203 *          data. save both.
2204 *       2) each time the next flow packet comes in, extend the
2205 *          data length and merge the checksums.
2206 *       3) on flow release, fix up the header.
2207 *       4) make sure the higher layer doesn't care.
2208 * because packets get coalesced, we shouldn't run into fragment count
2209 * issues.
2210 */
2211static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2212                                   struct sk_buff *skb)
2213{
2214        int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2215        struct sk_buff_head *flow = &cp->rx_flows[flowid];
2216
2217        /* this is protected at a higher layer, so no need to
2218         * do any additional locking here. stick the buffer
2219         * at the end.
2220         */
2221        __skb_queue_tail(flow, skb);
2222        if (words[0] & RX_COMP1_RELEASE_FLOW) {
2223                while ((skb = __skb_dequeue(flow))) {
2224                        cas_skb_release(skb);
2225                }
2226        }
2227}
2228
2229/* put rx descriptor back on ring. if a buffer is in use by a higher
2230 * layer, this will need to put in a replacement.
2231 */
2232static void cas_post_page(struct cas *cp, const int ring, const int index)
2233{
2234        cas_page_t *new;
2235        int entry;
2236
2237        entry = cp->rx_old[ring];
2238
2239        new = cas_page_swap(cp, ring, index);
2240        cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2241        cp->init_rxds[ring][entry].index  =
2242                cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2243                            CAS_BASE(RX_INDEX_RING, ring));
2244
2245        entry = RX_DESC_ENTRY(ring, entry + 1);
2246        cp->rx_old[ring] = entry;
2247
2248        if (entry % 4)
2249                return;
2250
2251        if (ring == 0)
2252                writel(entry, cp->regs + REG_RX_KICK);
2253        else if ((N_RX_DESC_RINGS > 1) &&
2254                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2255                writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2256}
2257
2258
2259/* only when things are bad */
2260static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2261{
2262        unsigned int entry, last, count, released;
2263        int cluster;
2264        cas_page_t **page = cp->rx_pages[ring];
2265
2266        entry = cp->rx_old[ring];
2267
2268        if (netif_msg_intr(cp))
2269                printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2270                       cp->dev->name, ring, entry);
2271
2272        cluster = -1;
2273        count = entry & 0x3;
2274        last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2275        released = 0;
2276        while (entry != last) {
2277                /* make a new buffer if it's still in use */
2278                if (page_count(page[entry]->buffer) > 1) {
2279                        cas_page_t *new = cas_page_dequeue(cp);
2280                        if (!new) {
2281                                /* let the timer know that we need to
2282                                 * do this again
2283                                 */
2284                                cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2285                                if (!timer_pending(&cp->link_timer))
2286                                        mod_timer(&cp->link_timer, jiffies +
2287                                                  CAS_LINK_FAST_TIMEOUT);
2288                                cp->rx_old[ring]  = entry;
2289                                cp->rx_last[ring] = num ? num - released : 0;
2290                                return -ENOMEM;
2291                        }
2292                        spin_lock(&cp->rx_inuse_lock);
2293                        list_add(&page[entry]->list, &cp->rx_inuse_list);
2294                        spin_unlock(&cp->rx_inuse_lock);
2295                        cp->init_rxds[ring][entry].buffer =
2296                                cpu_to_le64(new->dma_addr);
2297                        page[entry] = new;
2298
2299                }
2300
2301                if (++count == 4) {
2302                        cluster = entry;
2303                        count = 0;
2304                }
2305                released++;
2306                entry = RX_DESC_ENTRY(ring, entry + 1);
2307        }
2308        cp->rx_old[ring] = entry;
2309
2310        if (cluster < 0)
2311                return 0;
2312
2313        if (ring == 0)
2314                writel(cluster, cp->regs + REG_RX_KICK);
2315        else if ((N_RX_DESC_RINGS > 1) &&
2316                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2317                writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2318        return 0;
2319}
2320
2321
2322/* process a completion ring. packets are set up in three basic ways:
2323 * small packets: should be copied header + data in single buffer.
2324 * large packets: header and data in a single buffer.
2325 * split packets: header in a separate buffer from data.
2326 *                data may be in multiple pages. data may be > 256
2327 *                bytes but in a single page.
2328 *
2329 * NOTE: RX page posting is done in this routine as well. while there's
2330 *       the capability of using multiple RX completion rings, it isn't
2331 *       really worthwhile due to the fact that the page posting will
2332 *       force serialization on the single descriptor ring.
2333 */
2334static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2335{
2336        struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2337        int entry, drops;
2338        int npackets = 0;
2339
2340        if (netif_msg_intr(cp))
2341                printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2342                       cp->dev->name, ring,
2343                       readl(cp->regs + REG_RX_COMP_HEAD),
2344                       cp->rx_new[ring]);
2345
2346        entry = cp->rx_new[ring];
2347        drops = 0;
2348        while (1) {
2349                struct cas_rx_comp *rxc = rxcs + entry;
2350                struct sk_buff *uninitialized_var(skb);
2351                int type, len;
2352                u64 words[4];
2353                int i, dring;
2354
2355                words[0] = le64_to_cpu(rxc->word1);
2356                words[1] = le64_to_cpu(rxc->word2);
2357                words[2] = le64_to_cpu(rxc->word3);
2358                words[3] = le64_to_cpu(rxc->word4);
2359
2360                /* don't touch if still owned by hw */
2361                type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2362                if (type == 0)
2363                        break;
2364
2365                /* hw hasn't cleared the zero bit yet */
2366                if (words[3] & RX_COMP4_ZERO) {
2367                        break;
2368                }
2369
2370                /* get info on the packet */
2371                if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2372                        spin_lock(&cp->stat_lock[ring]);
2373                        cp->net_stats[ring].rx_errors++;
2374                        if (words[3] & RX_COMP4_LEN_MISMATCH)
2375                                cp->net_stats[ring].rx_length_errors++;
2376                        if (words[3] & RX_COMP4_BAD)
2377                                cp->net_stats[ring].rx_crc_errors++;
2378                        spin_unlock(&cp->stat_lock[ring]);
2379
2380                        /* We'll just return it to Cassini. */
2381                drop_it:
2382                        spin_lock(&cp->stat_lock[ring]);
2383                        ++cp->net_stats[ring].rx_dropped;
2384                        spin_unlock(&cp->stat_lock[ring]);
2385                        goto next;
2386                }
2387
2388                len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2389                if (len < 0) {
2390                        ++drops;
2391                        goto drop_it;
2392                }
2393
2394                /* see if it's a flow re-assembly or not. the driver
2395                 * itself handles release back up.
2396                 */
2397                if (RX_DONT_BATCH || (type == 0x2)) {
2398                        /* non-reassm: these always get released */
2399                        cas_skb_release(skb);
2400                } else {
2401                        cas_rx_flow_pkt(cp, words, skb);
2402                }
2403
2404                spin_lock(&cp->stat_lock[ring]);
2405                cp->net_stats[ring].rx_packets++;
2406                cp->net_stats[ring].rx_bytes += len;
2407                spin_unlock(&cp->stat_lock[ring]);
2408
2409        next:
2410                npackets++;
2411
2412                /* should it be released? */
2413                if (words[0] & RX_COMP1_RELEASE_HDR) {
2414                        i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2415                        dring = CAS_VAL(RX_INDEX_RING, i);
2416                        i = CAS_VAL(RX_INDEX_NUM, i);
2417                        cas_post_page(cp, dring, i);
2418                }
2419
2420                if (words[0] & RX_COMP1_RELEASE_DATA) {
2421                        i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2422                        dring = CAS_VAL(RX_INDEX_RING, i);
2423                        i = CAS_VAL(RX_INDEX_NUM, i);
2424                        cas_post_page(cp, dring, i);
2425                }
2426
2427                if (words[0] & RX_COMP1_RELEASE_NEXT) {
2428                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2429                        dring = CAS_VAL(RX_INDEX_RING, i);
2430                        i = CAS_VAL(RX_INDEX_NUM, i);
2431                        cas_post_page(cp, dring, i);
2432                }
2433
2434                /* skip to the next entry */
2435                entry = RX_COMP_ENTRY(ring, entry + 1 +
2436                                      CAS_VAL(RX_COMP1_SKIP, words[0]));
2437#ifdef USE_NAPI
2438                if (budget && (npackets >= budget))
2439                        break;
2440#endif
2441        }
2442        cp->rx_new[ring] = entry;
2443
2444        if (drops)
2445                printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2446                       cp->dev->name);
2447        return npackets;
2448}
2449
2450
2451/* put completion entries back on the ring */
2452static void cas_post_rxcs_ringN(struct net_device *dev,
2453                                struct cas *cp, int ring)
2454{
2455        struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2456        int last, entry;
2457
2458        last = cp->rx_cur[ring];
2459        entry = cp->rx_new[ring];
2460        if (netif_msg_intr(cp))
2461                printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2462                       dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2463                       entry);
2464
2465        /* zero and re-mark descriptors */
2466        while (last != entry) {
2467                cas_rxc_init(rxc + last);
2468                last = RX_COMP_ENTRY(ring, last + 1);
2469        }
2470        cp->rx_cur[ring] = last;
2471
2472        if (ring == 0)
2473                writel(last, cp->regs + REG_RX_COMP_TAIL);
2474        else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2475                writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2476}
2477
2478
2479
2480/* cassini can use all four PCI interrupts for the completion ring.
2481 * rings 3 and 4 are identical
2482 */
2483#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2484static inline void cas_handle_irqN(struct net_device *dev,
2485                                   struct cas *cp, const u32 status,
2486                                   const int ring)
2487{
2488        if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2489                cas_post_rxcs_ringN(dev, cp, ring);
2490}
2491
2492static irqreturn_t cas_interruptN(int irq, void *dev_id)
2493{
2494        struct net_device *dev = dev_id;
2495        struct cas *cp = netdev_priv(dev);
2496        unsigned long flags;
2497        int ring;
2498        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2499
2500        /* check for shared irq */
2501        if (status == 0)
2502                return IRQ_NONE;
2503
2504        ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2505        spin_lock_irqsave(&cp->lock, flags);
2506        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2507#ifdef USE_NAPI
2508                cas_mask_intr(cp);
2509                napi_schedule(&cp->napi);
2510#else
2511                cas_rx_ringN(cp, ring, 0);
2512#endif
2513                status &= ~INTR_RX_DONE_ALT;
2514        }
2515
2516        if (status)
2517                cas_handle_irqN(dev, cp, status, ring);
2518        spin_unlock_irqrestore(&cp->lock, flags);
2519        return IRQ_HANDLED;
2520}
2521#endif
2522
2523#ifdef USE_PCI_INTB
2524/* everything but rx packets */
2525static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2526{
2527        if (status & INTR_RX_BUF_UNAVAIL_1) {
2528                /* Frame arrived, no free RX buffers available.
2529                 * NOTE: we can get this on a link transition. */
2530                cas_post_rxds_ringN(cp, 1, 0);
2531                spin_lock(&cp->stat_lock[1]);
2532                cp->net_stats[1].rx_dropped++;
2533                spin_unlock(&cp->stat_lock[1]);
2534        }
2535
2536        if (status & INTR_RX_BUF_AE_1)
2537                cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2538                                    RX_AE_FREEN_VAL(1));
2539
2540        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2541                cas_post_rxcs_ringN(cp, 1);
2542}
2543
2544/* ring 2 handles a few more events than 3 and 4 */
2545static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2546{
2547        struct net_device *dev = dev_id;
2548        struct cas *cp = netdev_priv(dev);
2549        unsigned long flags;
2550        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2551
2552        /* check for shared interrupt */
2553        if (status == 0)
2554                return IRQ_NONE;
2555
2556        spin_lock_irqsave(&cp->lock, flags);
2557        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2558#ifdef USE_NAPI
2559                cas_mask_intr(cp);
2560                napi_schedule(&cp->napi);
2561#else
2562                cas_rx_ringN(cp, 1, 0);
2563#endif
2564                status &= ~INTR_RX_DONE_ALT;
2565        }
2566        if (status)
2567                cas_handle_irq1(cp, status);
2568        spin_unlock_irqrestore(&cp->lock, flags);
2569        return IRQ_HANDLED;
2570}
2571#endif
2572
2573static inline void cas_handle_irq(struct net_device *dev,
2574                                  struct cas *cp, const u32 status)
2575{
2576        /* housekeeping interrupts */
2577        if (status & INTR_ERROR_MASK)
2578                cas_abnormal_irq(dev, cp, status);
2579
2580        if (status & INTR_RX_BUF_UNAVAIL) {
2581                /* Frame arrived, no free RX buffers available.
2582                 * NOTE: we can get this on a link transition.
2583                 */
2584                cas_post_rxds_ringN(cp, 0, 0);
2585                spin_lock(&cp->stat_lock[0]);
2586                cp->net_stats[0].rx_dropped++;
2587                spin_unlock(&cp->stat_lock[0]);
2588        } else if (status & INTR_RX_BUF_AE) {
2589                cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2590                                    RX_AE_FREEN_VAL(0));
2591        }
2592
2593        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2594                cas_post_rxcs_ringN(dev, cp, 0);
2595}
2596
2597static irqreturn_t cas_interrupt(int irq, void *dev_id)
2598{
2599        struct net_device *dev = dev_id;
2600        struct cas *cp = netdev_priv(dev);
2601        unsigned long flags;
2602        u32 status = readl(cp->regs + REG_INTR_STATUS);
2603
2604        if (status == 0)
2605                return IRQ_NONE;
2606
2607        spin_lock_irqsave(&cp->lock, flags);
2608        if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2609                cas_tx(dev, cp, status);
2610                status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2611        }
2612
2613        if (status & INTR_RX_DONE) {
2614#ifdef USE_NAPI
2615                cas_mask_intr(cp);
2616                napi_schedule(&cp->napi);
2617#else
2618                cas_rx_ringN(cp, 0, 0);
2619#endif
2620                status &= ~INTR_RX_DONE;
2621        }
2622
2623        if (status)
2624                cas_handle_irq(dev, cp, status);
2625        spin_unlock_irqrestore(&cp->lock, flags);
2626        return IRQ_HANDLED;
2627}
2628
2629
2630#ifdef USE_NAPI
2631static int cas_poll(struct napi_struct *napi, int budget)
2632{
2633        struct cas *cp = container_of(napi, struct cas, napi);
2634        struct net_device *dev = cp->dev;
2635        int i, enable_intr, credits;
2636        u32 status = readl(cp->regs + REG_INTR_STATUS);
2637        unsigned long flags;
2638
2639        spin_lock_irqsave(&cp->lock, flags);
2640        cas_tx(dev, cp, status);
2641        spin_unlock_irqrestore(&cp->lock, flags);
2642
2643        /* NAPI rx packets. we spread the credits across all of the
2644         * rxc rings
2645         *
2646         * to make sure we're fair with the work we loop through each
2647         * ring N_RX_COMP_RING times with a request of
2648         * budget / N_RX_COMP_RINGS
2649         */
2650        enable_intr = 1;
2651        credits = 0;
2652        for (i = 0; i < N_RX_COMP_RINGS; i++) {
2653                int j;
2654                for (j = 0; j < N_RX_COMP_RINGS; j++) {
2655                        credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2656                        if (credits >= budget) {
2657                                enable_intr = 0;
2658                                goto rx_comp;
2659                        }
2660                }
2661        }
2662
2663rx_comp:
2664        /* final rx completion */
2665        spin_lock_irqsave(&cp->lock, flags);
2666        if (status)
2667                cas_handle_irq(dev, cp, status);
2668
2669#ifdef USE_PCI_INTB
2670        if (N_RX_COMP_RINGS > 1) {
2671                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2672                if (status)
2673                        cas_handle_irq1(dev, cp, status);
2674        }
2675#endif
2676
2677#ifdef USE_PCI_INTC
2678        if (N_RX_COMP_RINGS > 2) {
2679                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2680                if (status)
2681                        cas_handle_irqN(dev, cp, status, 2);
2682        }
2683#endif
2684
2685#ifdef USE_PCI_INTD
2686        if (N_RX_COMP_RINGS > 3) {
2687                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2688                if (status)
2689                        cas_handle_irqN(dev, cp, status, 3);
2690        }
2691#endif
2692        spin_unlock_irqrestore(&cp->lock, flags);
2693        if (enable_intr) {
2694                napi_complete(napi);
2695                cas_unmask_intr(cp);
2696        }
2697        return credits;
2698}
2699#endif
2700
2701#ifdef CONFIG_NET_POLL_CONTROLLER
2702static void cas_netpoll(struct net_device *dev)
2703{
2704        struct cas *cp = netdev_priv(dev);
2705
2706        cas_disable_irq(cp, 0);
2707        cas_interrupt(cp->pdev->irq, dev);
2708        cas_enable_irq(cp, 0);
2709
2710#ifdef USE_PCI_INTB
2711        if (N_RX_COMP_RINGS > 1) {
2712                /* cas_interrupt1(); */
2713        }
2714#endif
2715#ifdef USE_PCI_INTC
2716        if (N_RX_COMP_RINGS > 2) {
2717                /* cas_interruptN(); */
2718        }
2719#endif
2720#ifdef USE_PCI_INTD
2721        if (N_RX_COMP_RINGS > 3) {
2722                /* cas_interruptN(); */
2723        }
2724#endif
2725}
2726#endif
2727
2728static void cas_tx_timeout(struct net_device *dev)
2729{
2730        struct cas *cp = netdev_priv(dev);
2731
2732        printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2733        if (!cp->hw_running) {
2734                printk("%s: hrm.. hw not running!\n", dev->name);
2735                return;
2736        }
2737
2738        printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2739               dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2740
2741        printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2742               dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2743
2744        printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2745               "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2746               dev->name,
2747               readl(cp->regs + REG_TX_CFG),
2748               readl(cp->regs + REG_MAC_TX_STATUS),
2749               readl(cp->regs + REG_MAC_TX_CFG),
2750               readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2751               readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2752               readl(cp->regs + REG_TX_FIFO_READ_PTR),
2753               readl(cp->regs + REG_TX_SM_1),
2754               readl(cp->regs + REG_TX_SM_2));
2755
2756        printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2757               dev->name,
2758               readl(cp->regs + REG_RX_CFG),
2759               readl(cp->regs + REG_MAC_RX_STATUS),
2760               readl(cp->regs + REG_MAC_RX_CFG));
2761
2762        printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2763               dev->name,
2764               readl(cp->regs + REG_HP_STATE_MACHINE),
2765               readl(cp->regs + REG_HP_STATUS0),
2766               readl(cp->regs + REG_HP_STATUS1),
2767               readl(cp->regs + REG_HP_STATUS2));
2768
2769#if 1
2770        atomic_inc(&cp->reset_task_pending);
2771        atomic_inc(&cp->reset_task_pending_all);
2772        schedule_work(&cp->reset_task);
2773#else
2774        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2775        schedule_work(&cp->reset_task);
2776#endif
2777}
2778
2779static inline int cas_intme(int ring, int entry)
2780{
2781        /* Algorithm: IRQ every 1/2 of descriptors. */
2782        if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2783                return 1;
2784        return 0;
2785}
2786
2787
2788static void cas_write_txd(struct cas *cp, int ring, int entry,
2789                          dma_addr_t mapping, int len, u64 ctrl, int last)
2790{
2791        struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2792
2793        ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2794        if (cas_intme(ring, entry))
2795                ctrl |= TX_DESC_INTME;
2796        if (last)
2797                ctrl |= TX_DESC_EOF;
2798        txd->control = cpu_to_le64(ctrl);
2799        txd->buffer = cpu_to_le64(mapping);
2800}
2801
2802static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2803                                const int entry)
2804{
2805        return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2806}
2807
2808static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2809                                     const int entry, const int tentry)
2810{
2811        cp->tx_tiny_use[ring][tentry].nbufs++;
2812        cp->tx_tiny_use[ring][entry].used = 1;
2813        return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2814}
2815
2816static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2817                                    struct sk_buff *skb)
2818{
2819        struct net_device *dev = cp->dev;
2820        int entry, nr_frags, frag, tabort, tentry;
2821        dma_addr_t mapping;
2822        unsigned long flags;
2823        u64 ctrl;
2824        u32 len;
2825
2826        spin_lock_irqsave(&cp->tx_lock[ring], flags);
2827
2828        /* This is a hard error, log it. */
2829        if (TX_BUFFS_AVAIL(cp, ring) <=
2830            CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2831                netif_stop_queue(dev);
2832                spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2833                printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2834                       "queue awake!\n", dev->name);
2835                return 1;
2836        }
2837
2838        ctrl = 0;
2839        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2840                const u64 csum_start_off = skb_transport_offset(skb);
2841                const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2842
2843                ctrl =  TX_DESC_CSUM_EN |
2844                        CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2845                        CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2846        }
2847
2848        entry = cp->tx_new[ring];
2849        cp->tx_skbs[ring][entry] = skb;
2850
2851        nr_frags = skb_shinfo(skb)->nr_frags;
2852        len = skb_headlen(skb);
2853        mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2854                               offset_in_page(skb->data), len,
2855                               PCI_DMA_TODEVICE);
2856
2857        tentry = entry;
2858        tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2859        if (unlikely(tabort)) {
2860                /* NOTE: len is always >  tabort */
2861                cas_write_txd(cp, ring, entry, mapping, len - tabort,
2862                              ctrl | TX_DESC_SOF, 0);
2863                entry = TX_DESC_NEXT(ring, entry);
2864
2865                skb_copy_from_linear_data_offset(skb, len - tabort,
2866                              tx_tiny_buf(cp, ring, entry), tabort);
2867                mapping = tx_tiny_map(cp, ring, entry, tentry);
2868                cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2869                              (nr_frags == 0));
2870        } else {
2871                cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2872                              TX_DESC_SOF, (nr_frags == 0));
2873        }
2874        entry = TX_DESC_NEXT(ring, entry);
2875
2876        for (frag = 0; frag < nr_frags; frag++) {
2877                skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2878
2879                len = fragp->size;
2880                mapping = pci_map_page(cp->pdev, fragp->page,
2881                                       fragp->page_offset, len,
2882                                       PCI_DMA_TODEVICE);
2883
2884                tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2885                if (unlikely(tabort)) {
2886                        void *addr;
2887
2888                        /* NOTE: len is always > tabort */
2889                        cas_write_txd(cp, ring, entry, mapping, len - tabort,
2890                                      ctrl, 0);
2891                        entry = TX_DESC_NEXT(ring, entry);
2892
2893                        addr = cas_page_map(fragp->page);
2894                        memcpy(tx_tiny_buf(cp, ring, entry),
2895                               addr + fragp->page_offset + len - tabort,
2896                               tabort);
2897                        cas_page_unmap(addr);
2898                        mapping = tx_tiny_map(cp, ring, entry, tentry);
2899                        len     = tabort;
2900                }
2901
2902                cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2903                              (frag + 1 == nr_frags));
2904                entry = TX_DESC_NEXT(ring, entry);
2905        }
2906
2907        cp->tx_new[ring] = entry;
2908        if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2909                netif_stop_queue(dev);
2910
2911        if (netif_msg_tx_queued(cp))
2912                printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2913                       "avail %d\n",
2914                       dev->name, ring, entry, skb->len,
2915                       TX_BUFFS_AVAIL(cp, ring));
2916        writel(entry, cp->regs + REG_TX_KICKN(ring));
2917        spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2918        return 0;
2919}
2920
2921static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2922{
2923        struct cas *cp = netdev_priv(dev);
2924
2925        /* this is only used as a load-balancing hint, so it doesn't
2926         * need to be SMP safe
2927         */
2928        static int ring;
2929
2930        if (skb_padto(skb, cp->min_frame_size))
2931                return NETDEV_TX_OK;
2932
2933        /* XXX: we need some higher-level QoS hooks to steer packets to
2934         *      individual queues.
2935         */
2936        if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2937                return NETDEV_TX_BUSY;
2938        dev->trans_start = jiffies;
2939        return NETDEV_TX_OK;
2940}
2941
2942static void cas_init_tx_dma(struct cas *cp)
2943{
2944        u64 desc_dma = cp->block_dvma;
2945        unsigned long off;
2946        u32 val;
2947        int i;
2948
2949        /* set up tx completion writeback registers. must be 8-byte aligned */
2950#ifdef USE_TX_COMPWB
2951        off = offsetof(struct cas_init_block, tx_compwb);
2952        writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2953        writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2954#endif
2955
2956        /* enable completion writebacks, enable paced mode,
2957         * disable read pipe, and disable pre-interrupt compwbs
2958         */
2959        val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2960                TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2961                TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2962                TX_CFG_INTR_COMPWB_DIS;
2963
2964        /* write out tx ring info and tx desc bases */
2965        for (i = 0; i < MAX_TX_RINGS; i++) {
2966                off = (unsigned long) cp->init_txds[i] -
2967                        (unsigned long) cp->init_block;
2968
2969                val |= CAS_TX_RINGN_BASE(i);
2970                writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2971                writel((desc_dma + off) & 0xffffffff, cp->regs +
2972                       REG_TX_DBN_LOW(i));
2973                /* don't zero out the kick register here as the system
2974                 * will wedge
2975                 */
2976        }
2977        writel(val, cp->regs + REG_TX_CFG);
2978
2979        /* program max burst sizes. these numbers should be different
2980         * if doing QoS.
2981         */
2982#ifdef USE_QOS
2983        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2984        writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2985        writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2986        writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2987#else
2988        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2989        writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2990        writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2991        writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2992#endif
2993}
2994
2995/* Must be invoked under cp->lock. */
2996static inline void cas_init_dma(struct cas *cp)
2997{
2998        cas_init_tx_dma(cp);
2999        cas_init_rx_dma(cp);
3000}
3001
3002/* Must be invoked under cp->lock. */
3003static u32 cas_setup_multicast(struct cas *cp)
3004{
3005        u32 rxcfg = 0;
3006        int i;
3007
3008        if (cp->dev->flags & IFF_PROMISC) {
3009                rxcfg |= MAC_RX_CFG_PROMISC_EN;
3010
3011        } else if (cp->dev->flags & IFF_ALLMULTI) {
3012                for (i=0; i < 16; i++)
3013                        writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3014                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3015
3016        } else {
3017                u16 hash_table[16];
3018                u32 crc;
3019                struct dev_mc_list *dmi = cp->dev->mc_list;
3020                int i;
3021
3022                /* use the alternate mac address registers for the
3023                 * first 15 multicast addresses
3024                 */
3025                for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3026                        if (!dmi) {
3027                                writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3028                                writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3029                                writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3030                                continue;
3031                        }
3032                        writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
3033                               cp->regs + REG_MAC_ADDRN(i*3 + 0));
3034                        writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3035                               cp->regs + REG_MAC_ADDRN(i*3 + 1));
3036                        writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3037                               cp->regs + REG_MAC_ADDRN(i*3 + 2));
3038                        dmi = dmi->next;
3039                }
3040
3041                /* use hw hash table for the next series of
3042                 * multicast addresses
3043                 */
3044                memset(hash_table, 0, sizeof(hash_table));
3045                while (dmi) {
3046                        crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3047                        crc >>= 24;
3048                        hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3049                        dmi = dmi->next;
3050                }
3051                for (i=0; i < 16; i++)
3052                        writel(hash_table[i], cp->regs +
3053                               REG_MAC_HASH_TABLEN(i));
3054                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3055        }
3056
3057        return rxcfg;
3058}
3059
3060/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3061static void cas_clear_mac_err(struct cas *cp)
3062{
3063        writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3064        writel(0, cp->regs + REG_MAC_COLL_FIRST);
3065        writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3066        writel(0, cp->regs + REG_MAC_COLL_LATE);
3067        writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3068        writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3069        writel(0, cp->regs + REG_MAC_RECV_FRAME);
3070        writel(0, cp->regs + REG_MAC_LEN_ERR);
3071        writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3072        writel(0, cp->regs + REG_MAC_FCS_ERR);
3073        writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3074}
3075
3076
3077static void cas_mac_reset(struct cas *cp)
3078{
3079        int i;
3080
3081        /* do both TX and RX reset */
3082        writel(0x1, cp->regs + REG_MAC_TX_RESET);
3083        writel(0x1, cp->regs + REG_MAC_RX_RESET);
3084
3085        /* wait for TX */
3086        i = STOP_TRIES;
3087        while (i-- > 0) {
3088                if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3089                        break;
3090                udelay(10);
3091        }
3092
3093        /* wait for RX */
3094        i = STOP_TRIES;
3095        while (i-- > 0) {
3096                if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3097                        break;
3098                udelay(10);
3099        }
3100
3101        if (readl(cp->regs + REG_MAC_TX_RESET) |
3102            readl(cp->regs + REG_MAC_RX_RESET))
3103                printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3104                       cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3105                       readl(cp->regs + REG_MAC_RX_RESET),
3106                       readl(cp->regs + REG_MAC_STATE_MACHINE));
3107}
3108
3109
3110/* Must be invoked under cp->lock. */
3111static void cas_init_mac(struct cas *cp)
3112{
3113        unsigned char *e = &cp->dev->dev_addr[0];
3114        int i;
3115#ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3116        u32 rxcfg;
3117#endif
3118        cas_mac_reset(cp);
3119
3120        /* setup core arbitration weight register */
3121        writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3122
3123        /* XXX Use pci_dma_burst_advice() */
3124#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3125        /* set the infinite burst register for chips that don't have
3126         * pci issues.
3127         */
3128        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3129                writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3130#endif
3131
3132        writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3133
3134        writel(0x00, cp->regs + REG_MAC_IPG0);
3135        writel(0x08, cp->regs + REG_MAC_IPG1);
3136        writel(0x04, cp->regs + REG_MAC_IPG2);
3137
3138        /* change later for 802.3z */
3139        writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3140
3141        /* min frame + FCS */
3142        writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3143
3144        /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3145         * specify the maximum frame size to prevent RX tag errors on
3146         * oversized frames.
3147         */
3148        writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3149               CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3150                        (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3151               cp->regs + REG_MAC_FRAMESIZE_MAX);
3152
3153        /* NOTE: crc_size is used as a surrogate for half-duplex.
3154         * workaround saturn half-duplex issue by increasing preamble
3155         * size to 65 bytes.
3156         */
3157        if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3158                writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3159        else
3160                writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3161        writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3162        writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3163        writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3164
3165        writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3166
3167        writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3168        writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3169        writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3170        writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3171        writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3172
3173        /* setup mac address in perfect filter array */
3174        for (i = 0; i < 45; i++)
3175                writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3176
3177        writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3178        writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3179        writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3180
3181        writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3182        writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3183        writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3184
3185#ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3186        cp->mac_rx_cfg = cas_setup_multicast(cp);
3187#else
3188        /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3189         * a writel does not seem to be necessary because Cassini
3190         * seems to preserve the configuration when we do the reset.
3191         * If the chip is in trouble, though, it is not clear if we
3192         * can really count on this behavior. cas_set_multicast uses
3193         * spin_lock_irqsave, but we are called only in cas_init_hw and
3194         * cas_init_hw is protected by cas_lock_all, which calls
3195         * spin_lock_irq (so it doesn't need to save the flags, and
3196         * we should be OK for the writel, as that is the only
3197         * difference).
3198         */
3199        cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3200        writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3201#endif
3202        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3203        cas_clear_mac_err(cp);
3204        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3205
3206        /* Setup MAC interrupts.  We want to get all of the interesting
3207         * counter expiration events, but we do not want to hear about
3208         * normal rx/tx as the DMA engine tells us that.
3209         */
3210        writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3211        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3212
3213        /* Don't enable even the PAUSE interrupts for now, we
3214         * make no use of those events other than to record them.
3215         */
3216        writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3217}
3218
3219/* Must be invoked under cp->lock. */
3220static void cas_init_pause_thresholds(struct cas *cp)
3221{
3222        /* Calculate pause thresholds.  Setting the OFF threshold to the
3223         * full RX fifo size effectively disables PAUSE generation
3224         */
3225        if (cp->rx_fifo_size <= (2 * 1024)) {
3226                cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3227        } else {
3228                int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3229                if (max_frame * 3 > cp->rx_fifo_size) {
3230                        cp->rx_pause_off = 7104;
3231                        cp->rx_pause_on  = 960;
3232                } else {
3233                        int off = (cp->rx_fifo_size - (max_frame * 2));
3234                        int on = off - max_frame;
3235                        cp->rx_pause_off = off;
3236                        cp->rx_pause_on = on;
3237                }
3238        }
3239}
3240
3241static int cas_vpd_match(const void __iomem *p, const char *str)
3242{
3243        int len = strlen(str) + 1;
3244        int i;
3245
3246        for (i = 0; i < len; i++) {
3247                if (readb(p + i) != str[i])
3248                        return 0;
3249        }
3250        return 1;
3251}
3252
3253
3254/* get the mac address by reading the vpd information in the rom.
3255 * also get the phy type and determine if there's an entropy generator.
3256 * NOTE: this is a bit convoluted for the following reasons:
3257 *  1) vpd info has order-dependent mac addresses for multinic cards
3258 *  2) the only way to determine the nic order is to use the slot
3259 *     number.
3260 *  3) fiber cards don't have bridges, so their slot numbers don't
3261 *     mean anything.
3262 *  4) we don't actually know we have a fiber card until after
3263 *     the mac addresses are parsed.
3264 */
3265static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3266                            const int offset)
3267{
3268        void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3269        void __iomem *base, *kstart;
3270        int i, len;
3271        int found = 0;
3272#define VPD_FOUND_MAC        0x01
3273#define VPD_FOUND_PHY        0x02
3274
3275        int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3276        int mac_off  = 0;
3277
3278        /* give us access to the PROM */
3279        writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3280               cp->regs + REG_BIM_LOCAL_DEV_EN);
3281
3282        /* check for an expansion rom */
3283        if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3284                goto use_random_mac_addr;
3285
3286        /* search for beginning of vpd */
3287        base = NULL;
3288        for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3289                /* check for PCIR */
3290                if ((readb(p + i + 0) == 0x50) &&
3291                    (readb(p + i + 1) == 0x43) &&
3292                    (readb(p + i + 2) == 0x49) &&
3293                    (readb(p + i + 3) == 0x52)) {
3294                        base = p + (readb(p + i + 8) |
3295                                    (readb(p + i + 9) << 8));
3296                        break;
3297                }
3298        }
3299
3300        if (!base || (readb(base) != 0x82))
3301                goto use_random_mac_addr;
3302
3303        i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3304        while (i < EXPANSION_ROM_SIZE) {
3305                if (readb(base + i) != 0x90) /* no vpd found */
3306                        goto use_random_mac_addr;
3307
3308                /* found a vpd field */
3309                len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3310
3311                /* extract keywords */
3312                kstart = base + i + 3;
3313                p = kstart;
3314                while ((p - kstart) < len) {
3315                        int klen = readb(p + 2);
3316                        int j;
3317                        char type;
3318
3319                        p += 3;
3320
3321                        /* look for the following things:
3322                         * -- correct length == 29
3323                         * 3 (type) + 2 (size) +
3324                         * 18 (strlen("local-mac-address") + 1) +
3325                         * 6 (mac addr)
3326                         * -- VPD Instance 'I'
3327                         * -- VPD Type Bytes 'B'
3328                         * -- VPD data length == 6
3329                         * -- property string == local-mac-address
3330                         *
3331                         * -- correct length == 24
3332                         * 3 (type) + 2 (size) +
3333                         * 12 (strlen("entropy-dev") + 1) +
3334                         * 7 (strlen("vms110") + 1)
3335                         * -- VPD Instance 'I'
3336                         * -- VPD Type String 'B'
3337                         * -- VPD data length == 7
3338                         * -- property string == entropy-dev
3339                         *
3340                         * -- correct length == 18
3341                         * 3 (type) + 2 (size) +
3342                         * 9 (strlen("phy-type") + 1) +
3343                         * 4 (strlen("pcs") + 1)
3344                         * -- VPD Instance 'I'
3345                         * -- VPD Type String 'S'
3346                         * -- VPD data length == 4
3347                         * -- property string == phy-type
3348                         *
3349                         * -- correct length == 23
3350                         * 3 (type) + 2 (size) +
3351                         * 14 (strlen("phy-interface") + 1) +
3352                         * 4 (strlen("pcs") + 1)
3353                         * -- VPD Instance 'I'
3354                         * -- VPD Type String 'S'
3355                         * -- VPD data length == 4
3356                         * -- property string == phy-interface
3357                         */
3358                        if (readb(p) != 'I')
3359                                goto next;
3360
3361                        /* finally, check string and length */
3362                        type = readb(p + 3);
3363                        if (type == 'B') {
3364                                if ((klen == 29) && readb(p + 4) == 6 &&
3365                                    cas_vpd_match(p + 5,
3366                                                  "local-mac-address")) {
3367                                        if (mac_off++ > offset)
3368                                                goto next;
3369
3370                                        /* set mac address */
3371                                        for (j = 0; j < 6; j++)
3372                                                dev_addr[j] =
3373                                                        readb(p + 23 + j);
3374                                        goto found_mac;
3375                                }
3376                        }
3377
3378                        if (type != 'S')
3379                                goto next;
3380
3381#ifdef USE_ENTROPY_DEV
3382                        if ((klen == 24) &&
3383                            cas_vpd_match(p + 5, "entropy-dev") &&
3384                            cas_vpd_match(p + 17, "vms110")) {
3385                                cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3386                                goto next;
3387                        }
3388#endif
3389
3390                        if (found & VPD_FOUND_PHY)
3391                                goto next;
3392
3393                        if ((klen == 18) && readb(p + 4) == 4 &&
3394                            cas_vpd_match(p + 5, "phy-type")) {
3395                                if (cas_vpd_match(p + 14, "pcs")) {
3396                                        phy_type = CAS_PHY_SERDES;
3397                                        goto found_phy;
3398                                }
3399                        }
3400
3401                        if ((klen == 23) && readb(p + 4) == 4 &&
3402                            cas_vpd_match(p + 5, "phy-interface")) {
3403                                if (cas_vpd_match(p + 19, "pcs")) {
3404                                        phy_type = CAS_PHY_SERDES;
3405                                        goto found_phy;
3406                                }
3407                        }
3408found_mac:
3409                        found |= VPD_FOUND_MAC;
3410                        goto next;
3411
3412found_phy:
3413                        found |= VPD_FOUND_PHY;
3414
3415next:
3416                        p += klen;
3417                }
3418                i += len + 3;
3419        }
3420
3421use_random_mac_addr:
3422        if (found & VPD_FOUND_MAC)
3423                goto done;
3424
3425        /* Sun MAC prefix then 3 random bytes. */
3426        printk(PFX "MAC address not found in ROM VPD\n");
3427        dev_addr[0] = 0x08;
3428        dev_addr[1] = 0x00;
3429        dev_addr[2] = 0x20;
3430        get_random_bytes(dev_addr + 3, 3);
3431
3432done:
3433        writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3434        return phy_type;
3435}
3436
3437/* check pci invariants */
3438static void cas_check_pci_invariants(struct cas *cp)
3439{
3440        struct pci_dev *pdev = cp->pdev;
3441
3442        cp->cas_flags = 0;
3443        if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3444            (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3445                if (pdev->revision >= CAS_ID_REVPLUS)
3446                        cp->cas_flags |= CAS_FLAG_REG_PLUS;
3447                if (pdev->revision < CAS_ID_REVPLUS02u)
3448                        cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3449
3450                /* Original Cassini supports HW CSUM, but it's not
3451                 * enabled by default as it can trigger TX hangs.
3452                 */
3453                if (pdev->revision < CAS_ID_REV2)
3454                        cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3455        } else {
3456                /* Only sun has original cassini chips.  */
3457                cp->cas_flags |= CAS_FLAG_REG_PLUS;
3458
3459                /* We use a flag because the same phy might be externally
3460                 * connected.
3461                 */
3462                if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3463                    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3464                        cp->cas_flags |= CAS_FLAG_SATURN;
3465        }
3466}
3467
3468
3469static int cas_check_invariants(struct cas *cp)
3470{
3471        struct pci_dev *pdev = cp->pdev;
3472        u32 cfg;
3473        int i;
3474
3475        /* get page size for rx buffers. */
3476        cp->page_order = 0;
3477#ifdef USE_PAGE_ORDER
3478        if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3479                /* see if we can allocate larger pages */
3480                struct page *page = alloc_pages(GFP_ATOMIC,
3481                                                CAS_JUMBO_PAGE_SHIFT -
3482                                                PAGE_SHIFT);
3483                if (page) {
3484                        __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3485                        cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3486                } else {
3487                        printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3488                }
3489        }
3490#endif
3491        cp->page_size = (PAGE_SIZE << cp->page_order);
3492
3493        /* Fetch the FIFO configurations. */
3494        cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3495        cp->rx_fifo_size = RX_FIFO_SIZE;
3496
3497        /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3498         * they're both connected.
3499         */
3500        cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3501                                        PCI_SLOT(pdev->devfn));
3502        if (cp->phy_type & CAS_PHY_SERDES) {
3503                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3504                return 0; /* no more checking needed */
3505        }
3506
3507        /* MII */
3508        cfg = readl(cp->regs + REG_MIF_CFG);
3509        if (cfg & MIF_CFG_MDIO_1) {
3510                cp->phy_type = CAS_PHY_MII_MDIO1;
3511        } else if (cfg & MIF_CFG_MDIO_0) {
3512                cp->phy_type = CAS_PHY_MII_MDIO0;
3513        }
3514
3515        cas_mif_poll(cp, 0);
3516        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3517
3518        for (i = 0; i < 32; i++) {
3519                u32 phy_id;
3520                int j;
3521
3522                for (j = 0; j < 3; j++) {
3523                        cp->phy_addr = i;
3524                        phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3525                        phy_id |= cas_phy_read(cp, MII_PHYSID2);
3526                        if (phy_id && (phy_id != 0xFFFFFFFF)) {
3527                                cp->phy_id = phy_id;
3528                                goto done;
3529                        }
3530                }
3531        }
3532        printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3533               readl(cp->regs + REG_MIF_STATE_MACHINE));
3534        return -1;
3535
3536done:
3537        /* see if we can do gigabit */
3538        cfg = cas_phy_read(cp, MII_BMSR);
3539        if ((cfg & CAS_BMSR_1000_EXTEND) &&
3540            cas_phy_read(cp, CAS_MII_1000_EXTEND))
3541                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3542        return 0;
3543}
3544
3545/* Must be invoked under cp->lock. */
3546static inline void cas_start_dma(struct cas *cp)
3547{
3548        int i;
3549        u32 val;
3550        int txfailed = 0;
3551
3552        /* enable dma */
3553        val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3554        writel(val, cp->regs + REG_TX_CFG);
3555        val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3556        writel(val, cp->regs + REG_RX_CFG);
3557
3558        /* enable the mac */
3559        val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3560        writel(val, cp->regs + REG_MAC_TX_CFG);
3561        val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3562        writel(val, cp->regs + REG_MAC_RX_CFG);
3563
3564        i = STOP_TRIES;
3565        while (i-- > 0) {
3566                val = readl(cp->regs + REG_MAC_TX_CFG);
3567                if ((val & MAC_TX_CFG_EN))
3568                        break;
3569                udelay(10);
3570        }
3571        if (i < 0) txfailed = 1;
3572        i = STOP_TRIES;
3573        while (i-- > 0) {
3574                val = readl(cp->regs + REG_MAC_RX_CFG);
3575                if ((val & MAC_RX_CFG_EN)) {
3576                        if (txfailed) {
3577                          printk(KERN_ERR
3578                                 "%s: enabling mac failed [tx:%08x:%08x].\n",
3579                                 cp->dev->name,
3580                                 readl(cp->regs + REG_MIF_STATE_MACHINE),
3581                                 readl(cp->regs + REG_MAC_STATE_MACHINE));
3582                        }
3583                        goto enable_rx_done;
3584                }
3585                udelay(10);
3586        }
3587        printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3588               cp->dev->name,
3589               (txfailed? "tx,rx":"rx"),
3590               readl(cp->regs + REG_MIF_STATE_MACHINE),
3591               readl(cp->regs + REG_MAC_STATE_MACHINE));
3592
3593enable_rx_done:
3594        cas_unmask_intr(cp); /* enable interrupts */
3595        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3596        writel(0, cp->regs + REG_RX_COMP_TAIL);
3597
3598        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3599                if (N_RX_DESC_RINGS > 1)
3600                        writel(RX_DESC_RINGN_SIZE(1) - 4,
3601                               cp->regs + REG_PLUS_RX_KICK1);
3602
3603                for (i = 1; i < N_RX_COMP_RINGS; i++)
3604                        writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3605        }
3606}
3607
3608/* Must be invoked under cp->lock. */
3609static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3610                                   int *pause)
3611{
3612        u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3613        *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3614        *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3615        if (val & PCS_MII_LPA_ASYM_PAUSE)
3616                *pause |= 0x10;
3617        *spd = 1000;
3618}
3619
3620/* Must be invoked under cp->lock. */
3621static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3622                                   int *pause)
3623{
3624        u32 val;
3625
3626        *fd = 0;
3627        *spd = 10;
3628        *pause = 0;
3629
3630        /* use GMII registers */
3631        val = cas_phy_read(cp, MII_LPA);
3632        if (val & CAS_LPA_PAUSE)
3633                *pause = 0x01;
3634
3635        if (val & CAS_LPA_ASYM_PAUSE)
3636                *pause |= 0x10;
3637
3638        if (val & LPA_DUPLEX)
3639                *fd = 1;
3640        if (val & LPA_100)
3641                *spd = 100;
3642
3643        if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3644                val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3645                if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3646                        *spd = 1000;
3647                if (val & CAS_LPA_1000FULL)
3648                        *fd = 1;
3649        }
3650}
3651
3652/* A link-up condition has occurred, initialize and enable the
3653 * rest of the chip.
3654 *
3655 * Must be invoked under cp->lock.
3656 */
3657static void cas_set_link_modes(struct cas *cp)
3658{
3659        u32 val;
3660        int full_duplex, speed, pause;
3661
3662        full_duplex = 0;
3663        speed = 10;
3664        pause = 0;
3665
3666        if (CAS_PHY_MII(cp->phy_type)) {
3667                cas_mif_poll(cp, 0);
3668                val = cas_phy_read(cp, MII_BMCR);
3669                if (val & BMCR_ANENABLE) {
3670                        cas_read_mii_link_mode(cp, &full_duplex, &speed,
3671                                               &pause);
3672                } else {
3673                        if (val & BMCR_FULLDPLX)
3674                                full_duplex = 1;
3675
3676                        if (val & BMCR_SPEED100)
3677                                speed = 100;
3678                        else if (val & CAS_BMCR_SPEED1000)
3679                                speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3680                                        1000 : 100;
3681                }
3682                cas_mif_poll(cp, 1);
3683
3684        } else {
3685                val = readl(cp->regs + REG_PCS_MII_CTRL);
3686                cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3687                if ((val & PCS_MII_AUTONEG_EN) == 0) {
3688                        if (val & PCS_MII_CTRL_DUPLEX)
3689                                full_duplex = 1;
3690                }
3691        }
3692
3693        if (netif_msg_link(cp))
3694                printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3695                       cp->dev->name, speed, (full_duplex ? "full" : "half"));
3696
3697        val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3698        if (CAS_PHY_MII(cp->phy_type)) {
3699                val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3700                if (!full_duplex)
3701                        val |= MAC_XIF_DISABLE_ECHO;
3702        }
3703        if (full_duplex)
3704                val |= MAC_XIF_FDPLX_LED;
3705        if (speed == 1000)
3706                val |= MAC_XIF_GMII_MODE;
3707        writel(val, cp->regs + REG_MAC_XIF_CFG);
3708
3709        /* deal with carrier and collision detect. */
3710        val = MAC_TX_CFG_IPG_EN;
3711        if (full_duplex) {
3712                val |= MAC_TX_CFG_IGNORE_CARRIER;
3713                val |= MAC_TX_CFG_IGNORE_COLL;
3714        } else {
3715#ifndef USE_CSMA_CD_PROTO
3716                val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3717                val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3718#endif
3719        }
3720        /* val now set up for REG_MAC_TX_CFG */
3721
3722        /* If gigabit and half-duplex, enable carrier extension
3723         * mode.  increase slot time to 512 bytes as well.
3724         * else, disable it and make sure slot time is 64 bytes.
3725         * also activate checksum bug workaround
3726         */
3727        if ((speed == 1000) && !full_duplex) {
3728                writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3729                       cp->regs + REG_MAC_TX_CFG);
3730
3731                val = readl(cp->regs + REG_MAC_RX_CFG);
3732                val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3733                writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3734                       cp->regs + REG_MAC_RX_CFG);
3735
3736                writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3737
3738                cp->crc_size = 4;
3739                /* minimum size gigabit frame at half duplex */
3740                cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3741
3742        } else {
3743                writel(val, cp->regs + REG_MAC_TX_CFG);
3744
3745                /* checksum bug workaround. don't strip FCS when in
3746                 * half-duplex mode
3747                 */
3748                val = readl(cp->regs + REG_MAC_RX_CFG);
3749                if (full_duplex) {
3750                        val |= MAC_RX_CFG_STRIP_FCS;
3751                        cp->crc_size = 0;
3752                        cp->min_frame_size = CAS_MIN_MTU;
3753                } else {
3754                        val &= ~MAC_RX_CFG_STRIP_FCS;
3755                        cp->crc_size = 4;
3756                        cp->min_frame_size = CAS_MIN_FRAME;
3757                }
3758                writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3759                       cp->regs + REG_MAC_RX_CFG);
3760                writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3761        }
3762
3763        if (netif_msg_link(cp)) {
3764                if (pause & 0x01) {
3765                        printk(KERN_INFO "%s: Pause is enabled "
3766                               "(rxfifo: %d off: %d on: %d)\n",
3767                               cp->dev->name,
3768                               cp->rx_fifo_size,
3769                               cp->rx_pause_off,
3770                               cp->rx_pause_on);
3771                } else if (pause & 0x10) {
3772                        printk(KERN_INFO "%s: TX pause enabled\n",
3773                               cp->dev->name);
3774                } else {
3775                        printk(KERN_INFO "%s: Pause is disabled\n",
3776                               cp->dev->name);
3777                }
3778        }
3779
3780        val = readl(cp->regs + REG_MAC_CTRL_CFG);
3781        val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3782        if (pause) { /* symmetric or asymmetric pause */
3783                val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3784                if (pause & 0x01) { /* symmetric pause */
3785                        val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3786                }
3787        }
3788        writel(val, cp->regs + REG_MAC_CTRL_CFG);
3789        cas_start_dma(cp);
3790}
3791
3792/* Must be invoked under cp->lock. */
3793static void cas_init_hw(struct cas *cp, int restart_link)
3794{
3795        if (restart_link)
3796                cas_phy_init(cp);
3797
3798        cas_init_pause_thresholds(cp);
3799        cas_init_mac(cp);
3800        cas_init_dma(cp);
3801
3802        if (restart_link) {
3803                /* Default aneg parameters */
3804                cp->timer_ticks = 0;
3805                cas_begin_auto_negotiation(cp, NULL);
3806        } else if (cp->lstate == link_up) {
3807                cas_set_link_modes(cp);
3808                netif_carrier_on(cp->dev);
3809        }
3810}
3811
3812/* Must be invoked under cp->lock. on earlier cassini boards,
3813 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3814 * let it settle out, and then restore pci state.
3815 */
3816static void cas_hard_reset(struct cas *cp)
3817{
3818        writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3819        udelay(20);
3820        pci_restore_state(cp->pdev);
3821}
3822
3823
3824static void cas_global_reset(struct cas *cp, int blkflag)
3825{
3826        int limit;
3827
3828        /* issue a global reset. don't use RSTOUT. */
3829        if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3830                /* For PCS, when the blkflag is set, we should set the
3831                 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3832                 * the last autonegotiation from being cleared.  We'll
3833                 * need some special handling if the chip is set into a
3834                 * loopback mode.
3835                 */
3836                writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3837                       cp->regs + REG_SW_RESET);
3838        } else {
3839                writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3840        }
3841
3842        /* need to wait at least 3ms before polling register */
3843        mdelay(3);
3844
3845        limit = STOP_TRIES;
3846        while (limit-- > 0) {
3847                u32 val = readl(cp->regs + REG_SW_RESET);
3848                if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3849                        goto done;
3850                udelay(10);
3851        }
3852        printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3853
3854done:
3855        /* enable various BIM interrupts */
3856        writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3857               BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3858
3859        /* clear out pci error status mask for handled errors.
3860         * we don't deal with DMA counter overflows as they happen
3861         * all the time.
3862         */
3863        writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3864                               PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3865                               PCI_ERR_BIM_DMA_READ), cp->regs +
3866               REG_PCI_ERR_STATUS_MASK);
3867
3868        /* set up for MII by default to address mac rx reset timeout
3869         * issue
3870         */
3871        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3872}
3873
3874static void cas_reset(struct cas *cp, int blkflag)
3875{
3876        u32 val;
3877
3878        cas_mask_intr(cp);
3879        cas_global_reset(cp, blkflag);
3880        cas_mac_reset(cp);
3881        cas_entropy_reset(cp);
3882
3883        /* disable dma engines. */
3884        val = readl(cp->regs + REG_TX_CFG);
3885        val &= ~TX_CFG_DMA_EN;
3886        writel(val, cp->regs + REG_TX_CFG);
3887
3888        val = readl(cp->regs + REG_RX_CFG);
3889        val &= ~RX_CFG_DMA_EN;
3890        writel(val, cp->regs + REG_RX_CFG);
3891
3892        /* program header parser */
3893        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3894            (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3895                cas_load_firmware(cp, CAS_HP_FIRMWARE);
3896        } else {
3897                cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3898        }
3899
3900        /* clear out error registers */
3901        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3902        cas_clear_mac_err(cp);
3903        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3904}
3905
3906/* Shut down the chip, must be called with pm_mutex held.  */
3907static void cas_shutdown(struct cas *cp)
3908{
3909        unsigned long flags;
3910
3911        /* Make us not-running to avoid timers respawning */
3912        cp->hw_running = 0;
3913
3914        del_timer_sync(&cp->link_timer);
3915
3916        /* Stop the reset task */
3917#if 0
3918        while (atomic_read(&cp->reset_task_pending_mtu) ||
3919               atomic_read(&cp->reset_task_pending_spare) ||
3920               atomic_read(&cp->reset_task_pending_all))
3921                schedule();
3922
3923#else
3924        while (atomic_read(&cp->reset_task_pending))
3925                schedule();
3926#endif
3927        /* Actually stop the chip */
3928        cas_lock_all_save(cp, flags);
3929        cas_reset(cp, 0);
3930        if (cp->cas_flags & CAS_FLAG_SATURN)
3931                cas_phy_powerdown(cp);
3932        cas_unlock_all_restore(cp, flags);
3933}
3934
3935static int cas_change_mtu(struct net_device *dev, int new_mtu)
3936{
3937        struct cas *cp = netdev_priv(dev);
3938
3939        if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3940                return -EINVAL;
3941
3942        dev->mtu = new_mtu;
3943        if (!netif_running(dev) || !netif_device_present(dev))
3944                return 0;
3945
3946        /* let the reset task handle it */
3947#if 1
3948        atomic_inc(&cp->reset_task_pending);
3949        if ((cp->phy_type & CAS_PHY_SERDES)) {
3950                atomic_inc(&cp->reset_task_pending_all);
3951        } else {
3952                atomic_inc(&cp->reset_task_pending_mtu);
3953        }
3954        schedule_work(&cp->reset_task);
3955#else
3956        atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3957                   CAS_RESET_ALL : CAS_RESET_MTU);
3958        printk(KERN_ERR "reset called in cas_change_mtu\n");
3959        schedule_work(&cp->reset_task);
3960#endif
3961
3962        flush_scheduled_work();
3963        return 0;
3964}
3965
3966static void cas_clean_txd(struct cas *cp, int ring)
3967{
3968        struct cas_tx_desc *txd = cp->init_txds[ring];
3969        struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3970        u64 daddr, dlen;
3971        int i, size;
3972
3973        size = TX_DESC_RINGN_SIZE(ring);
3974        for (i = 0; i < size; i++) {
3975                int frag;
3976
3977                if (skbs[i] == NULL)
3978                        continue;
3979
3980                skb = skbs[i];
3981                skbs[i] = NULL;
3982
3983                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3984                        int ent = i & (size - 1);
3985
3986                        /* first buffer is never a tiny buffer and so
3987                         * needs to be unmapped.
3988                         */
3989                        daddr = le64_to_cpu(txd[ent].buffer);
3990                        dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3991                                         le64_to_cpu(txd[ent].control));
3992                        pci_unmap_page(cp->pdev, daddr, dlen,
3993                                       PCI_DMA_TODEVICE);
3994
3995                        if (frag != skb_shinfo(skb)->nr_frags) {
3996                                i++;
3997
3998                                /* next buffer might by a tiny buffer.
3999                                 * skip past it.
4000                                 */
4001                                ent = i & (size - 1);
4002                                if (cp->tx_tiny_use[ring][ent].used)
4003                                        i++;
4004                        }
4005                }
4006                dev_kfree_skb_any(skb);
4007        }
4008
4009        /* zero out tiny buf usage */
4010        memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
4011}
4012
4013/* freed on close */
4014static inline void cas_free_rx_desc(struct cas *cp, int ring)
4015{
4016        cas_page_t **page = cp->rx_pages[ring];
4017        int i, size;
4018
4019        size = RX_DESC_RINGN_SIZE(ring);
4020        for (i = 0; i < size; i++) {
4021                if (page[i]) {
4022                        cas_page_free(cp, page[i]);
4023                        page[i] = NULL;
4024                }
4025        }
4026}
4027
4028static void cas_free_rxds(struct cas *cp)
4029{
4030        int i;
4031
4032        for (i = 0; i < N_RX_DESC_RINGS; i++)
4033                cas_free_rx_desc(cp, i);
4034}
4035
4036/* Must be invoked under cp->lock. */
4037static void cas_clean_rings(struct cas *cp)
4038{
4039        int i;
4040
4041        /* need to clean all tx rings */
4042        memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4043        memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4044        for (i = 0; i < N_TX_RINGS; i++)
4045                cas_clean_txd(cp, i);
4046
4047        /* zero out init block */
4048        memset(cp->init_block, 0, sizeof(struct cas_init_block));
4049        cas_clean_rxds(cp);
4050        cas_clean_rxcs(cp);
4051}
4052
4053/* allocated on open */
4054static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4055{
4056        cas_page_t **page = cp->rx_pages[ring];
4057        int size, i = 0;
4058
4059        size = RX_DESC_RINGN_SIZE(ring);
4060        for (i = 0; i < size; i++) {
4061                if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4062                        return -1;
4063        }
4064        return 0;
4065}
4066
4067static int cas_alloc_rxds(struct cas *cp)
4068{
4069        int i;
4070
4071        for (i = 0; i < N_RX_DESC_RINGS; i++) {
4072                if (cas_alloc_rx_desc(cp, i) < 0) {
4073                        cas_free_rxds(cp);
4074                        return -1;
4075                }
4076        }
4077        return 0;
4078}
4079
4080static void cas_reset_task(struct work_struct *work)
4081{
4082        struct cas *cp = container_of(work, struct cas, reset_task);
4083#if 0
4084        int pending = atomic_read(&cp->reset_task_pending);
4085#else
4086        int pending_all = atomic_read(&cp->reset_task_pending_all);
4087        int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4088        int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4089
4090        if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4091                /* We can have more tasks scheduled than actually
4092                 * needed.
4093                 */
4094                atomic_dec(&cp->reset_task_pending);
4095                return;
4096        }
4097#endif
4098        /* The link went down, we reset the ring, but keep
4099         * DMA stopped. Use this function for reset
4100         * on error as well.
4101         */
4102        if (cp->hw_running) {
4103                unsigned long flags;
4104
4105                /* Make sure we don't get interrupts or tx packets */
4106                netif_device_detach(cp->dev);
4107                cas_lock_all_save(cp, flags);
4108
4109                if (cp->opened) {
4110                        /* We call cas_spare_recover when we call cas_open.
4111                         * but we do not initialize the lists cas_spare_recover
4112                         * uses until cas_open is called.
4113                         */
4114                        cas_spare_recover(cp, GFP_ATOMIC);
4115                }
4116#if 1
4117                /* test => only pending_spare set */
4118                if (!pending_all && !pending_mtu)
4119                        goto done;
4120#else
4121                if (pending == CAS_RESET_SPARE)
4122                        goto done;
4123#endif
4124                /* when pending == CAS_RESET_ALL, the following
4125                 * call to cas_init_hw will restart auto negotiation.
4126                 * Setting the second argument of cas_reset to
4127                 * !(pending == CAS_RESET_ALL) will set this argument
4128                 * to 1 (avoiding reinitializing the PHY for the normal
4129                 * PCS case) when auto negotiation is not restarted.
4130                 */
4131#if 1
4132                cas_reset(cp, !(pending_all > 0));
4133                if (cp->opened)
4134                        cas_clean_rings(cp);
4135                cas_init_hw(cp, (pending_all > 0));
4136#else
4137                cas_reset(cp, !(pending == CAS_RESET_ALL));
4138                if (cp->opened)
4139                        cas_clean_rings(cp);
4140                cas_init_hw(cp, pending == CAS_RESET_ALL);
4141#endif
4142
4143done:
4144                cas_unlock_all_restore(cp, flags);
4145                netif_device_attach(cp->dev);
4146        }
4147#if 1
4148        atomic_sub(pending_all, &cp->reset_task_pending_all);
4149        atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4150        atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4151        atomic_dec(&cp->reset_task_pending);
4152#else
4153        atomic_set(&cp->reset_task_pending, 0);
4154#endif
4155}
4156
4157static void cas_link_timer(unsigned long data)
4158{
4159        struct cas *cp = (struct cas *) data;
4160        int mask, pending = 0, reset = 0;
4161        unsigned long flags;
4162
4163        if (link_transition_timeout != 0 &&
4164            cp->link_transition_jiffies_valid &&
4165            ((jiffies - cp->link_transition_jiffies) >
4166              (link_transition_timeout))) {
4167                /* One-second counter so link-down workaround doesn't
4168                 * cause resets to occur so fast as to fool the switch
4169                 * into thinking the link is down.
4170                 */
4171                cp->link_transition_jiffies_valid = 0;
4172        }
4173
4174        if (!cp->hw_running)
4175                return;
4176
4177        spin_lock_irqsave(&cp->lock, flags);
4178        cas_lock_tx(cp);
4179        cas_entropy_gather(cp);
4180
4181        /* If the link task is still pending, we just
4182         * reschedule the link timer
4183         */
4184#if 1
4185        if (atomic_read(&cp->reset_task_pending_all) ||
4186            atomic_read(&cp->reset_task_pending_spare) ||
4187            atomic_read(&cp->reset_task_pending_mtu))
4188                goto done;
4189#else
4190        if (atomic_read(&cp->reset_task_pending))
4191                goto done;
4192#endif
4193
4194        /* check for rx cleaning */
4195        if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4196                int i, rmask;
4197
4198                for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4199                        rmask = CAS_FLAG_RXD_POST(i);
4200                        if ((mask & rmask) == 0)
4201                                continue;
4202
4203                        /* post_rxds will do a mod_timer */
4204                        if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4205                                pending = 1;
4206                                continue;
4207                        }
4208                        cp->cas_flags &= ~rmask;
4209                }
4210        }
4211
4212        if (CAS_PHY_MII(cp->phy_type)) {
4213                u16 bmsr;
4214                cas_mif_poll(cp, 0);
4215                bmsr = cas_phy_read(cp, MII_BMSR);
4216                /* WTZ: Solaris driver reads this twice, but that
4217                 * may be due to the PCS case and the use of a
4218                 * common implementation. Read it twice here to be
4219                 * safe.
4220                 */
4221                bmsr = cas_phy_read(cp, MII_BMSR);
4222                cas_mif_poll(cp, 1);
4223                readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4224                reset = cas_mii_link_check(cp, bmsr);
4225        } else {
4226                reset = cas_pcs_link_check(cp);
4227        }
4228
4229        if (reset)
4230                goto done;
4231
4232        /* check for tx state machine confusion */
4233        if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4234                u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4235                u32 wptr, rptr;
4236                int tlm  = CAS_VAL(MAC_SM_TLM, val);
4237
4238                if (((tlm == 0x5) || (tlm == 0x3)) &&
4239                    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4240                        if (netif_msg_tx_err(cp))
4241                                printk(KERN_DEBUG "%s: tx err: "
4242                                       "MAC_STATE[%08x]\n",
4243                                       cp->dev->name, val);
4244                        reset = 1;
4245                        goto done;
4246                }
4247
4248                val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4249                wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4250                rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4251                if ((val == 0) && (wptr != rptr)) {
4252                        if (netif_msg_tx_err(cp))
4253                                printk(KERN_DEBUG "%s: tx err: "
4254                                       "TX_FIFO[%08x:%08x:%08x]\n",
4255                                       cp->dev->name, val, wptr, rptr);
4256                        reset = 1;
4257                }
4258
4259                if (reset)
4260                        cas_hard_reset(cp);
4261        }
4262
4263done:
4264        if (reset) {
4265#if 1
4266                atomic_inc(&cp->reset_task_pending);
4267                atomic_inc(&cp->reset_task_pending_all);
4268                schedule_work(&cp->reset_task);
4269#else
4270                atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4271                printk(KERN_ERR "reset called in cas_link_timer\n");
4272                schedule_work(&cp->reset_task);
4273#endif
4274        }
4275
4276        if (!pending)
4277                mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4278        cas_unlock_tx(cp);
4279        spin_unlock_irqrestore(&cp->lock, flags);
4280}
4281
4282/* tiny buffers are used to avoid target abort issues with
4283 * older cassini's
4284 */
4285static void cas_tx_tiny_free(struct cas *cp)
4286{
4287        struct pci_dev *pdev = cp->pdev;
4288        int i;
4289
4290        for (i = 0; i < N_TX_RINGS; i++) {
4291                if (!cp->tx_tiny_bufs[i])
4292                        continue;
4293
4294                pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4295                                    cp->tx_tiny_bufs[i],
4296                                    cp->tx_tiny_dvma[i]);
4297                cp->tx_tiny_bufs[i] = NULL;
4298        }
4299}
4300
4301static int cas_tx_tiny_alloc(struct cas *cp)
4302{
4303        struct pci_dev *pdev = cp->pdev;
4304        int i;
4305
4306        for (i = 0; i < N_TX_RINGS; i++) {
4307                cp->tx_tiny_bufs[i] =
4308                        pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4309                                             &cp->tx_tiny_dvma[i]);
4310                if (!cp->tx_tiny_bufs[i]) {
4311                        cas_tx_tiny_free(cp);
4312                        return -1;
4313                }
4314        }
4315        return 0;
4316}
4317
4318
4319static int cas_open(struct net_device *dev)
4320{
4321        struct cas *cp = netdev_priv(dev);
4322        int hw_was_up, err;
4323        unsigned long flags;
4324
4325        mutex_lock(&cp->pm_mutex);
4326
4327        hw_was_up = cp->hw_running;
4328
4329        /* The power-management mutex protects the hw_running
4330         * etc. state so it is safe to do this bit without cp->lock
4331         */
4332        if (!cp->hw_running) {
4333                /* Reset the chip */
4334                cas_lock_all_save(cp, flags);
4335                /* We set the second arg to cas_reset to zero
4336                 * because cas_init_hw below will have its second
4337                 * argument set to non-zero, which will force
4338                 * autonegotiation to start.
4339                 */
4340                cas_reset(cp, 0);
4341                cp->hw_running = 1;
4342                cas_unlock_all_restore(cp, flags);
4343        }
4344
4345        err = -ENOMEM;
4346        if (cas_tx_tiny_alloc(cp) < 0)
4347                goto err_unlock;
4348
4349        /* alloc rx descriptors */
4350        if (cas_alloc_rxds(cp) < 0)
4351                goto err_tx_tiny;
4352
4353        /* allocate spares */
4354        cas_spare_init(cp);
4355        cas_spare_recover(cp, GFP_KERNEL);
4356
4357        /* We can now request the interrupt as we know it's masked
4358         * on the controller. cassini+ has up to 4 interrupts
4359         * that can be used, but you need to do explicit pci interrupt
4360         * mapping to expose them
4361         */
4362        if (request_irq(cp->pdev->irq, cas_interrupt,
4363                        IRQF_SHARED, dev->name, (void *) dev)) {
4364                printk(KERN_ERR "%s: failed to request irq !\n",
4365                       cp->dev->name);
4366                err = -EAGAIN;
4367                goto err_spare;
4368        }
4369
4370#ifdef USE_NAPI
4371        napi_enable(&cp->napi);
4372#endif
4373        /* init hw */
4374        cas_lock_all_save(cp, flags);
4375        cas_clean_rings(cp);
4376        cas_init_hw(cp, !hw_was_up);
4377        cp->opened = 1;
4378        cas_unlock_all_restore(cp, flags);
4379
4380        netif_start_queue(dev);
4381        mutex_unlock(&cp->pm_mutex);
4382        return 0;
4383
4384err_spare:
4385        cas_spare_free(cp);
4386        cas_free_rxds(cp);
4387err_tx_tiny:
4388        cas_tx_tiny_free(cp);
4389err_unlock:
4390        mutex_unlock(&cp->pm_mutex);
4391        return err;
4392}
4393
4394static int cas_close(struct net_device *dev)
4395{
4396        unsigned long flags;
4397        struct cas *cp = netdev_priv(dev);
4398
4399#ifdef USE_NAPI
4400        napi_disable(&cp->napi);
4401#endif
4402        /* Make sure we don't get distracted by suspend/resume */
4403        mutex_lock(&cp->pm_mutex);
4404
4405        netif_stop_queue(dev);
4406
4407        /* Stop traffic, mark us closed */
4408        cas_lock_all_save(cp, flags);
4409        cp->opened = 0;
4410        cas_reset(cp, 0);
4411        cas_phy_init(cp);
4412        cas_begin_auto_negotiation(cp, NULL);
4413        cas_clean_rings(cp);
4414        cas_unlock_all_restore(cp, flags);
4415
4416        free_irq(cp->pdev->irq, (void *) dev);
4417        cas_spare_free(cp);
4418        cas_free_rxds(cp);
4419        cas_tx_tiny_free(cp);
4420        mutex_unlock(&cp->pm_mutex);
4421        return 0;
4422}
4423
4424static struct {
4425        const char name[ETH_GSTRING_LEN];
4426} ethtool_cassini_statnames[] = {
4427        {"collisions"},
4428        {"rx_bytes"},
4429        {"rx_crc_errors"},
4430        {"rx_dropped"},
4431        {"rx_errors"},
4432        {"rx_fifo_errors"},
4433        {"rx_frame_errors"},
4434        {"rx_length_errors"},
4435        {"rx_over_errors"},
4436        {"rx_packets"},
4437        {"tx_aborted_errors"},
4438        {"tx_bytes"},
4439        {"tx_dropped"},
4440        {"tx_errors"},
4441        {"tx_fifo_errors"},
4442        {"tx_packets"}
4443};
4444#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4445
4446static struct {
4447        const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4448} ethtool_register_table[] = {
4449        {-MII_BMSR},
4450        {-MII_BMCR},
4451        {REG_CAWR},
4452        {REG_INF_BURST},
4453        {REG_BIM_CFG},
4454        {REG_RX_CFG},
4455        {REG_HP_CFG},
4456        {REG_MAC_TX_CFG},
4457        {REG_MAC_RX_CFG},
4458        {REG_MAC_CTRL_CFG},
4459        {REG_MAC_XIF_CFG},
4460        {REG_MIF_CFG},
4461        {REG_PCS_CFG},
4462        {REG_SATURN_PCFG},
4463        {REG_PCS_MII_STATUS},
4464        {REG_PCS_STATE_MACHINE},
4465        {REG_MAC_COLL_EXCESS},
4466        {REG_MAC_COLL_LATE}
4467};
4468#define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4469#define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4470
4471static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4472{
4473        u8 *p;
4474        int i;
4475        unsigned long flags;
4476
4477        spin_lock_irqsave(&cp->lock, flags);
4478        for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4479                u16 hval;
4480                u32 val;
4481                if (ethtool_register_table[i].offsets < 0) {
4482                        hval = cas_phy_read(cp,
4483                                    -ethtool_register_table[i].offsets);
4484                        val = hval;
4485                } else {
4486                        val= readl(cp->regs+ethtool_register_table[i].offsets);
4487                }
4488                memcpy(p, (u8 *)&val, sizeof(u32));
4489        }
4490        spin_unlock_irqrestore(&cp->lock, flags);
4491}
4492
4493static struct net_device_stats *cas_get_stats(struct net_device *dev)
4494{
4495        struct cas *cp = netdev_priv(dev);
4496        struct net_device_stats *stats = cp->net_stats;
4497        unsigned long flags;
4498        int i;
4499        unsigned long tmp;
4500
4501        /* we collate all of the stats into net_stats[N_TX_RING] */
4502        if (!cp->hw_running)
4503                return stats + N_TX_RINGS;
4504
4505        /* collect outstanding stats */
4506        /* WTZ: the Cassini spec gives these as 16 bit counters but
4507         * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4508         * in case the chip somehow puts any garbage in the other bits.
4509         * Also, counter usage didn't seem to mach what Adrian did
4510         * in the parts of the code that set these quantities. Made
4511         * that consistent.
4512         */
4513        spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4514        stats[N_TX_RINGS].rx_crc_errors +=
4515          readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4516        stats[N_TX_RINGS].rx_frame_errors +=
4517                readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4518        stats[N_TX_RINGS].rx_length_errors +=
4519                readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4520#if 1
4521        tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4522                (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4523        stats[N_TX_RINGS].tx_aborted_errors += tmp;
4524        stats[N_TX_RINGS].collisions +=
4525          tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4526#else
4527        stats[N_TX_RINGS].tx_aborted_errors +=
4528                readl(cp->regs + REG_MAC_COLL_EXCESS);
4529        stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4530                readl(cp->regs + REG_MAC_COLL_LATE);
4531#endif
4532        cas_clear_mac_err(cp);
4533
4534        /* saved bits that are unique to ring 0 */
4535        spin_lock(&cp->stat_lock[0]);
4536        stats[N_TX_RINGS].collisions        += stats[0].collisions;
4537        stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4538        stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4539        stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4540        stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4541        stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4542        spin_unlock(&cp->stat_lock[0]);
4543
4544        for (i = 0; i < N_TX_RINGS; i++) {
4545                spin_lock(&cp->stat_lock[i]);
4546                stats[N_TX_RINGS].rx_length_errors +=
4547                        stats[i].rx_length_errors;
4548                stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4549                stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4550                stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4551                stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4552                stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4553                stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4554                stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4555                stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4556                stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4557                memset(stats + i, 0, sizeof(struct net_device_stats));
4558                spin_unlock(&cp->stat_lock[i]);
4559        }
4560        spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4561        return stats + N_TX_RINGS;
4562}
4563
4564
4565static void cas_set_multicast(struct net_device *dev)
4566{
4567        struct cas *cp = netdev_priv(dev);
4568        u32 rxcfg, rxcfg_new;
4569        unsigned long flags;
4570        int limit = STOP_TRIES;
4571
4572        if (!cp->hw_running)
4573                return;
4574
4575        spin_lock_irqsave(&cp->lock, flags);
4576        rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4577
4578        /* disable RX MAC and wait for completion */
4579        writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4580        while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4581                if (!limit--)
4582                        break;
4583                udelay(10);
4584        }
4585
4586        /* disable hash filter and wait for completion */
4587        limit = STOP_TRIES;
4588        rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4589        writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4590        while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4591                if (!limit--)
4592                        break;
4593                udelay(10);
4594        }
4595
4596        /* program hash filters */
4597        cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4598        rxcfg |= rxcfg_new;
4599        writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4600        spin_unlock_irqrestore(&cp->lock, flags);
4601}
4602
4603static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4604{
4605        struct cas *cp = netdev_priv(dev);
4606        strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4607        strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4608        info->fw_version[0] = '\0';
4609        strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4610        info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4611                cp->casreg_len : CAS_MAX_REGS;
4612        info->n_stats = CAS_NUM_STAT_KEYS;
4613}
4614
4615static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4616{
4617        struct cas *cp = netdev_priv(dev);
4618        u16 bmcr;
4619        int full_duplex, speed, pause;
4620        unsigned long flags;
4621        enum link_state linkstate = link_up;
4622
4623        cmd->advertising = 0;
4624        cmd->supported = SUPPORTED_Autoneg;
4625        if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4626                cmd->supported |= SUPPORTED_1000baseT_Full;
4627                cmd->advertising |= ADVERTISED_1000baseT_Full;
4628        }
4629
4630        /* Record PHY settings if HW is on. */
4631        spin_lock_irqsave(&cp->lock, flags);
4632        bmcr = 0;
4633        linkstate = cp->lstate;
4634        if (CAS_PHY_MII(cp->phy_type)) {
4635                cmd->port = PORT_MII;
4636                cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4637                        XCVR_INTERNAL : XCVR_EXTERNAL;
4638                cmd->phy_address = cp->phy_addr;
4639                cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4640                        ADVERTISED_10baseT_Half |
4641                        ADVERTISED_10baseT_Full |
4642                        ADVERTISED_100baseT_Half |
4643                        ADVERTISED_100baseT_Full;
4644
4645                cmd->supported |=
4646                        (SUPPORTED_10baseT_Half |
4647                         SUPPORTED_10baseT_Full |
4648                         SUPPORTED_100baseT_Half |
4649                         SUPPORTED_100baseT_Full |
4650                         SUPPORTED_TP | SUPPORTED_MII);
4651
4652                if (cp->hw_running) {
4653                        cas_mif_poll(cp, 0);
4654                        bmcr = cas_phy_read(cp, MII_BMCR);
4655                        cas_read_mii_link_mode(cp, &full_duplex,
4656                                               &speed, &pause);
4657                        cas_mif_poll(cp, 1);
4658                }
4659
4660        } else {
4661                cmd->port = PORT_FIBRE;
4662                cmd->transceiver = XCVR_INTERNAL;
4663                cmd->phy_address = 0;
4664                cmd->supported   |= SUPPORTED_FIBRE;
4665                cmd->advertising |= ADVERTISED_FIBRE;
4666
4667                if (cp->hw_running) {
4668                        /* pcs uses the same bits as mii */
4669                        bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4670                        cas_read_pcs_link_mode(cp, &full_duplex,
4671                                               &speed, &pause);
4672                }
4673        }
4674        spin_unlock_irqrestore(&cp->lock, flags);
4675
4676        if (bmcr & BMCR_ANENABLE) {
4677                cmd->advertising |= ADVERTISED_Autoneg;
4678                cmd->autoneg = AUTONEG_ENABLE;
4679                cmd->speed = ((speed == 10) ?
4680                              SPEED_10 :
4681                              ((speed == 1000) ?
4682                               SPEED_1000 : SPEED_100));
4683                cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4684        } else {
4685                cmd->autoneg = AUTONEG_DISABLE;
4686                cmd->speed =
4687                        (bmcr & CAS_BMCR_SPEED1000) ?
4688                        SPEED_1000 :
4689                        ((bmcr & BMCR_SPEED100) ? SPEED_100:
4690                         SPEED_10);
4691                cmd->duplex =
4692                        (bmcr & BMCR_FULLDPLX) ?
4693                        DUPLEX_FULL : DUPLEX_HALF;
4694        }
4695        if (linkstate != link_up) {
4696                /* Force these to "unknown" if the link is not up and
4697                 * autonogotiation in enabled. We can set the link
4698                 * speed to 0, but not cmd->duplex,
4699                 * because its legal values are 0 and 1.  Ethtool will
4700                 * print the value reported in parentheses after the
4701                 * word "Unknown" for unrecognized values.
4702                 *
4703                 * If in forced mode, we report the speed and duplex
4704                 * settings that we configured.
4705                 */
4706                if (cp->link_cntl & BMCR_ANENABLE) {
4707                        cmd->speed = 0;
4708                        cmd->duplex = 0xff;
4709                } else {
4710                        cmd->speed = SPEED_10;
4711                        if (cp->link_cntl & BMCR_SPEED100) {
4712                                cmd->speed = SPEED_100;
4713                        } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4714                                cmd->speed = SPEED_1000;
4715                        }
4716                        cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4717                                DUPLEX_FULL : DUPLEX_HALF;
4718                }
4719        }
4720        return 0;
4721}
4722
4723static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4724{
4725        struct cas *cp = netdev_priv(dev);
4726        unsigned long flags;
4727
4728        /* Verify the settings we care about. */
4729        if (cmd->autoneg != AUTONEG_ENABLE &&
4730            cmd->autoneg != AUTONEG_DISABLE)
4731                return -EINVAL;
4732
4733        if (cmd->autoneg == AUTONEG_DISABLE &&
4734            ((cmd->speed != SPEED_1000 &&
4735              cmd->speed != SPEED_100 &&
4736              cmd->speed != SPEED_10) ||
4737             (cmd->duplex != DUPLEX_HALF &&
4738              cmd->duplex != DUPLEX_FULL)))
4739                return -EINVAL;
4740
4741        /* Apply settings and restart link process. */
4742        spin_lock_irqsave(&cp->lock, flags);
4743        cas_begin_auto_negotiation(cp, cmd);
4744        spin_unlock_irqrestore(&cp->lock, flags);
4745        return 0;
4746}
4747
4748static int cas_nway_reset(struct net_device *dev)
4749{
4750        struct cas *cp = netdev_priv(dev);
4751        unsigned long flags;
4752
4753        if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4754                return -EINVAL;
4755
4756        /* Restart link process. */
4757        spin_lock_irqsave(&cp->lock, flags);
4758        cas_begin_auto_negotiation(cp, NULL);
4759        spin_unlock_irqrestore(&cp->lock, flags);
4760
4761        return 0;
4762}
4763
4764static u32 cas_get_link(struct net_device *dev)
4765{
4766        struct cas *cp = netdev_priv(dev);
4767        return cp->lstate == link_up;
4768}
4769
4770static u32 cas_get_msglevel(struct net_device *dev)
4771{
4772        struct cas *cp = netdev_priv(dev);
4773        return cp->msg_enable;
4774}
4775
4776static void cas_set_msglevel(struct net_device *dev, u32 value)
4777{
4778        struct cas *cp = netdev_priv(dev);
4779        cp->msg_enable = value;
4780}
4781
4782static int cas_get_regs_len(struct net_device *dev)
4783{
4784        struct cas *cp = netdev_priv(dev);
4785        return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4786}
4787
4788static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4789                             void *p)
4790{
4791        struct cas *cp = netdev_priv(dev);
4792        regs->version = 0;
4793        /* cas_read_regs handles locks (cp->lock).  */
4794        cas_read_regs(cp, p, regs->len / sizeof(u32));
4795}
4796
4797static int cas_get_sset_count(struct net_device *dev, int sset)
4798{
4799        switch (sset) {
4800        case ETH_SS_STATS:
4801                return CAS_NUM_STAT_KEYS;
4802        default:
4803                return -EOPNOTSUPP;
4804        }
4805}
4806
4807static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4808{
4809         memcpy(data, &ethtool_cassini_statnames,
4810                                         CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4811}
4812
4813static void cas_get_ethtool_stats(struct net_device *dev,
4814                                      struct ethtool_stats *estats, u64 *data)
4815{
4816        struct cas *cp = netdev_priv(dev);
4817        struct net_device_stats *stats = cas_get_stats(cp->dev);
4818        int i = 0;
4819        data[i++] = stats->collisions;
4820        data[i++] = stats->rx_bytes;
4821        data[i++] = stats->rx_crc_errors;
4822        data[i++] = stats->rx_dropped;
4823        data[i++] = stats->rx_errors;
4824        data[i++] = stats->rx_fifo_errors;
4825        data[i++] = stats->rx_frame_errors;
4826        data[i++] = stats->rx_length_errors;
4827        data[i++] = stats->rx_over_errors;
4828        data[i++] = stats->rx_packets;
4829        data[i++] = stats->tx_aborted_errors;
4830        data[i++] = stats->tx_bytes;
4831        data[i++] = stats->tx_dropped;
4832        data[i++] = stats->tx_errors;
4833        data[i++] = stats->tx_fifo_errors;
4834        data[i++] = stats->tx_packets;
4835        BUG_ON(i != CAS_NUM_STAT_KEYS);
4836}
4837
4838static const struct ethtool_ops cas_ethtool_ops = {
4839        .get_drvinfo            = cas_get_drvinfo,
4840        .get_settings           = cas_get_settings,
4841        .set_settings           = cas_set_settings,
4842        .nway_reset             = cas_nway_reset,
4843        .get_link               = cas_get_link,
4844        .get_msglevel           = cas_get_msglevel,
4845        .set_msglevel           = cas_set_msglevel,
4846        .get_regs_len           = cas_get_regs_len,
4847        .get_regs               = cas_get_regs,
4848        .get_sset_count         = cas_get_sset_count,
4849        .get_strings            = cas_get_strings,
4850        .get_ethtool_stats      = cas_get_ethtool_stats,
4851};
4852
4853static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4854{
4855        struct cas *cp = netdev_priv(dev);
4856        struct mii_ioctl_data *data = if_mii(ifr);
4857        unsigned long flags;
4858        int rc = -EOPNOTSUPP;
4859
4860        /* Hold the PM mutex while doing ioctl's or we may collide
4861         * with open/close and power management and oops.
4862         */
4863        mutex_lock(&cp->pm_mutex);
4864        switch (cmd) {
4865        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4866                data->phy_id = cp->phy_addr;
4867                /* Fallthrough... */
4868
4869        case SIOCGMIIREG:               /* Read MII PHY register. */
4870                spin_lock_irqsave(&cp->lock, flags);
4871                cas_mif_poll(cp, 0);
4872                data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4873                cas_mif_poll(cp, 1);
4874                spin_unlock_irqrestore(&cp->lock, flags);
4875                rc = 0;
4876                break;
4877
4878        case SIOCSMIIREG:               /* Write MII PHY register. */
4879                spin_lock_irqsave(&cp->lock, flags);
4880                cas_mif_poll(cp, 0);
4881                rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4882                cas_mif_poll(cp, 1);
4883                spin_unlock_irqrestore(&cp->lock, flags);
4884                break;
4885        default:
4886                break;
4887        };
4888
4889        mutex_unlock(&cp->pm_mutex);
4890        return rc;
4891}
4892
4893/* When this chip sits underneath an Intel 31154 bridge, it is the
4894 * only subordinate device and we can tweak the bridge settings to
4895 * reflect that fact.
4896 */
4897static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4898{
4899        struct pci_dev *pdev = cas_pdev->bus->self;
4900        u32 val;
4901
4902        if (!pdev)
4903                return;
4904
4905        if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4906                return;
4907
4908        /* Clear bit 10 (Bus Parking Control) in the Secondary
4909         * Arbiter Control/Status Register which lives at offset
4910         * 0x41.  Using a 32-bit word read/modify/write at 0x40
4911         * is much simpler so that's how we do this.
4912         */
4913        pci_read_config_dword(pdev, 0x40, &val);
4914        val &= ~0x00040000;
4915        pci_write_config_dword(pdev, 0x40, val);
4916
4917        /* Max out the Multi-Transaction Timer settings since
4918         * Cassini is the only device present.
4919         *
4920         * The register is 16-bit and lives at 0x50.  When the
4921         * settings are enabled, it extends the GRANT# signal
4922         * for a requestor after a transaction is complete.  This
4923         * allows the next request to run without first needing
4924         * to negotiate the GRANT# signal back.
4925         *
4926         * Bits 12:10 define the grant duration:
4927         *
4928         *      1       --      16 clocks
4929         *      2       --      32 clocks
4930         *      3       --      64 clocks
4931         *      4       --      128 clocks
4932         *      5       --      256 clocks
4933         *
4934         * All other values are illegal.
4935         *
4936         * Bits 09:00 define which REQ/GNT signal pairs get the
4937         * GRANT# signal treatment.  We set them all.
4938         */
4939        pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4940
4941        /* The Read Prefecth Policy register is 16-bit and sits at
4942         * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4943         * enable it and max out all of the settings since only one
4944         * device is sitting underneath and thus bandwidth sharing is
4945         * not an issue.
4946         *
4947         * The register has several 3 bit fields, which indicates a
4948         * multiplier applied to the base amount of prefetching the
4949         * chip would do.  These fields are at:
4950         *
4951         *      15:13   ---     ReRead Primary Bus
4952         *      12:10   ---     FirstRead Primary Bus
4953         *      09:07   ---     ReRead Secondary Bus
4954         *      06:04   ---     FirstRead Secondary Bus
4955         *
4956         * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4957         * get enabled on.  Bit 3 is a grouped enabler which controls
4958         * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4959         * the individual REQ/GNT pairs [2:0].
4960         */
4961        pci_write_config_word(pdev, 0x52,
4962                              (0x7 << 13) |
4963                              (0x7 << 10) |
4964                              (0x7 <<  7) |
4965                              (0x7 <<  4) |
4966                              (0xf <<  0));
4967
4968        /* Force cacheline size to 0x8 */
4969        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4970
4971        /* Force latency timer to maximum setting so Cassini can
4972         * sit on the bus as long as it likes.
4973         */
4974        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4975}
4976
4977static const struct net_device_ops cas_netdev_ops = {
4978        .ndo_open               = cas_open,
4979        .ndo_stop               = cas_close,
4980        .ndo_start_xmit         = cas_start_xmit,
4981        .ndo_get_stats          = cas_get_stats,
4982        .ndo_set_multicast_list = cas_set_multicast,
4983        .ndo_do_ioctl           = cas_ioctl,
4984        .ndo_tx_timeout         = cas_tx_timeout,
4985        .ndo_change_mtu         = cas_change_mtu,
4986        .ndo_set_mac_address    = eth_mac_addr,
4987        .ndo_validate_addr      = eth_validate_addr,
4988#ifdef CONFIG_NET_POLL_CONTROLLER
4989        .ndo_poll_controller    = cas_netpoll,
4990#endif
4991};
4992
4993static int __devinit cas_init_one(struct pci_dev *pdev,
4994                                  const struct pci_device_id *ent)
4995{
4996        static int cas_version_printed = 0;
4997        unsigned long casreg_len;
4998        struct net_device *dev;
4999        struct cas *cp;
5000        int i, err, pci_using_dac;
5001        u16 pci_cmd;
5002        u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
5003
5004        if (cas_version_printed++ == 0)
5005                printk(KERN_INFO "%s", version);
5006
5007        err = pci_enable_device(pdev);
5008        if (err) {
5009                dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
5010                return err;
5011        }
5012
5013        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5014                dev_err(&pdev->dev, "Cannot find proper PCI device "
5015                       "base address, aborting.\n");
5016                err = -ENODEV;
5017                goto err_out_disable_pdev;
5018        }
5019
5020        dev = alloc_etherdev(sizeof(*cp));
5021        if (!dev) {
5022                dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
5023                err = -ENOMEM;
5024                goto err_out_disable_pdev;
5025        }
5026        SET_NETDEV_DEV(dev, &pdev->dev);
5027
5028        err = pci_request_regions(pdev, dev->name);
5029        if (err) {
5030                dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
5031                goto err_out_free_netdev;
5032        }
5033        pci_set_master(pdev);
5034
5035        /* we must always turn on parity response or else parity
5036         * doesn't get generated properly. disable SERR/PERR as well.
5037         * in addition, we want to turn MWI on.
5038         */
5039        pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
5040        pci_cmd &= ~PCI_COMMAND_SERR;
5041        pci_cmd |= PCI_COMMAND_PARITY;
5042        pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
5043        if (pci_try_set_mwi(pdev))
5044                printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
5045                       pci_name(pdev));
5046
5047        cas_program_bridge(pdev);
5048
5049        /*
5050         * On some architectures, the default cache line size set
5051         * by pci_try_set_mwi reduces perforamnce.  We have to increase
5052         * it for this case.  To start, we'll print some configuration
5053         * data.
5054         */
5055#if 1
5056        pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5057                             &orig_cacheline_size);
5058        if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
5059                cas_cacheline_size =
5060                        (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5061                        CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5062                if (pci_write_config_byte(pdev,
5063                                          PCI_CACHE_LINE_SIZE,
5064                                          cas_cacheline_size)) {
5065                        dev_err(&pdev->dev, "Could not set PCI cache "
5066                               "line size\n");
5067                        goto err_write_cacheline;
5068                }
5069        }
5070#endif
5071
5072
5073        /* Configure DMA attributes. */
5074        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5075                pci_using_dac = 1;
5076                err = pci_set_consistent_dma_mask(pdev,
5077                                                  DMA_BIT_MASK(64));
5078                if (err < 0) {
5079                        dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5080                               "for consistent allocations\n");
5081                        goto err_out_free_res;
5082                }
5083
5084        } else {
5085                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5086                if (err) {
5087                        dev_err(&pdev->dev, "No usable DMA configuration, "
5088                               "aborting.\n");
5089                        goto err_out_free_res;
5090                }
5091                pci_using_dac = 0;
5092        }
5093
5094        casreg_len = pci_resource_len(pdev, 0);
5095
5096        cp = netdev_priv(dev);
5097        cp->pdev = pdev;
5098#if 1
5099        /* A value of 0 indicates we never explicitly set it */
5100        cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5101#endif
5102        cp->dev = dev;
5103        cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5104          cassini_debug;
5105
5106        cp->link_transition = LINK_TRANSITION_UNKNOWN;
5107        cp->link_transition_jiffies_valid = 0;
5108
5109        spin_lock_init(&cp->lock);
5110        spin_lock_init(&cp->rx_inuse_lock);
5111        spin_lock_init(&cp->rx_spare_lock);
5112        for (i = 0; i < N_TX_RINGS; i++) {
5113                spin_lock_init(&cp->stat_lock[i]);
5114                spin_lock_init(&cp->tx_lock[i]);
5115        }
5116        spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5117        mutex_init(&cp->pm_mutex);
5118
5119        init_timer(&cp->link_timer);
5120        cp->link_timer.function = cas_link_timer;
5121        cp->link_timer.data = (unsigned long) cp;
5122
5123#if 1
5124        /* Just in case the implementation of atomic operations
5125         * change so that an explicit initialization is necessary.
5126         */
5127        atomic_set(&cp->reset_task_pending, 0);
5128        atomic_set(&cp->reset_task_pending_all, 0);
5129        atomic_set(&cp->reset_task_pending_spare, 0);
5130        atomic_set(&cp->reset_task_pending_mtu, 0);
5131#endif
5132        INIT_WORK(&cp->reset_task, cas_reset_task);
5133
5134        /* Default link parameters */
5135        if (link_mode >= 0 && link_mode <= 6)
5136                cp->link_cntl = link_modes[link_mode];
5137        else
5138                cp->link_cntl = BMCR_ANENABLE;
5139        cp->lstate = link_down;
5140        cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5141        netif_carrier_off(cp->dev);
5142        cp->timer_ticks = 0;
5143
5144        /* give us access to cassini registers */
5145        cp->regs = pci_iomap(pdev, 0, casreg_len);
5146        if (!cp->regs) {
5147                dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5148                goto err_out_free_res;
5149        }
5150        cp->casreg_len = casreg_len;
5151
5152        pci_save_state(pdev);
5153        cas_check_pci_invariants(cp);
5154        cas_hard_reset(cp);
5155        cas_reset(cp, 0);
5156        if (cas_check_invariants(cp))
5157                goto err_out_iounmap;
5158        if (cp->cas_flags & CAS_FLAG_SATURN)
5159                if (cas_saturn_firmware_init(cp))
5160                        goto err_out_iounmap;
5161
5162        cp->init_block = (struct cas_init_block *)
5163                pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5164                                     &cp->block_dvma);
5165        if (!cp->init_block) {
5166                dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5167                goto err_out_iounmap;
5168        }
5169
5170        for (i = 0; i < N_TX_RINGS; i++)
5171                cp->init_txds[i] = cp->init_block->txds[i];
5172
5173        for (i = 0; i < N_RX_DESC_RINGS; i++)
5174                cp->init_rxds[i] = cp->init_block->rxds[i];
5175
5176        for (i = 0; i < N_RX_COMP_RINGS; i++)
5177                cp->init_rxcs[i] = cp->init_block->rxcs[i];
5178
5179        for (i = 0; i < N_RX_FLOWS; i++)
5180                skb_queue_head_init(&cp->rx_flows[i]);
5181
5182        dev->netdev_ops = &cas_netdev_ops;
5183        dev->ethtool_ops = &cas_ethtool_ops;
5184        dev->watchdog_timeo = CAS_TX_TIMEOUT;
5185
5186#ifdef USE_NAPI
5187        netif_napi_add(dev, &cp->napi, cas_poll, 64);
5188#endif
5189        dev->irq = pdev->irq;
5190        dev->dma = 0;
5191
5192        /* Cassini features. */
5193        if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5194                dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5195
5196        if (pci_using_dac)
5197                dev->features |= NETIF_F_HIGHDMA;
5198
5199        if (register_netdev(dev)) {
5200                dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5201                goto err_out_free_consistent;
5202        }
5203
5204        i = readl(cp->regs + REG_BIM_CFG);
5205        printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5206               "Ethernet[%d] %pM\n",  dev->name,
5207               (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5208               (i & BIM_CFG_32BIT) ? "32" : "64",
5209               (i & BIM_CFG_66MHZ) ? "66" : "33",
5210               (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5211               dev->dev_addr);
5212
5213        pci_set_drvdata(pdev, dev);
5214        cp->hw_running = 1;
5215        cas_entropy_reset(cp);
5216        cas_phy_init(cp);
5217        cas_begin_auto_negotiation(cp, NULL);
5218        return 0;
5219
5220err_out_free_consistent:
5221        pci_free_consistent(pdev, sizeof(struct cas_init_block),
5222                            cp->init_block, cp->block_dvma);
5223
5224err_out_iounmap:
5225        mutex_lock(&cp->pm_mutex);
5226        if (cp->hw_running)
5227                cas_shutdown(cp);
5228        mutex_unlock(&cp->pm_mutex);
5229
5230        pci_iounmap(pdev, cp->regs);
5231
5232
5233err_out_free_res:
5234        pci_release_regions(pdev);
5235
5236err_write_cacheline:
5237        /* Try to restore it in case the error occured after we
5238         * set it.
5239         */
5240        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5241
5242err_out_free_netdev:
5243        free_netdev(dev);
5244
5245err_out_disable_pdev:
5246        pci_disable_device(pdev);
5247        pci_set_drvdata(pdev, NULL);
5248        return -ENODEV;
5249}
5250
5251static void __devexit cas_remove_one(struct pci_dev *pdev)
5252{
5253        struct net_device *dev = pci_get_drvdata(pdev);
5254        struct cas *cp;
5255        if (!dev)
5256                return;
5257
5258        cp = netdev_priv(dev);
5259        unregister_netdev(dev);
5260
5261        if (cp->fw_data)
5262                vfree(cp->fw_data);
5263
5264        mutex_lock(&cp->pm_mutex);
5265        flush_scheduled_work();
5266        if (cp->hw_running)
5267                cas_shutdown(cp);
5268        mutex_unlock(&cp->pm_mutex);
5269
5270#if 1
5271        if (cp->orig_cacheline_size) {
5272                /* Restore the cache line size if we had modified
5273                 * it.
5274                 */
5275                pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5276                                      cp->orig_cacheline_size);
5277        }
5278#endif
5279        pci_free_consistent(pdev, sizeof(struct cas_init_block),
5280                            cp->init_block, cp->block_dvma);
5281        pci_iounmap(pdev, cp->regs);
5282        free_netdev(dev);
5283        pci_release_regions(pdev);
5284        pci_disable_device(pdev);
5285        pci_set_drvdata(pdev, NULL);
5286}
5287
5288#ifdef CONFIG_PM
5289static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5290{
5291        struct net_device *dev = pci_get_drvdata(pdev);
5292        struct cas *cp = netdev_priv(dev);
5293        unsigned long flags;
5294
5295        mutex_lock(&cp->pm_mutex);
5296
5297        /* If the driver is opened, we stop the DMA */
5298        if (cp->opened) {
5299                netif_device_detach(dev);
5300
5301                cas_lock_all_save(cp, flags);
5302
5303                /* We can set the second arg of cas_reset to 0
5304                 * because on resume, we'll call cas_init_hw with
5305                 * its second arg set so that autonegotiation is
5306                 * restarted.
5307                 */
5308                cas_reset(cp, 0);
5309                cas_clean_rings(cp);
5310                cas_unlock_all_restore(cp, flags);
5311        }
5312
5313        if (cp->hw_running)
5314                cas_shutdown(cp);
5315        mutex_unlock(&cp->pm_mutex);
5316
5317        return 0;
5318}
5319
5320static int cas_resume(struct pci_dev *pdev)
5321{
5322        struct net_device *dev = pci_get_drvdata(pdev);
5323        struct cas *cp = netdev_priv(dev);
5324
5325        printk(KERN_INFO "%s: resuming\n", dev->name);
5326
5327        mutex_lock(&cp->pm_mutex);
5328        cas_hard_reset(cp);
5329        if (cp->opened) {
5330                unsigned long flags;
5331                cas_lock_all_save(cp, flags);
5332                cas_reset(cp, 0);
5333                cp->hw_running = 1;
5334                cas_clean_rings(