linux/drivers/net/dl2k.c
<<
>>
Prefs
   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME        "DL2000/TC902x-based linux driver"
  14#define DRV_VERSION     "v1.19"
  15#define DRV_RELDATE     "2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19static char version[] __devinitdata =
  20      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  21#define MAX_UNITS 8
  22static int mtu[MAX_UNITS];
  23static int vlan[MAX_UNITS];
  24static int jumbo[MAX_UNITS];
  25static char *media[MAX_UNITS];
  26static int tx_flow=-1;
  27static int rx_flow=-1;
  28static int copy_thresh;
  29static int rx_coalesce=10;      /* Rx frame count each interrupt */
  30static int rx_timeout=200;      /* Rx DMA wait time in 640ns increments */
  31static int tx_coalesce=16;      /* HW xmit count each TxDMAComplete */
  32
  33
  34MODULE_AUTHOR ("Edward Peng");
  35MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  36MODULE_LICENSE("GPL");
  37module_param_array(mtu, int, NULL, 0);
  38module_param_array(media, charp, NULL, 0);
  39module_param_array(vlan, int, NULL, 0);
  40module_param_array(jumbo, int, NULL, 0);
  41module_param(tx_flow, int, 0);
  42module_param(rx_flow, int, 0);
  43module_param(copy_thresh, int, 0);
  44module_param(rx_coalesce, int, 0);      /* Rx frame count each interrupt */
  45module_param(rx_timeout, int, 0);       /* Rx DMA wait time in 64ns increments */
  46module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  47
  48
  49/* Enable the default interrupts */
  50#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  51       UpdateStats | LinkEvent)
  52#define EnableInt() \
  53writew(DEFAULT_INTR, ioaddr + IntEnable)
  54
  55static const int max_intrloop = 50;
  56static const int multicast_filter_limit = 0x40;
  57
  58static int rio_open (struct net_device *dev);
  59static void rio_timer (unsigned long data);
  60static void rio_tx_timeout (struct net_device *dev);
  61static void alloc_list (struct net_device *dev);
  62static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  63static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  64static void rio_free_tx (struct net_device *dev, int irq);
  65static void tx_error (struct net_device *dev, int tx_status);
  66static int receive_packet (struct net_device *dev);
  67static void rio_error (struct net_device *dev, int int_status);
  68static int change_mtu (struct net_device *dev, int new_mtu);
  69static void set_multicast (struct net_device *dev);
  70static struct net_device_stats *get_stats (struct net_device *dev);
  71static int clear_stats (struct net_device *dev);
  72static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  73static int rio_close (struct net_device *dev);
  74static int find_miiphy (struct net_device *dev);
  75static int parse_eeprom (struct net_device *dev);
  76static int read_eeprom (long ioaddr, int eep_addr);
  77static int mii_wait_link (struct net_device *dev, int wait);
  78static int mii_set_media (struct net_device *dev);
  79static int mii_get_media (struct net_device *dev);
  80static int mii_set_media_pcs (struct net_device *dev);
  81static int mii_get_media_pcs (struct net_device *dev);
  82static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  83static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  84                      u16 data);
  85
  86static const struct ethtool_ops ethtool_ops;
  87
  88static const struct net_device_ops netdev_ops = {
  89        .ndo_open               = rio_open,
  90        .ndo_start_xmit = start_xmit,
  91        .ndo_stop               = rio_close,
  92        .ndo_get_stats          = get_stats,
  93        .ndo_validate_addr      = eth_validate_addr,
  94        .ndo_set_mac_address    = eth_mac_addr,
  95        .ndo_set_multicast_list = set_multicast,
  96        .ndo_do_ioctl           = rio_ioctl,
  97        .ndo_tx_timeout         = rio_tx_timeout,
  98        .ndo_change_mtu         = change_mtu,
  99};
 100
 101static int __devinit
 102rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 103{
 104        struct net_device *dev;
 105        struct netdev_private *np;
 106        static int card_idx;
 107        int chip_idx = ent->driver_data;
 108        int err, irq;
 109        long ioaddr;
 110        static int version_printed;
 111        void *ring_space;
 112        dma_addr_t ring_dma;
 113
 114        if (!version_printed++)
 115                printk ("%s", version);
 116
 117        err = pci_enable_device (pdev);
 118        if (err)
 119                return err;
 120
 121        irq = pdev->irq;
 122        err = pci_request_regions (pdev, "dl2k");
 123        if (err)
 124                goto err_out_disable;
 125
 126        pci_set_master (pdev);
 127        dev = alloc_etherdev (sizeof (*np));
 128        if (!dev) {
 129                err = -ENOMEM;
 130                goto err_out_res;
 131        }
 132        SET_NETDEV_DEV(dev, &pdev->dev);
 133
 134#ifdef MEM_MAPPING
 135        ioaddr = pci_resource_start (pdev, 1);
 136        ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
 137        if (!ioaddr) {
 138                err = -ENOMEM;
 139                goto err_out_dev;
 140        }
 141#else
 142        ioaddr = pci_resource_start (pdev, 0);
 143#endif
 144        dev->base_addr = ioaddr;
 145        dev->irq = irq;
 146        np = netdev_priv(dev);
 147        np->chip_id = chip_idx;
 148        np->pdev = pdev;
 149        spin_lock_init (&np->tx_lock);
 150        spin_lock_init (&np->rx_lock);
 151
 152        /* Parse manual configuration */
 153        np->an_enable = 1;
 154        np->tx_coalesce = 1;
 155        if (card_idx < MAX_UNITS) {
 156                if (media[card_idx] != NULL) {
 157                        np->an_enable = 0;
 158                        if (strcmp (media[card_idx], "auto") == 0 ||
 159                            strcmp (media[card_idx], "autosense") == 0 ||
 160                            strcmp (media[card_idx], "0") == 0 ) {
 161                                np->an_enable = 2;
 162                        } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 163                            strcmp (media[card_idx], "4") == 0) {
 164                                np->speed = 100;
 165                                np->full_duplex = 1;
 166                        } else if (strcmp (media[card_idx], "100mbps_hd") == 0
 167                                   || strcmp (media[card_idx], "3") == 0) {
 168                                np->speed = 100;
 169                                np->full_duplex = 0;
 170                        } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 171                                   strcmp (media[card_idx], "2") == 0) {
 172                                np->speed = 10;
 173                                np->full_duplex = 1;
 174                        } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 175                                   strcmp (media[card_idx], "1") == 0) {
 176                                np->speed = 10;
 177                                np->full_duplex = 0;
 178                        } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 179                                 strcmp (media[card_idx], "6") == 0) {
 180                                np->speed=1000;
 181                                np->full_duplex=1;
 182                        } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 183                                 strcmp (media[card_idx], "5") == 0) {
 184                                np->speed = 1000;
 185                                np->full_duplex = 0;
 186                        } else {
 187                                np->an_enable = 1;
 188                        }
 189                }
 190                if (jumbo[card_idx] != 0) {
 191                        np->jumbo = 1;
 192                        dev->mtu = MAX_JUMBO;
 193                } else {
 194                        np->jumbo = 0;
 195                        if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 196                                dev->mtu = mtu[card_idx];
 197                }
 198                np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 199                    vlan[card_idx] : 0;
 200                if (rx_coalesce > 0 && rx_timeout > 0) {
 201                        np->rx_coalesce = rx_coalesce;
 202                        np->rx_timeout = rx_timeout;
 203                        np->coalesce = 1;
 204                }
 205                np->tx_flow = (tx_flow == 0) ? 0 : 1;
 206                np->rx_flow = (rx_flow == 0) ? 0 : 1;
 207
 208                if (tx_coalesce < 1)
 209                        tx_coalesce = 1;
 210                else if (tx_coalesce > TX_RING_SIZE-1)
 211                        tx_coalesce = TX_RING_SIZE - 1;
 212        }
 213        dev->netdev_ops = &netdev_ops;
 214        dev->watchdog_timeo = TX_TIMEOUT;
 215        SET_ETHTOOL_OPS(dev, &ethtool_ops);
 216#if 0
 217        dev->features = NETIF_F_IP_CSUM;
 218#endif
 219        pci_set_drvdata (pdev, dev);
 220
 221        ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 222        if (!ring_space)
 223                goto err_out_iounmap;
 224        np->tx_ring = (struct netdev_desc *) ring_space;
 225        np->tx_ring_dma = ring_dma;
 226
 227        ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 228        if (!ring_space)
 229                goto err_out_unmap_tx;
 230        np->rx_ring = (struct netdev_desc *) ring_space;
 231        np->rx_ring_dma = ring_dma;
 232
 233        /* Parse eeprom data */
 234        parse_eeprom (dev);
 235
 236        /* Find PHY address */
 237        err = find_miiphy (dev);
 238        if (err)
 239                goto err_out_unmap_rx;
 240
 241        /* Fiber device? */
 242        np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
 243        np->link_status = 0;
 244        /* Set media and reset PHY */
 245        if (np->phy_media) {
 246                /* default Auto-Negotiation for fiber deivices */
 247                if (np->an_enable == 2) {
 248                        np->an_enable = 1;
 249                }
 250                mii_set_media_pcs (dev);
 251        } else {
 252                /* Auto-Negotiation is mandatory for 1000BASE-T,
 253                   IEEE 802.3ab Annex 28D page 14 */
 254                if (np->speed == 1000)
 255                        np->an_enable = 1;
 256                mii_set_media (dev);
 257        }
 258
 259        err = register_netdev (dev);
 260        if (err)
 261                goto err_out_unmap_rx;
 262
 263        card_idx++;
 264
 265        printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 266                dev->name, np->name, dev->dev_addr, irq);
 267        if (tx_coalesce > 1)
 268                printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 269                                tx_coalesce);
 270        if (np->coalesce)
 271                printk(KERN_INFO
 272                       "rx_coalesce:\t%d packets\n"
 273                       "rx_timeout: \t%d ns\n",
 274                                np->rx_coalesce, np->rx_timeout*640);
 275        if (np->vlan)
 276                printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 277        return 0;
 278
 279      err_out_unmap_rx:
 280        pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 281      err_out_unmap_tx:
 282        pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 283      err_out_iounmap:
 284#ifdef MEM_MAPPING
 285        iounmap ((void *) ioaddr);
 286
 287      err_out_dev:
 288#endif
 289        free_netdev (dev);
 290
 291      err_out_res:
 292        pci_release_regions (pdev);
 293
 294      err_out_disable:
 295        pci_disable_device (pdev);
 296        return err;
 297}
 298
 299static int
 300find_miiphy (struct net_device *dev)
 301{
 302        int i, phy_found = 0;
 303        struct netdev_private *np;
 304        long ioaddr;
 305        np = netdev_priv(dev);
 306        ioaddr = dev->base_addr;
 307        np->phy_addr = 1;
 308
 309        for (i = 31; i >= 0; i--) {
 310                int mii_status = mii_read (dev, i, 1);
 311                if (mii_status != 0xffff && mii_status != 0x0000) {
 312                        np->phy_addr = i;
 313                        phy_found++;
 314                }
 315        }
 316        if (!phy_found) {
 317                printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 318                return -ENODEV;
 319        }
 320        return 0;
 321}
 322
 323static int
 324parse_eeprom (struct net_device *dev)
 325{
 326        int i, j;
 327        long ioaddr = dev->base_addr;
 328        u8 sromdata[256];
 329        u8 *psib;
 330        u32 crc;
 331        PSROM_t psrom = (PSROM_t) sromdata;
 332        struct netdev_private *np = netdev_priv(dev);
 333
 334        int cid, next;
 335
 336#ifdef  MEM_MAPPING
 337        ioaddr = pci_resource_start (np->pdev, 0);
 338#endif
 339        /* Read eeprom */
 340        for (i = 0; i < 128; i++) {
 341                ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
 342        }
 343#ifdef  MEM_MAPPING
 344        ioaddr = dev->base_addr;
 345#endif
 346        if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {  /* D-Link Only */
 347                /* Check CRC */
 348                crc = ~ether_crc_le (256 - 4, sromdata);
 349                if (psrom->crc != crc) {
 350                        printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 351                                        dev->name);
 352                        return -1;
 353                }
 354        }
 355
 356        /* Set MAC address */
 357        for (i = 0; i < 6; i++)
 358                dev->dev_addr[i] = psrom->mac_addr[i];
 359
 360        if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 361                return 0;
 362        }
 363
 364        /* Parse Software Information Block */
 365        i = 0x30;
 366        psib = (u8 *) sromdata;
 367        do {
 368                cid = psib[i++];
 369                next = psib[i++];
 370                if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 371                        printk (KERN_ERR "Cell data error\n");
 372                        return -1;
 373                }
 374                switch (cid) {
 375                case 0: /* Format version */
 376                        break;
 377                case 1: /* End of cell */
 378                        return 0;
 379                case 2: /* Duplex Polarity */
 380                        np->duplex_polarity = psib[i];
 381                        writeb (readb (ioaddr + PhyCtrl) | psib[i],
 382                                ioaddr + PhyCtrl);
 383                        break;
 384                case 3: /* Wake Polarity */
 385                        np->wake_polarity = psib[i];
 386                        break;
 387                case 9: /* Adapter description */
 388                        j = (next - i > 255) ? 255 : next - i;
 389                        memcpy (np->name, &(psib[i]), j);
 390                        break;
 391                case 4:
 392                case 5:
 393                case 6:
 394                case 7:
 395                case 8: /* Reversed */
 396                        break;
 397                default:        /* Unknown cell */
 398                        return -1;
 399                }
 400                i = next;
 401        } while (1);
 402
 403        return 0;
 404}
 405
 406static int
 407rio_open (struct net_device *dev)
 408{
 409        struct netdev_private *np = netdev_priv(dev);
 410        long ioaddr = dev->base_addr;
 411        int i;
 412        u16 macctrl;
 413
 414        i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
 415        if (i)
 416                return i;
 417
 418        /* Reset all logic functions */
 419        writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
 420                ioaddr + ASICCtrl + 2);
 421        mdelay(10);
 422
 423        /* DebugCtrl bit 4, 5, 9 must set */
 424        writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
 425
 426        /* Jumbo frame */
 427        if (np->jumbo != 0)
 428                writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
 429
 430        alloc_list (dev);
 431
 432        /* Get station address */
 433        for (i = 0; i < 6; i++)
 434                writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
 435
 436        set_multicast (dev);
 437        if (np->coalesce) {
 438                writel (np->rx_coalesce | np->rx_timeout << 16,
 439                        ioaddr + RxDMAIntCtrl);
 440        }
 441        /* Set RIO to poll every N*320nsec. */
 442        writeb (0x20, ioaddr + RxDMAPollPeriod);
 443        writeb (0xff, ioaddr + TxDMAPollPeriod);
 444        writeb (0x30, ioaddr + RxDMABurstThresh);
 445        writeb (0x30, ioaddr + RxDMAUrgentThresh);
 446        writel (0x0007ffff, ioaddr + RmonStatMask);
 447        /* clear statistics */
 448        clear_stats (dev);
 449
 450        /* VLAN supported */
 451        if (np->vlan) {
 452                /* priority field in RxDMAIntCtrl  */
 453                writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
 454                        ioaddr + RxDMAIntCtrl);
 455                /* VLANId */
 456                writew (np->vlan, ioaddr + VLANId);
 457                /* Length/Type should be 0x8100 */
 458                writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
 459                /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 460                   VLAN information tagged by TFC' VID, CFI fields. */
 461                writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
 462                        ioaddr + MACCtrl);
 463        }
 464
 465        init_timer (&np->timer);
 466        np->timer.expires = jiffies + 1*HZ;
 467        np->timer.data = (unsigned long) dev;
 468        np->timer.function = &rio_timer;
 469        add_timer (&np->timer);
 470
 471        /* Start Tx/Rx */
 472        writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
 473                        ioaddr + MACCtrl);
 474
 475        macctrl = 0;
 476        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 477        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 478        macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 479        macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 480        writew(macctrl, ioaddr + MACCtrl);
 481
 482        netif_start_queue (dev);
 483
 484        /* Enable default interrupts */
 485        EnableInt ();
 486        return 0;
 487}
 488
 489static void
 490rio_timer (unsigned long data)
 491{
 492        struct net_device *dev = (struct net_device *)data;
 493        struct netdev_private *np = netdev_priv(dev);
 494        unsigned int entry;
 495        int next_tick = 1*HZ;
 496        unsigned long flags;
 497
 498        spin_lock_irqsave(&np->rx_lock, flags);
 499        /* Recover rx ring exhausted error */
 500        if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 501                printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 502                /* Re-allocate skbuffs to fill the descriptor ring */
 503                for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 504                        struct sk_buff *skb;
 505                        entry = np->old_rx % RX_RING_SIZE;
 506                        /* Dropped packets don't need to re-allocate */
 507                        if (np->rx_skbuff[entry] == NULL) {
 508                                skb = netdev_alloc_skb (dev, np->rx_buf_sz);
 509                                if (skb == NULL) {
 510                                        np->rx_ring[entry].fraginfo = 0;
 511                                        printk (KERN_INFO
 512                                                "%s: Still unable to re-allocate Rx skbuff.#%d\n",
 513                                                dev->name, entry);
 514                                        break;
 515                                }
 516                                np->rx_skbuff[entry] = skb;
 517                                /* 16 byte align the IP header */
 518                                skb_reserve (skb, 2);
 519                                np->rx_ring[entry].fraginfo =
 520                                    cpu_to_le64 (pci_map_single
 521                                         (np->pdev, skb->data, np->rx_buf_sz,
 522                                          PCI_DMA_FROMDEVICE));
 523                        }
 524                        np->rx_ring[entry].fraginfo |=
 525                            cpu_to_le64((u64)np->rx_buf_sz << 48);
 526                        np->rx_ring[entry].status = 0;
 527                } /* end for */
 528        } /* end if */
 529        spin_unlock_irqrestore (&np->rx_lock, flags);
 530        np->timer.expires = jiffies + next_tick;
 531        add_timer(&np->timer);
 532}
 533
 534static void
 535rio_tx_timeout (struct net_device *dev)
 536{
 537        long ioaddr = dev->base_addr;
 538
 539        printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 540                dev->name, readl (ioaddr + TxStatus));
 541        rio_free_tx(dev, 0);
 542        dev->if_port = 0;
 543        dev->trans_start = jiffies; /* prevent tx timeout */
 544}
 545
 546 /* allocate and initialize Tx and Rx descriptors */
 547static void
 548alloc_list (struct net_device *dev)
 549{
 550        struct netdev_private *np = netdev_priv(dev);
 551        int i;
 552
 553        np->cur_rx = np->cur_tx = 0;
 554        np->old_rx = np->old_tx = 0;
 555        np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 556
 557        /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 558        for (i = 0; i < TX_RING_SIZE; i++) {
 559                np->tx_skbuff[i] = NULL;
 560                np->tx_ring[i].status = cpu_to_le64 (TFDDone);
 561                np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
 562                                              ((i+1)%TX_RING_SIZE) *
 563                                              sizeof (struct netdev_desc));
 564        }
 565
 566        /* Initialize Rx descriptors */
 567        for (i = 0; i < RX_RING_SIZE; i++) {
 568                np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
 569                                                ((i + 1) % RX_RING_SIZE) *
 570                                                sizeof (struct netdev_desc));
 571                np->rx_ring[i].status = 0;
 572                np->rx_ring[i].fraginfo = 0;
 573                np->rx_skbuff[i] = NULL;
 574        }
 575
 576        /* Allocate the rx buffers */
 577        for (i = 0; i < RX_RING_SIZE; i++) {
 578                /* Allocated fixed size of skbuff */
 579                struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
 580                np->rx_skbuff[i] = skb;
 581                if (skb == NULL) {
 582                        printk (KERN_ERR
 583                                "%s: alloc_list: allocate Rx buffer error! ",
 584                                dev->name);
 585                        break;
 586                }
 587                skb_reserve (skb, 2);   /* 16 byte align the IP header. */
 588                /* Rubicon now supports 40 bits of addressing space. */
 589                np->rx_ring[i].fraginfo =
 590                    cpu_to_le64 ( pci_map_single (
 591                                  np->pdev, skb->data, np->rx_buf_sz,
 592                                  PCI_DMA_FROMDEVICE));
 593                np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 594        }
 595
 596        /* Set RFDListPtr */
 597        writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
 598        writel (0, dev->base_addr + RFDListPtr1);
 599
 600        return;
 601}
 602
 603static netdev_tx_t
 604start_xmit (struct sk_buff *skb, struct net_device *dev)
 605{
 606        struct netdev_private *np = netdev_priv(dev);
 607        struct netdev_desc *txdesc;
 608        unsigned entry;
 609        u32 ioaddr;
 610        u64 tfc_vlan_tag = 0;
 611
 612        if (np->link_status == 0) {     /* Link Down */
 613                dev_kfree_skb(skb);
 614                return NETDEV_TX_OK;
 615        }
 616        ioaddr = dev->base_addr;
 617        entry = np->cur_tx % TX_RING_SIZE;
 618        np->tx_skbuff[entry] = skb;
 619        txdesc = &np->tx_ring[entry];
 620
 621#if 0
 622        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 623                txdesc->status |=
 624                    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 625                                 IPChecksumEnable);
 626        }
 627#endif
 628        if (np->vlan) {
 629                tfc_vlan_tag = VLANTagInsert |
 630                    ((u64)np->vlan << 32) |
 631                    ((u64)skb->priority << 45);
 632        }
 633        txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 634                                                        skb->len,
 635                                                        PCI_DMA_TODEVICE));
 636        txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 637
 638        /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 639         * Work around: Always use 1 descriptor in 10Mbps mode */
 640        if (entry % np->tx_coalesce == 0 || np->speed == 10)
 641                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 642                                              WordAlignDisable |
 643                                              TxDMAIndicate |
 644                                              (1 << FragCountShift));
 645        else
 646                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 647                                              WordAlignDisable |
 648                                              (1 << FragCountShift));
 649
 650        /* TxDMAPollNow */
 651        writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
 652        /* Schedule ISR */
 653        writel(10000, ioaddr + CountDown);
 654        np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 655        if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 656                        < TX_QUEUE_LEN - 1 && np->speed != 10) {
 657                /* do nothing */
 658        } else if (!netif_queue_stopped(dev)) {
 659                netif_stop_queue (dev);
 660        }
 661
 662        /* The first TFDListPtr */
 663        if (readl (dev->base_addr + TFDListPtr0) == 0) {
 664                writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
 665                        dev->base_addr + TFDListPtr0);
 666                writel (0, dev->base_addr + TFDListPtr1);
 667        }
 668
 669        return NETDEV_TX_OK;
 670}
 671
 672static irqreturn_t
 673rio_interrupt (int irq, void *dev_instance)
 674{
 675        struct net_device *dev = dev_instance;
 676        struct netdev_private *np;
 677        unsigned int_status;
 678        long ioaddr;
 679        int cnt = max_intrloop;
 680        int handled = 0;
 681
 682        ioaddr = dev->base_addr;
 683        np = netdev_priv(dev);
 684        while (1) {
 685                int_status = readw (ioaddr + IntStatus);
 686                writew (int_status, ioaddr + IntStatus);
 687                int_status &= DEFAULT_INTR;
 688                if (int_status == 0 || --cnt < 0)
 689                        break;
 690                handled = 1;
 691                /* Processing received packets */
 692                if (int_status & RxDMAComplete)
 693                        receive_packet (dev);
 694                /* TxDMAComplete interrupt */
 695                if ((int_status & (TxDMAComplete|IntRequested))) {
 696                        int tx_status;
 697                        tx_status = readl (ioaddr + TxStatus);
 698                        if (tx_status & 0x01)
 699                                tx_error (dev, tx_status);
 700                        /* Free used tx skbuffs */
 701                        rio_free_tx (dev, 1);
 702                }
 703
 704                /* Handle uncommon events */
 705                if (int_status &
 706                    (HostError | LinkEvent | UpdateStats))
 707                        rio_error (dev, int_status);
 708        }
 709        if (np->cur_tx != np->old_tx)
 710                writel (100, ioaddr + CountDown);
 711        return IRQ_RETVAL(handled);
 712}
 713
 714static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 715{
 716        return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 717}
 718
 719static void
 720rio_free_tx (struct net_device *dev, int irq)
 721{
 722        struct netdev_private *np = netdev_priv(dev);
 723        int entry = np->old_tx % TX_RING_SIZE;
 724        int tx_use = 0;
 725        unsigned long flag = 0;
 726
 727        if (irq)
 728                spin_lock(&np->tx_lock);
 729        else
 730                spin_lock_irqsave(&np->tx_lock, flag);
 731
 732        /* Free used tx skbuffs */
 733        while (entry != np->cur_tx) {
 734                struct sk_buff *skb;
 735
 736                if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 737                        break;
 738                skb = np->tx_skbuff[entry];
 739                pci_unmap_single (np->pdev,
 740                                  desc_to_dma(&np->tx_ring[entry]),
 741                                  skb->len, PCI_DMA_TODEVICE);
 742                if (irq)
 743                        dev_kfree_skb_irq (skb);
 744                else
 745                        dev_kfree_skb (skb);
 746
 747                np->tx_skbuff[entry] = NULL;
 748                entry = (entry + 1) % TX_RING_SIZE;
 749                tx_use++;
 750        }
 751        if (irq)
 752                spin_unlock(&np->tx_lock);
 753        else
 754                spin_unlock_irqrestore(&np->tx_lock, flag);
 755        np->old_tx = entry;
 756
 757        /* If the ring is no longer full, clear tx_full and
 758           call netif_wake_queue() */
 759
 760        if (netif_queue_stopped(dev) &&
 761            ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 762            < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 763                netif_wake_queue (dev);
 764        }
 765}
 766
 767static void
 768tx_error (struct net_device *dev, int tx_status)
 769{
 770        struct netdev_private *np;
 771        long ioaddr = dev->base_addr;
 772        int frame_id;
 773        int i;
 774
 775        np = netdev_priv(dev);
 776
 777        frame_id = (tx_status & 0xffff0000);
 778        printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 779                dev->name, tx_status, frame_id);
 780        np->stats.tx_errors++;
 781        /* Ttransmit Underrun */
 782        if (tx_status & 0x10) {
 783                np->stats.tx_fifo_errors++;
 784                writew (readw (ioaddr + TxStartThresh) + 0x10,
 785                        ioaddr + TxStartThresh);
 786                /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 787                writew (TxReset | DMAReset | FIFOReset | NetworkReset,
 788                        ioaddr + ASICCtrl + 2);
 789                /* Wait for ResetBusy bit clear */
 790                for (i = 50; i > 0; i--) {
 791                        if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 792                                break;
 793                        mdelay (1);
 794                }
 795                rio_free_tx (dev, 1);
 796                /* Reset TFDListPtr */
 797                writel (np->tx_ring_dma +
 798                        np->old_tx * sizeof (struct netdev_desc),
 799                        dev->base_addr + TFDListPtr0);
 800                writel (0, dev->base_addr + TFDListPtr1);
 801
 802                /* Let TxStartThresh stay default value */
 803        }
 804        /* Late Collision */
 805        if (tx_status & 0x04) {
 806                np->stats.tx_fifo_errors++;
 807                /* TxReset and clear FIFO */
 808                writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
 809                /* Wait reset done */
 810                for (i = 50; i > 0; i--) {
 811                        if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
 812                                break;
 813                        mdelay (1);
 814                }
 815                /* Let TxStartThresh stay default value */
 816        }
 817        /* Maximum Collisions */
 818#ifdef ETHER_STATS
 819        if (tx_status & 0x08)
 820                np->stats.collisions16++;
 821#else
 822        if (tx_status & 0x08)
 823                np->stats.collisions++;
 824#endif
 825        /* Restart the Tx */
 826        writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
 827}
 828
 829static int
 830receive_packet (struct net_device *dev)
 831{
 832        struct netdev_private *np = netdev_priv(dev);
 833        int entry = np->cur_rx % RX_RING_SIZE;
 834        int cnt = 30;
 835
 836        /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 837        while (1) {
 838                struct netdev_desc *desc = &np->rx_ring[entry];
 839                int pkt_len;
 840                u64 frame_status;
 841
 842                if (!(desc->status & cpu_to_le64(RFDDone)) ||
 843                    !(desc->status & cpu_to_le64(FrameStart)) ||
 844                    !(desc->status & cpu_to_le64(FrameEnd)))
 845                        break;
 846
 847                /* Chip omits the CRC. */
 848                frame_status = le64_to_cpu(desc->status);
 849                pkt_len = frame_status & 0xffff;
 850                if (--cnt < 0)
 851                        break;
 852                /* Update rx error statistics, drop packet. */
 853                if (frame_status & RFS_Errors) {
 854                        np->stats.rx_errors++;
 855                        if (frame_status & (RxRuntFrame | RxLengthError))
 856                                np->stats.rx_length_errors++;
 857                        if (frame_status & RxFCSError)
 858                                np->stats.rx_crc_errors++;
 859                        if (frame_status & RxAlignmentError && np->speed != 1000)
 860                                np->stats.rx_frame_errors++;
 861                        if (frame_status & RxFIFOOverrun)
 862                                np->stats.rx_fifo_errors++;
 863                } else {
 864                        struct sk_buff *skb;
 865
 866                        /* Small skbuffs for short packets */
 867                        if (pkt_len > copy_thresh) {
 868                                pci_unmap_single (np->pdev,
 869                                                  desc_to_dma(desc),
 870                                                  np->rx_buf_sz,
 871                                                  PCI_DMA_FROMDEVICE);
 872                                skb_put (skb = np->rx_skbuff[entry], pkt_len);
 873                                np->rx_skbuff[entry] = NULL;
 874                        } else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
 875                                pci_dma_sync_single_for_cpu(np->pdev,
 876                                                            desc_to_dma(desc),
 877                                                            np->rx_buf_sz,
 878                                                            PCI_DMA_FROMDEVICE);
 879                                /* 16 byte align the IP header */
 880                                skb_reserve (skb, 2);
 881                                skb_copy_to_linear_data (skb,
 882                                                  np->rx_skbuff[entry]->data,
 883                                                  pkt_len);
 884                                skb_put (skb, pkt_len);
 885                                pci_dma_sync_single_for_device(np->pdev,
 886                                                               desc_to_dma(desc),
 887                                                               np->rx_buf_sz,
 888                                                               PCI_DMA_FROMDEVICE);
 889                        }
 890                        skb->protocol = eth_type_trans (skb, dev);
 891#if 0
 892                        /* Checksum done by hw, but csum value unavailable. */
 893                        if (np->pdev->pci_rev_id >= 0x0c &&
 894                                !(frame_status & (TCPError | UDPError | IPError))) {
 895                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 896                        }
 897#endif
 898                        netif_rx (skb);
 899                }
 900                entry = (entry + 1) % RX_RING_SIZE;
 901        }
 902        spin_lock(&np->rx_lock);
 903        np->cur_rx = entry;
 904        /* Re-allocate skbuffs to fill the descriptor ring */
 905        entry = np->old_rx;
 906        while (entry != np->cur_rx) {
 907                struct sk_buff *skb;
 908                /* Dropped packets don't need to re-allocate */
 909                if (np->rx_skbuff[entry] == NULL) {
 910                        skb = netdev_alloc_skb(dev, np->rx_buf_sz);
 911                        if (skb == NULL) {
 912                                np->rx_ring[entry].fraginfo = 0;
 913                                printk (KERN_INFO
 914                                        "%s: receive_packet: "
 915                                        "Unable to re-allocate Rx skbuff.#%d\n",
 916                                        dev->name, entry);
 917                                break;
 918                        }
 919                        np->rx_skbuff[entry] = skb;
 920                        /* 16 byte align the IP header */
 921                        skb_reserve (skb, 2);
 922                        np->rx_ring[entry].fraginfo =
 923                            cpu_to_le64 (pci_map_single
 924                                         (np->pdev, skb->data, np->rx_buf_sz,
 925                                          PCI_DMA_FROMDEVICE));
 926                }
 927                np->rx_ring[entry].fraginfo |=
 928                    cpu_to_le64((u64)np->rx_buf_sz << 48);
 929                np->rx_ring[entry].status = 0;
 930                entry = (entry + 1) % RX_RING_SIZE;
 931        }
 932        np->old_rx = entry;
 933        spin_unlock(&np->rx_lock);
 934        return 0;
 935}
 936
 937static void
 938rio_error (struct net_device *dev, int int_status)
 939{
 940        long ioaddr = dev->base_addr;
 941        struct netdev_private *np = netdev_priv(dev);
 942        u16 macctrl;
 943
 944        /* Link change event */
 945        if (int_status & LinkEvent) {
 946                if (mii_wait_link (dev, 10) == 0) {
 947                        printk (KERN_INFO "%s: Link up\n", dev->name);
 948                        if (np->phy_media)
 949                                mii_get_media_pcs (dev);
 950                        else
 951                                mii_get_media (dev);
 952                        if (np->speed == 1000)
 953                                np->tx_coalesce = tx_coalesce;
 954                        else
 955                                np->tx_coalesce = 1;
 956                        macctrl = 0;
 957                        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 958                        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 959                        macctrl |= (np->tx_flow) ?
 960                                TxFlowControlEnable : 0;
 961                        macctrl |= (np->rx_flow) ?
 962                                RxFlowControlEnable : 0;
 963                        writew(macctrl, ioaddr + MACCtrl);
 964                        np->link_status = 1;
 965                        netif_carrier_on(dev);
 966                } else {
 967                        printk (KERN_INFO "%s: Link off\n", dev->name);
 968                        np->link_status = 0;
 969                        netif_carrier_off(dev);
 970                }
 971        }
 972
 973        /* UpdateStats statistics registers */
 974        if (int_status & UpdateStats) {
 975                get_stats (dev);
 976        }
 977
 978        /* PCI Error, a catastronphic error related to the bus interface
 979           occurs, set GlobalReset and HostReset to reset. */
 980        if (int_status & HostError) {
 981                printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
 982                        dev->name, int_status);
 983                writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
 984                mdelay (500);
 985        }
 986}
 987
 988static struct net_device_stats *
 989get_stats (struct net_device *dev)
 990{
 991        long ioaddr = dev->base_addr;
 992        struct netdev_private *np = netdev_priv(dev);
 993#ifdef MEM_MAPPING
 994        int i;
 995#endif
 996        unsigned int stat_reg;
 997
 998        /* All statistics registers need to be acknowledged,
 999           else statistic overflow could cause problems */
1000
1001        np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
1002        np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
1003        np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
1004        np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1005
1006        np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1007        np->stats.collisions += readl (ioaddr + SingleColFrames)
1008                             +  readl (ioaddr + MultiColFrames);
1009
1010        /* detailed tx errors */
1011        stat_reg = readw (ioaddr + FramesAbortXSColls);
1012        np->stats.tx_aborted_errors += stat_reg;
1013        np->stats.tx_errors += stat_reg;
1014
1015        stat_reg = readw (ioaddr + CarrierSenseErrors);
1016        np->stats.tx_carrier_errors += stat_reg;
1017        np->stats.tx_errors += stat_reg;
1018
1019        /* Clear all other statistic register. */
1020        readl (ioaddr + McstOctetXmtOk);
1021        readw (ioaddr + BcstFramesXmtdOk);
1022        readl (ioaddr + McstFramesXmtdOk);
1023        readw (ioaddr + BcstFramesRcvdOk);
1024        readw (ioaddr + MacControlFramesRcvd);
1025        readw (ioaddr + FrameTooLongErrors);
1026        readw (ioaddr + InRangeLengthErrors);
1027        readw (ioaddr + FramesCheckSeqErrors);
1028        readw (ioaddr + FramesLostRxErrors);
1029        readl (ioaddr + McstOctetXmtOk);
1030        readl (ioaddr + BcstOctetXmtOk);
1031        readl (ioaddr + McstFramesXmtdOk);
1032        readl (ioaddr + FramesWDeferredXmt);
1033        readl (ioaddr + LateCollisions);
1034        readw (ioaddr + BcstFramesXmtdOk);
1035        readw (ioaddr + MacControlFramesXmtd);
1036        readw (ioaddr + FramesWEXDeferal);
1037
1038#ifdef MEM_MAPPING
1039        for (i = 0x100; i <= 0x150; i += 4)
1040                readl (ioaddr + i);
1041#endif
1042        readw (ioaddr + TxJumboFrames);
1043        readw (ioaddr + RxJumboFrames);
1044        readw (ioaddr + TCPCheckSumErrors);
1045        readw (ioaddr + UDPCheckSumErrors);
1046        readw (ioaddr + IPCheckSumErrors);
1047        return &np->stats;
1048}
1049
1050static int
1051clear_stats (struct net_device *dev)
1052{
1053        long ioaddr = dev->base_addr;
1054#ifdef MEM_MAPPING
1055        int i;
1056#endif
1057
1058        /* All statistics registers need to be acknowledged,
1059           else statistic overflow could cause problems */
1060        readl (ioaddr + FramesRcvOk);
1061        readl (ioaddr + FramesXmtOk);
1062        readl (ioaddr + OctetRcvOk);
1063        readl (ioaddr + OctetXmtOk);
1064
1065        readl (ioaddr + McstFramesRcvdOk);
1066        readl (ioaddr + SingleColFrames);
1067        readl (ioaddr + MultiColFrames);
1068        readl (ioaddr + LateCollisions);
1069        /* detailed rx errors */
1070        readw (ioaddr + FrameTooLongErrors);
1071        readw (ioaddr + InRangeLengthErrors);
1072        readw (ioaddr + FramesCheckSeqErrors);
1073        readw (ioaddr + FramesLostRxErrors);
1074
1075        /* detailed tx errors */
1076        readw (ioaddr + FramesAbortXSColls);
1077        readw (ioaddr + CarrierSenseErrors);
1078
1079        /* Clear all other statistic register. */
1080        readl (ioaddr + McstOctetXmtOk);
1081        readw (ioaddr + BcstFramesXmtdOk);
1082        readl (ioaddr + McstFramesXmtdOk);
1083        readw (ioaddr + BcstFramesRcvdOk);
1084        readw (ioaddr + MacControlFramesRcvd);
1085        readl (ioaddr + McstOctetXmtOk);
1086        readl (ioaddr + BcstOctetXmtOk);
1087        readl (ioaddr + McstFramesXmtdOk);
1088        readl (ioaddr + FramesWDeferredXmt);
1089        readw (ioaddr + BcstFramesXmtdOk);
1090        readw (ioaddr + MacControlFramesXmtd);
1091        readw (ioaddr + FramesWEXDeferal);
1092#ifdef MEM_MAPPING
1093        for (i = 0x100; i <= 0x150; i += 4)
1094                readl (ioaddr + i);
1095#endif
1096        readw (ioaddr + TxJumboFrames);
1097        readw (ioaddr + RxJumboFrames);
1098        readw (ioaddr + TCPCheckSumErrors);
1099        readw (ioaddr + UDPCheckSumErrors);
1100        readw (ioaddr + IPCheckSumErrors);
1101        return 0;
1102}
1103
1104
1105static int
1106change_mtu (struct net_device *dev, int new_mtu)
1107{
1108        struct netdev_private *np = netdev_priv(dev);
1109        int max = (np->jumbo) ? MAX_JUMBO : 1536;
1110
1111        if ((new_mtu < 68) || (new_mtu > max)) {
1112                return -EINVAL;
1113        }
1114
1115        dev->mtu = new_mtu;
1116
1117        return 0;
1118}
1119
1120static void
1121set_multicast (struct net_device *dev)
1122{
1123        long ioaddr = dev->base_addr;
1124        u32 hash_table[2];
1125        u16 rx_mode = 0;
1126        struct netdev_private *np = netdev_priv(dev);
1127
1128        hash_table[0] = hash_table[1] = 0;
1129        /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1130        hash_table[1] |= 0x02000000;
1131        if (dev->flags & IFF_PROMISC) {
1132                /* Receive all frames promiscuously. */
1133                rx_mode = ReceiveAllFrames;
1134        } else if ((dev->flags & IFF_ALLMULTI) ||
1135                        (dev->mc_count > multicast_filter_limit)) {
1136                /* Receive broadcast and multicast frames */
1137                rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1138        } else if (dev->mc_count > 0) {
1139                int i;
1140                struct dev_mc_list *mclist;
1141                /* Receive broadcast frames and multicast frames filtering
1142                   by Hashtable */
1143                rx_mode =
1144                    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1145                for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1146                                i++, mclist=mclist->next)
1147                {
1148                        int bit, index = 0;
1149                        int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1150                        /* The inverted high significant 6 bits of CRC are
1151                           used as an index to hashtable */
1152                        for (bit = 0; bit < 6; bit++)
1153                                if (crc & (1 << (31 - bit)))
1154                                        index |= (1 << bit);
1155                        hash_table[index / 32] |= (1 << (index % 32));
1156                }
1157        } else {
1158                rx_mode = ReceiveBroadcast | ReceiveUnicast;
1159        }
1160        if (np->vlan) {
1161                /* ReceiveVLANMatch field in ReceiveMode */
1162                rx_mode |= ReceiveVLANMatch;
1163        }
1164
1165        writel (hash_table[0], ioaddr + HashTable0);
1166        writel (hash_table[1], ioaddr + HashTable1);
1167        writew (rx_mode, ioaddr + ReceiveMode);
1168}
1169
1170static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1171{
1172        struct netdev_private *np = netdev_priv(dev);
1173        strcpy(info->driver, "dl2k");
1174        strcpy(info->version, DRV_VERSION);
1175        strcpy(info->bus_info, pci_name(np->pdev));
1176}
1177
1178static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1179{
1180        struct netdev_private *np = netdev_priv(dev);
1181        if (np->phy_media) {
1182                /* fiber device */
1183                cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1184                cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1185                cmd->port = PORT_FIBRE;
1186                cmd->transceiver = XCVR_INTERNAL;
1187        } else {
1188                /* copper device */
1189                cmd->supported = SUPPORTED_10baseT_Half |
1190                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1191                        | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1192                        SUPPORTED_Autoneg | SUPPORTED_MII;
1193                cmd->advertising = ADVERTISED_10baseT_Half |
1194                        ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1195                        ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1196                        ADVERTISED_Autoneg | ADVERTISED_MII;
1197                cmd->port = PORT_MII;
1198                cmd->transceiver = XCVR_INTERNAL;
1199        }
1200        if ( np->link_status ) {
1201                cmd->speed = np->speed;
1202                cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1203        } else {
1204                cmd->speed = -1;
1205                cmd->duplex = -1;
1206        }
1207        if ( np->an_enable)
1208                cmd->autoneg = AUTONEG_ENABLE;
1209        else
1210                cmd->autoneg = AUTONEG_DISABLE;
1211
1212        cmd->phy_address = np->phy_addr;
1213        return 0;
1214}
1215
1216static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1217{
1218        struct netdev_private *np = netdev_priv(dev);
1219        netif_carrier_off(dev);
1220        if (cmd->autoneg == AUTONEG_ENABLE) {
1221                if (np->an_enable)
1222                        return 0;
1223                else {
1224                        np->an_enable = 1;
1225                        mii_set_media(dev);
1226                        return 0;
1227                }
1228        } else {
1229                np->an_enable = 0;
1230                if (np->speed == 1000) {
1231                        cmd->speed = SPEED_100;
1232                        cmd->duplex = DUPLEX_FULL;
1233                        printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1234                }
1235                switch(cmd->speed + cmd->duplex) {
1236
1237                case SPEED_10 + DUPLEX_HALF:
1238                        np->speed = 10;
1239                        np->full_duplex = 0;
1240                        break;
1241
1242                case SPEED_10 + DUPLEX_FULL:
1243                        np->speed = 10;
1244                        np->full_duplex = 1;
1245                        break;
1246                case SPEED_100 + DUPLEX_HALF:
1247                        np->speed = 100;
1248                        np->full_duplex = 0;
1249                        break;
1250                case SPEED_100 + DUPLEX_FULL:
1251                        np->speed = 100;
1252                        np->full_duplex = 1;
1253                        break;
1254                case SPEED_1000 + DUPLEX_HALF:/* not supported */
1255                case SPEED_1000 + DUPLEX_FULL:/* not supported */
1256                default:
1257                        return -EINVAL;
1258                }
1259                mii_set_media(dev);
1260        }
1261        return 0;
1262}
1263
1264static u32 rio_get_link(struct net_device *dev)
1265{
1266        struct netdev_private *np = netdev_priv(dev);
1267        return np->link_status;
1268}
1269
1270static const struct ethtool_ops ethtool_ops = {
1271        .get_drvinfo = rio_get_drvinfo,
1272        .get_settings = rio_get_settings,
1273        .set_settings = rio_set_settings,
1274        .get_link = rio_get_link,
1275};
1276
1277static int
1278rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1279{
1280        int phy_addr;
1281        struct netdev_private *np = netdev_priv(dev);
1282        struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1283
1284        struct netdev_desc *desc;
1285        int i;
1286
1287        phy_addr = np->phy_addr;
1288        switch (cmd) {
1289        case SIOCDEVPRIVATE:
1290                break;
1291
1292        case SIOCDEVPRIVATE + 1:
1293                miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1294                break;
1295        case SIOCDEVPRIVATE + 2:
1296                mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1297                break;
1298        case SIOCDEVPRIVATE + 3:
1299                break;
1300        case SIOCDEVPRIVATE + 4:
1301                break;
1302        case SIOCDEVPRIVATE + 5:
1303                netif_stop_queue (dev);
1304                break;
1305        case SIOCDEVPRIVATE + 6:
1306                netif_wake_queue (dev);
1307                break;
1308        case SIOCDEVPRIVATE + 7:
1309                printk
1310                    ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1311                     netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1312                     np->old_rx);
1313                break;
1314        case SIOCDEVPRIVATE + 8:
1315                printk("TX ring:\n");
1316                for (i = 0; i < TX_RING_SIZE; i++) {
1317                        desc = &np->tx_ring[i];
1318                        printk
1319                            ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1320                             i,
1321                             (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1322                             (u32)le64_to_cpu(desc->next_desc),
1323                             (u32)le64_to_cpu(desc->status),
1324                             (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1325                             (u32)le64_to_cpu(desc->fraginfo));
1326                        printk ("\n");
1327                }
1328                printk ("\n");
1329                break;
1330
1331        default:
1332                return -EOPNOTSUPP;
1333        }
1334        return 0;
1335}
1336
1337#define EEP_READ 0x0200
1338#define EEP_BUSY 0x8000
1339/* Read the EEPROM word */
1340/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1341static int
1342read_eeprom (long ioaddr, int eep_addr)
1343{
1344        int i = 1000;
1345        outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1346        while (i-- > 0) {
1347                if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1348                        return inw (ioaddr + EepromData);
1349                }
1350        }
1351        return 0;
1352}
1353
1354enum phy_ctrl_bits {
1355        MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1356        MII_DUPLEX = 0x08,
1357};
1358
1359#define mii_delay() readb(ioaddr)
1360static void
1361mii_sendbit (struct net_device *dev, u32 data)
1362{
1363        long ioaddr = dev->base_addr + PhyCtrl;
1364        data = (data) ? MII_DATA1 : 0;
1365        data |= MII_WRITE;
1366        data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1367        writeb (data, ioaddr);
1368        mii_delay ();
1369        writeb (data | MII_CLK, ioaddr);
1370        mii_delay ();
1371}
1372
1373static int
1374mii_getbit (struct net_device *dev)
1375{
1376        long ioaddr = dev->base_addr + PhyCtrl;
1377        u8 data;
1378
1379        data = (readb (ioaddr) & 0xf8) | MII_READ;
1380        writeb (data, ioaddr);
1381        mii_delay ();
1382        writeb (data | MII_CLK, ioaddr);
1383        mii_delay ();
1384        return ((readb (ioaddr) >> 1) & 1);
1385}
1386
1387static void
1388mii_send_bits (struct net_device *dev, u32 data, int len)
1389{
1390        int i;
1391        for (i = len - 1; i >= 0; i--) {
1392                mii_sendbit (dev, data & (1 << i));
1393        }
1394}
1395
1396static int
1397mii_read (struct net_device *dev, int phy_addr, int reg_num)
1398{
1399        u32 cmd;
1400        int i;
1401        u32 retval = 0;
1402
1403        /* Preamble */
1404        mii_send_bits (dev, 0xffffffff, 32);
1405        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1406        /* ST,OP = 0110'b for read operation */
1407        cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1408        mii_send_bits (dev, cmd, 14);
1409        /* Turnaround */
1410        if (mii_getbit (dev))
1411                goto err_out;
1412        /* Read data */
1413        for (i = 0; i < 16; i++) {
1414                retval |= mii_getbit (dev);
1415                retval <<= 1;
1416        }
1417        /* End cycle */
1418        mii_getbit (dev);
1419        return (retval >> 1) & 0xffff;
1420
1421      err_out:
1422        return 0;
1423}
1424static int
1425mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1426{
1427        u32 cmd;
1428
1429        /* Preamble */
1430        mii_send_bits (dev, 0xffffffff, 32);
1431        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1432        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1433        cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1434        mii_send_bits (dev, cmd, 32);
1435        /* End cycle */
1436        mii_getbit (dev);
1437        return 0;
1438}
1439static int
1440mii_wait_link (struct net_device *dev, int wait)
1441{
1442        __u16 bmsr;
1443        int phy_addr;
1444        struct netdev_private *np;
1445
1446        np = netdev_priv(dev);
1447        phy_addr = np->phy_addr;
1448
1449        do {
1450                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1451                if (bmsr & MII_BMSR_LINK_STATUS)
1452                        return 0;
1453                mdelay (1);
1454        } while (--wait > 0);
1455        return -1;
1456}
1457static int
1458mii_get_media (struct net_device *dev)
1459{
1460        __u16 negotiate;
1461        __u16 bmsr;
1462        __u16 mscr;
1463        __u16 mssr;
1464        int phy_addr;
1465        struct netdev_private *np;
1466
1467        np = netdev_priv(dev);
1468        phy_addr = np->phy_addr;
1469
1470        bmsr = mii_read (dev, phy_addr, MII_BMSR);
1471        if (np->an_enable) {
1472                if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1473                        /* Auto-Negotiation not completed */
1474                        return -1;
1475                }
1476                negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1477                        mii_read (dev, phy_addr, MII_ANLPAR);
1478                mscr = mii_read (dev, phy_addr, MII_MSCR);
1479                mssr = mii_read (dev, phy_addr, MII_MSSR);
1480                if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1481                        np->speed = 1000;
1482                        np->full_duplex = 1;
1483                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1484                } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1485                        np->speed = 1000;
1486                        np->full_duplex = 0;
1487                        printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1488                } else if (negotiate & MII_ANAR_100BX_FD) {
1489                        np->speed = 100;
1490                        np->full_duplex = 1;
1491                        printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1492                } else if (negotiate & MII_ANAR_100BX_HD) {
1493                        np->speed = 100;
1494                        np->full_duplex = 0;
1495                        printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1496                } else if (negotiate & MII_ANAR_10BT_FD) {
1497                        np->speed = 10;
1498                        np->full_duplex = 1;
1499                        printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1500                } else if (negotiate & MII_ANAR_10BT_HD) {
1501                        np->speed = 10;
1502                        np->full_duplex = 0;
1503                        printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1504                }
1505                if (negotiate & MII_ANAR_PAUSE) {
1506                        np->tx_flow &= 1;
1507                        np->rx_flow &= 1;
1508                } else if (negotiate & MII_ANAR_ASYMMETRIC) {
1509                        np->tx_flow = 0;
1510                        np->rx_flow &= 1;
1511                }
1512                /* else tx_flow, rx_flow = user select  */
1513        } else {
1514                __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1515                switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1516                case MII_BMCR_SPEED_1000:
1517                        printk (KERN_INFO "Operating at 1000 Mbps, ");
1518                        break;
1519                case MII_BMCR_SPEED_100:
1520                        printk (KERN_INFO "Operating at 100 Mbps, ");
1521                        break;
1522                case 0:
1523                        printk (KERN_INFO "Operating at 10 Mbps, ");
1524                }
1525                if (bmcr & MII_BMCR_DUPLEX_MODE) {
1526                        printk (KERN_CONT "Full duplex\n");
1527                } else {
1528                        printk (KERN_CONT "Half duplex\n");
1529                }
1530        }
1531        if (np->tx_flow)
1532                printk(KERN_INFO "Enable Tx Flow Control\n");
1533        else
1534                printk(KERN_INFO "Disable Tx Flow Control\n");
1535        if (np->rx_flow)
1536                printk(KERN_INFO "Enable Rx Flow Control\n");
1537        else
1538                printk(KERN_INFO "Disable Rx Flow Control\n");
1539
1540        return 0;
1541}
1542
1543static int
1544mii_set_media (struct net_device *dev)
1545{
1546        __u16 pscr;
1547        __u16 bmcr;
1548        __u16 bmsr;
1549        __u16 anar;
1550        int phy_addr;
1551        struct netdev_private *np;
1552        np = netdev_priv(dev);
1553        phy_addr = np->phy_addr;
1554
1555        /* Does user set speed? */
1556        if (np->an_enable) {
1557                /* Advertise capabilities */
1558                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1559                anar = mii_read (dev, phy_addr, MII_ANAR) &
1560                             ~MII_ANAR_100BX_FD &
1561                             ~MII_ANAR_100BX_HD &
1562                             ~MII_ANAR_100BT4 &
1563                             ~MII_ANAR_10BT_FD &
1564                             ~MII_ANAR_10BT_HD;
1565                if (bmsr & MII_BMSR_100BX_FD)
1566                        anar |= MII_ANAR_100BX_FD;
1567                if (bmsr & MII_BMSR_100BX_HD)
1568                        anar |= MII_ANAR_100BX_HD;
1569                if (bmsr & MII_BMSR_100BT4)
1570                        anar |= MII_ANAR_100BT4;
1571                if (bmsr & MII_BMSR_10BT_FD)
1572                        anar |= MII_ANAR_10BT_FD;
1573                if (bmsr & MII_BMSR_10BT_HD)
1574                        anar |= MII_ANAR_10BT_HD;
1575                anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1576                mii_write (dev, phy_addr, MII_ANAR, anar);
1577
1578                /* Enable Auto crossover */
1579                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1580                pscr |= 3 << 5; /* 11'b */
1581                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1582
1583                /* Soft reset PHY */
1584                mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1585                bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1586                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1587                mdelay(1);
1588        } else {
1589                /* Force speed setting */
1590                /* 1) Disable Auto crossover */
1591                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1592                pscr &= ~(3 << 5);
1593                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1594
1595                /* 2) PHY Reset */
1596                bmcr = mii_read (dev, phy_addr, MII_BMCR);
1597                bmcr |= MII_BMCR_RESET;
1598                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1599
1600                /* 3) Power Down */
1601                bmcr = 0x1940;  /* must be 0x1940 */
1602                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1603                mdelay (100);   /* wait a certain time */
1604
1605                /* 4) Advertise nothing */
1606                mii_write (dev, phy_addr, MII_ANAR, 0);
1607
1608                /* 5) Set media and Power Up */
1609                bmcr = MII_BMCR_POWER_DOWN;
1610                if (np->speed == 100) {
1611                        bmcr |= MII_BMCR_SPEED_100;
1612                        printk (KERN_INFO "Manual 100 Mbps, ");
1613                } else if (np->speed == 10) {
1614                        printk (KERN_INFO "Manual 10 Mbps, ");
1615                }
1616                if (np->full_duplex) {
1617                        bmcr |= MII_BMCR_DUPLEX_MODE;
1618                        printk (KERN_CONT "Full duplex\n");
1619                } else {
1620                        printk (KERN_CONT "Half duplex\n");
1621                }
1622#if 0
1623                /* Set 1000BaseT Master/Slave setting */
1624                mscr = mii_read (dev, phy_addr, MII_MSCR);
1625                mscr |= MII_MSCR_CFG_ENABLE;
1626                mscr &= ~MII_MSCR_CFG_VALUE = 0;
1627#endif
1628                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1629                mdelay(10);
1630        }
1631        return 0;
1632}
1633
1634static int
1635mii_get_media_pcs (struct net_device *dev)
1636{
1637        __u16 negotiate;
1638        __u16 bmsr;
1639        int phy_addr;
1640        struct netdev_private *np;
1641
1642        np = netdev_priv(dev);
1643        phy_addr = np->phy_addr;
1644
1645        bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1646        if (np->an_enable) {
1647                if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1648                        /* Auto-Negotiation not completed */
1649                        return -1;
1650                }
1651                negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1652                        mii_read (dev, phy_addr, PCS_ANLPAR);
1653                np->speed = 1000;
1654                if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1655                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1656                        np->full_duplex = 1;
1657                } else {
1658                        printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1659                        np->full_duplex = 0;
1660                }
1661                if (negotiate & PCS_ANAR_PAUSE) {
1662                        np->tx_flow &= 1;
1663                        np->rx_flow &= 1;
1664                } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1665                        np->tx_flow = 0;
1666                        np->rx_flow &= 1;
1667                }
1668                /* else tx_flow, rx_flow = user select  */
1669        } else {
1670                __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1671                printk (KERN_INFO "Operating at 1000 Mbps, ");
1672                if (bmcr & MII_BMCR_DUPLEX_MODE) {
1673                        printk (KERN_CONT "Full duplex\n");
1674                } else {
1675                        printk (KERN_CONT "Half duplex\n");
1676                }
1677        }
1678        if (np->tx_flow)
1679                printk(KERN_INFO "Enable Tx Flow Control\n");
1680        else
1681                printk(KERN_INFO "Disable Tx Flow Control\n");
1682        if (np->rx_flow)
1683                printk(KERN_INFO "Enable Rx Flow Control\n");
1684        else
1685                printk(KERN_INFO "Disable Rx Flow Control\n");
1686
1687        return 0;
1688}
1689
1690static int
1691mii_set_media_pcs (struct net_device *dev)
1692{
1693        __u16 bmcr;
1694        __u16 esr;
1695        __u16 anar;
1696        int phy_addr;
1697        struct netdev_private *np;
1698        np = netdev_priv(dev);
1699        phy_addr = np->phy_addr;
1700
1701        /* Auto-Negotiation? */
1702        if (np->an_enable) {
1703                /* Advertise capabilities */
1704                esr = mii_read (dev, phy_addr, PCS_ESR);
1705                anar = mii_read (dev, phy_addr, MII_ANAR) &
1706                        ~PCS_ANAR_HALF_DUPLEX &
1707                        ~PCS_ANAR_FULL_DUPLEX;
1708                if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1709                        anar |= PCS_ANAR_HALF_DUPLEX;
1710                if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1711                        anar |= PCS_ANAR_FULL_DUPLEX;
1712                anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1713                mii_write (dev, phy_addr, MII_ANAR, anar);
1714
1715                /* Soft reset PHY */
1716                mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1717                bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1718                       MII_BMCR_RESET;
1719                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1720                mdelay(1);
1721        } else {
1722                /* Force speed setting */
1723                /* PHY Reset */
1724                bmcr = MII_BMCR_RESET;
1725                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1726                mdelay(10);
1727                if (np->full_duplex) {
1728                        bmcr = MII_BMCR_DUPLEX_MODE;
1729                        printk (KERN_INFO "Manual full duplex\n");
1730                } else {
1731                        bmcr = 0;
1732                        printk (KERN_INFO "Manual half duplex\n");
1733                }
1734                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1735                mdelay(10);
1736
1737                /*  Advertise nothing */
1738                mii_write (dev, phy_addr, MII_ANAR, 0);
1739        }
1740        return 0;
1741}
1742
1743
1744static int
1745rio_close (struct net_device *dev)
1746{
1747        long ioaddr = dev->base_addr;
1748        struct netdev_private *np = netdev_priv(dev);
1749        struct sk_buff *skb;
1750        int i;
1751
1752        netif_stop_queue (dev);
1753
1754        /* Disable interrupts */
1755        writew (0, ioaddr + IntEnable);
1756
1757        /* Stop Tx and Rx logics */
1758        writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1759
1760        free_irq (dev->irq, dev);
1761        del_timer_sync (&np->timer);
1762
1763        /* Free all the skbuffs in the queue. */
1764        for (i = 0; i < RX_RING_SIZE; i++) {
1765                np->rx_ring[i].status = 0;
1766                np->rx_ring[i].fraginfo = 0;
1767                skb = np->rx_skbuff[i];
1768                if (skb) {
1769                        pci_unmap_single(np->pdev,
1770                                         desc_to_dma(&np->rx_ring[i]),
1771                                         skb->len, PCI_DMA_FROMDEVICE);
1772                        dev_kfree_skb (skb);
1773                        np->rx_skbuff[i] = NULL;
1774                }
1775        }
1776        for (i = 0; i < TX_RING_SIZE; i++) {
1777                skb = np->tx_skbuff[i];
1778                if (skb) {
1779                        pci_unmap_single(np->pdev,
1780                                         desc_to_dma(&np->tx_ring[i]),
1781                                         skb->len, PCI_DMA_TODEVICE);
1782                        dev_kfree_skb (skb);
1783                        np->tx_skbuff[i] = NULL;
1784                }
1785        }
1786
1787        return 0;
1788}
1789
1790static void __devexit
1791rio_remove1 (struct pci_dev *pdev)
1792{
1793        struct net_device *dev = pci_get_drvdata (pdev);
1794
1795        if (dev) {
1796                struct netdev_private *np = netdev_priv(dev);
1797
1798                unregister_netdev (dev);
1799                pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1800                                     np->rx_ring_dma);
1801                pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1802                                     np->tx_ring_dma);
1803#ifdef MEM_MAPPING
1804                iounmap ((char *) (dev->base_addr));
1805#endif
1806                free_netdev (dev);
1807                pci_release_regions (pdev);
1808                pci_disable_device (pdev);
1809        }
1810        pci_set_drvdata (pdev, NULL);
1811}
1812
1813static struct pci_driver rio_driver = {
1814        .name           = "dl2k",
1815        .id_table       = rio_pci_tbl,
1816        .probe          = rio_probe1,
1817        .remove         = __devexit_p(rio_remove1),
1818};
1819
1820static int __init
1821rio_init (void)
1822{
1823        return pci_register_driver(&rio_driver);
1824}
1825
1826static void __exit
1827rio_exit (void)
1828{
1829        pci_unregister_driver (&rio_driver);
1830}
1831
1832module_init (rio_init);
1833module_exit (rio_exit);
1834
1835/*
1836
1837Compile command:
1838
1839gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1840
1841Read Documentation/networking/dl2k.txt for details.
1842
1843*/
1844
1845