linux/drivers/net/e100.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/100 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 *      e100.c: Intel(R) PRO/100 ethernet driver
  31 *
  32 *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
  33 *      original e100 driver, but better described as a munging of
  34 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  35 *
  36 *      References:
  37 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  38 *              Open Source Software Developers Manual,
  39 *              http://sourceforge.net/projects/e1000
  40 *
  41 *
  42 *                            Theory of Operation
  43 *
  44 *      I.   General
  45 *
  46 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  47 *      controller family, which includes the 82557, 82558, 82559, 82550,
  48 *      82551, and 82562 devices.  82558 and greater controllers
  49 *      integrate the Intel 82555 PHY.  The controllers are used in
  50 *      server and client network interface cards, as well as in
  51 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  52 *      configurations.  8255x supports a 32-bit linear addressing
  53 *      mode and operates at 33Mhz PCI clock rate.
  54 *
  55 *      II.  Driver Operation
  56 *
  57 *      Memory-mapped mode is used exclusively to access the device's
  58 *      shared-memory structure, the Control/Status Registers (CSR). All
  59 *      setup, configuration, and control of the device, including queuing
  60 *      of Tx, Rx, and configuration commands is through the CSR.
  61 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  62 *      protects the shared Command Block List (CBL).
  63 *
  64 *      8255x is highly MII-compliant and all access to the PHY go
  65 *      through the Management Data Interface (MDI).  Consequently, the
  66 *      driver leverages the mii.c library shared with other MII-compliant
  67 *      devices.
  68 *
  69 *      Big- and Little-Endian byte order as well as 32- and 64-bit
  70 *      archs are supported.  Weak-ordered memory and non-cache-coherent
  71 *      archs are supported.
  72 *
  73 *      III. Transmit
  74 *
  75 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  76 *      together in a fixed-size ring (CBL) thus forming the flexible mode
  77 *      memory structure.  A TCB marked with the suspend-bit indicates
  78 *      the end of the ring.  The last TCB processed suspends the
  79 *      controller, and the controller can be restarted by issue a CU
  80 *      resume command to continue from the suspend point, or a CU start
  81 *      command to start at a given position in the ring.
  82 *
  83 *      Non-Tx commands (config, multicast setup, etc) are linked
  84 *      into the CBL ring along with Tx commands.  The common structure
  85 *      used for both Tx and non-Tx commands is the Command Block (CB).
  86 *
  87 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  88 *      is the next CB to check for completion; cb_to_send is the first
  89 *      CB to start on in case of a previous failure to resume.  CB clean
  90 *      up happens in interrupt context in response to a CU interrupt.
  91 *      cbs_avail keeps track of number of free CB resources available.
  92 *
  93 *      Hardware padding of short packets to minimum packet size is
  94 *      enabled.  82557 pads with 7Eh, while the later controllers pad
  95 *      with 00h.
  96 *
  97 *      IV.  Receive
  98 *
  99 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
 100 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
 101 *      memory structure.  Rx skbs are allocated to contain both the RFD
 102 *      and the data buffer, but the RFD is pulled off before the skb is
 103 *      indicated.  The data buffer is aligned such that encapsulated
 104 *      protocol headers are u32-aligned.  Since the RFD is part of the
 105 *      mapped shared memory, and completion status is contained within
 106 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
 107 *      view from software and hardware.
 108 *
 109 *      In order to keep updates to the RFD link field from colliding with
 110 *      hardware writes to mark packets complete, we use the feature that
 111 *      hardware will not write to a size 0 descriptor and mark the previous
 112 *      packet as end-of-list (EL).   After updating the link, we remove EL
 113 *      and only then restore the size such that hardware may use the
 114 *      previous-to-end RFD.
 115 *
 116 *      Under typical operation, the  receive unit (RU) is start once,
 117 *      and the controller happily fills RFDs as frames arrive.  If
 118 *      replacement RFDs cannot be allocated, or the RU goes non-active,
 119 *      the RU must be restarted.  Frame arrival generates an interrupt,
 120 *      and Rx indication and re-allocation happen in the same context,
 121 *      therefore no locking is required.  A software-generated interrupt
 122 *      is generated from the watchdog to recover from a failed allocation
 123 *      scenario where all Rx resources have been indicated and none re-
 124 *      placed.
 125 *
 126 *      V.   Miscellaneous
 127 *
 128 *      VLAN offloading of tagging, stripping and filtering is not
 129 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 130 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 131 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 132 *      not supported (hardware limitation).
 133 *
 134 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 135 *
 136 *      Thanks to JC (jchapman@katalix.com) for helping with
 137 *      testing/troubleshooting the development driver.
 138 *
 139 *      TODO:
 140 *      o several entry points race with dev->close
 141 *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 142 *
 143 *      FIXES:
 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 145 *      - Stratus87247: protect MDI control register manipulations
 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 147 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 148 */
 149
 150#include <linux/module.h>
 151#include <linux/moduleparam.h>
 152#include <linux/kernel.h>
 153#include <linux/types.h>
 154#include <linux/sched.h>
 155#include <linux/slab.h>
 156#include <linux/delay.h>
 157#include <linux/init.h>
 158#include <linux/pci.h>
 159#include <linux/dma-mapping.h>
 160#include <linux/dmapool.h>
 161#include <linux/netdevice.h>
 162#include <linux/etherdevice.h>
 163#include <linux/mii.h>
 164#include <linux/if_vlan.h>
 165#include <linux/skbuff.h>
 166#include <linux/ethtool.h>
 167#include <linux/string.h>
 168#include <linux/firmware.h>
 169#include <asm/unaligned.h>
 170
 171
 172#define DRV_NAME                "e100"
 173#define DRV_EXT                 "-NAPI"
 174#define DRV_VERSION             "3.5.24-k2"DRV_EXT
 175#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 176#define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 177#define PFX                     DRV_NAME ": "
 178
 179#define E100_WATCHDOG_PERIOD    (2 * HZ)
 180#define E100_NAPI_WEIGHT        16
 181
 182#define FIRMWARE_D101M          "e100/d101m_ucode.bin"
 183#define FIRMWARE_D101S          "e100/d101s_ucode.bin"
 184#define FIRMWARE_D102E          "e100/d102e_ucode.bin"
 185
 186MODULE_DESCRIPTION(DRV_DESCRIPTION);
 187MODULE_AUTHOR(DRV_COPYRIGHT);
 188MODULE_LICENSE("GPL");
 189MODULE_VERSION(DRV_VERSION);
 190MODULE_FIRMWARE(FIRMWARE_D101M);
 191MODULE_FIRMWARE(FIRMWARE_D101S);
 192MODULE_FIRMWARE(FIRMWARE_D102E);
 193
 194static int debug = 3;
 195static int eeprom_bad_csum_allow = 0;
 196static int use_io = 0;
 197module_param(debug, int, 0);
 198module_param(eeprom_bad_csum_allow, int, 0);
 199module_param(use_io, int, 0);
 200MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 201MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 202MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 203#define DPRINTK(nlevel, klevel, fmt, args...) \
 204        (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
 205        printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
 206                __func__ , ## args))
 207
 208#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 209        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 210        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 211static struct pci_device_id e100_id_table[] = {
 212        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 213        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 214        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 215        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 216        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 217        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 218        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 219        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 220        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 221        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 222        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 223        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 224        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 225        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 226        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 227        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 228        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 229        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 230        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 231        INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 232        INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 233        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 234        INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 235        INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 236        INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 237        INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 238        INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 239        INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 240        INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 241        INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 242        INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 243        INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 244        INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 245        INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 246        INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 247        INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 248        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 249        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 250        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 251        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 252        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 253        INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 254        { 0, }
 255};
 256MODULE_DEVICE_TABLE(pci, e100_id_table);
 257
 258enum mac {
 259        mac_82557_D100_A  = 0,
 260        mac_82557_D100_B  = 1,
 261        mac_82557_D100_C  = 2,
 262        mac_82558_D101_A4 = 4,
 263        mac_82558_D101_B0 = 5,
 264        mac_82559_D101M   = 8,
 265        mac_82559_D101S   = 9,
 266        mac_82550_D102    = 12,
 267        mac_82550_D102_C  = 13,
 268        mac_82551_E       = 14,
 269        mac_82551_F       = 15,
 270        mac_82551_10      = 16,
 271        mac_unknown       = 0xFF,
 272};
 273
 274enum phy {
 275        phy_100a     = 0x000003E0,
 276        phy_100c     = 0x035002A8,
 277        phy_82555_tx = 0x015002A8,
 278        phy_nsc_tx   = 0x5C002000,
 279        phy_82562_et = 0x033002A8,
 280        phy_82562_em = 0x032002A8,
 281        phy_82562_ek = 0x031002A8,
 282        phy_82562_eh = 0x017002A8,
 283        phy_82552_v  = 0xd061004d,
 284        phy_unknown  = 0xFFFFFFFF,
 285};
 286
 287/* CSR (Control/Status Registers) */
 288struct csr {
 289        struct {
 290                u8 status;
 291                u8 stat_ack;
 292                u8 cmd_lo;
 293                u8 cmd_hi;
 294                u32 gen_ptr;
 295        } scb;
 296        u32 port;
 297        u16 flash_ctrl;
 298        u8 eeprom_ctrl_lo;
 299        u8 eeprom_ctrl_hi;
 300        u32 mdi_ctrl;
 301        u32 rx_dma_count;
 302};
 303
 304enum scb_status {
 305        rus_no_res       = 0x08,
 306        rus_ready        = 0x10,
 307        rus_mask         = 0x3C,
 308};
 309
 310enum ru_state  {
 311        RU_SUSPENDED = 0,
 312        RU_RUNNING       = 1,
 313        RU_UNINITIALIZED = -1,
 314};
 315
 316enum scb_stat_ack {
 317        stat_ack_not_ours    = 0x00,
 318        stat_ack_sw_gen      = 0x04,
 319        stat_ack_rnr         = 0x10,
 320        stat_ack_cu_idle     = 0x20,
 321        stat_ack_frame_rx    = 0x40,
 322        stat_ack_cu_cmd_done = 0x80,
 323        stat_ack_not_present = 0xFF,
 324        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 325        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 326};
 327
 328enum scb_cmd_hi {
 329        irq_mask_none = 0x00,
 330        irq_mask_all  = 0x01,
 331        irq_sw_gen    = 0x02,
 332};
 333
 334enum scb_cmd_lo {
 335        cuc_nop        = 0x00,
 336        ruc_start      = 0x01,
 337        ruc_load_base  = 0x06,
 338        cuc_start      = 0x10,
 339        cuc_resume     = 0x20,
 340        cuc_dump_addr  = 0x40,
 341        cuc_dump_stats = 0x50,
 342        cuc_load_base  = 0x60,
 343        cuc_dump_reset = 0x70,
 344};
 345
 346enum cuc_dump {
 347        cuc_dump_complete       = 0x0000A005,
 348        cuc_dump_reset_complete = 0x0000A007,
 349};
 350
 351enum port {
 352        software_reset  = 0x0000,
 353        selftest        = 0x0001,
 354        selective_reset = 0x0002,
 355};
 356
 357enum eeprom_ctrl_lo {
 358        eesk = 0x01,
 359        eecs = 0x02,
 360        eedi = 0x04,
 361        eedo = 0x08,
 362};
 363
 364enum mdi_ctrl {
 365        mdi_write = 0x04000000,
 366        mdi_read  = 0x08000000,
 367        mdi_ready = 0x10000000,
 368};
 369
 370enum eeprom_op {
 371        op_write = 0x05,
 372        op_read  = 0x06,
 373        op_ewds  = 0x10,
 374        op_ewen  = 0x13,
 375};
 376
 377enum eeprom_offsets {
 378        eeprom_cnfg_mdix  = 0x03,
 379        eeprom_phy_iface  = 0x06,
 380        eeprom_id         = 0x0A,
 381        eeprom_config_asf = 0x0D,
 382        eeprom_smbus_addr = 0x90,
 383};
 384
 385enum eeprom_cnfg_mdix {
 386        eeprom_mdix_enabled = 0x0080,
 387};
 388
 389enum eeprom_phy_iface {
 390        NoSuchPhy = 0,
 391        I82553AB,
 392        I82553C,
 393        I82503,
 394        DP83840,
 395        S80C240,
 396        S80C24,
 397        I82555,
 398        DP83840A = 10,
 399};
 400
 401enum eeprom_id {
 402        eeprom_id_wol = 0x0020,
 403};
 404
 405enum eeprom_config_asf {
 406        eeprom_asf = 0x8000,
 407        eeprom_gcl = 0x4000,
 408};
 409
 410enum cb_status {
 411        cb_complete = 0x8000,
 412        cb_ok       = 0x2000,
 413};
 414
 415enum cb_command {
 416        cb_nop    = 0x0000,
 417        cb_iaaddr = 0x0001,
 418        cb_config = 0x0002,
 419        cb_multi  = 0x0003,
 420        cb_tx     = 0x0004,
 421        cb_ucode  = 0x0005,
 422        cb_dump   = 0x0006,
 423        cb_tx_sf  = 0x0008,
 424        cb_cid    = 0x1f00,
 425        cb_i      = 0x2000,
 426        cb_s      = 0x4000,
 427        cb_el     = 0x8000,
 428};
 429
 430struct rfd {
 431        __le16 status;
 432        __le16 command;
 433        __le32 link;
 434        __le32 rbd;
 435        __le16 actual_size;
 436        __le16 size;
 437};
 438
 439struct rx {
 440        struct rx *next, *prev;
 441        struct sk_buff *skb;
 442        dma_addr_t dma_addr;
 443};
 444
 445#if defined(__BIG_ENDIAN_BITFIELD)
 446#define X(a,b)  b,a
 447#else
 448#define X(a,b)  a,b
 449#endif
 450struct config {
 451/*0*/   u8 X(byte_count:6, pad0:2);
 452/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 453/*2*/   u8 adaptive_ifs;
 454/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 455           term_write_cache_line:1), pad3:4);
 456/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 457/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 458/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 459           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 460           rx_discard_overruns:1), rx_save_bad_frames:1);
 461/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 462           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 463           tx_dynamic_tbd:1);
 464/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 465/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 466           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 467/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 468           loopback:2);
 469/*11*/  u8 X(linear_priority:3, pad11:5);
 470/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 471/*13*/  u8 ip_addr_lo;
 472/*14*/  u8 ip_addr_hi;
 473/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 474           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 475           pad15_2:1), crs_or_cdt:1);
 476/*16*/  u8 fc_delay_lo;
 477/*17*/  u8 fc_delay_hi;
 478/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 479           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 480/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 481           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 482           full_duplex_force:1), full_duplex_pin:1);
 483/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 484/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 485/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 486        u8 pad_d102[9];
 487};
 488
 489#define E100_MAX_MULTICAST_ADDRS        64
 490struct multi {
 491        __le16 count;
 492        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 493};
 494
 495/* Important: keep total struct u32-aligned */
 496#define UCODE_SIZE                      134
 497struct cb {
 498        __le16 status;
 499        __le16 command;
 500        __le32 link;
 501        union {
 502                u8 iaaddr[ETH_ALEN];
 503                __le32 ucode[UCODE_SIZE];
 504                struct config config;
 505                struct multi multi;
 506                struct {
 507                        u32 tbd_array;
 508                        u16 tcb_byte_count;
 509                        u8 threshold;
 510                        u8 tbd_count;
 511                        struct {
 512                                __le32 buf_addr;
 513                                __le16 size;
 514                                u16 eol;
 515                        } tbd;
 516                } tcb;
 517                __le32 dump_buffer_addr;
 518        } u;
 519        struct cb *next, *prev;
 520        dma_addr_t dma_addr;
 521        struct sk_buff *skb;
 522};
 523
 524enum loopback {
 525        lb_none = 0, lb_mac = 1, lb_phy = 3,
 526};
 527
 528struct stats {
 529        __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 530                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 531                tx_multiple_collisions, tx_total_collisions;
 532        __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 533                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 534                rx_short_frame_errors;
 535        __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 536        __le16 xmt_tco_frames, rcv_tco_frames;
 537        __le32 complete;
 538};
 539
 540struct mem {
 541        struct {
 542                u32 signature;
 543                u32 result;
 544        } selftest;
 545        struct stats stats;
 546        u8 dump_buf[596];
 547};
 548
 549struct param_range {
 550        u32 min;
 551        u32 max;
 552        u32 count;
 553};
 554
 555struct params {
 556        struct param_range rfds;
 557        struct param_range cbs;
 558};
 559
 560struct nic {
 561        /* Begin: frequently used values: keep adjacent for cache effect */
 562        u32 msg_enable                          ____cacheline_aligned;
 563        struct net_device *netdev;
 564        struct pci_dev *pdev;
 565        u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 566
 567        struct rx *rxs                          ____cacheline_aligned;
 568        struct rx *rx_to_use;
 569        struct rx *rx_to_clean;
 570        struct rfd blank_rfd;
 571        enum ru_state ru_running;
 572
 573        spinlock_t cb_lock                      ____cacheline_aligned;
 574        spinlock_t cmd_lock;
 575        struct csr __iomem *csr;
 576        enum scb_cmd_lo cuc_cmd;
 577        unsigned int cbs_avail;
 578        struct napi_struct napi;
 579        struct cb *cbs;
 580        struct cb *cb_to_use;
 581        struct cb *cb_to_send;
 582        struct cb *cb_to_clean;
 583        __le16 tx_command;
 584        /* End: frequently used values: keep adjacent for cache effect */
 585
 586        enum {
 587                ich                = (1 << 0),
 588                promiscuous        = (1 << 1),
 589                multicast_all      = (1 << 2),
 590                wol_magic          = (1 << 3),
 591                ich_10h_workaround = (1 << 4),
 592        } flags                                 ____cacheline_aligned;
 593
 594        enum mac mac;
 595        enum phy phy;
 596        struct params params;
 597        struct timer_list watchdog;
 598        struct timer_list blink_timer;
 599        struct mii_if_info mii;
 600        struct work_struct tx_timeout_task;
 601        enum loopback loopback;
 602
 603        struct mem *mem;
 604        dma_addr_t dma_addr;
 605
 606        struct pci_pool *cbs_pool;
 607        dma_addr_t cbs_dma_addr;
 608        u8 adaptive_ifs;
 609        u8 tx_threshold;
 610        u32 tx_frames;
 611        u32 tx_collisions;
 612        u32 tx_deferred;
 613        u32 tx_single_collisions;
 614        u32 tx_multiple_collisions;
 615        u32 tx_fc_pause;
 616        u32 tx_tco_frames;
 617
 618        u32 rx_fc_pause;
 619        u32 rx_fc_unsupported;
 620        u32 rx_tco_frames;
 621        u32 rx_over_length_errors;
 622
 623        u16 leds;
 624        u16 eeprom_wc;
 625        __le16 eeprom[256];
 626        spinlock_t mdio_lock;
 627};
 628
 629static inline void e100_write_flush(struct nic *nic)
 630{
 631        /* Flush previous PCI writes through intermediate bridges
 632         * by doing a benign read */
 633        (void)ioread8(&nic->csr->scb.status);
 634}
 635
 636static void e100_enable_irq(struct nic *nic)
 637{
 638        unsigned long flags;
 639
 640        spin_lock_irqsave(&nic->cmd_lock, flags);
 641        iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 642        e100_write_flush(nic);
 643        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 644}
 645
 646static void e100_disable_irq(struct nic *nic)
 647{
 648        unsigned long flags;
 649
 650        spin_lock_irqsave(&nic->cmd_lock, flags);
 651        iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 652        e100_write_flush(nic);
 653        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 654}
 655
 656static void e100_hw_reset(struct nic *nic)
 657{
 658        /* Put CU and RU into idle with a selective reset to get
 659         * device off of PCI bus */
 660        iowrite32(selective_reset, &nic->csr->port);
 661        e100_write_flush(nic); udelay(20);
 662
 663        /* Now fully reset device */
 664        iowrite32(software_reset, &nic->csr->port);
 665        e100_write_flush(nic); udelay(20);
 666
 667        /* Mask off our interrupt line - it's unmasked after reset */
 668        e100_disable_irq(nic);
 669}
 670
 671static int e100_self_test(struct nic *nic)
 672{
 673        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 674
 675        /* Passing the self-test is a pretty good indication
 676         * that the device can DMA to/from host memory */
 677
 678        nic->mem->selftest.signature = 0;
 679        nic->mem->selftest.result = 0xFFFFFFFF;
 680
 681        iowrite32(selftest | dma_addr, &nic->csr->port);
 682        e100_write_flush(nic);
 683        /* Wait 10 msec for self-test to complete */
 684        msleep(10);
 685
 686        /* Interrupts are enabled after self-test */
 687        e100_disable_irq(nic);
 688
 689        /* Check results of self-test */
 690        if (nic->mem->selftest.result != 0) {
 691                DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
 692                        nic->mem->selftest.result);
 693                return -ETIMEDOUT;
 694        }
 695        if (nic->mem->selftest.signature == 0) {
 696                DPRINTK(HW, ERR, "Self-test failed: timed out\n");
 697                return -ETIMEDOUT;
 698        }
 699
 700        return 0;
 701}
 702
 703static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 704{
 705        u32 cmd_addr_data[3];
 706        u8 ctrl;
 707        int i, j;
 708
 709        /* Three cmds: write/erase enable, write data, write/erase disable */
 710        cmd_addr_data[0] = op_ewen << (addr_len - 2);
 711        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 712                le16_to_cpu(data);
 713        cmd_addr_data[2] = op_ewds << (addr_len - 2);
 714
 715        /* Bit-bang cmds to write word to eeprom */
 716        for (j = 0; j < 3; j++) {
 717
 718                /* Chip select */
 719                iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 720                e100_write_flush(nic); udelay(4);
 721
 722                for (i = 31; i >= 0; i--) {
 723                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
 724                                eecs | eedi : eecs;
 725                        iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 726                        e100_write_flush(nic); udelay(4);
 727
 728                        iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 729                        e100_write_flush(nic); udelay(4);
 730                }
 731                /* Wait 10 msec for cmd to complete */
 732                msleep(10);
 733
 734                /* Chip deselect */
 735                iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 736                e100_write_flush(nic); udelay(4);
 737        }
 738};
 739
 740/* General technique stolen from the eepro100 driver - very clever */
 741static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 742{
 743        u32 cmd_addr_data;
 744        u16 data = 0;
 745        u8 ctrl;
 746        int i;
 747
 748        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 749
 750        /* Chip select */
 751        iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 752        e100_write_flush(nic); udelay(4);
 753
 754        /* Bit-bang to read word from eeprom */
 755        for (i = 31; i >= 0; i--) {
 756                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 757                iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 758                e100_write_flush(nic); udelay(4);
 759
 760                iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 761                e100_write_flush(nic); udelay(4);
 762
 763                /* Eeprom drives a dummy zero to EEDO after receiving
 764                 * complete address.  Use this to adjust addr_len. */
 765                ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 766                if (!(ctrl & eedo) && i > 16) {
 767                        *addr_len -= (i - 16);
 768                        i = 17;
 769                }
 770
 771                data = (data << 1) | (ctrl & eedo ? 1 : 0);
 772        }
 773
 774        /* Chip deselect */
 775        iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 776        e100_write_flush(nic); udelay(4);
 777
 778        return cpu_to_le16(data);
 779};
 780
 781/* Load entire EEPROM image into driver cache and validate checksum */
 782static int e100_eeprom_load(struct nic *nic)
 783{
 784        u16 addr, addr_len = 8, checksum = 0;
 785
 786        /* Try reading with an 8-bit addr len to discover actual addr len */
 787        e100_eeprom_read(nic, &addr_len, 0);
 788        nic->eeprom_wc = 1 << addr_len;
 789
 790        for (addr = 0; addr < nic->eeprom_wc; addr++) {
 791                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 792                if (addr < nic->eeprom_wc - 1)
 793                        checksum += le16_to_cpu(nic->eeprom[addr]);
 794        }
 795
 796        /* The checksum, stored in the last word, is calculated such that
 797         * the sum of words should be 0xBABA */
 798        if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 799                DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
 800                if (!eeprom_bad_csum_allow)
 801                        return -EAGAIN;
 802        }
 803
 804        return 0;
 805}
 806
 807/* Save (portion of) driver EEPROM cache to device and update checksum */
 808static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 809{
 810        u16 addr, addr_len = 8, checksum = 0;
 811
 812        /* Try reading with an 8-bit addr len to discover actual addr len */
 813        e100_eeprom_read(nic, &addr_len, 0);
 814        nic->eeprom_wc = 1 << addr_len;
 815
 816        if (start + count >= nic->eeprom_wc)
 817                return -EINVAL;
 818
 819        for (addr = start; addr < start + count; addr++)
 820                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 821
 822        /* The checksum, stored in the last word, is calculated such that
 823         * the sum of words should be 0xBABA */
 824        for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 825                checksum += le16_to_cpu(nic->eeprom[addr]);
 826        nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 827        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 828                nic->eeprom[nic->eeprom_wc - 1]);
 829
 830        return 0;
 831}
 832
 833#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 834#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 835static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 836{
 837        unsigned long flags;
 838        unsigned int i;
 839        int err = 0;
 840
 841        spin_lock_irqsave(&nic->cmd_lock, flags);
 842
 843        /* Previous command is accepted when SCB clears */
 844        for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 845                if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 846                        break;
 847                cpu_relax();
 848                if (unlikely(i > E100_WAIT_SCB_FAST))
 849                        udelay(5);
 850        }
 851        if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 852                err = -EAGAIN;
 853                goto err_unlock;
 854        }
 855
 856        if (unlikely(cmd != cuc_resume))
 857                iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 858        iowrite8(cmd, &nic->csr->scb.cmd_lo);
 859
 860err_unlock:
 861        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 862
 863        return err;
 864}
 865
 866static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 867        void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 868{
 869        struct cb *cb;
 870        unsigned long flags;
 871        int err = 0;
 872
 873        spin_lock_irqsave(&nic->cb_lock, flags);
 874
 875        if (unlikely(!nic->cbs_avail)) {
 876                err = -ENOMEM;
 877                goto err_unlock;
 878        }
 879
 880        cb = nic->cb_to_use;
 881        nic->cb_to_use = cb->next;
 882        nic->cbs_avail--;
 883        cb->skb = skb;
 884
 885        if (unlikely(!nic->cbs_avail))
 886                err = -ENOSPC;
 887
 888        cb_prepare(nic, cb, skb);
 889
 890        /* Order is important otherwise we'll be in a race with h/w:
 891         * set S-bit in current first, then clear S-bit in previous. */
 892        cb->command |= cpu_to_le16(cb_s);
 893        wmb();
 894        cb->prev->command &= cpu_to_le16(~cb_s);
 895
 896        while (nic->cb_to_send != nic->cb_to_use) {
 897                if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 898                        nic->cb_to_send->dma_addr))) {
 899                        /* Ok, here's where things get sticky.  It's
 900                         * possible that we can't schedule the command
 901                         * because the controller is too busy, so
 902                         * let's just queue the command and try again
 903                         * when another command is scheduled. */
 904                        if (err == -ENOSPC) {
 905                                //request a reset
 906                                schedule_work(&nic->tx_timeout_task);
 907                        }
 908                        break;
 909                } else {
 910                        nic->cuc_cmd = cuc_resume;
 911                        nic->cb_to_send = nic->cb_to_send->next;
 912                }
 913        }
 914
 915err_unlock:
 916        spin_unlock_irqrestore(&nic->cb_lock, flags);
 917
 918        return err;
 919}
 920
 921static int mdio_read(struct net_device *netdev, int addr, int reg)
 922{
 923        struct nic *nic = netdev_priv(netdev);
 924        return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 925}
 926
 927static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 928{
 929        struct nic *nic = netdev_priv(netdev);
 930
 931        nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 932}
 933
 934/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 935static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 936{
 937        u32 data_out = 0;
 938        unsigned int i;
 939        unsigned long flags;
 940
 941
 942        /*
 943         * Stratus87247: we shouldn't be writing the MDI control
 944         * register until the Ready bit shows True.  Also, since
 945         * manipulation of the MDI control registers is a multi-step
 946         * procedure it should be done under lock.
 947         */
 948        spin_lock_irqsave(&nic->mdio_lock, flags);
 949        for (i = 100; i; --i) {
 950                if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 951                        break;
 952                udelay(20);
 953        }
 954        if (unlikely(!i)) {
 955                printk("e100.mdio_ctrl(%s) won't go Ready\n",
 956                        nic->netdev->name );
 957                spin_unlock_irqrestore(&nic->mdio_lock, flags);
 958                return 0;               /* No way to indicate timeout error */
 959        }
 960        iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 961
 962        for (i = 0; i < 100; i++) {
 963                udelay(20);
 964                if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 965                        break;
 966        }
 967        spin_unlock_irqrestore(&nic->mdio_lock, flags);
 968        DPRINTK(HW, DEBUG,
 969                "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 970                dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
 971        return (u16)data_out;
 972}
 973
 974/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 975static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 976                                 u32 addr,
 977                                 u32 dir,
 978                                 u32 reg,
 979                                 u16 data)
 980{
 981        if ((reg == MII_BMCR) && (dir == mdi_write)) {
 982                if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 983                        u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 984                                                        MII_ADVERTISE);
 985
 986                        /*
 987                         * Workaround Si issue where sometimes the part will not
 988                         * autoneg to 100Mbps even when advertised.
 989                         */
 990                        if (advert & ADVERTISE_100FULL)
 991                                data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 992                        else if (advert & ADVERTISE_100HALF)
 993                                data |= BMCR_SPEED100;
 994                }
 995        }
 996        return mdio_ctrl_hw(nic, addr, dir, reg, data);
 997}
 998
 999/* Fully software-emulated mdio_ctrl() function for cards without
1000 * MII-compliant PHYs.
1001 * For now, this is mainly geared towards 80c24 support; in case of further
1002 * requirements for other types (i82503, ...?) either extend this mechanism
1003 * or split it, whichever is cleaner.
1004 */
1005static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1006                                      u32 addr,
1007                                      u32 dir,
1008                                      u32 reg,
1009                                      u16 data)
1010{
1011        /* might need to allocate a netdev_priv'ed register array eventually
1012         * to be able to record state changes, but for now
1013         * some fully hardcoded register handling ought to be ok I guess. */
1014
1015        if (dir == mdi_read) {
1016                switch (reg) {
1017                case MII_BMCR:
1018                        /* Auto-negotiation, right? */
1019                        return  BMCR_ANENABLE |
1020                                BMCR_FULLDPLX;
1021                case MII_BMSR:
1022                        return  BMSR_LSTATUS /* for mii_link_ok() */ |
1023                                BMSR_ANEGCAPABLE |
1024                                BMSR_10FULL;
1025                case MII_ADVERTISE:
1026                        /* 80c24 is a "combo card" PHY, right? */
1027                        return  ADVERTISE_10HALF |
1028                                ADVERTISE_10FULL;
1029                default:
1030                        DPRINTK(HW, DEBUG,
1031                "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1032                dir == mdi_read ? "READ" : "WRITE", addr, reg, data);
1033                        return 0xFFFF;
1034                }
1035        } else {
1036                switch (reg) {
1037                default:
1038                        DPRINTK(HW, DEBUG,
1039                "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1040                dir == mdi_read ? "READ" : "WRITE", addr, reg, data);
1041                        return 0xFFFF;
1042                }
1043        }
1044}
1045static inline int e100_phy_supports_mii(struct nic *nic)
1046{
1047        /* for now, just check it by comparing whether we
1048           are using MII software emulation.
1049        */
1050        return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1051}
1052
1053static void e100_get_defaults(struct nic *nic)
1054{
1055        struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1056        struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1057
1058        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1059        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1060        if (nic->mac == mac_unknown)
1061                nic->mac = mac_82557_D100_A;
1062
1063        nic->params.rfds = rfds;
1064        nic->params.cbs = cbs;
1065
1066        /* Quadwords to DMA into FIFO before starting frame transmit */
1067        nic->tx_threshold = 0xE0;
1068
1069        /* no interrupt for every tx completion, delay = 256us if not 557 */
1070        nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1071                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1072
1073        /* Template for a freshly allocated RFD */
1074        nic->blank_rfd.command = 0;
1075        nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1076        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1077
1078        /* MII setup */
1079        nic->mii.phy_id_mask = 0x1F;
1080        nic->mii.reg_num_mask = 0x1F;
1081        nic->mii.dev = nic->netdev;
1082        nic->mii.mdio_read = mdio_read;
1083        nic->mii.mdio_write = mdio_write;
1084}
1085
1086static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1087{
1088        struct config *config = &cb->u.config;
1089        u8 *c = (u8 *)config;
1090
1091        cb->command = cpu_to_le16(cb_config);
1092
1093        memset(config, 0, sizeof(struct config));
1094
1095        config->byte_count = 0x16;              /* bytes in this struct */
1096        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
1097        config->direct_rx_dma = 0x1;            /* reserved */
1098        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
1099        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1100        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1101        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
1102        if (e100_phy_supports_mii(nic))
1103                config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1104        config->pad10 = 0x6;
1105        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1106        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
1107        config->ifs = 0x6;                      /* x16 = inter frame spacing */
1108        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
1109        config->pad15_1 = 0x1;
1110        config->pad15_2 = 0x1;
1111        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
1112        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
1113        config->tx_padding = 0x1;               /* 1=pad short frames */
1114        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1115        config->pad18 = 0x1;
1116        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
1117        config->pad20_1 = 0x1F;
1118        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
1119        config->pad21_1 = 0x5;
1120
1121        config->adaptive_ifs = nic->adaptive_ifs;
1122        config->loopback = nic->loopback;
1123
1124        if (nic->mii.force_media && nic->mii.full_duplex)
1125                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1126
1127        if (nic->flags & promiscuous || nic->loopback) {
1128                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1129                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1130                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1131        }
1132
1133        if (nic->flags & multicast_all)
1134                config->multicast_all = 0x1;            /* 1=accept, 0=no */
1135
1136        /* disable WoL when up */
1137        if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1138                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1139
1140        if (nic->mac >= mac_82558_D101_A4) {
1141                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1142                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1143                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1144                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1145                if (nic->mac >= mac_82559_D101M) {
1146                        config->tno_intr = 0x1;         /* TCO stats enable */
1147                        /* Enable TCO in extended config */
1148                        if (nic->mac >= mac_82551_10) {
1149                                config->byte_count = 0x20; /* extended bytes */
1150                                config->rx_d102_mode = 0x1; /* GMRC for TCO */
1151                        }
1152                } else {
1153                        config->standard_stat_counter = 0x0;
1154                }
1155        }
1156
1157        DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1158                c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1159        DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1160                c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1161        DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1162                c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1163}
1164
1165/*************************************************************************
1166*  CPUSaver parameters
1167*
1168*  All CPUSaver parameters are 16-bit literals that are part of a
1169*  "move immediate value" instruction.  By changing the value of
1170*  the literal in the instruction before the code is loaded, the
1171*  driver can change the algorithm.
1172*
1173*  INTDELAY - This loads the dead-man timer with its initial value.
1174*    When this timer expires the interrupt is asserted, and the
1175*    timer is reset each time a new packet is received.  (see
1176*    BUNDLEMAX below to set the limit on number of chained packets)
1177*    The current default is 0x600 or 1536.  Experiments show that
1178*    the value should probably stay within the 0x200 - 0x1000.
1179*
1180*  BUNDLEMAX -
1181*    This sets the maximum number of frames that will be bundled.  In
1182*    some situations, such as the TCP windowing algorithm, it may be
1183*    better to limit the growth of the bundle size than let it go as
1184*    high as it can, because that could cause too much added latency.
1185*    The default is six, because this is the number of packets in the
1186*    default TCP window size.  A value of 1 would make CPUSaver indicate
1187*    an interrupt for every frame received.  If you do not want to put
1188*    a limit on the bundle size, set this value to xFFFF.
1189*
1190*  BUNDLESMALL -
1191*    This contains a bit-mask describing the minimum size frame that
1192*    will be bundled.  The default masks the lower 7 bits, which means
1193*    that any frame less than 128 bytes in length will not be bundled,
1194*    but will instead immediately generate an interrupt.  This does
1195*    not affect the current bundle in any way.  Any frame that is 128
1196*    bytes or large will be bundled normally.  This feature is meant
1197*    to provide immediate indication of ACK frames in a TCP environment.
1198*    Customers were seeing poor performance when a machine with CPUSaver
1199*    enabled was sending but not receiving.  The delay introduced when
1200*    the ACKs were received was enough to reduce total throughput, because
1201*    the sender would sit idle until the ACK was finally seen.
1202*
1203*    The current default is 0xFF80, which masks out the lower 7 bits.
1204*    This means that any frame which is x7F (127) bytes or smaller
1205*    will cause an immediate interrupt.  Because this value must be a
1206*    bit mask, there are only a few valid values that can be used.  To
1207*    turn this feature off, the driver can write the value xFFFF to the
1208*    lower word of this instruction (in the same way that the other
1209*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1210*    cause an interrupt to be generated for every frame, because all
1211*    standard Ethernet frames are <= 2047 bytes in length.
1212*************************************************************************/
1213
1214/* if you wish to disable the ucode functionality, while maintaining the
1215 * workarounds it provides, set the following defines to:
1216 * BUNDLESMALL 0
1217 * BUNDLEMAX 1
1218 * INTDELAY 1
1219 */
1220#define BUNDLESMALL 1
1221#define BUNDLEMAX (u16)6
1222#define INTDELAY (u16)1536 /* 0x600 */
1223
1224/* Initialize firmware */
1225static const struct firmware *e100_request_firmware(struct nic *nic)
1226{
1227        const char *fw_name;
1228        const struct firmware *fw;
1229        u8 timer, bundle, min_size;
1230        int err;
1231
1232        /* do not load u-code for ICH devices */
1233        if (nic->flags & ich)
1234                return NULL;
1235
1236        /* Search for ucode match against h/w revision */
1237        if (nic->mac == mac_82559_D101M)
1238                fw_name = FIRMWARE_D101M;
1239        else if (nic->mac == mac_82559_D101S)
1240                fw_name = FIRMWARE_D101S;
1241        else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1242                fw_name = FIRMWARE_D102E;
1243        else /* No ucode on other devices */
1244                return NULL;
1245
1246        err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1247        if (err) {
1248                DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n",
1249                        fw_name, err);
1250                return ERR_PTR(err);
1251        }
1252        /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1253           indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1254        if (fw->size != UCODE_SIZE * 4 + 3) {
1255                DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n",
1256                        fw_name, fw->size);
1257                release_firmware(fw);
1258                return ERR_PTR(-EINVAL);
1259        }
1260
1261        /* Read timer, bundle and min_size from end of firmware blob */
1262        timer = fw->data[UCODE_SIZE * 4];
1263        bundle = fw->data[UCODE_SIZE * 4 + 1];
1264        min_size = fw->data[UCODE_SIZE * 4 + 2];
1265
1266        if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1267            min_size >= UCODE_SIZE) {
1268                DPRINTK(PROBE, ERR,
1269                        "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1270                        fw_name, timer, bundle, min_size);
1271                release_firmware(fw);
1272                return ERR_PTR(-EINVAL);
1273        }
1274        /* OK, firmware is validated and ready to use... */
1275        return fw;
1276}
1277
1278static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1279                             struct sk_buff *skb)
1280{
1281        const struct firmware *fw = (void *)skb;
1282        u8 timer, bundle, min_size;
1283
1284        /* It's not a real skb; we just abused the fact that e100_exec_cb
1285           will pass it through to here... */
1286        cb->skb = NULL;
1287
1288        /* firmware is stored as little endian already */
1289        memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1290
1291        /* Read timer, bundle and min_size from end of firmware blob */
1292        timer = fw->data[UCODE_SIZE * 4];
1293        bundle = fw->data[UCODE_SIZE * 4 + 1];
1294        min_size = fw->data[UCODE_SIZE * 4 + 2];
1295
1296        /* Insert user-tunable settings in cb->u.ucode */
1297        cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1298        cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1299        cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1300        cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1301        cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1302        cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1303
1304        cb->command = cpu_to_le16(cb_ucode | cb_el);
1305}
1306
1307static inline int e100_load_ucode_wait(struct nic *nic)
1308{
1309        const struct firmware *fw;
1310        int err = 0, counter = 50;
1311        struct cb *cb = nic->cb_to_clean;
1312
1313        fw = e100_request_firmware(nic);
1314        /* If it's NULL, then no ucode is required */
1315        if (!fw || IS_ERR(fw))
1316                return PTR_ERR(fw);
1317
1318        if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1319                DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1320
1321        /* must restart cuc */
1322        nic->cuc_cmd = cuc_start;
1323
1324        /* wait for completion */
1325        e100_write_flush(nic);
1326        udelay(10);
1327
1328        /* wait for possibly (ouch) 500ms */
1329        while (!(cb->status & cpu_to_le16(cb_complete))) {
1330                msleep(10);
1331                if (!--counter) break;
1332        }
1333
1334        /* ack any interrupts, something could have been set */
1335        iowrite8(~0, &nic->csr->scb.stat_ack);
1336
1337        /* if the command failed, or is not OK, notify and return */
1338        if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1339                DPRINTK(PROBE,ERR, "ucode load failed\n");
1340                err = -EPERM;
1341        }
1342
1343        return err;
1344}
1345
1346static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1347        struct sk_buff *skb)
1348{
1349        cb->command = cpu_to_le16(cb_iaaddr);
1350        memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1351}
1352
1353static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1354{
1355        cb->command = cpu_to_le16(cb_dump);
1356        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1357                offsetof(struct mem, dump_buf));
1358}
1359
1360static int e100_phy_check_without_mii(struct nic *nic)
1361{
1362        u8 phy_type;
1363        int without_mii;
1364
1365        phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1366
1367        switch (phy_type) {
1368        case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1369        case I82503: /* Non-MII PHY; UNTESTED! */
1370        case S80C24: /* Non-MII PHY; tested and working */
1371                /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1372                 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1373                 * doesn't have a programming interface of any sort.  The
1374                 * media is sensed automatically based on how the link partner
1375                 * is configured.  This is, in essence, manual configuration.
1376                 */
1377                DPRINTK(PROBE, INFO,
1378                         "found MII-less i82503 or 80c24 or other PHY\n");
1379
1380                nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1381                nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1382
1383                /* these might be needed for certain MII-less cards...
1384                 * nic->flags |= ich;
1385                 * nic->flags |= ich_10h_workaround; */
1386
1387                without_mii = 1;
1388                break;
1389        default:
1390                without_mii = 0;
1391                break;
1392        }
1393        return without_mii;
1394}
1395
1396#define NCONFIG_AUTO_SWITCH     0x0080
1397#define MII_NSC_CONG            MII_RESV1
1398#define NSC_CONG_ENABLE         0x0100
1399#define NSC_CONG_TXREADY        0x0400
1400#define ADVERTISE_FC_SUPPORTED  0x0400
1401static int e100_phy_init(struct nic *nic)
1402{
1403        struct net_device *netdev = nic->netdev;
1404        u32 addr;
1405        u16 bmcr, stat, id_lo, id_hi, cong;
1406
1407        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1408        for (addr = 0; addr < 32; addr++) {
1409                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1410                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1411                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1412                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1413                if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1414                        break;
1415        }
1416        if (addr == 32) {
1417                /* uhoh, no PHY detected: check whether we seem to be some
1418                 * weird, rare variant which is *known* to not have any MII.
1419                 * But do this AFTER MII checking only, since this does
1420                 * lookup of EEPROM values which may easily be unreliable. */
1421                if (e100_phy_check_without_mii(nic))
1422                        return 0; /* simply return and hope for the best */
1423                else {
1424                        /* for unknown cases log a fatal error */
1425                        DPRINTK(HW, ERR,
1426                                "Failed to locate any known PHY, aborting.\n");
1427                        return -EAGAIN;
1428                }
1429        } else
1430                DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1431
1432        /* Get phy ID */
1433        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1434        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1435        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1436        DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1437
1438        /* Select the phy and isolate the rest */
1439        for (addr = 0; addr < 32; addr++) {
1440                if (addr != nic->mii.phy_id) {
1441                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1442                } else if (nic->phy != phy_82552_v) {
1443                        bmcr = mdio_read(netdev, addr, MII_BMCR);
1444                        mdio_write(netdev, addr, MII_BMCR,
1445                                bmcr & ~BMCR_ISOLATE);
1446                }
1447        }
1448        /*
1449         * Workaround for 82552:
1450         * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1451         * other phy_id's) using bmcr value from addr discovery loop above.
1452         */
1453        if (nic->phy == phy_82552_v)
1454                mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1455                        bmcr & ~BMCR_ISOLATE);
1456
1457        /* Handle National tx phys */
1458#define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1459        if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1460                /* Disable congestion control */
1461                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1462                cong |= NSC_CONG_TXREADY;
1463                cong &= ~NSC_CONG_ENABLE;
1464                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1465        }
1466
1467        if (nic->phy == phy_82552_v) {
1468                u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1469
1470                /* assign special tweaked mdio_ctrl() function */
1471                nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1472
1473                /* Workaround Si not advertising flow-control during autoneg */
1474                advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1475                mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1476
1477                /* Reset for the above changes to take effect */
1478                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1479                bmcr |= BMCR_RESET;
1480                mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1481        } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1482           (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1483                !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1484                /* enable/disable MDI/MDI-X auto-switching. */
1485                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1486                                nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1487        }
1488
1489        return 0;
1490}
1491
1492static int e100_hw_init(struct nic *nic)
1493{
1494        int err;
1495
1496        e100_hw_reset(nic);
1497
1498        DPRINTK(HW, ERR, "e100_hw_init\n");
1499        if (!in_interrupt() && (err = e100_self_test(nic)))
1500                return err;
1501
1502        if ((err = e100_phy_init(nic)))
1503                return err;
1504        if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1505                return err;
1506        if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1507                return err;
1508        if ((err = e100_load_ucode_wait(nic)))
1509                return err;
1510        if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1511                return err;
1512        if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1513                return err;
1514        if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1515                nic->dma_addr + offsetof(struct mem, stats))))
1516                return err;
1517        if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1518                return err;
1519
1520        e100_disable_irq(nic);
1521
1522        return 0;
1523}
1524
1525static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1526{
1527        struct net_device *netdev = nic->netdev;
1528        struct dev_mc_list *list = netdev->mc_list;
1529        u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1530
1531        cb->command = cpu_to_le16(cb_multi);
1532        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1533        for (i = 0; list && i < count; i++, list = list->next)
1534                memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1535                        ETH_ALEN);
1536}
1537
1538static void e100_set_multicast_list(struct net_device *netdev)
1539{
1540        struct nic *nic = netdev_priv(netdev);
1541
1542        DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1543                netdev->mc_count, netdev->flags);
1544
1545        if (netdev->flags & IFF_PROMISC)
1546                nic->flags |= promiscuous;
1547        else
1548                nic->flags &= ~promiscuous;
1549
1550        if (netdev->flags & IFF_ALLMULTI ||
1551                netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1552                nic->flags |= multicast_all;
1553        else
1554                nic->flags &= ~multicast_all;
1555
1556        e100_exec_cb(nic, NULL, e100_configure);
1557        e100_exec_cb(nic, NULL, e100_multi);
1558}
1559
1560static void e100_update_stats(struct nic *nic)
1561{
1562        struct net_device *dev = nic->netdev;
1563        struct net_device_stats *ns = &dev->stats;
1564        struct stats *s = &nic->mem->stats;
1565        __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1566                (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1567                &s->complete;
1568
1569        /* Device's stats reporting may take several microseconds to
1570         * complete, so we're always waiting for results of the
1571         * previous command. */
1572
1573        if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1574                *complete = 0;
1575                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1576                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1577                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1578                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1579                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1580                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1581                ns->collisions += nic->tx_collisions;
1582                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1583                        le32_to_cpu(s->tx_lost_crs);
1584                ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1585                        nic->rx_over_length_errors;
1586                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1587                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1588                ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1589                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1590                ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1591                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1592                        le32_to_cpu(s->rx_alignment_errors) +
1593                        le32_to_cpu(s->rx_short_frame_errors) +
1594                        le32_to_cpu(s->rx_cdt_errors);
1595                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1596                nic->tx_single_collisions +=
1597                        le32_to_cpu(s->tx_single_collisions);
1598                nic->tx_multiple_collisions +=
1599                        le32_to_cpu(s->tx_multiple_collisions);
1600                if (nic->mac >= mac_82558_D101_A4) {
1601                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1602                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1603                        nic->rx_fc_unsupported +=
1604                                le32_to_cpu(s->fc_rcv_unsupported);
1605                        if (nic->mac >= mac_82559_D101M) {
1606                                nic->tx_tco_frames +=
1607                                        le16_to_cpu(s->xmt_tco_frames);
1608                                nic->rx_tco_frames +=
1609                                        le16_to_cpu(s->rcv_tco_frames);
1610                        }
1611                }
1612        }
1613
1614
1615        if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1616                DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1617}
1618
1619static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1620{
1621        /* Adjust inter-frame-spacing (IFS) between two transmits if
1622         * we're getting collisions on a half-duplex connection. */
1623
1624        if (duplex == DUPLEX_HALF) {
1625                u32 prev = nic->adaptive_ifs;
1626                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1627
1628                if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1629                   (nic->tx_frames > min_frames)) {
1630                        if (nic->adaptive_ifs < 60)
1631                                nic->adaptive_ifs += 5;
1632                } else if (nic->tx_frames < min_frames) {
1633                        if (nic->adaptive_ifs >= 5)
1634                                nic->adaptive_ifs -= 5;
1635                }
1636                if (nic->adaptive_ifs != prev)
1637                        e100_exec_cb(nic, NULL, e100_configure);
1638        }
1639}
1640
1641static void e100_watchdog(unsigned long data)
1642{
1643        struct nic *nic = (struct nic *)data;
1644        struct ethtool_cmd cmd;
1645
1646        DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1647
1648        /* mii library handles link maintenance tasks */
1649
1650        mii_ethtool_gset(&nic->mii, &cmd);
1651
1652        if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1653                printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1654                       nic->netdev->name,
1655                       cmd.speed == SPEED_100 ? "100" : "10",
1656                       cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1657        } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1658                printk(KERN_INFO "e100: %s NIC Link is Down\n",
1659                       nic->netdev->name);
1660        }
1661
1662        mii_check_link(&nic->mii);
1663
1664        /* Software generated interrupt to recover from (rare) Rx
1665         * allocation failure.
1666         * Unfortunately have to use a spinlock to not re-enable interrupts
1667         * accidentally, due to hardware that shares a register between the
1668         * interrupt mask bit and the SW Interrupt generation bit */
1669        spin_lock_irq(&nic->cmd_lock);
1670        iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1671        e100_write_flush(nic);
1672        spin_unlock_irq(&nic->cmd_lock);
1673
1674        e100_update_stats(nic);
1675        e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1676
1677        if (nic->mac <= mac_82557_D100_C)
1678                /* Issue a multicast command to workaround a 557 lock up */
1679                e100_set_multicast_list(nic->netdev);
1680
1681        if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1682                /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1683                nic->flags |= ich_10h_workaround;
1684        else
1685                nic->flags &= ~ich_10h_workaround;
1686
1687        mod_timer(&nic->watchdog,
1688                  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1689}
1690
1691static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1692        struct sk_buff *skb)
1693{
1694        cb->command = nic->tx_command;
1695        /* interrupt every 16 packets regardless of delay */
1696        if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1697                cb->command |= cpu_to_le16(cb_i);
1698        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1699        cb->u.tcb.tcb_byte_count = 0;
1700        cb->u.tcb.threshold = nic->tx_threshold;
1701        cb->u.tcb.tbd_count = 1;
1702        cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1703                skb->data, skb->len, PCI_DMA_TODEVICE));
1704        /* check for mapping failure? */
1705        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1706}
1707
1708static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1709                                   struct net_device *netdev)
1710{
1711        struct nic *nic = netdev_priv(netdev);
1712        int err;
1713
1714        if (nic->flags & ich_10h_workaround) {
1715                /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1716                   Issue a NOP command followed by a 1us delay before
1717                   issuing the Tx command. */
1718                if (e100_exec_cmd(nic, cuc_nop, 0))
1719                        DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1720                udelay(1);
1721        }
1722
1723        err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1724
1725        switch (err) {
1726        case -ENOSPC:
1727                /* We queued the skb, but now we're out of space. */
1728                DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1729                netif_stop_queue(netdev);
1730                break;
1731        case -ENOMEM:
1732                /* This is a hard error - log it. */
1733                DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1734                netif_stop_queue(netdev);
1735                return NETDEV_TX_BUSY;
1736        }
1737
1738        netdev->trans_start = jiffies;
1739        return NETDEV_TX_OK;
1740}
1741
1742static int e100_tx_clean(struct nic *nic)
1743{
1744        struct net_device *dev = nic->netdev;
1745        struct cb *cb;
1746        int tx_cleaned = 0;
1747
1748        spin_lock(&nic->cb_lock);
1749
1750        /* Clean CBs marked complete */
1751        for (cb = nic->cb_to_clean;
1752            cb->status & cpu_to_le16(cb_complete);
1753            cb = nic->cb_to_clean = cb->next) {
1754                DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1755                        (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1756                        cb->status);
1757
1758                if (likely(cb->skb != NULL)) {
1759                        dev->stats.tx_packets++;
1760                        dev->stats.tx_bytes += cb->skb->len;
1761
1762                        pci_unmap_single(nic->pdev,
1763                                le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1764                                le16_to_cpu(cb->u.tcb.tbd.size),
1765                                PCI_DMA_TODEVICE);
1766                        dev_kfree_skb_any(cb->skb);
1767                        cb->skb = NULL;
1768                        tx_cleaned = 1;
1769                }
1770                cb->status = 0;
1771                nic->cbs_avail++;
1772        }
1773
1774        spin_unlock(&nic->cb_lock);
1775
1776        /* Recover from running out of Tx resources in xmit_frame */
1777        if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1778                netif_wake_queue(nic->netdev);
1779
1780        return tx_cleaned;
1781}
1782
1783static void e100_clean_cbs(struct nic *nic)
1784{
1785        if (nic->cbs) {
1786                while (nic->cbs_avail != nic->params.cbs.count) {
1787                        struct cb *cb = nic->cb_to_clean;
1788                        if (cb->skb) {
1789                                pci_unmap_single(nic->pdev,
1790                                        le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1791                                        le16_to_cpu(cb->u.tcb.tbd.size),
1792                                        PCI_DMA_TODEVICE);
1793                                dev_kfree_skb(cb->skb);
1794                        }
1795                        nic->cb_to_clean = nic->cb_to_clean->next;
1796                        nic->cbs_avail++;
1797                }
1798                pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1799                nic->cbs = NULL;
1800                nic->cbs_avail = 0;
1801        }
1802        nic->cuc_cmd = cuc_start;
1803        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1804                nic->cbs;
1805}
1806
1807static int e100_alloc_cbs(struct nic *nic)
1808{
1809        struct cb *cb;
1810        unsigned int i, count = nic->params.cbs.count;
1811
1812        nic->cuc_cmd = cuc_start;
1813        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1814        nic->cbs_avail = 0;
1815
1816        nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1817                                  &nic->cbs_dma_addr);
1818        if (!nic->cbs)
1819                return -ENOMEM;
1820
1821        for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1822                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1823                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1824
1825                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1826                cb->link = cpu_to_le32(nic->cbs_dma_addr +
1827                        ((i+1) % count) * sizeof(struct cb));
1828                cb->skb = NULL;
1829        }
1830
1831        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1832        nic->cbs_avail = count;
1833
1834        return 0;
1835}
1836
1837static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1838{
1839        if (!nic->rxs) return;
1840        if (RU_SUSPENDED != nic->ru_running) return;
1841
1842        /* handle init time starts */
1843        if (!rx) rx = nic->rxs;
1844
1845        /* (Re)start RU if suspended or idle and RFA is non-NULL */
1846        if (rx->skb) {
1847                e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1848                nic->ru_running = RU_RUNNING;
1849        }
1850}
1851
1852#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1853static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1854{
1855        if (!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1856                return -ENOMEM;
1857
1858        /* Align, init, and map the RFD. */
1859        skb_reserve(rx->skb, NET_IP_ALIGN);
1860        skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1861        rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1862                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1863
1864        if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1865                dev_kfree_skb_any(rx->skb);
1866                rx->skb = NULL;
1867                rx->dma_addr = 0;
1868                return -ENOMEM;
1869        }
1870
1871        /* Link the RFD to end of RFA by linking previous RFD to
1872         * this one.  We are safe to touch the previous RFD because
1873         * it is protected by the before last buffer's el bit being set */
1874        if (rx->prev->skb) {
1875                struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1876                put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1877                pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1878                        sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1879        }
1880
1881        return 0;
1882}
1883
1884static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1885        unsigned int *work_done, unsigned int work_to_do)
1886{
1887        struct net_device *dev = nic->netdev;
1888        struct sk_buff *skb = rx->skb;
1889        struct rfd *rfd = (struct rfd *)skb->data;
1890        u16 rfd_status, actual_size;
1891
1892        if (unlikely(work_done && *work_done >= work_to_do))
1893                return -EAGAIN;
1894
1895        /* Need to sync before taking a peek at cb_complete bit */
1896        pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1897                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1898        rfd_status = le16_to_cpu(rfd->status);
1899
1900        DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1901
1902        /* If data isn't ready, nothing to indicate */
1903        if (unlikely(!(rfd_status & cb_complete))) {
1904                /* If the next buffer has the el bit, but we think the receiver
1905                 * is still running, check to see if it really stopped while
1906                 * we had interrupts off.
1907                 * This allows for a fast restart without re-enabling
1908                 * interrupts */
1909                if ((le16_to_cpu(rfd->command) & cb_el) &&
1910                    (RU_RUNNING == nic->ru_running))
1911
1912                        if (ioread8(&nic->csr->scb.status) & rus_no_res)
1913                                nic->ru_running = RU_SUSPENDED;
1914                pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1915                                               sizeof(struct rfd),
1916                                               PCI_DMA_FROMDEVICE);
1917                return -ENODATA;
1918        }
1919
1920        /* Get actual data size */
1921        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1922        if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1923                actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1924
1925        /* Get data */
1926        pci_unmap_single(nic->pdev, rx->dma_addr,
1927                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1928
1929        /* If this buffer has the el bit, but we think the receiver
1930         * is still running, check to see if it really stopped while
1931         * we had interrupts off.
1932         * This allows for a fast restart without re-enabling interrupts.
1933         * This can happen when the RU sees the size change but also sees
1934         * the el bit set. */
1935        if ((le16_to_cpu(rfd->command) & cb_el) &&
1936            (RU_RUNNING == nic->ru_running)) {
1937
1938            if (ioread8(&nic->csr->scb.status) & rus_no_res)
1939                nic->ru_running = RU_SUSPENDED;
1940        }
1941
1942        /* Pull off the RFD and put the actual data (minus eth hdr) */
1943        skb_reserve(skb, sizeof(struct rfd));
1944        skb_put(skb, actual_size);
1945        skb->protocol = eth_type_trans(skb, nic->netdev);
1946
1947        if (unlikely(!(rfd_status & cb_ok))) {
1948                /* Don't indicate if hardware indicates errors */
1949                dev_kfree_skb_any(skb);
1950        } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1951                /* Don't indicate oversized frames */
1952                nic->rx_over_length_errors++;
1953                dev_kfree_skb_any(skb);
1954        } else {
1955                dev->stats.rx_packets++;
1956                dev->stats.rx_bytes += actual_size;
1957                netif_receive_skb(skb);
1958                if (work_done)
1959                        (*work_done)++;
1960        }
1961
1962        rx->skb = NULL;
1963
1964        return 0;
1965}
1966
1967static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1968        unsigned int work_to_do)
1969{
1970        struct rx *rx;
1971        int restart_required = 0, err = 0;
1972        struct rx *old_before_last_rx, *new_before_last_rx;
1973        struct rfd *old_before_last_rfd, *new_before_last_rfd;
1974
1975        /* Indicate newly arrived packets */
1976        for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1977                err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1978                /* Hit quota or no more to clean */
1979                if (-EAGAIN == err || -ENODATA == err)
1980                        break;
1981        }
1982
1983
1984        /* On EAGAIN, hit quota so have more work to do, restart once
1985         * cleanup is complete.
1986         * Else, are we already rnr? then pay attention!!! this ensures that
1987         * the state machine progression never allows a start with a
1988         * partially cleaned list, avoiding a race between hardware
1989         * and rx_to_clean when in NAPI mode */
1990        if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
1991                restart_required = 1;
1992
1993        old_before_last_rx = nic->rx_to_use->prev->prev;
1994        old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
1995
1996        /* Alloc new skbs to refill list */
1997        for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1998                if (unlikely(e100_rx_alloc_skb(nic, rx)))
1999                        break; /* Better luck next time (see watchdog) */
2000        }
2001
2002        new_before_last_rx = nic->rx_to_use->prev->prev;
2003        if (new_before_last_rx != old_before_last_rx) {
2004                /* Set the el-bit on the buffer that is before the last buffer.
2005                 * This lets us update the next pointer on the last buffer
2006                 * without worrying about hardware touching it.
2007                 * We set the size to 0 to prevent hardware from touching this
2008                 * buffer.
2009                 * When the hardware hits the before last buffer with el-bit
2010                 * and size of 0, it will RNR interrupt, the RUS will go into
2011                 * the No Resources state.  It will not complete nor write to
2012                 * this buffer. */
2013                new_before_last_rfd =
2014                        (struct rfd *)new_before_last_rx->skb->data;
2015                new_before_last_rfd->size = 0;
2016                new_before_last_rfd->command |= cpu_to_le16(cb_el);
2017                pci_dma_sync_single_for_device(nic->pdev,
2018                        new_before_last_rx->dma_addr, sizeof(struct rfd),
2019                        PCI_DMA_BIDIRECTIONAL);
2020
2021                /* Now that we have a new stopping point, we can clear the old
2022                 * stopping point.  We must sync twice to get the proper
2023                 * ordering on the hardware side of things. */
2024                old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2025                pci_dma_sync_single_for_device(nic->pdev,
2026                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2027                        PCI_DMA_BIDIRECTIONAL);
2028                old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2029                pci_dma_sync_single_for_device(nic->pdev,
2030                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2031                        PCI_DMA_BIDIRECTIONAL);
2032        }
2033
2034        if (restart_required) {
2035                // ack the rnr?
2036                iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2037                e100_start_receiver(nic, nic->rx_to_clean);
2038                if (work_done)
2039                        (*work_done)++;
2040        }
2041}
2042
2043static void e100_rx_clean_list(struct nic *nic)
2044{
2045        struct rx *rx;
2046        unsigned int i, count = nic->params.rfds.count;
2047
2048        nic->ru_running = RU_UNINITIALIZED;
2049
2050        if (nic->rxs) {
2051                for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2052                        if (rx->skb) {
2053                                pci_unmap_single(nic->pdev, rx->dma_addr,
2054                                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2055                                dev_kfree_skb(rx->skb);
2056                        }
2057                }
2058                kfree(nic->rxs);
2059                nic->rxs = NULL;
2060        }
2061
2062        nic->rx_to_use = nic->rx_to_clean = NULL;
2063}
2064
2065static int e100_rx_alloc_list(struct nic *nic)
2066{
2067        struct rx *rx;
2068        unsigned int i, count = nic->params.rfds.count;
2069        struct rfd *before_last;
2070
2071        nic->rx_to_use = nic->rx_to_clean = NULL;
2072        nic->ru_running = RU_UNINITIALIZED;
2073
2074        if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2075                return -ENOMEM;
2076
2077        for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2078                rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2079                rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2080                if (e100_rx_alloc_skb(nic, rx)) {
2081                        e100_rx_clean_list(nic);
2082                        return -ENOMEM;
2083                }
2084        }
2085        /* Set the el-bit on the buffer that is before the last buffer.
2086         * This lets us update the next pointer on the last buffer without
2087         * worrying about hardware touching it.
2088         * We set the size to 0 to prevent hardware from touching this buffer.
2089         * When the hardware hits the before last buffer with el-bit and size
2090         * of 0, it will RNR interrupt, the RU will go into the No Resources
2091         * state.  It will not complete nor write to this buffer. */
2092        rx = nic->rxs->prev->prev;
2093        before_last = (struct rfd *)rx->skb->data;
2094        before_last->command |= cpu_to_le16(cb_el);
2095        before_last->size = 0;
2096        pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2097                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2098
2099        nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2100        nic->ru_running = RU_SUSPENDED;
2101
2102        return 0;
2103}
2104
2105static irqreturn_t e100_intr(int irq, void *dev_id)
2106{
2107        struct net_device *netdev = dev_id;
2108        struct nic *nic = netdev_priv(netdev);
2109        u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2110
2111        DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
2112
2113        if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2114           stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2115                return IRQ_NONE;
2116
2117        /* Ack interrupt(s) */
2118        iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2119
2120        /* We hit Receive No Resource (RNR); restart RU after cleaning */
2121        if (stat_ack & stat_ack_rnr)
2122                nic->ru_running = RU_SUSPENDED;
2123
2124        if (likely(napi_schedule_prep(&nic->napi))) {
2125                e100_disable_irq(nic);
2126                __napi_schedule(&nic->napi);
2127        }
2128
2129        return IRQ_HANDLED;
2130}
2131
2132static int e100_poll(struct napi_struct *napi, int budget)
2133{
2134        struct nic *nic = container_of(napi, struct nic, napi);
2135        unsigned int work_done = 0;
2136
2137        e100_rx_clean(nic, &work_done, budget);
2138        e100_tx_clean(nic);
2139
2140        /* If budget not fully consumed, exit the polling mode */
2141        if (work_done < budget) {
2142                napi_complete(napi);
2143                e100_enable_irq(nic);
2144        }
2145
2146        return work_done;
2147}
2148
2149#ifdef CONFIG_NET_POLL_CONTROLLER
2150static void e100_netpoll(struct net_device *netdev)
2151{
2152        struct nic *nic = netdev_priv(netdev);
2153
2154        e100_disable_irq(nic);
2155        e100_intr(nic->pdev->irq, netdev);
2156        e100_tx_clean(nic);
2157        e100_enable_irq(nic);
2158}
2159#endif
2160
2161static int e100_set_mac_address(struct net_device *netdev, void *p)
2162{
2163        struct nic *nic = netdev_priv(netdev);
2164        struct sockaddr *addr = p;
2165
2166        if (!is_valid_ether_addr(addr->sa_data))
2167                return -EADDRNOTAVAIL;
2168
2169        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2170        e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2171
2172        return 0;
2173}
2174
2175static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2176{
2177        if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2178                return -EINVAL;
2179        netdev->mtu = new_mtu;
2180        return 0;
2181}
2182
2183static int e100_asf(struct nic *nic)
2184{
2185        /* ASF can be enabled from eeprom */
2186        return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2187           (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2188           !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2189           ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2190}
2191
2192static int e100_up(struct nic *nic)
2193{
2194        int err;
2195
2196        if ((err = e100_rx_alloc_list(nic)))
2197                return err;
2198        if ((err = e100_alloc_cbs(nic)))
2199                goto err_rx_clean_list;
2200        if ((err = e100_hw_init(nic)))
2201                goto err_clean_cbs;
2202        e100_set_multicast_list(nic->netdev);
2203        e100_start_receiver(nic, NULL);
2204        mod_timer(&nic->watchdog, jiffies);
2205        if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2206                nic->netdev->name, nic->netdev)))
2207                goto err_no_irq;
2208        netif_wake_queue(nic->netdev);
2209        napi_enable(&nic->napi);
2210        /* enable ints _after_ enabling poll, preventing a race between
2211         * disable ints+schedule */
2212        e100_enable_irq(nic);
2213        return 0;
2214
2215err_no_irq:
2216        del_timer_sync(&nic->watchdog);
2217err_clean_cbs:
2218        e100_clean_cbs(nic);
2219err_rx_clean_list:
2220        e100_rx_clean_list(nic);
2221        return err;
2222}
2223
2224static void e100_down(struct nic *nic)
2225{
2226        /* wait here for poll to complete */
2227        napi_disable(&nic->napi);
2228        netif_stop_queue(nic->netdev);
2229        e100_hw_reset(nic);
2230        free_irq(nic->pdev->irq, nic->netdev);
2231        del_timer_sync(&nic->watchdog);
2232        netif_carrier_off(nic->netdev);
2233        e100_clean_cbs(nic);
2234        e100_rx_clean_list(nic);
2235}
2236
2237static void e100_tx_timeout(struct net_device *netdev)
2238{
2239        struct nic *nic = netdev_priv(netdev);
2240
2241        /* Reset outside of interrupt context, to avoid request_irq
2242         * in interrupt context */
2243        schedule_work(&nic->tx_timeout_task);
2244}
2245
2246static void e100_tx_timeout_task(struct work_struct *work)
2247{
2248        struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2249        struct net_device *netdev = nic->netdev;
2250
2251        DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2252                ioread8(&nic->csr->scb.status));
2253        e100_down(netdev_priv(netdev));
2254        e100_up(netdev_priv(netdev));
2255}
2256
2257static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2258{
2259        int err;
2260        struct sk_buff *skb;
2261
2262        /* Use driver resources to perform internal MAC or PHY
2263         * loopback test.  A single packet is prepared and transmitted
2264         * in loopback mode, and the test passes if the received
2265         * packet compares byte-for-byte to the transmitted packet. */
2266
2267        if ((err = e100_rx_alloc_list(nic)))
2268                return err;
2269        if ((err = e100_alloc_cbs(nic)))
2270                goto err_clean_rx;
2271
2272        /* ICH PHY loopback is broken so do MAC loopback instead */
2273        if (nic->flags & ich && loopback_mode == lb_phy)
2274                loopback_mode = lb_mac;
2275
2276        nic->loopback = loopback_mode;
2277        if ((err = e100_hw_init(nic)))
2278                goto err_loopback_none;
2279
2280        if (loopback_mode == lb_phy)
2281                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2282                        BMCR_LOOPBACK);
2283
2284        e100_start_receiver(nic, NULL);
2285
2286        if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2287                err = -ENOMEM;
2288                goto err_loopback_none;
2289        }
2290        skb_put(skb, ETH_DATA_LEN);
2291        memset(skb->data, 0xFF, ETH_DATA_LEN);
2292        e100_xmit_frame(skb, nic->netdev);
2293
2294        msleep(10);
2295
2296        pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2297                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2298
2299        if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2300           skb->data, ETH_DATA_LEN))
2301                err = -EAGAIN;
2302
2303err_loopback_none:
2304        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2305        nic->loopback = lb_none;
2306        e100_clean_cbs(nic);
2307        e100_hw_reset(nic);
2308err_clean_rx:
2309        e100_rx_clean_list(nic);
2310        return err;
2311}
2312
2313#define MII_LED_CONTROL 0x1B
2314#define E100_82552_LED_OVERRIDE 0x19
2315#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2316#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2317static void e100_blink_led(unsigned long data)
2318{
2319        struct nic *nic = (struct nic *)data;
2320        enum led_state {
2321                led_on     = 0x01,
2322                led_off    = 0x04,
2323                led_on_559 = 0x05,
2324                led_on_557 = 0x07,
2325        };
2326        u16 led_reg = MII_LED_CONTROL;
2327
2328        if (nic->phy == phy_82552_v) {
2329                led_reg = E100_82552_LED_OVERRIDE;
2330
2331                nic->leds = (nic->leds == E100_82552_LED_ON) ?
2332                            E100_82552_LED_OFF : E100_82552_LED_ON;
2333        } else {
2334                nic->leds = (nic->leds & led_on) ? led_off :
2335                            (nic->mac < mac_82559_D101M) ? led_on_557 :
2336                            led_on_559;
2337        }
2338        mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
2339        mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2340}
2341
2342static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2343{
2344        struct nic *nic = netdev_priv(netdev);
2345        return mii_ethtool_gset(&nic->mii, cmd);
2346}
2347
2348static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2349{
2350        struct nic *nic = netdev_priv(netdev);
2351        int err;
2352
2353        mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2354        err = mii_ethtool_sset(&nic->mii, cmd);
2355        e100_exec_cb(nic, NULL, e100_configure);
2356
2357        return err;
2358}
2359
2360static void e100_get_drvinfo(struct net_device *netdev,
2361        struct ethtool_drvinfo *info)
2362{
2363        struct nic *nic = netdev_priv(netdev);
2364        strcpy(info->driver, DRV_NAME);
2365        strcpy(info->version, DRV_VERSION);
2366        strcpy(info->fw_version, "N/A");
2367        strcpy(info->bus_info, pci_name(nic->pdev));
2368}
2369
2370#define E100_PHY_REGS 0x1C
2371static int e100_get_regs_len(struct net_device *netdev)
2372{
2373        struct nic *nic = netdev_priv(netdev);
2374        return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2375}
2376
2377static void e100_get_regs(struct net_device *netdev,
2378        struct ethtool_regs *regs, void *p)
2379{
2380        struct nic *nic = netdev_priv(netdev);
2381        u32 *buff = p;
2382        int i;
2383
2384        regs->version = (1 << 24) | nic->pdev->revision;
2385        buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2386                ioread8(&nic->csr->scb.cmd_lo) << 16 |
2387                ioread16(&nic->csr->scb.status);
2388        for (i = E100_PHY_REGS; i >= 0; i--)
2389                buff[1 + E100_PHY_REGS - i] =
2390                        mdio_read(netdev, nic->mii.phy_id, i);
2391        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2392        e100_exec_cb(nic, NULL, e100_dump);
2393        msleep(10);
2394        memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2395                sizeof(nic->mem->dump_buf));
2396}
2397
2398static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2399{
2400        struct nic *nic = netdev_priv(netdev);
2401        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2402        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2403}
2404
2405static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2406{
2407        struct nic *nic = netdev_priv(netdev);
2408
2409        if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2410            !device_can_wakeup(&nic->pdev->dev))
2411                return -EOPNOTSUPP;
2412
2413        if (wol->wolopts)
2414                nic->flags |= wol_magic;
2415        else
2416                nic->flags &= ~wol_magic;
2417
2418        device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2419
2420        e100_exec_cb(nic, NULL, e100_configure);
2421
2422        return 0;
2423}
2424
2425static u32 e100_get_msglevel(struct net_device *netdev)
2426{
2427        struct nic *nic = netdev_priv(netdev);
2428        return nic->msg_enable;
2429}
2430
2431static void e100_set_msglevel(struct net_device *netdev, u32 value)
2432{
2433        struct nic *nic = netdev_priv(netdev);
2434        nic->msg_enable = value;
2435}
2436
2437static int e100_nway_reset(struct net_device *netdev)
2438{
2439        struct nic *nic = netdev_priv(netdev);
2440        return mii_nway_restart(&nic->mii);
2441}
2442
2443static u32 e100_get_link(struct net_device *netdev)
2444{
2445        struct nic *nic = netdev_priv(netdev);
2446        return mii_link_ok(&nic->mii);
2447}
2448
2449static int e100_get_eeprom_len(struct net_device *netdev)
2450{
2451        struct nic *nic = netdev_priv(netdev);
2452        return nic->eeprom_wc << 1;
2453}
2454
2455#define E100_EEPROM_MAGIC       0x1234
2456static int e100_get_eeprom(struct net_device *netdev,
2457        struct ethtool_eeprom *eeprom, u8 *bytes)
2458{
2459        struct nic *nic = netdev_priv(netdev);
2460
2461        eeprom->magic = E100_EEPROM_MAGIC;
2462        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2463
2464        return 0;
2465}
2466
2467static int e100_set_eeprom(struct net_device *netdev,
2468        struct ethtool_eeprom *eeprom, u8 *bytes)
2469{
2470        struct nic *nic = netdev_priv(netdev);
2471
2472        if (eeprom->magic != E100_EEPROM_MAGIC)
2473                return -EINVAL;
2474
2475        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2476
2477        return e100_eeprom_save(nic, eeprom->offset >> 1,
2478                (eeprom->len >> 1) + 1);
2479}
2480
2481static void e100_get_ringparam(struct net_device *netdev,
2482        struct ethtool_ringparam *ring)
2483{
2484        struct nic *nic = netdev_priv(netdev);
2485        struct param_range *rfds = &nic->params.rfds;
2486        struct param_range *cbs = &nic->params.cbs;
2487
2488        ring->rx_max_pending = rfds->max;
2489        ring->tx_max_pending = cbs->max;
2490        ring->rx_mini_max_pending = 0;
2491        ring->rx_jumbo_max_pending = 0;
2492        ring->rx_pending = rfds->count;
2493        ring->tx_pending = cbs->count;
2494        ring->rx_mini_pending = 0;
2495        ring->rx_jumbo_pending = 0;
2496}
2497
2498static int e100_set_ringparam(struct net_device *netdev,
2499        struct ethtool_ringparam *ring)
2500{
2501        struct nic *nic = netdev_priv(netdev);
2502        struct param_range *rfds = &nic->params.rfds;
2503        struct param_range *cbs = &nic->params.cbs;
2504
2505        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2506                return -EINVAL;
2507
2508        if (netif_running(netdev))
2509                e100_down(nic);
2510        rfds->count = max(ring->rx_pending, rfds->min);
2511        rfds->count = min(rfds->count, rfds->max);
2512        cbs->count = max(ring->tx_pending, cbs->min);
2513        cbs->count = min(cbs->count, cbs->max);
2514        DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2515                rfds->count, cbs->count);
2516        if (netif_running(netdev))
2517                e100_up(nic);
2518
2519        return 0;
2520}
2521
2522static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2523        "Link test     (on/offline)",
2524        "Eeprom test   (on/offline)",
2525        "Self test        (offline)",
2526        "Mac loopback     (offline)",
2527        "Phy loopback     (offline)",
2528};
2529#define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2530
2531static void e100_diag_test(struct net_device *netdev,
2532        struct ethtool_test *test, u64 *data)
2533{
2534        struct ethtool_cmd cmd;
2535        struct nic *nic = netdev_priv(netdev);
2536        int i, err;
2537
2538        memset(data, 0, E100_TEST_LEN * sizeof(u64));
2539        data[0] = !mii_link_ok(&nic->mii);
2540        data[1] = e100_eeprom_load(nic);
2541        if (test->flags & ETH_TEST_FL_OFFLINE) {
2542
2543                /* save speed, duplex & autoneg settings */
2544                err = mii_ethtool_gset(&nic->mii, &cmd);
2545
2546                if (netif_running(netdev))
2547                        e100_down(nic);
2548                data[2] = e100_self_test(nic);
2549                data[3] = e100_loopback_test(nic, lb_mac);
2550                data[4] = e100_loopback_test(nic, lb_phy);
2551
2552                /* restore speed, duplex & autoneg settings */
2553                err = mii_ethtool_sset(&nic->mii, &cmd);
2554
2555                if (netif_running(netdev))
2556                        e100_up(nic);
2557        }
2558        for (i = 0; i < E100_TEST_LEN; i++)
2559                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2560
2561        msleep_interruptible(4 * 1000);
2562}
2563
2564static int e100_phys_id(struct net_device *netdev, u32 data)
2565{
2566        struct nic *nic = netdev_priv(netdev);
2567        u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2568                      MII_LED_CONTROL;
2569
2570        if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2571                data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2572        mod_timer(&nic->blink_timer, jiffies);
2573        msleep_interruptible(data * 1000);
2574        del_timer_sync(&nic->blink_timer);
2575        mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
2576
2577        return 0;
2578}
2579
2580static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2581        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2582        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2583        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2584        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2585        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2586        "tx_heartbeat_errors", "tx_window_errors",
2587        /* device-specific stats */
2588        "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2589        "tx_flow_control_pause", "rx_flow_control_pause",
2590        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2591};
2592#define E100_NET_STATS_LEN      21
2593#define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2594
2595static int e100_get_sset_count(struct net_device *netdev, int sset)
2596{
2597        switch (sset) {
2598        case ETH_SS_TEST:
2599                return E100_TEST_LEN;
2600        case ETH_SS_STATS:
2601                return E100_STATS_LEN;
2602        default:
2603                return -EOPNOTSUPP;
2604        }
2605}
2606
2607static void e100_get_ethtool_stats(struct net_device *netdev,
2608        struct ethtool_stats *stats, u64 *data)
2609{
2610        struct nic *nic = netdev_priv(netdev);
2611        int i;
2612
2613        for (i = 0; i < E100_NET_STATS_LEN; i++)
2614                data[i] = ((unsigned long *)&netdev->stats)[i];
2615
2616        data[i++] = nic->tx_deferred;
2617        data[i++] = nic->tx_single_collisions;
2618        data[i++] = nic->tx_multiple_collisions;
2619        data[i++] = nic->tx_fc_pause;
2620        data[i++] = nic->rx_fc_pause;
2621        data[i++] = nic->rx_fc_unsupported;
2622        data[i++] = nic->tx_tco_frames;
2623        data[i++] = nic->rx_tco_frames;
2624}
2625
2626static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2627{
2628        switch (stringset) {
2629        case ETH_SS_TEST:
2630                memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2631                break;
2632        case ETH_SS_STATS:
2633                memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2634                break;
2635        }
2636}
2637
2638static const struct ethtool_ops e100_ethtool_ops = {
2639        .get_settings           = e100_get_settings,
2640        .set_settings           = e100_set_settings,
2641        .get_drvinfo            = e100_get_drvinfo,
2642        .get_regs_len           = e100_get_regs_len,
2643        .get_regs               = e100_get_regs,
2644        .get_wol                = e100_get_wol,
2645        .set_wol                = e100_set_wol,
2646        .get_msglevel           = e100_get_msglevel,
2647        .set_msglevel           = e100_set_msglevel,
2648        .nway_reset             = e100_nway_reset,
2649        .get_link               = e100_get_link,
2650        .get_eeprom_len         = e100_get_eeprom_len,
2651        .get_eeprom             = e100_get_eeprom,
2652        .set_eeprom             = e100_set_eeprom,
2653        .get_ringparam          = e100_get_ringparam,
2654        .set_ringparam          = e100_set_ringparam,
2655        .self_test              = e100_diag_test,
2656        .get_strings            = e100_get_strings,
2657        .phys_id                = e100_phys_id,
2658        .get_ethtool_stats      = e100_get_ethtool_stats,
2659        .get_sset_count         = e100_get_sset_count,
2660};
2661
2662static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2663{
2664        struct nic *nic = netdev_priv(netdev);
2665
2666        return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2667}
2668
2669static int e100_alloc(struct nic *nic)
2670{
2671        nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2672                &nic->dma_addr);
2673        return nic->mem ? 0 : -ENOMEM;
2674}
2675
2676static void e100_free(struct nic *nic)
2677{
2678        if (nic->mem) {
2679                pci_free_consistent(nic->pdev, sizeof(struct mem),
2680                        nic->mem, nic->dma_addr);
2681                nic->mem = NULL;
2682        }
2683}
2684
2685static int e100_open(struct net_device *netdev)
2686{
2687        struct nic *nic = netdev_priv(netdev);
2688        int err = 0;
2689
2690        netif_carrier_off(netdev);
2691        if ((err = e100_up(nic)))
2692                DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2693        return err;
2694}
2695
2696static int e100_close(struct net_device *netdev)
2697{
2698        e100_down(netdev_priv(netdev));
2699        return 0;
2700}
2701
2702static const struct net_device_ops e100_netdev_ops = {
2703        .ndo_open               = e100_open,
2704        .ndo_stop               = e100_close,
2705        .ndo_start_xmit         = e100_xmit_frame,
2706        .ndo_validate_addr      = eth_validate_addr,
2707        .ndo_set_multicast_list = e100_set_multicast_list,
2708        .ndo_set_mac_address    = e100_set_mac_address,
2709        .ndo_change_mtu         = e100_change_mtu,
2710        .ndo_do_ioctl           = e100_do_ioctl,
2711        .ndo_tx_timeout         = e100_tx_timeout,
2712#ifdef CONFIG_NET_POLL_CONTROLLER
2713        .ndo_poll_controller    = e100_netpoll,
2714#endif
2715};
2716
2717static int __devinit e100_probe(struct pci_dev *pdev,
2718        const struct pci_device_id *ent)
2719{
2720        struct net_device *netdev;
2721        struct nic *nic;
2722        int err;
2723
2724        if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2725                if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2726                        printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2727                return -ENOMEM;
2728        }
2729
2730        netdev->netdev_ops = &e100_netdev_ops;
2731        SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2732        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2733        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2734
2735        nic = netdev_priv(netdev);
2736        netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2737        nic->netdev = netdev;
2738        nic->pdev = pdev;
2739        nic->msg_enable = (1 << debug) - 1;
2740        nic->mdio_ctrl = mdio_ctrl_hw;
2741        pci_set_drvdata(pdev, netdev);
2742
2743        if ((err = pci_enable_device(pdev))) {
2744                DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2745                goto err_out_free_dev;
2746        }
2747
2748        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2749                DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2750                        "base address, aborting.\n");
2751                err = -ENODEV;
2752                goto err_out_disable_pdev;
2753        }
2754
2755        if ((err = pci_request_regions(pdev, DRV_NAME))) {
2756                DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2757                goto err_out_disable_pdev;
2758        }
2759
2760        if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2761                DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2762                goto err_out_free_res;
2763        }
2764
2765        SET_NETDEV_DEV(netdev, &pdev->dev);
2766
2767        if (use_io)
2768                DPRINTK(PROBE, INFO, "using i/o access mode\n");
2769
2770        nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2771        if (!nic->csr) {
2772                DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2773                err = -ENOMEM;
2774                goto err_out_free_res;
2775        }
2776
2777        if (ent->driver_data)
2778                nic->flags |= ich;
2779        else
2780                nic->flags &= ~ich;
2781
2782        e100_get_defaults(nic);
2783
2784        /* locks must be initialized before calling hw_reset */
2785        spin_lock_init(&nic->cb_lock);
2786        spin_lock_init(&nic->cmd_lock);
2787        spin_lock_init(&nic->mdio_lock);
2788
2789        /* Reset the device before pci_set_master() in case device is in some
2790         * funky state and has an interrupt pending - hint: we don't have the
2791         * interrupt handler registered yet. */
2792        e100_hw_reset(nic);
2793
2794        pci_set_master(pdev);
2795
2796        init_timer(&nic->watchdog);
2797        nic->watchdog.function = e100_watchdog;
2798        nic->watchdog.data = (unsigned long)nic;
2799        init_timer(&nic->blink_timer);
2800        nic->blink_timer.function = e100_blink_led;
2801        nic->blink_timer.data = (unsigned long)nic;
2802
2803        INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2804
2805        if ((err = e100_alloc(nic))) {
2806                DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2807                goto err_out_iounmap;
2808        }
2809
2810        if ((err = e100_eeprom_load(nic)))
2811                goto err_out_free;
2812
2813        e100_phy_init(nic);
2814
2815        memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2816        memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2817        if (!is_valid_ether_addr(netdev->perm_addr)) {
2818                if (!eeprom_bad_csum_allow) {
2819                        DPRINTK(PROBE, ERR, "Invalid MAC address from "
2820                                "EEPROM, aborting.\n");
2821                        err = -EAGAIN;
2822                        goto err_out_free;
2823                } else {
2824                        DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2825                                "you MUST configure one.\n");
2826                }
2827        }
2828
2829        /* Wol magic packet can be enabled from eeprom */
2830        if ((nic->mac >= mac_82558_D101_A4) &&
2831           (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2832                nic->flags |= wol_magic;
2833                device_set_wakeup_enable(&pdev->dev, true);
2834        }
2835
2836        /* ack any pending wake events, disable PME */
2837        pci_pme_active(pdev, false);
2838
2839        strcpy(netdev->name, "eth%d");
2840        if ((err = register_netdev(netdev))) {
2841                DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2842                goto err_out_free;
2843        }
2844        nic->cbs_pool = pci_pool_create(netdev->name,
2845                           nic->pdev,
2846                           nic->params.cbs.count * sizeof(struct cb),
2847                           sizeof(u32),
2848                           0);
2849        DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n",
2850                (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2851                pdev->irq, netdev->dev_addr);
2852
2853        return 0;
2854
2855err_out_free:
2856        e100_free(nic);
2857err_out_iounmap:
2858        pci_iounmap(pdev, nic->csr);
2859err_out_free_res:
2860        pci_release_regions(pdev);
2861err_out_disable_pdev:
2862        pci_disable_device(pdev);
2863err_out_free_dev:
2864        pci_set_drvdata(pdev, NULL);
2865        free_netdev(netdev);
2866        return err;
2867}
2868
2869static void __devexit e100_remove(struct pci_dev *pdev)
2870{
2871        struct net_device *netdev = pci_get_drvdata(pdev);
2872
2873        if (netdev) {
2874                struct nic *nic = netdev_priv(netdev);
2875                unregister_netdev(netdev);
2876                e100_free(nic);
2877                pci_iounmap(pdev, nic->csr);
2878                pci_pool_destroy(nic->cbs_pool);
2879                free_netdev(netdev);
2880                pci_release_regions(pdev);
2881                pci_disable_device(pdev);
2882                pci_set_drvdata(pdev, NULL);
2883        }
2884}
2885
2886#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2887#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2888#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
2889static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2890{
2891        struct net_device *netdev = pci_get_drvdata(pdev);
2892        struct nic *nic = netdev_priv(netdev);
2893
2894        if (netif_running(netdev))
2895                e100_down(nic);
2896        netif_device_detach(netdev);
2897
2898        pci_save_state(pdev);
2899
2900        if ((nic->flags & wol_magic) | e100_asf(nic)) {
2901                /* enable reverse auto-negotiation */
2902                if (nic->phy == phy_82552_v) {
2903                        u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2904                                                   E100_82552_SMARTSPEED);
2905
2906                        mdio_write(netdev, nic->mii.phy_id,
2907                                   E100_82552_SMARTSPEED, smartspeed |
2908                                   E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2909                }
2910                *enable_wake = true;
2911        } else {
2912                *enable_wake = false;
2913        }
2914
2915        pci_disable_device(pdev);
2916}
2917
2918static int __e100_power_off(struct pci_dev *pdev, bool wake)
2919{
2920        if (wake)
2921                return pci_prepare_to_sleep(pdev);
2922
2923        pci_wake_from_d3(pdev, false);
2924        pci_set_power_state(pdev, PCI_D3hot);
2925
2926        return 0;
2927}
2928
2929#ifdef CONFIG_PM
2930static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2931{
2932        bool wake;
2933        __e100_shutdown(pdev, &wake);
2934        return __e100_power_off(pdev, wake);
2935}
2936
2937static int e100_resume(struct pci_dev *pdev)
2938{
2939        struct net_device *netdev = pci_get_drvdata(pdev);
2940        struct nic *nic = netdev_priv(netdev);
2941
2942        pci_set_power_state(pdev, PCI_D0);
2943        pci_restore_state(pdev);
2944        /* ack any pending wake events, disable PME */
2945        pci_enable_wake(pdev, 0, 0);
2946
2947        /* disable reverse auto-negotiation */
2948        if (nic->phy == phy_82552_v) {
2949                u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2950                                           E100_82552_SMARTSPEED);
2951
2952                mdio_write(netdev, nic->mii.phy_id,
2953                           E100_82552_SMARTSPEED,
2954                           smartspeed & ~(E100_82552_REV_ANEG));
2955        }
2956
2957        netif_device_attach(netdev);
2958        if (netif_running(netdev))
2959                e100_up(nic);
2960
2961        return 0;
2962}
2963#endif /* CONFIG_PM */
2964
2965static void e100_shutdown(struct pci_dev *pdev)
2966{
2967        bool wake;
2968        __e100_shutdown(pdev, &wake);
2969        if (system_state == SYSTEM_POWER_OFF)
2970                __e100_power_off(pdev, wake);
2971}
2972
2973/* ------------------ PCI Error Recovery infrastructure  -------------- */
2974/**
2975 * e100_io_error_detected - called when PCI error is detected.
2976 * @pdev: Pointer to PCI device
2977 * @state: The current pci connection state
2978 */
2979static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2980{
2981        struct net_device *netdev = pci_get_drvdata(pdev);
2982        struct nic *nic = netdev_priv(netdev);
2983
2984        netif_device_detach(netdev);
2985
2986        if (state == pci_channel_io_perm_failure)
2987                return PCI_ERS_RESULT_DISCONNECT;
2988
2989        if (netif_running(netdev))
2990                e100_down(nic);
2991        pci_disable_device(pdev);
2992
2993        /* Request a slot reset. */
2994        return PCI_ERS_RESULT_NEED_RESET;
2995}
2996
2997/**
2998 * e100_io_slot_reset - called after the pci bus has been reset.
2999 * @pdev: Pointer to PCI device
3000 *
3001 * Restart the card from scratch.
3002 */
3003static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3004{
3005        struct net_device *netdev = pci_get_drvdata(pdev);
3006        struct nic *nic = netdev_priv(netdev);
3007
3008        if (pci_enable_device(pdev)) {
3009                printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
3010                return PCI_ERS_RESULT_DISCONNECT;
3011        }
3012        pci_set_master(pdev);
3013
3014        /* Only one device per card can do a reset */
3015        if (0 != PCI_FUNC(pdev->devfn))
3016                return PCI_ERS_RESULT_RECOVERED;
3017        e100_hw_reset(nic);
3018        e100_phy_init(nic);
3019
3020        return PCI_ERS_RESULT_RECOVERED;
3021}
3022
3023/**
3024 * e100_io_resume - resume normal operations
3025 * @pdev: Pointer to PCI device
3026 *
3027 * Resume normal operations after an error recovery
3028 * sequence has been completed.
3029 */
3030static void e100_io_resume(struct pci_dev *pdev)
3031{
3032        struct net_device *netdev = pci_get_drvdata(pdev);
3033        struct nic *nic = netdev_priv(netdev);
3034
3035        /* ack any pending wake events, disable PME */
3036        pci_enable_wake(pdev, 0, 0);
3037
3038        netif_device_attach(netdev);
3039        if (netif_running(netdev)) {
3040                e100_open(netdev);
3041                mod_timer(&nic->watchdog, jiffies);
3042        }
3043}
3044
3045static struct pci_error_handlers e100_err_handler = {
3046        .error_detected = e100_io_error_detected,
3047        .slot_reset = e100_io_slot_reset,
3048        .resume = e100_io_resume,
3049};
3050
3051static struct pci_driver e100_driver = {
3052        .name =         DRV_NAME,
3053        .id_table =     e100_id_table,
3054        .probe =        e100_probe,
3055        .remove =       __devexit_p(e100_remove),
3056#ifdef CONFIG_PM
3057        /* Power Management hooks */
3058        .suspend =      e100_suspend,
3059        .resume =       e100_resume,
3060#endif
3061        .shutdown =     e100_shutdown,
3062        .err_handler = &e100_err_handler,
3063};
3064
3065static int __init e100_init_module(void)
3066{
3067        if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3068                printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3069                printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
3070        }
3071        return pci_register_driver(&e100_driver);
3072}
3073
3074static void __exit e100_cleanup_module(void)
3075{
3076        pci_unregister_driver(&e100_driver);
3077}
3078
3079module_init(e100_init_module);
3080module_exit(e100_cleanup_module);
3081