linux/drivers/net/e1000/e1000_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31
  32char e1000_driver_name[] = "e1000";
  33static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  34#define DRV_VERSION "7.3.21-k5-NAPI"
  35const char e1000_driver_version[] = DRV_VERSION;
  36static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  37
  38/* e1000_pci_tbl - PCI Device ID Table
  39 *
  40 * Last entry must be all 0s
  41 *
  42 * Macro expands to...
  43 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  44 */
  45static struct pci_device_id e1000_pci_tbl[] = {
  46        INTEL_E1000_ETHERNET_DEVICE(0x1000),
  47        INTEL_E1000_ETHERNET_DEVICE(0x1001),
  48        INTEL_E1000_ETHERNET_DEVICE(0x1004),
  49        INTEL_E1000_ETHERNET_DEVICE(0x1008),
  50        INTEL_E1000_ETHERNET_DEVICE(0x1009),
  51        INTEL_E1000_ETHERNET_DEVICE(0x100C),
  52        INTEL_E1000_ETHERNET_DEVICE(0x100D),
  53        INTEL_E1000_ETHERNET_DEVICE(0x100E),
  54        INTEL_E1000_ETHERNET_DEVICE(0x100F),
  55        INTEL_E1000_ETHERNET_DEVICE(0x1010),
  56        INTEL_E1000_ETHERNET_DEVICE(0x1011),
  57        INTEL_E1000_ETHERNET_DEVICE(0x1012),
  58        INTEL_E1000_ETHERNET_DEVICE(0x1013),
  59        INTEL_E1000_ETHERNET_DEVICE(0x1014),
  60        INTEL_E1000_ETHERNET_DEVICE(0x1015),
  61        INTEL_E1000_ETHERNET_DEVICE(0x1016),
  62        INTEL_E1000_ETHERNET_DEVICE(0x1017),
  63        INTEL_E1000_ETHERNET_DEVICE(0x1018),
  64        INTEL_E1000_ETHERNET_DEVICE(0x1019),
  65        INTEL_E1000_ETHERNET_DEVICE(0x101A),
  66        INTEL_E1000_ETHERNET_DEVICE(0x101D),
  67        INTEL_E1000_ETHERNET_DEVICE(0x101E),
  68        INTEL_E1000_ETHERNET_DEVICE(0x1026),
  69        INTEL_E1000_ETHERNET_DEVICE(0x1027),
  70        INTEL_E1000_ETHERNET_DEVICE(0x1028),
  71        INTEL_E1000_ETHERNET_DEVICE(0x1075),
  72        INTEL_E1000_ETHERNET_DEVICE(0x1076),
  73        INTEL_E1000_ETHERNET_DEVICE(0x1077),
  74        INTEL_E1000_ETHERNET_DEVICE(0x1078),
  75        INTEL_E1000_ETHERNET_DEVICE(0x1079),
  76        INTEL_E1000_ETHERNET_DEVICE(0x107A),
  77        INTEL_E1000_ETHERNET_DEVICE(0x107B),
  78        INTEL_E1000_ETHERNET_DEVICE(0x107C),
  79        INTEL_E1000_ETHERNET_DEVICE(0x108A),
  80        INTEL_E1000_ETHERNET_DEVICE(0x1099),
  81        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  82        /* required last entry */
  83        {0,}
  84};
  85
  86MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  87
  88int e1000_up(struct e1000_adapter *adapter);
  89void e1000_down(struct e1000_adapter *adapter);
  90void e1000_reinit_locked(struct e1000_adapter *adapter);
  91void e1000_reset(struct e1000_adapter *adapter);
  92int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
  93int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  94int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  95void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  96void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  97static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  98                             struct e1000_tx_ring *txdr);
  99static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 100                             struct e1000_rx_ring *rxdr);
 101static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 102                             struct e1000_tx_ring *tx_ring);
 103static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 104                             struct e1000_rx_ring *rx_ring);
 105void e1000_update_stats(struct e1000_adapter *adapter);
 106
 107static int e1000_init_module(void);
 108static void e1000_exit_module(void);
 109static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 110static void __devexit e1000_remove(struct pci_dev *pdev);
 111static int e1000_alloc_queues(struct e1000_adapter *adapter);
 112static int e1000_sw_init(struct e1000_adapter *adapter);
 113static int e1000_open(struct net_device *netdev);
 114static int e1000_close(struct net_device *netdev);
 115static void e1000_configure_tx(struct e1000_adapter *adapter);
 116static void e1000_configure_rx(struct e1000_adapter *adapter);
 117static void e1000_setup_rctl(struct e1000_adapter *adapter);
 118static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 119static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 120static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 121                                struct e1000_tx_ring *tx_ring);
 122static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 123                                struct e1000_rx_ring *rx_ring);
 124static void e1000_set_rx_mode(struct net_device *netdev);
 125static void e1000_update_phy_info(unsigned long data);
 126static void e1000_watchdog(unsigned long data);
 127static void e1000_82547_tx_fifo_stall(unsigned long data);
 128static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 129                                    struct net_device *netdev);
 130static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 131static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 132static int e1000_set_mac(struct net_device *netdev, void *p);
 133static irqreturn_t e1000_intr(int irq, void *data);
 134static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 135                               struct e1000_tx_ring *tx_ring);
 136static int e1000_clean(struct napi_struct *napi, int budget);
 137static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 138                               struct e1000_rx_ring *rx_ring,
 139                               int *work_done, int work_to_do);
 140static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 141                                     struct e1000_rx_ring *rx_ring,
 142                                     int *work_done, int work_to_do);
 143static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 144                                   struct e1000_rx_ring *rx_ring,
 145                                   int cleaned_count);
 146static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 147                                         struct e1000_rx_ring *rx_ring,
 148                                         int cleaned_count);
 149static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 150static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 151                           int cmd);
 152static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 153static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 154static void e1000_tx_timeout(struct net_device *dev);
 155static void e1000_reset_task(struct work_struct *work);
 156static void e1000_smartspeed(struct e1000_adapter *adapter);
 157static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 158                                       struct sk_buff *skb);
 159
 160static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
 161static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
 162static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
 163static void e1000_restore_vlan(struct e1000_adapter *adapter);
 164
 165#ifdef CONFIG_PM
 166static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 167static int e1000_resume(struct pci_dev *pdev);
 168#endif
 169static void e1000_shutdown(struct pci_dev *pdev);
 170
 171#ifdef CONFIG_NET_POLL_CONTROLLER
 172/* for netdump / net console */
 173static void e1000_netpoll (struct net_device *netdev);
 174#endif
 175
 176#define COPYBREAK_DEFAULT 256
 177static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 178module_param(copybreak, uint, 0644);
 179MODULE_PARM_DESC(copybreak,
 180        "Maximum size of packet that is copied to a new buffer on receive");
 181
 182static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 183                     pci_channel_state_t state);
 184static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 185static void e1000_io_resume(struct pci_dev *pdev);
 186
 187static struct pci_error_handlers e1000_err_handler = {
 188        .error_detected = e1000_io_error_detected,
 189        .slot_reset = e1000_io_slot_reset,
 190        .resume = e1000_io_resume,
 191};
 192
 193static struct pci_driver e1000_driver = {
 194        .name     = e1000_driver_name,
 195        .id_table = e1000_pci_tbl,
 196        .probe    = e1000_probe,
 197        .remove   = __devexit_p(e1000_remove),
 198#ifdef CONFIG_PM
 199        /* Power Managment Hooks */
 200        .suspend  = e1000_suspend,
 201        .resume   = e1000_resume,
 202#endif
 203        .shutdown = e1000_shutdown,
 204        .err_handler = &e1000_err_handler
 205};
 206
 207MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 208MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 209MODULE_LICENSE("GPL");
 210MODULE_VERSION(DRV_VERSION);
 211
 212static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
 213module_param(debug, int, 0);
 214MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 215
 216/**
 217 * e1000_init_module - Driver Registration Routine
 218 *
 219 * e1000_init_module is the first routine called when the driver is
 220 * loaded. All it does is register with the PCI subsystem.
 221 **/
 222
 223static int __init e1000_init_module(void)
 224{
 225        int ret;
 226        printk(KERN_INFO "%s - version %s\n",
 227               e1000_driver_string, e1000_driver_version);
 228
 229        printk(KERN_INFO "%s\n", e1000_copyright);
 230
 231        ret = pci_register_driver(&e1000_driver);
 232        if (copybreak != COPYBREAK_DEFAULT) {
 233                if (copybreak == 0)
 234                        printk(KERN_INFO "e1000: copybreak disabled\n");
 235                else
 236                        printk(KERN_INFO "e1000: copybreak enabled for "
 237                               "packets <= %u bytes\n", copybreak);
 238        }
 239        return ret;
 240}
 241
 242module_init(e1000_init_module);
 243
 244/**
 245 * e1000_exit_module - Driver Exit Cleanup Routine
 246 *
 247 * e1000_exit_module is called just before the driver is removed
 248 * from memory.
 249 **/
 250
 251static void __exit e1000_exit_module(void)
 252{
 253        pci_unregister_driver(&e1000_driver);
 254}
 255
 256module_exit(e1000_exit_module);
 257
 258static int e1000_request_irq(struct e1000_adapter *adapter)
 259{
 260        struct net_device *netdev = adapter->netdev;
 261        irq_handler_t handler = e1000_intr;
 262        int irq_flags = IRQF_SHARED;
 263        int err;
 264
 265        err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 266                          netdev);
 267        if (err) {
 268                DPRINTK(PROBE, ERR,
 269                        "Unable to allocate interrupt Error: %d\n", err);
 270        }
 271
 272        return err;
 273}
 274
 275static void e1000_free_irq(struct e1000_adapter *adapter)
 276{
 277        struct net_device *netdev = adapter->netdev;
 278
 279        free_irq(adapter->pdev->irq, netdev);
 280}
 281
 282/**
 283 * e1000_irq_disable - Mask off interrupt generation on the NIC
 284 * @adapter: board private structure
 285 **/
 286
 287static void e1000_irq_disable(struct e1000_adapter *adapter)
 288{
 289        struct e1000_hw *hw = &adapter->hw;
 290
 291        ew32(IMC, ~0);
 292        E1000_WRITE_FLUSH();
 293        synchronize_irq(adapter->pdev->irq);
 294}
 295
 296/**
 297 * e1000_irq_enable - Enable default interrupt generation settings
 298 * @adapter: board private structure
 299 **/
 300
 301static void e1000_irq_enable(struct e1000_adapter *adapter)
 302{
 303        struct e1000_hw *hw = &adapter->hw;
 304
 305        ew32(IMS, IMS_ENABLE_MASK);
 306        E1000_WRITE_FLUSH();
 307}
 308
 309static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 310{
 311        struct e1000_hw *hw = &adapter->hw;
 312        struct net_device *netdev = adapter->netdev;
 313        u16 vid = hw->mng_cookie.vlan_id;
 314        u16 old_vid = adapter->mng_vlan_id;
 315        if (adapter->vlgrp) {
 316                if (!vlan_group_get_device(adapter->vlgrp, vid)) {
 317                        if (hw->mng_cookie.status &
 318                                E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 319                                e1000_vlan_rx_add_vid(netdev, vid);
 320                                adapter->mng_vlan_id = vid;
 321                        } else
 322                                adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 323
 324                        if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 325                                        (vid != old_vid) &&
 326                            !vlan_group_get_device(adapter->vlgrp, old_vid))
 327                                e1000_vlan_rx_kill_vid(netdev, old_vid);
 328                } else
 329                        adapter->mng_vlan_id = vid;
 330        }
 331}
 332
 333static void e1000_init_manageability(struct e1000_adapter *adapter)
 334{
 335        struct e1000_hw *hw = &adapter->hw;
 336
 337        if (adapter->en_mng_pt) {
 338                u32 manc = er32(MANC);
 339
 340                /* disable hardware interception of ARP */
 341                manc &= ~(E1000_MANC_ARP_EN);
 342
 343                ew32(MANC, manc);
 344        }
 345}
 346
 347static void e1000_release_manageability(struct e1000_adapter *adapter)
 348{
 349        struct e1000_hw *hw = &adapter->hw;
 350
 351        if (adapter->en_mng_pt) {
 352                u32 manc = er32(MANC);
 353
 354                /* re-enable hardware interception of ARP */
 355                manc |= E1000_MANC_ARP_EN;
 356
 357                ew32(MANC, manc);
 358        }
 359}
 360
 361/**
 362 * e1000_configure - configure the hardware for RX and TX
 363 * @adapter = private board structure
 364 **/
 365static void e1000_configure(struct e1000_adapter *adapter)
 366{
 367        struct net_device *netdev = adapter->netdev;
 368        int i;
 369
 370        e1000_set_rx_mode(netdev);
 371
 372        e1000_restore_vlan(adapter);
 373        e1000_init_manageability(adapter);
 374
 375        e1000_configure_tx(adapter);
 376        e1000_setup_rctl(adapter);
 377        e1000_configure_rx(adapter);
 378        /* call E1000_DESC_UNUSED which always leaves
 379         * at least 1 descriptor unused to make sure
 380         * next_to_use != next_to_clean */
 381        for (i = 0; i < adapter->num_rx_queues; i++) {
 382                struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 383                adapter->alloc_rx_buf(adapter, ring,
 384                                      E1000_DESC_UNUSED(ring));
 385        }
 386
 387        adapter->tx_queue_len = netdev->tx_queue_len;
 388}
 389
 390int e1000_up(struct e1000_adapter *adapter)
 391{
 392        struct e1000_hw *hw = &adapter->hw;
 393
 394        /* hardware has been reset, we need to reload some things */
 395        e1000_configure(adapter);
 396
 397        clear_bit(__E1000_DOWN, &adapter->flags);
 398
 399        napi_enable(&adapter->napi);
 400
 401        e1000_irq_enable(adapter);
 402
 403        netif_wake_queue(adapter->netdev);
 404
 405        /* fire a link change interrupt to start the watchdog */
 406        ew32(ICS, E1000_ICS_LSC);
 407        return 0;
 408}
 409
 410/**
 411 * e1000_power_up_phy - restore link in case the phy was powered down
 412 * @adapter: address of board private structure
 413 *
 414 * The phy may be powered down to save power and turn off link when the
 415 * driver is unloaded and wake on lan is not enabled (among others)
 416 * *** this routine MUST be followed by a call to e1000_reset ***
 417 *
 418 **/
 419
 420void e1000_power_up_phy(struct e1000_adapter *adapter)
 421{
 422        struct e1000_hw *hw = &adapter->hw;
 423        u16 mii_reg = 0;
 424
 425        /* Just clear the power down bit to wake the phy back up */
 426        if (hw->media_type == e1000_media_type_copper) {
 427                /* according to the manual, the phy will retain its
 428                 * settings across a power-down/up cycle */
 429                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 430                mii_reg &= ~MII_CR_POWER_DOWN;
 431                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 432        }
 433}
 434
 435static void e1000_power_down_phy(struct e1000_adapter *adapter)
 436{
 437        struct e1000_hw *hw = &adapter->hw;
 438
 439        /* Power down the PHY so no link is implied when interface is down *
 440         * The PHY cannot be powered down if any of the following is true *
 441         * (a) WoL is enabled
 442         * (b) AMT is active
 443         * (c) SoL/IDER session is active */
 444        if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 445           hw->media_type == e1000_media_type_copper) {
 446                u16 mii_reg = 0;
 447
 448                switch (hw->mac_type) {
 449                case e1000_82540:
 450                case e1000_82545:
 451                case e1000_82545_rev_3:
 452                case e1000_82546:
 453                case e1000_82546_rev_3:
 454                case e1000_82541:
 455                case e1000_82541_rev_2:
 456                case e1000_82547:
 457                case e1000_82547_rev_2:
 458                        if (er32(MANC) & E1000_MANC_SMBUS_EN)
 459                                goto out;
 460                        break;
 461                default:
 462                        goto out;
 463                }
 464                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 465                mii_reg |= MII_CR_POWER_DOWN;
 466                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 467                mdelay(1);
 468        }
 469out:
 470        return;
 471}
 472
 473void e1000_down(struct e1000_adapter *adapter)
 474{
 475        struct e1000_hw *hw = &adapter->hw;
 476        struct net_device *netdev = adapter->netdev;
 477        u32 rctl, tctl;
 478
 479        /* signal that we're down so the interrupt handler does not
 480         * reschedule our watchdog timer */
 481        set_bit(__E1000_DOWN, &adapter->flags);
 482
 483        /* disable receives in the hardware */
 484        rctl = er32(RCTL);
 485        ew32(RCTL, rctl & ~E1000_RCTL_EN);
 486        /* flush and sleep below */
 487
 488        netif_tx_disable(netdev);
 489
 490        /* disable transmits in the hardware */
 491        tctl = er32(TCTL);
 492        tctl &= ~E1000_TCTL_EN;
 493        ew32(TCTL, tctl);
 494        /* flush both disables and wait for them to finish */
 495        E1000_WRITE_FLUSH();
 496        msleep(10);
 497
 498        napi_disable(&adapter->napi);
 499
 500        e1000_irq_disable(adapter);
 501
 502        del_timer_sync(&adapter->tx_fifo_stall_timer);
 503        del_timer_sync(&adapter->watchdog_timer);
 504        del_timer_sync(&adapter->phy_info_timer);
 505
 506        netdev->tx_queue_len = adapter->tx_queue_len;
 507        adapter->link_speed = 0;
 508        adapter->link_duplex = 0;
 509        netif_carrier_off(netdev);
 510
 511        e1000_reset(adapter);
 512        e1000_clean_all_tx_rings(adapter);
 513        e1000_clean_all_rx_rings(adapter);
 514}
 515
 516void e1000_reinit_locked(struct e1000_adapter *adapter)
 517{
 518        WARN_ON(in_interrupt());
 519        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 520                msleep(1);
 521        e1000_down(adapter);
 522        e1000_up(adapter);
 523        clear_bit(__E1000_RESETTING, &adapter->flags);
 524}
 525
 526void e1000_reset(struct e1000_adapter *adapter)
 527{
 528        struct e1000_hw *hw = &adapter->hw;
 529        u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 530        bool legacy_pba_adjust = false;
 531        u16 hwm;
 532
 533        /* Repartition Pba for greater than 9k mtu
 534         * To take effect CTRL.RST is required.
 535         */
 536
 537        switch (hw->mac_type) {
 538        case e1000_82542_rev2_0:
 539        case e1000_82542_rev2_1:
 540        case e1000_82543:
 541        case e1000_82544:
 542        case e1000_82540:
 543        case e1000_82541:
 544        case e1000_82541_rev_2:
 545                legacy_pba_adjust = true;
 546                pba = E1000_PBA_48K;
 547                break;
 548        case e1000_82545:
 549        case e1000_82545_rev_3:
 550        case e1000_82546:
 551        case e1000_82546_rev_3:
 552                pba = E1000_PBA_48K;
 553                break;
 554        case e1000_82547:
 555        case e1000_82547_rev_2:
 556                legacy_pba_adjust = true;
 557                pba = E1000_PBA_30K;
 558                break;
 559        case e1000_undefined:
 560        case e1000_num_macs:
 561                break;
 562        }
 563
 564        if (legacy_pba_adjust) {
 565                if (hw->max_frame_size > E1000_RXBUFFER_8192)
 566                        pba -= 8; /* allocate more FIFO for Tx */
 567
 568                if (hw->mac_type == e1000_82547) {
 569                        adapter->tx_fifo_head = 0;
 570                        adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 571                        adapter->tx_fifo_size =
 572                                (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 573                        atomic_set(&adapter->tx_fifo_stall, 0);
 574                }
 575        } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 576                /* adjust PBA for jumbo frames */
 577                ew32(PBA, pba);
 578
 579                /* To maintain wire speed transmits, the Tx FIFO should be
 580                 * large enough to accommodate two full transmit packets,
 581                 * rounded up to the next 1KB and expressed in KB.  Likewise,
 582                 * the Rx FIFO should be large enough to accommodate at least
 583                 * one full receive packet and is similarly rounded up and
 584                 * expressed in KB. */
 585                pba = er32(PBA);
 586                /* upper 16 bits has Tx packet buffer allocation size in KB */
 587                tx_space = pba >> 16;
 588                /* lower 16 bits has Rx packet buffer allocation size in KB */
 589                pba &= 0xffff;
 590                /*
 591                 * the tx fifo also stores 16 bytes of information about the tx
 592                 * but don't include ethernet FCS because hardware appends it
 593                 */
 594                min_tx_space = (hw->max_frame_size +
 595                                sizeof(struct e1000_tx_desc) -
 596                                ETH_FCS_LEN) * 2;
 597                min_tx_space = ALIGN(min_tx_space, 1024);
 598                min_tx_space >>= 10;
 599                /* software strips receive CRC, so leave room for it */
 600                min_rx_space = hw->max_frame_size;
 601                min_rx_space = ALIGN(min_rx_space, 1024);
 602                min_rx_space >>= 10;
 603
 604                /* If current Tx allocation is less than the min Tx FIFO size,
 605                 * and the min Tx FIFO size is less than the current Rx FIFO
 606                 * allocation, take space away from current Rx allocation */
 607                if (tx_space < min_tx_space &&
 608                    ((min_tx_space - tx_space) < pba)) {
 609                        pba = pba - (min_tx_space - tx_space);
 610
 611                        /* PCI/PCIx hardware has PBA alignment constraints */
 612                        switch (hw->mac_type) {
 613                        case e1000_82545 ... e1000_82546_rev_3:
 614                                pba &= ~(E1000_PBA_8K - 1);
 615                                break;
 616                        default:
 617                                break;
 618                        }
 619
 620                        /* if short on rx space, rx wins and must trump tx
 621                         * adjustment or use Early Receive if available */
 622                        if (pba < min_rx_space)
 623                                pba = min_rx_space;
 624                }
 625        }
 626
 627        ew32(PBA, pba);
 628
 629        /*
 630         * flow control settings:
 631         * The high water mark must be low enough to fit one full frame
 632         * (or the size used for early receive) above it in the Rx FIFO.
 633         * Set it to the lower of:
 634         * - 90% of the Rx FIFO size, and
 635         * - the full Rx FIFO size minus the early receive size (for parts
 636         *   with ERT support assuming ERT set to E1000_ERT_2048), or
 637         * - the full Rx FIFO size minus one full frame
 638         */
 639        hwm = min(((pba << 10) * 9 / 10),
 640                  ((pba << 10) - hw->max_frame_size));
 641
 642        hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
 643        hw->fc_low_water = hw->fc_high_water - 8;
 644        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 645        hw->fc_send_xon = 1;
 646        hw->fc = hw->original_fc;
 647
 648        /* Allow time for pending master requests to run */
 649        e1000_reset_hw(hw);
 650        if (hw->mac_type >= e1000_82544)
 651                ew32(WUC, 0);
 652
 653        if (e1000_init_hw(hw))
 654                DPRINTK(PROBE, ERR, "Hardware Error\n");
 655        e1000_update_mng_vlan(adapter);
 656
 657        /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 658        if (hw->mac_type >= e1000_82544 &&
 659            hw->autoneg == 1 &&
 660            hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 661                u32 ctrl = er32(CTRL);
 662                /* clear phy power management bit if we are in gig only mode,
 663                 * which if enabled will attempt negotiation to 100Mb, which
 664                 * can cause a loss of link at power off or driver unload */
 665                ctrl &= ~E1000_CTRL_SWDPIN3;
 666                ew32(CTRL, ctrl);
 667        }
 668
 669        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 670        ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 671
 672        e1000_reset_adaptive(hw);
 673        e1000_phy_get_info(hw, &adapter->phy_info);
 674
 675        e1000_release_manageability(adapter);
 676}
 677
 678/**
 679 *  Dump the eeprom for users having checksum issues
 680 **/
 681static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 682{
 683        struct net_device *netdev = adapter->netdev;
 684        struct ethtool_eeprom eeprom;
 685        const struct ethtool_ops *ops = netdev->ethtool_ops;
 686        u8 *data;
 687        int i;
 688        u16 csum_old, csum_new = 0;
 689
 690        eeprom.len = ops->get_eeprom_len(netdev);
 691        eeprom.offset = 0;
 692
 693        data = kmalloc(eeprom.len, GFP_KERNEL);
 694        if (!data) {
 695                printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
 696                       " data\n");
 697                return;
 698        }
 699
 700        ops->get_eeprom(netdev, &eeprom, data);
 701
 702        csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 703                   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 704        for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 705                csum_new += data[i] + (data[i + 1] << 8);
 706        csum_new = EEPROM_SUM - csum_new;
 707
 708        printk(KERN_ERR "/*********************/\n");
 709        printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
 710        printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
 711
 712        printk(KERN_ERR "Offset    Values\n");
 713        printk(KERN_ERR "========  ======\n");
 714        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 715
 716        printk(KERN_ERR "Include this output when contacting your support "
 717               "provider.\n");
 718        printk(KERN_ERR "This is not a software error! Something bad "
 719               "happened to your hardware or\n");
 720        printk(KERN_ERR "EEPROM image. Ignoring this "
 721               "problem could result in further problems,\n");
 722        printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
 723        printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
 724               "which is invalid\n");
 725        printk(KERN_ERR "and requires you to set the proper MAC "
 726               "address manually before continuing\n");
 727        printk(KERN_ERR "to enable this network device.\n");
 728        printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
 729               "to your hardware vendor\n");
 730        printk(KERN_ERR "or Intel Customer Support.\n");
 731        printk(KERN_ERR "/*********************/\n");
 732
 733        kfree(data);
 734}
 735
 736/**
 737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 738 * @pdev: PCI device information struct
 739 *
 740 * Return true if an adapter needs ioport resources
 741 **/
 742static int e1000_is_need_ioport(struct pci_dev *pdev)
 743{
 744        switch (pdev->device) {
 745        case E1000_DEV_ID_82540EM:
 746        case E1000_DEV_ID_82540EM_LOM:
 747        case E1000_DEV_ID_82540EP:
 748        case E1000_DEV_ID_82540EP_LOM:
 749        case E1000_DEV_ID_82540EP_LP:
 750        case E1000_DEV_ID_82541EI:
 751        case E1000_DEV_ID_82541EI_MOBILE:
 752        case E1000_DEV_ID_82541ER:
 753        case E1000_DEV_ID_82541ER_LOM:
 754        case E1000_DEV_ID_82541GI:
 755        case E1000_DEV_ID_82541GI_LF:
 756        case E1000_DEV_ID_82541GI_MOBILE:
 757        case E1000_DEV_ID_82544EI_COPPER:
 758        case E1000_DEV_ID_82544EI_FIBER:
 759        case E1000_DEV_ID_82544GC_COPPER:
 760        case E1000_DEV_ID_82544GC_LOM:
 761        case E1000_DEV_ID_82545EM_COPPER:
 762        case E1000_DEV_ID_82545EM_FIBER:
 763        case E1000_DEV_ID_82546EB_COPPER:
 764        case E1000_DEV_ID_82546EB_FIBER:
 765        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 766                return true;
 767        default:
 768                return false;
 769        }
 770}
 771
 772static const struct net_device_ops e1000_netdev_ops = {
 773        .ndo_open               = e1000_open,
 774        .ndo_stop               = e1000_close,
 775        .ndo_start_xmit         = e1000_xmit_frame,
 776        .ndo_get_stats          = e1000_get_stats,
 777        .ndo_set_rx_mode        = e1000_set_rx_mode,
 778        .ndo_set_mac_address    = e1000_set_mac,
 779        .ndo_tx_timeout         = e1000_tx_timeout,
 780        .ndo_change_mtu         = e1000_change_mtu,
 781        .ndo_do_ioctl           = e1000_ioctl,
 782        .ndo_validate_addr      = eth_validate_addr,
 783
 784        .ndo_vlan_rx_register   = e1000_vlan_rx_register,
 785        .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
 786        .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
 787#ifdef CONFIG_NET_POLL_CONTROLLER
 788        .ndo_poll_controller    = e1000_netpoll,
 789#endif
 790};
 791
 792/**
 793 * e1000_probe - Device Initialization Routine
 794 * @pdev: PCI device information struct
 795 * @ent: entry in e1000_pci_tbl
 796 *
 797 * Returns 0 on success, negative on failure
 798 *
 799 * e1000_probe initializes an adapter identified by a pci_dev structure.
 800 * The OS initialization, configuring of the adapter private structure,
 801 * and a hardware reset occur.
 802 **/
 803static int __devinit e1000_probe(struct pci_dev *pdev,
 804                                 const struct pci_device_id *ent)
 805{
 806        struct net_device *netdev;
 807        struct e1000_adapter *adapter;
 808        struct e1000_hw *hw;
 809
 810        static int cards_found = 0;
 811        static int global_quad_port_a = 0; /* global ksp3 port a indication */
 812        int i, err, pci_using_dac;
 813        u16 eeprom_data = 0;
 814        u16 eeprom_apme_mask = E1000_EEPROM_APME;
 815        int bars, need_ioport;
 816
 817        /* do not allocate ioport bars when not needed */
 818        need_ioport = e1000_is_need_ioport(pdev);
 819        if (need_ioport) {
 820                bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 821                err = pci_enable_device(pdev);
 822        } else {
 823                bars = pci_select_bars(pdev, IORESOURCE_MEM);
 824                err = pci_enable_device_mem(pdev);
 825        }
 826        if (err)
 827                return err;
 828
 829        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
 830            !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
 831                pci_using_dac = 1;
 832        } else {
 833                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
 834                if (err) {
 835                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
 836                        if (err) {
 837                                E1000_ERR("No usable DMA configuration, "
 838                                          "aborting\n");
 839                                goto err_dma;
 840                        }
 841                }
 842                pci_using_dac = 0;
 843        }
 844
 845        err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 846        if (err)
 847                goto err_pci_reg;
 848
 849        pci_set_master(pdev);
 850
 851        err = -ENOMEM;
 852        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 853        if (!netdev)
 854                goto err_alloc_etherdev;
 855
 856        SET_NETDEV_DEV(netdev, &pdev->dev);
 857
 858        pci_set_drvdata(pdev, netdev);
 859        adapter = netdev_priv(netdev);
 860        adapter->netdev = netdev;
 861        adapter->pdev = pdev;
 862        adapter->msg_enable = (1 << debug) - 1;
 863        adapter->bars = bars;
 864        adapter->need_ioport = need_ioport;
 865
 866        hw = &adapter->hw;
 867        hw->back = adapter;
 868
 869        err = -EIO;
 870        hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 871        if (!hw->hw_addr)
 872                goto err_ioremap;
 873
 874        if (adapter->need_ioport) {
 875                for (i = BAR_1; i <= BAR_5; i++) {
 876                        if (pci_resource_len(pdev, i) == 0)
 877                                continue;
 878                        if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 879                                hw->io_base = pci_resource_start(pdev, i);
 880                                break;
 881                        }
 882                }
 883        }
 884
 885        netdev->netdev_ops = &e1000_netdev_ops;
 886        e1000_set_ethtool_ops(netdev);
 887        netdev->watchdog_timeo = 5 * HZ;
 888        netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
 889
 890        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
 891
 892        adapter->bd_number = cards_found;
 893
 894        /* setup the private structure */
 895
 896        err = e1000_sw_init(adapter);
 897        if (err)
 898                goto err_sw_init;
 899
 900        err = -EIO;
 901
 902        if (hw->mac_type >= e1000_82543) {
 903                netdev->features = NETIF_F_SG |
 904                                   NETIF_F_HW_CSUM |
 905                                   NETIF_F_HW_VLAN_TX |
 906                                   NETIF_F_HW_VLAN_RX |
 907                                   NETIF_F_HW_VLAN_FILTER;
 908        }
 909
 910        if ((hw->mac_type >= e1000_82544) &&
 911           (hw->mac_type != e1000_82547))
 912                netdev->features |= NETIF_F_TSO;
 913
 914        if (pci_using_dac)
 915                netdev->features |= NETIF_F_HIGHDMA;
 916
 917        netdev->vlan_features |= NETIF_F_TSO;
 918        netdev->vlan_features |= NETIF_F_HW_CSUM;
 919        netdev->vlan_features |= NETIF_F_SG;
 920
 921        adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
 922
 923        /* initialize eeprom parameters */
 924        if (e1000_init_eeprom_params(hw)) {
 925                E1000_ERR("EEPROM initialization failed\n");
 926                goto err_eeprom;
 927        }
 928
 929        /* before reading the EEPROM, reset the controller to
 930         * put the device in a known good starting state */
 931
 932        e1000_reset_hw(hw);
 933
 934        /* make sure the EEPROM is good */
 935        if (e1000_validate_eeprom_checksum(hw) < 0) {
 936                DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
 937                e1000_dump_eeprom(adapter);
 938                /*
 939                 * set MAC address to all zeroes to invalidate and temporary
 940                 * disable this device for the user. This blocks regular
 941                 * traffic while still permitting ethtool ioctls from reaching
 942                 * the hardware as well as allowing the user to run the
 943                 * interface after manually setting a hw addr using
 944                 * `ip set address`
 945                 */
 946                memset(hw->mac_addr, 0, netdev->addr_len);
 947        } else {
 948                /* copy the MAC address out of the EEPROM */
 949                if (e1000_read_mac_addr(hw))
 950                        DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
 951        }
 952        /* don't block initalization here due to bad MAC address */
 953        memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
 954        memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
 955
 956        if (!is_valid_ether_addr(netdev->perm_addr))
 957                DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
 958
 959        e1000_get_bus_info(hw);
 960
 961        init_timer(&adapter->tx_fifo_stall_timer);
 962        adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
 963        adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
 964
 965        init_timer(&adapter->watchdog_timer);
 966        adapter->watchdog_timer.function = &e1000_watchdog;
 967        adapter->watchdog_timer.data = (unsigned long) adapter;
 968
 969        init_timer(&adapter->phy_info_timer);
 970        adapter->phy_info_timer.function = &e1000_update_phy_info;
 971        adapter->phy_info_timer.data = (unsigned long)adapter;
 972
 973        INIT_WORK(&adapter->reset_task, e1000_reset_task);
 974
 975        e1000_check_options(adapter);
 976
 977        /* Initial Wake on LAN setting
 978         * If APM wake is enabled in the EEPROM,
 979         * enable the ACPI Magic Packet filter
 980         */
 981
 982        switch (hw->mac_type) {
 983        case e1000_82542_rev2_0:
 984        case e1000_82542_rev2_1:
 985        case e1000_82543:
 986                break;
 987        case e1000_82544:
 988                e1000_read_eeprom(hw,
 989                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
 990                eeprom_apme_mask = E1000_EEPROM_82544_APM;
 991                break;
 992        case e1000_82546:
 993        case e1000_82546_rev_3:
 994                if (er32(STATUS) & E1000_STATUS_FUNC_1){
 995                        e1000_read_eeprom(hw,
 996                                EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 997                        break;
 998                }
 999                /* Fall Through */
1000        default:
1001                e1000_read_eeprom(hw,
1002                        EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1003                break;
1004        }
1005        if (eeprom_data & eeprom_apme_mask)
1006                adapter->eeprom_wol |= E1000_WUFC_MAG;
1007
1008        /* now that we have the eeprom settings, apply the special cases
1009         * where the eeprom may be wrong or the board simply won't support
1010         * wake on lan on a particular port */
1011        switch (pdev->device) {
1012        case E1000_DEV_ID_82546GB_PCIE:
1013                adapter->eeprom_wol = 0;
1014                break;
1015        case E1000_DEV_ID_82546EB_FIBER:
1016        case E1000_DEV_ID_82546GB_FIBER:
1017                /* Wake events only supported on port A for dual fiber
1018                 * regardless of eeprom setting */
1019                if (er32(STATUS) & E1000_STATUS_FUNC_1)
1020                        adapter->eeprom_wol = 0;
1021                break;
1022        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1023                /* if quad port adapter, disable WoL on all but port A */
1024                if (global_quad_port_a != 0)
1025                        adapter->eeprom_wol = 0;
1026                else
1027                        adapter->quad_port_a = 1;
1028                /* Reset for multiple quad port adapters */
1029                if (++global_quad_port_a == 4)
1030                        global_quad_port_a = 0;
1031                break;
1032        }
1033
1034        /* initialize the wol settings based on the eeprom settings */
1035        adapter->wol = adapter->eeprom_wol;
1036        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1037
1038        /* print bus type/speed/width info */
1039        DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1040                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1041                ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1042                 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1043                 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1044                 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1045                ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1046
1047        printk("%pM\n", netdev->dev_addr);
1048
1049        /* reset the hardware with the new settings */
1050        e1000_reset(adapter);
1051
1052        strcpy(netdev->name, "eth%d");
1053        err = register_netdev(netdev);
1054        if (err)
1055                goto err_register;
1056
1057        /* carrier off reporting is important to ethtool even BEFORE open */
1058        netif_carrier_off(netdev);
1059
1060        DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1061
1062        cards_found++;
1063        return 0;
1064
1065err_register:
1066err_eeprom:
1067        e1000_phy_hw_reset(hw);
1068
1069        if (hw->flash_address)
1070                iounmap(hw->flash_address);
1071        kfree(adapter->tx_ring);
1072        kfree(adapter->rx_ring);
1073err_sw_init:
1074        iounmap(hw->hw_addr);
1075err_ioremap:
1076        free_netdev(netdev);
1077err_alloc_etherdev:
1078        pci_release_selected_regions(pdev, bars);
1079err_pci_reg:
1080err_dma:
1081        pci_disable_device(pdev);
1082        return err;
1083}
1084
1085/**
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1088 *
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device.  The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1092 * memory.
1093 **/
1094
1095static void __devexit e1000_remove(struct pci_dev *pdev)
1096{
1097        struct net_device *netdev = pci_get_drvdata(pdev);
1098        struct e1000_adapter *adapter = netdev_priv(netdev);
1099        struct e1000_hw *hw = &adapter->hw;
1100
1101        set_bit(__E1000_DOWN, &adapter->flags);
1102        del_timer_sync(&adapter->tx_fifo_stall_timer);
1103        del_timer_sync(&adapter->watchdog_timer);
1104        del_timer_sync(&adapter->phy_info_timer);
1105
1106        cancel_work_sync(&adapter->reset_task);
1107
1108        e1000_release_manageability(adapter);
1109
1110        unregister_netdev(netdev);
1111
1112        e1000_phy_hw_reset(hw);
1113
1114        kfree(adapter->tx_ring);
1115        kfree(adapter->rx_ring);
1116
1117        iounmap(hw->hw_addr);
1118        if (hw->flash_address)
1119                iounmap(hw->flash_address);
1120        pci_release_selected_regions(pdev, adapter->bars);
1121
1122        free_netdev(netdev);
1123
1124        pci_disable_device(pdev);
1125}
1126
1127/**
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1130 *
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1134 **/
1135
1136static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1137{
1138        struct e1000_hw *hw = &adapter->hw;
1139        struct net_device *netdev = adapter->netdev;
1140        struct pci_dev *pdev = adapter->pdev;
1141
1142        /* PCI config space info */
1143
1144        hw->vendor_id = pdev->vendor;
1145        hw->device_id = pdev->device;
1146        hw->subsystem_vendor_id = pdev->subsystem_vendor;
1147        hw->subsystem_id = pdev->subsystem_device;
1148        hw->revision_id = pdev->revision;
1149
1150        pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1151
1152        adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153        hw->max_frame_size = netdev->mtu +
1154                             ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155        hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1156
1157        /* identify the MAC */
1158
1159        if (e1000_set_mac_type(hw)) {
1160                DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1161                return -EIO;
1162        }
1163
1164        switch (hw->mac_type) {
1165        default:
1166                break;
1167        case e1000_82541:
1168        case e1000_82547:
1169        case e1000_82541_rev_2:
1170        case e1000_82547_rev_2:
1171                hw->phy_init_script = 1;
1172                break;
1173        }
1174
1175        e1000_set_media_type(hw);
1176
1177        hw->wait_autoneg_complete = false;
1178        hw->tbi_compatibility_en = true;
1179        hw->adaptive_ifs = true;
1180
1181        /* Copper options */
1182
1183        if (hw->media_type == e1000_media_type_copper) {
1184                hw->mdix = AUTO_ALL_MODES;
1185                hw->disable_polarity_correction = false;
1186                hw->master_slave = E1000_MASTER_SLAVE;
1187        }
1188
1189        adapter->num_tx_queues = 1;
1190        adapter->num_rx_queues = 1;
1191
1192        if (e1000_alloc_queues(adapter)) {
1193                DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1194                return -ENOMEM;
1195        }
1196
1197        /* Explicitly disable IRQ since the NIC can be in any state. */
1198        e1000_irq_disable(adapter);
1199
1200        spin_lock_init(&adapter->stats_lock);
1201
1202        set_bit(__E1000_DOWN, &adapter->flags);
1203
1204        return 0;
1205}
1206
1207/**
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1210 *
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1213 **/
1214
1215static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1216{
1217        adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1218                                   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1219        if (!adapter->tx_ring)
1220                return -ENOMEM;
1221
1222        adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1223                                   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1224        if (!adapter->rx_ring) {
1225                kfree(adapter->tx_ring);
1226                return -ENOMEM;
1227        }
1228
1229        return E1000_SUCCESS;
1230}
1231
1232/**
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1235 *
1236 * Returns 0 on success, negative value on failure
1237 *
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP).  At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1243 **/
1244
1245static int e1000_open(struct net_device *netdev)
1246{
1247        struct e1000_adapter *adapter = netdev_priv(netdev);
1248        struct e1000_hw *hw = &adapter->hw;
1249        int err;
1250
1251        /* disallow open during test */
1252        if (test_bit(__E1000_TESTING, &adapter->flags))
1253                return -EBUSY;
1254
1255        netif_carrier_off(netdev);
1256
1257        /* allocate transmit descriptors */
1258        err = e1000_setup_all_tx_resources(adapter);
1259        if (err)
1260                goto err_setup_tx;
1261
1262        /* allocate receive descriptors */
1263        err = e1000_setup_all_rx_resources(adapter);
1264        if (err)
1265                goto err_setup_rx;
1266
1267        e1000_power_up_phy(adapter);
1268
1269        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1270        if ((hw->mng_cookie.status &
1271                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1272                e1000_update_mng_vlan(adapter);
1273        }
1274
1275        /* before we allocate an interrupt, we must be ready to handle it.
1276         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277         * as soon as we call pci_request_irq, so we have to setup our
1278         * clean_rx handler before we do so.  */
1279        e1000_configure(adapter);
1280
1281        err = e1000_request_irq(adapter);
1282        if (err)
1283                goto err_req_irq;
1284
1285        /* From here on the code is the same as e1000_up() */
1286        clear_bit(__E1000_DOWN, &adapter->flags);
1287
1288        napi_enable(&adapter->napi);
1289
1290        e1000_irq_enable(adapter);
1291
1292        netif_start_queue(netdev);
1293
1294        /* fire a link status change interrupt to start the watchdog */
1295        ew32(ICS, E1000_ICS_LSC);
1296
1297        return E1000_SUCCESS;
1298
1299err_req_irq:
1300        e1000_power_down_phy(adapter);
1301        e1000_free_all_rx_resources(adapter);
1302err_setup_rx:
1303        e1000_free_all_tx_resources(adapter);
1304err_setup_tx:
1305        e1000_reset(adapter);
1306
1307        return err;
1308}
1309
1310/**
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1313 *
1314 * Returns 0, this is not allowed to fail
1315 *
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS.  The hardware is still under the drivers control, but
1318 * needs to be disabled.  A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1320 **/
1321
1322static int e1000_close(struct net_device *netdev)
1323{
1324        struct e1000_adapter *adapter = netdev_priv(netdev);
1325        struct e1000_hw *hw = &adapter->hw;
1326
1327        WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1328        e1000_down(adapter);
1329        e1000_power_down_phy(adapter);
1330        e1000_free_irq(adapter);
1331
1332        e1000_free_all_tx_resources(adapter);
1333        e1000_free_all_rx_resources(adapter);
1334
1335        /* kill manageability vlan ID if supported, but not if a vlan with
1336         * the same ID is registered on the host OS (let 8021q kill it) */
1337        if ((hw->mng_cookie.status &
1338                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1339             !(adapter->vlgrp &&
1340               vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1341                e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1342        }
1343
1344        return 0;
1345}
1346
1347/**
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1352 **/
1353static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1354                                  unsigned long len)
1355{
1356        struct e1000_hw *hw = &adapter->hw;
1357        unsigned long begin = (unsigned long)start;
1358        unsigned long end = begin + len;
1359
1360        /* First rev 82545 and 82546 need to not allow any memory
1361         * write location to cross 64k boundary due to errata 23 */
1362        if (hw->mac_type == e1000_82545 ||
1363            hw->mac_type == e1000_82546) {
1364                return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1365        }
1366
1367        return true;
1368}
1369
1370/**
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr:    tx descriptor ring (for a specific queue) to setup
1374 *
1375 * Return 0 on success, negative on failure
1376 **/
1377
1378static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1379                                    struct e1000_tx_ring *txdr)
1380{
1381        struct pci_dev *pdev = adapter->pdev;
1382        int size;
1383
1384        size = sizeof(struct e1000_buffer) * txdr->count;
1385        txdr->buffer_info = vmalloc(size);
1386        if (!txdr->buffer_info) {
1387                DPRINTK(PROBE, ERR,
1388                "Unable to allocate memory for the transmit descriptor ring\n");
1389                return -ENOMEM;
1390        }
1391        memset(txdr->buffer_info, 0, size);
1392
1393        /* round up to nearest 4K */
1394
1395        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1396        txdr->size = ALIGN(txdr->size, 4096);
1397
1398        txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1399        if (!txdr->desc) {
1400setup_tx_desc_die:
1401                vfree(txdr->buffer_info);
1402                DPRINTK(PROBE, ERR,
1403                "Unable to allocate memory for the transmit descriptor ring\n");
1404                return -ENOMEM;
1405        }
1406
1407        /* Fix for errata 23, can't cross 64kB boundary */
1408        if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1409                void *olddesc = txdr->desc;
1410                dma_addr_t olddma = txdr->dma;
1411                DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1412                                     "at %p\n", txdr->size, txdr->desc);
1413                /* Try again, without freeing the previous */
1414                txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1415                /* Failed allocation, critical failure */
1416                if (!txdr->desc) {
1417                        pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1418                        goto setup_tx_desc_die;
1419                }
1420
1421                if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1422                        /* give up */
1423                        pci_free_consistent(pdev, txdr->size, txdr->desc,
1424                                            txdr->dma);
1425                        pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1426                        DPRINTK(PROBE, ERR,
1427                                "Unable to allocate aligned memory "
1428                                "for the transmit descriptor ring\n");
1429                        vfree(txdr->buffer_info);
1430                        return -ENOMEM;
1431                } else {
1432                        /* Free old allocation, new allocation was successful */
1433                        pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1434                }
1435        }
1436        memset(txdr->desc, 0, txdr->size);
1437
1438        txdr->next_to_use = 0;
1439        txdr->next_to_clean = 0;
1440
1441        return 0;
1442}
1443
1444/**
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 *                                (Descriptors) for all queues
1447 * @adapter: board private structure
1448 *
1449 * Return 0 on success, negative on failure
1450 **/
1451
1452int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1453{
1454        int i, err = 0;
1455
1456        for (i = 0; i < adapter->num_tx_queues; i++) {
1457                err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1458                if (err) {
1459                        DPRINTK(PROBE, ERR,
1460                                "Allocation for Tx Queue %u failed\n", i);
1461                        for (i-- ; i >= 0; i--)
1462                                e1000_free_tx_resources(adapter,
1463                                                        &adapter->tx_ring[i]);
1464                        break;
1465                }
1466        }
1467
1468        return err;
1469}
1470
1471/**
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1474 *
1475 * Configure the Tx unit of the MAC after a reset.
1476 **/
1477
1478static void e1000_configure_tx(struct e1000_adapter *adapter)
1479{
1480        u64 tdba;
1481        struct e1000_hw *hw = &adapter->hw;
1482        u32 tdlen, tctl, tipg;
1483        u32 ipgr1, ipgr2;
1484
1485        /* Setup the HW Tx Head and Tail descriptor pointers */
1486
1487        switch (adapter->num_tx_queues) {
1488        case 1:
1489        default:
1490                tdba = adapter->tx_ring[0].dma;
1491                tdlen = adapter->tx_ring[0].count *
1492                        sizeof(struct e1000_tx_desc);
1493                ew32(TDLEN, tdlen);
1494                ew32(TDBAH, (tdba >> 32));
1495                ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1496                ew32(TDT, 0);
1497                ew32(TDH, 0);
1498                adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1499                adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1500                break;
1501        }
1502
1503        /* Set the default values for the Tx Inter Packet Gap timer */
1504        if ((hw->media_type == e1000_media_type_fiber ||
1505             hw->media_type == e1000_media_type_internal_serdes))
1506                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1507        else
1508                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1509
1510        switch (hw->mac_type) {
1511        case e1000_82542_rev2_0:
1512        case e1000_82542_rev2_1:
1513                tipg = DEFAULT_82542_TIPG_IPGT;
1514                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1515                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1516                break;
1517        default:
1518                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1519                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1520                break;
1521        }
1522        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1523        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1524        ew32(TIPG, tipg);
1525
1526        /* Set the Tx Interrupt Delay register */
1527
1528        ew32(TIDV, adapter->tx_int_delay);
1529        if (hw->mac_type >= e1000_82540)
1530                ew32(TADV, adapter->tx_abs_int_delay);
1531
1532        /* Program the Transmit Control Register */
1533
1534        tctl = er32(TCTL);
1535        tctl &= ~E1000_TCTL_CT;
1536        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1537                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1538
1539        e1000_config_collision_dist(hw);
1540
1541        /* Setup Transmit Descriptor Settings for eop descriptor */
1542        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1543
1544        /* only set IDE if we are delaying interrupts using the timers */
1545        if (adapter->tx_int_delay)
1546                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1547
1548        if (hw->mac_type < e1000_82543)
1549                adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550        else
1551                adapter->txd_cmd |= E1000_TXD_CMD_RS;
1552
1553        /* Cache if we're 82544 running in PCI-X because we'll
1554         * need this to apply a workaround later in the send path. */
1555        if (hw->mac_type == e1000_82544 &&
1556            hw->bus_type == e1000_bus_type_pcix)
1557                adapter->pcix_82544 = 1;
1558
1559        ew32(TCTL, tctl);
1560
1561}
1562
1563/**
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1567 *
1568 * Returns 0 on success, negative on failure
1569 **/
1570
1571static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1572                                    struct e1000_rx_ring *rxdr)
1573{
1574        struct pci_dev *pdev = adapter->pdev;
1575        int size, desc_len;
1576
1577        size = sizeof(struct e1000_buffer) * rxdr->count;
1578        rxdr->buffer_info = vmalloc(size);
1579        if (!rxdr->buffer_info) {
1580                DPRINTK(PROBE, ERR,
1581                "Unable to allocate memory for the receive descriptor ring\n");
1582                return -ENOMEM;
1583        }
1584        memset(rxdr->buffer_info, 0, size);
1585
1586        desc_len = sizeof(struct e1000_rx_desc);
1587
1588        /* Round up to nearest 4K */
1589
1590        rxdr->size = rxdr->count * desc_len;
1591        rxdr->size = ALIGN(rxdr->size, 4096);
1592
1593        rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1594
1595        if (!rxdr->desc) {
1596                DPRINTK(PROBE, ERR,
1597                "Unable to allocate memory for the receive descriptor ring\n");
1598setup_rx_desc_die:
1599                vfree(rxdr->buffer_info);
1600                return -ENOMEM;
1601        }
1602
1603        /* Fix for errata 23, can't cross 64kB boundary */
1604        if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605                void *olddesc = rxdr->desc;
1606                dma_addr_t olddma = rxdr->dma;
1607                DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608                                     "at %p\n", rxdr->size, rxdr->desc);
1609                /* Try again, without freeing the previous */
1610                rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611                /* Failed allocation, critical failure */
1612                if (!rxdr->desc) {
1613                        pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614                        DPRINTK(PROBE, ERR,
1615                                "Unable to allocate memory "
1616                                "for the receive descriptor ring\n");
1617                        goto setup_rx_desc_die;
1618                }
1619
1620                if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621                        /* give up */
1622                        pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623                                            rxdr->dma);
1624                        pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625                        DPRINTK(PROBE, ERR,
1626                                "Unable to allocate aligned memory "
1627                                "for the receive descriptor ring\n");
1628                        goto setup_rx_desc_die;
1629                } else {
1630                        /* Free old allocation, new allocation was successful */
1631                        pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1632                }
1633        }
1634        memset(rxdr->desc, 0, rxdr->size);
1635
1636        rxdr->next_to_clean = 0;
1637        rxdr->next_to_use = 0;
1638        rxdr->rx_skb_top = NULL;
1639
1640        return 0;
1641}
1642
1643/**
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 *                                (Descriptors) for all queues
1646 * @adapter: board private structure
1647 *
1648 * Return 0 on success, negative on failure
1649 **/
1650
1651int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1652{
1653        int i, err = 0;
1654
1655        for (i = 0; i < adapter->num_rx_queues; i++) {
1656                err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1657                if (err) {
1658                        DPRINTK(PROBE, ERR,
1659                                "Allocation for Rx Queue %u failed\n", i);
1660                        for (i-- ; i >= 0; i--)
1661                                e1000_free_rx_resources(adapter,
1662                                                        &adapter->rx_ring[i]);
1663                        break;
1664                }
1665        }
1666
1667        return err;
1668}
1669
1670/**
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1673 **/
1674static void e1000_setup_rctl(struct e1000_adapter *adapter)
1675{
1676        struct e1000_hw *hw = &adapter->hw;
1677        u32 rctl;
1678
1679        rctl = er32(RCTL);
1680
1681        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1682
1683        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1684                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1685                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1686
1687        if (hw->tbi_compatibility_on == 1)
1688                rctl |= E1000_RCTL_SBP;
1689        else
1690                rctl &= ~E1000_RCTL_SBP;
1691
1692        if (adapter->netdev->mtu <= ETH_DATA_LEN)
1693                rctl &= ~E1000_RCTL_LPE;
1694        else
1695                rctl |= E1000_RCTL_LPE;
1696
1697        /* Setup buffer sizes */
1698        rctl &= ~E1000_RCTL_SZ_4096;
1699        rctl |= E1000_RCTL_BSEX;
1700        switch (adapter->rx_buffer_len) {
1701                case E1000_RXBUFFER_256:
1702                        rctl |= E1000_RCTL_SZ_256;
1703                        rctl &= ~E1000_RCTL_BSEX;
1704                        break;
1705                case E1000_RXBUFFER_512:
1706                        rctl |= E1000_RCTL_SZ_512;
1707                        rctl &= ~E1000_RCTL_BSEX;
1708                        break;
1709                case E1000_RXBUFFER_1024:
1710                        rctl |= E1000_RCTL_SZ_1024;
1711                        rctl &= ~E1000_RCTL_BSEX;
1712                        break;
1713                case E1000_RXBUFFER_2048:
1714                default:
1715                        rctl |= E1000_RCTL_SZ_2048;
1716                        rctl &= ~E1000_RCTL_BSEX;
1717                        break;
1718                case E1000_RXBUFFER_4096:
1719                        rctl |= E1000_RCTL_SZ_4096;
1720                        break;
1721                case E1000_RXBUFFER_8192:
1722                        rctl |= E1000_RCTL_SZ_8192;
1723                        break;
1724                case E1000_RXBUFFER_16384:
1725                        rctl |= E1000_RCTL_SZ_16384;
1726                        break;
1727        }
1728
1729        ew32(RCTL, rctl);
1730}
1731
1732/**
1733 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1734 * @adapter: board private structure
1735 *
1736 * Configure the Rx unit of the MAC after a reset.
1737 **/
1738
1739static void e1000_configure_rx(struct e1000_adapter *adapter)
1740{
1741        u64 rdba;
1742        struct e1000_hw *hw = &adapter->hw;
1743        u32 rdlen, rctl, rxcsum;
1744
1745        if (adapter->netdev->mtu > ETH_DATA_LEN) {
1746                rdlen = adapter->rx_ring[0].count *
1747                        sizeof(struct e1000_rx_desc);
1748                adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1749                adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1750        } else {
1751                rdlen = adapter->rx_ring[0].count *
1752                        sizeof(struct e1000_rx_desc);
1753                adapter->clean_rx = e1000_clean_rx_irq;
1754                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1755        }
1756
1757        /* disable receives while setting up the descriptors */
1758        rctl = er32(RCTL);
1759        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1760
1761        /* set the Receive Delay Timer Register */
1762        ew32(RDTR, adapter->rx_int_delay);
1763
1764        if (hw->mac_type >= e1000_82540) {
1765                ew32(RADV, adapter->rx_abs_int_delay);
1766                if (adapter->itr_setting != 0)
1767                        ew32(ITR, 1000000000 / (adapter->itr * 256));
1768        }
1769
1770        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1771         * the Base and Length of the Rx Descriptor Ring */
1772        switch (adapter->num_rx_queues) {
1773        case 1:
1774        default:
1775                rdba = adapter->rx_ring[0].dma;
1776                ew32(RDLEN, rdlen);
1777                ew32(RDBAH, (rdba >> 32));
1778                ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1779                ew32(RDT, 0);
1780                ew32(RDH, 0);
1781                adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1782                adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1783                break;
1784        }
1785
1786        /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1787        if (hw->mac_type >= e1000_82543) {
1788                rxcsum = er32(RXCSUM);
1789                if (adapter->rx_csum)
1790                        rxcsum |= E1000_RXCSUM_TUOFL;
1791                else
1792                        /* don't need to clear IPPCSE as it defaults to 0 */
1793                        rxcsum &= ~E1000_RXCSUM_TUOFL;
1794                ew32(RXCSUM, rxcsum);
1795        }
1796
1797        /* Enable Receives */
1798        ew32(RCTL, rctl);
1799}
1800
1801/**
1802 * e1000_free_tx_resources - Free Tx Resources per Queue
1803 * @adapter: board private structure
1804 * @tx_ring: Tx descriptor ring for a specific queue
1805 *
1806 * Free all transmit software resources
1807 **/
1808
1809static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1810                                    struct e1000_tx_ring *tx_ring)
1811{
1812        struct pci_dev *pdev = adapter->pdev;
1813
1814        e1000_clean_tx_ring(adapter, tx_ring);
1815
1816        vfree(tx_ring->buffer_info);
1817        tx_ring->buffer_info = NULL;
1818
1819        pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1820
1821        tx_ring->desc = NULL;
1822}
1823
1824/**
1825 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1826 * @adapter: board private structure
1827 *
1828 * Free all transmit software resources
1829 **/
1830
1831void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1832{
1833        int i;
1834
1835        for (i = 0; i < adapter->num_tx_queues; i++)
1836                e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1837}
1838
1839static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1840                                             struct e1000_buffer *buffer_info)
1841{
1842        buffer_info->dma = 0;
1843        if (buffer_info->skb) {
1844                skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
1845                              DMA_TO_DEVICE);
1846                dev_kfree_skb_any(buffer_info->skb);
1847                buffer_info->skb = NULL;
1848        }
1849        buffer_info->time_stamp = 0;
1850        /* buffer_info must be completely set up in the transmit path */
1851}
1852
1853/**
1854 * e1000_clean_tx_ring - Free Tx Buffers
1855 * @adapter: board private structure
1856 * @tx_ring: ring to be cleaned
1857 **/
1858
1859static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1860                                struct e1000_tx_ring *tx_ring)
1861{
1862        struct e1000_hw *hw = &adapter->hw;
1863        struct e1000_buffer *buffer_info;
1864        unsigned long size;
1865        unsigned int i;
1866
1867        /* Free all the Tx ring sk_buffs */
1868
1869        for (i = 0; i < tx_ring->count; i++) {
1870                buffer_info = &tx_ring->buffer_info[i];
1871                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1872        }
1873
1874        size = sizeof(struct e1000_buffer) * tx_ring->count;
1875        memset(tx_ring->buffer_info, 0, size);
1876
1877        /* Zero out the descriptor ring */
1878
1879        memset(tx_ring->desc, 0, tx_ring->size);
1880
1881        tx_ring->next_to_use = 0;
1882        tx_ring->next_to_clean = 0;
1883        tx_ring->last_tx_tso = 0;
1884
1885        writel(0, hw->hw_addr + tx_ring->tdh);
1886        writel(0, hw->hw_addr + tx_ring->tdt);
1887}
1888
1889/**
1890 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1891 * @adapter: board private structure
1892 **/
1893
1894static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1895{
1896        int i;
1897
1898        for (i = 0; i < adapter->num_tx_queues; i++)
1899                e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1900}
1901
1902/**
1903 * e1000_free_rx_resources - Free Rx Resources
1904 * @adapter: board private structure
1905 * @rx_ring: ring to clean the resources from
1906 *
1907 * Free all receive software resources
1908 **/
1909
1910static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1911                                    struct e1000_rx_ring *rx_ring)
1912{
1913        struct pci_dev *pdev = adapter->pdev;
1914
1915        e1000_clean_rx_ring(adapter, rx_ring);
1916
1917        vfree(rx_ring->buffer_info);
1918        rx_ring->buffer_info = NULL;
1919
1920        pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1921
1922        rx_ring->desc = NULL;
1923}
1924
1925/**
1926 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1927 * @adapter: board private structure
1928 *
1929 * Free all receive software resources
1930 **/
1931
1932void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1933{
1934        int i;
1935
1936        for (i = 0; i < adapter->num_rx_queues; i++)
1937                e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1938}
1939
1940/**
1941 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1942 * @adapter: board private structure
1943 * @rx_ring: ring to free buffers from
1944 **/
1945
1946static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1947                                struct e1000_rx_ring *rx_ring)
1948{
1949        struct e1000_hw *hw = &adapter->hw;
1950        struct e1000_buffer *buffer_info;
1951        struct pci_dev *pdev = adapter->pdev;
1952        unsigned long size;
1953        unsigned int i;
1954
1955        /* Free all the Rx ring sk_buffs */
1956        for (i = 0; i < rx_ring->count; i++) {
1957                buffer_info = &rx_ring->buffer_info[i];
1958                if (buffer_info->dma &&
1959                    adapter->clean_rx == e1000_clean_rx_irq) {
1960                        pci_unmap_single(pdev, buffer_info->dma,
1961                                         buffer_info->length,
1962                                         PCI_DMA_FROMDEVICE);
1963                } else if (buffer_info->dma &&
1964                           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1965                        pci_unmap_page(pdev, buffer_info->dma,
1966                                       buffer_info->length,
1967                                       PCI_DMA_FROMDEVICE);
1968                }
1969
1970                buffer_info->dma = 0;
1971                if (buffer_info->page) {
1972                        put_page(buffer_info->page);
1973                        buffer_info->page = NULL;
1974                }
1975                if (buffer_info->skb) {
1976                        dev_kfree_skb(buffer_info->skb);
1977                        buffer_info->skb = NULL;
1978                }
1979        }
1980
1981        /* there also may be some cached data from a chained receive */
1982        if (rx_ring->rx_skb_top) {
1983                dev_kfree_skb(rx_ring->rx_skb_top);
1984                rx_ring->rx_skb_top = NULL;
1985        }
1986
1987        size = sizeof(struct e1000_buffer) * rx_ring->count;
1988        memset(rx_ring->buffer_info, 0, size);
1989
1990        /* Zero out the descriptor ring */
1991        memset(rx_ring->desc, 0, rx_ring->size);
1992
1993        rx_ring->next_to_clean = 0;
1994        rx_ring->next_to_use = 0;
1995
1996        writel(0, hw->hw_addr + rx_ring->rdh);
1997        writel(0, hw->hw_addr + rx_ring->rdt);
1998}
1999
2000/**
2001 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2002 * @adapter: board private structure
2003 **/
2004
2005static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2006{
2007        int i;
2008
2009        for (i = 0; i < adapter->num_rx_queues; i++)
2010                e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2011}
2012
2013/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2014 * and memory write and invalidate disabled for certain operations
2015 */
2016static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2017{
2018        struct e1000_hw *hw = &adapter->hw;
2019        struct net_device *netdev = adapter->netdev;
2020        u32 rctl;
2021
2022        e1000_pci_clear_mwi(hw);
2023
2024        rctl = er32(RCTL);
2025        rctl |= E1000_RCTL_RST;
2026        ew32(RCTL, rctl);
2027        E1000_WRITE_FLUSH();
2028        mdelay(5);
2029
2030        if (netif_running(netdev))
2031                e1000_clean_all_rx_rings(adapter);
2032}
2033
2034static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2035{
2036        struct e1000_hw *hw = &adapter->hw;
2037        struct net_device *netdev = adapter->netdev;
2038        u32 rctl;
2039
2040        rctl = er32(RCTL);
2041        rctl &= ~E1000_RCTL_RST;
2042        ew32(RCTL, rctl);
2043        E1000_WRITE_FLUSH();
2044        mdelay(5);
2045
2046        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2047                e1000_pci_set_mwi(hw);
2048
2049        if (netif_running(netdev)) {
2050                /* No need to loop, because 82542 supports only 1 queue */
2051                struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2052                e1000_configure_rx(adapter);
2053                adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2054        }
2055}
2056
2057/**
2058 * e1000_set_mac - Change the Ethernet Address of the NIC
2059 * @netdev: network interface device structure
2060 * @p: pointer to an address structure
2061 *
2062 * Returns 0 on success, negative on failure
2063 **/
2064
2065static int e1000_set_mac(struct net_device *netdev, void *p)
2066{
2067        struct e1000_adapter *adapter = netdev_priv(netdev);
2068        struct e1000_hw *hw = &adapter->hw;
2069        struct sockaddr *addr = p;
2070
2071        if (!is_valid_ether_addr(addr->sa_data))
2072                return -EADDRNOTAVAIL;
2073
2074        /* 82542 2.0 needs to be in reset to write receive address registers */
2075
2076        if (hw->mac_type == e1000_82542_rev2_0)
2077                e1000_enter_82542_rst(adapter);
2078
2079        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2080        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2081
2082        e1000_rar_set(hw, hw->mac_addr, 0);
2083
2084        if (hw->mac_type == e1000_82542_rev2_0)
2085                e1000_leave_82542_rst(adapter);
2086
2087        return 0;
2088}
2089
2090/**
2091 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2092 * @netdev: network interface device structure
2093 *
2094 * The set_rx_mode entry point is called whenever the unicast or multicast
2095 * address lists or the network interface flags are updated. This routine is
2096 * responsible for configuring the hardware for proper unicast, multicast,
2097 * promiscuous mode, and all-multi behavior.
2098 **/
2099
2100static void e1000_set_rx_mode(struct net_device *netdev)
2101{
2102        struct e1000_adapter *adapter = netdev_priv(netdev);
2103        struct e1000_hw *hw = &adapter->hw;
2104        struct netdev_hw_addr *ha;
2105        bool use_uc = false;
2106        struct dev_addr_list *mc_ptr;
2107        u32 rctl;
2108        u32 hash_value;
2109        int i, rar_entries = E1000_RAR_ENTRIES;
2110        int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2111        u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2112
2113        if (!mcarray) {
2114                DPRINTK(PROBE, ERR, "memory allocation failed\n");
2115                return;
2116        }
2117
2118        /* Check for Promiscuous and All Multicast modes */
2119
2120        rctl = er32(RCTL);
2121
2122        if (netdev->flags & IFF_PROMISC) {
2123                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2124                rctl &= ~E1000_RCTL_VFE;
2125        } else {
2126                if (netdev->flags & IFF_ALLMULTI)
2127                        rctl |= E1000_RCTL_MPE;
2128                else
2129                        rctl &= ~E1000_RCTL_MPE;
2130                /* Enable VLAN filter if there is a VLAN */
2131                if (adapter->vlgrp)
2132                        rctl |= E1000_RCTL_VFE;
2133        }
2134
2135        if (netdev->uc.count > rar_entries - 1) {
2136                rctl |= E1000_RCTL_UPE;
2137        } else if (!(netdev->flags & IFF_PROMISC)) {
2138                rctl &= ~E1000_RCTL_UPE;
2139                use_uc = true;
2140        }
2141
2142        ew32(RCTL, rctl);
2143
2144        /* 82542 2.0 needs to be in reset to write receive address registers */
2145
2146        if (hw->mac_type == e1000_82542_rev2_0)
2147                e1000_enter_82542_rst(adapter);
2148
2149        /* load the first 14 addresses into the exact filters 1-14. Unicast
2150         * addresses take precedence to avoid disabling unicast filtering
2151         * when possible.
2152         *
2153         * RAR 0 is used for the station MAC adddress
2154         * if there are not 14 addresses, go ahead and clear the filters
2155         */
2156        i = 1;
2157        if (use_uc)
2158                list_for_each_entry(ha, &netdev->uc.list, list) {
2159                        if (i == rar_entries)
2160                                break;
2161                        e1000_rar_set(hw, ha->addr, i++);
2162                }
2163
2164        WARN_ON(i == rar_entries);
2165
2166        mc_ptr = netdev->mc_list;
2167
2168        for (; i < rar_entries; i++) {
2169                if (mc_ptr) {
2170                        e1000_rar_set(hw, mc_ptr->da_addr, i);
2171                        mc_ptr = mc_ptr->next;
2172                } else {
2173                        E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2174                        E1000_WRITE_FLUSH();
2175                        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2176                        E1000_WRITE_FLUSH();
2177                }
2178        }
2179
2180        /* load any remaining addresses into the hash table */
2181
2182        for (; mc_ptr; mc_ptr = mc_ptr->next) {
2183                u32 hash_reg, hash_bit, mta;
2184                hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2185                hash_reg = (hash_value >> 5) & 0x7F;
2186                hash_bit = hash_value & 0x1F;
2187                mta = (1 << hash_bit);
2188                mcarray[hash_reg] |= mta;
2189        }
2190
2191        /* write the hash table completely, write from bottom to avoid
2192         * both stupid write combining chipsets, and flushing each write */
2193        for (i = mta_reg_count - 1; i >= 0 ; i--) {
2194                /*
2195                 * If we are on an 82544 has an errata where writing odd
2196                 * offsets overwrites the previous even offset, but writing
2197                 * backwards over the range solves the issue by always
2198                 * writing the odd offset first
2199                 */
2200                E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2201        }
2202        E1000_WRITE_FLUSH();
2203
2204        if (hw->mac_type == e1000_82542_rev2_0)
2205                e1000_leave_82542_rst(adapter);
2206
2207        kfree(mcarray);
2208}
2209
2210/* Need to wait a few seconds after link up to get diagnostic information from
2211 * the phy */
2212
2213static void e1000_update_phy_info(unsigned long data)
2214{
2215        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2216        struct e1000_hw *hw = &adapter->hw;
2217        e1000_phy_get_info(hw, &adapter->phy_info);
2218}
2219
2220/**
2221 * e1000_82547_tx_fifo_stall - Timer Call-back
2222 * @data: pointer to adapter cast into an unsigned long
2223 **/
2224
2225static void e1000_82547_tx_fifo_stall(unsigned long data)
2226{
2227        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2228        struct e1000_hw *hw = &adapter->hw;
2229        struct net_device *netdev = adapter->netdev;
2230        u32 tctl;
2231
2232        if (atomic_read(&adapter->tx_fifo_stall)) {
2233                if ((er32(TDT) == er32(TDH)) &&
2234                   (er32(TDFT) == er32(TDFH)) &&
2235                   (er32(TDFTS) == er32(TDFHS))) {
2236                        tctl = er32(TCTL);
2237                        ew32(TCTL, tctl & ~E1000_TCTL_EN);
2238                        ew32(TDFT, adapter->tx_head_addr);
2239                        ew32(TDFH, adapter->tx_head_addr);
2240                        ew32(TDFTS, adapter->tx_head_addr);
2241                        ew32(TDFHS, adapter->tx_head_addr);
2242                        ew32(TCTL, tctl);
2243                        E1000_WRITE_FLUSH();
2244
2245                        adapter->tx_fifo_head = 0;
2246                        atomic_set(&adapter->tx_fifo_stall, 0);
2247                        netif_wake_queue(netdev);
2248                } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2249                        mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2250                }
2251        }
2252}
2253
2254static bool e1000_has_link(struct e1000_adapter *adapter)
2255{
2256        struct e1000_hw *hw = &adapter->hw;
2257        bool link_active = false;
2258
2259        /* get_link_status is set on LSC (link status) interrupt or
2260         * rx sequence error interrupt.  get_link_status will stay
2261         * false until the e1000_check_for_link establishes link
2262         * for copper adapters ONLY
2263         */
2264        switch (hw->media_type) {
2265        case e1000_media_type_copper:
2266                if (hw->get_link_status) {
2267                        e1000_check_for_link(hw);
2268                        link_active = !hw->get_link_status;
2269                } else {
2270                        link_active = true;
2271                }
2272                break;
2273        case e1000_media_type_fiber:
2274                e1000_check_for_link(hw);
2275                link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2276                break;
2277        case e1000_media_type_internal_serdes:
2278                e1000_check_for_link(hw);
2279                link_active = hw->serdes_has_link;
2280                break;
2281        default:
2282                break;
2283        }
2284
2285        return link_active;
2286}
2287
2288/**
2289 * e1000_watchdog - Timer Call-back
2290 * @data: pointer to adapter cast into an unsigned long
2291 **/
2292static void e1000_watchdog(unsigned long data)
2293{
2294        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2295        struct e1000_hw *hw = &adapter->hw;
2296        struct net_device *netdev = adapter->netdev;
2297        struct e1000_tx_ring *txdr = adapter->tx_ring;
2298        u32 link, tctl;
2299
2300        link = e1000_has_link(adapter);
2301        if ((netif_carrier_ok(netdev)) && link)
2302                goto link_up;
2303
2304        if (link) {
2305                if (!netif_carrier_ok(netdev)) {
2306                        u32 ctrl;
2307                        bool txb2b = true;
2308                        /* update snapshot of PHY registers on LSC */
2309                        e1000_get_speed_and_duplex(hw,
2310                                                   &adapter->link_speed,
2311                                                   &adapter->link_duplex);
2312
2313                        ctrl = er32(CTRL);
2314                        printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2315                               "Flow Control: %s\n",
2316                               netdev->name,
2317                               adapter->link_speed,
2318                               adapter->link_duplex == FULL_DUPLEX ?
2319                                "Full Duplex" : "Half Duplex",
2320                                ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2321                                E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2322                                E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2323                                E1000_CTRL_TFCE) ? "TX" : "None" )));
2324
2325                        /* tweak tx_queue_len according to speed/duplex
2326                         * and adjust the timeout factor */
2327                        netdev->tx_queue_len = adapter->tx_queue_len;
2328                        adapter->tx_timeout_factor = 1;
2329                        switch (adapter->link_speed) {
2330                        case SPEED_10:
2331                                txb2b = false;
2332                                netdev->tx_queue_len = 10;
2333                                adapter->tx_timeout_factor = 16;
2334                                break;
2335                        case SPEED_100:
2336                                txb2b = false;
2337                                netdev->tx_queue_len = 100;
2338                                /* maybe add some timeout factor ? */
2339                                break;
2340                        }
2341
2342                        /* enable transmits in the hardware */
2343                        tctl = er32(TCTL);
2344                        tctl |= E1000_TCTL_EN;
2345                        ew32(TCTL, tctl);
2346
2347                        netif_carrier_on(netdev);
2348                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2349                                mod_timer(&adapter->phy_info_timer,
2350                                          round_jiffies(jiffies + 2 * HZ));
2351                        adapter->smartspeed = 0;
2352                }
2353        } else {
2354                if (netif_carrier_ok(netdev)) {
2355                        adapter->link_speed = 0;
2356                        adapter->link_duplex = 0;
2357                        printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2358                               netdev->name);
2359                        netif_carrier_off(netdev);
2360
2361                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2362                                mod_timer(&adapter->phy_info_timer,
2363                                          round_jiffies(jiffies + 2 * HZ));
2364                }
2365
2366                e1000_smartspeed(adapter);
2367        }
2368
2369link_up:
2370        e1000_update_stats(adapter);
2371
2372        hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2373        adapter->tpt_old = adapter->stats.tpt;
2374        hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2375        adapter->colc_old = adapter->stats.colc;
2376
2377        adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2378        adapter->gorcl_old = adapter->stats.gorcl;
2379        adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2380        adapter->gotcl_old = adapter->stats.gotcl;
2381
2382        e1000_update_adaptive(hw);
2383
2384        if (!netif_carrier_ok(netdev)) {
2385                if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2386                        /* We've lost link, so the controller stops DMA,
2387                         * but we've got queued Tx work that's never going
2388                         * to get done, so reset controller to flush Tx.
2389                         * (Do the reset outside of interrupt context). */
2390                        adapter->tx_timeout_count++;
2391                        schedule_work(&adapter->reset_task);
2392                        /* return immediately since reset is imminent */
2393                        return;
2394                }
2395        }
2396
2397        /* Cause software interrupt to ensure rx ring is cleaned */
2398        ew32(ICS, E1000_ICS_RXDMT0);
2399
2400        /* Force detection of hung controller every watchdog period */
2401        adapter->detect_tx_hung = true;
2402
2403        /* Reset the timer */
2404        if (!test_bit(__E1000_DOWN, &adapter->flags))
2405                mod_timer(&adapter->watchdog_timer,
2406                          round_jiffies(jiffies + 2 * HZ));
2407}
2408
2409enum latency_range {
2410        lowest_latency = 0,
2411        low_latency = 1,
2412        bulk_latency = 2,
2413        latency_invalid = 255
2414};
2415
2416/**
2417 * e1000_update_itr - update the dynamic ITR value based on statistics
2418 * @adapter: pointer to adapter
2419 * @itr_setting: current adapter->itr
2420 * @packets: the number of packets during this measurement interval
2421 * @bytes: the number of bytes during this measurement interval
2422 *
2423 *      Stores a new ITR value based on packets and byte
2424 *      counts during the last interrupt.  The advantage of per interrupt
2425 *      computation is faster updates and more accurate ITR for the current
2426 *      traffic pattern.  Constants in this function were computed
2427 *      based on theoretical maximum wire speed and thresholds were set based
2428 *      on testing data as well as attempting to minimize response time
2429 *      while increasing bulk throughput.
2430 *      this functionality is controlled by the InterruptThrottleRate module
2431 *      parameter (see e1000_param.c)
2432 **/
2433static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2434                                     u16 itr_setting, int packets, int bytes)
2435{
2436        unsigned int retval = itr_setting;
2437        struct e1000_hw *hw = &adapter->hw;
2438
2439        if (unlikely(hw->mac_type < e1000_82540))
2440                goto update_itr_done;
2441
2442        if (packets == 0)
2443                goto update_itr_done;
2444
2445        switch (itr_setting) {
2446        case lowest_latency:
2447                /* jumbo frames get bulk treatment*/
2448                if (bytes/packets > 8000)
2449                        retval = bulk_latency;
2450                else if ((packets < 5) && (bytes > 512))
2451                        retval = low_latency;
2452                break;
2453        case low_latency:  /* 50 usec aka 20000 ints/s */
2454                if (bytes > 10000) {
2455                        /* jumbo frames need bulk latency setting */
2456                        if (bytes/packets > 8000)
2457                                retval = bulk_latency;
2458                        else if ((packets < 10) || ((bytes/packets) > 1200))
2459                                retval = bulk_latency;
2460                        else if ((packets > 35))
2461                                retval = lowest_latency;
2462                } else if (bytes/packets > 2000)
2463                        retval = bulk_latency;
2464                else if (packets <= 2 && bytes < 512)
2465                        retval = lowest_latency;
2466                break;
2467        case bulk_latency: /* 250 usec aka 4000 ints/s */
2468                if (bytes > 25000) {
2469                        if (packets > 35)
2470                                retval = low_latency;
2471                } else if (bytes < 6000) {
2472                        retval = low_latency;
2473                }
2474                break;
2475        }
2476
2477update_itr_done:
2478        return retval;
2479}
2480
2481static void e1000_set_itr(struct e1000_adapter *adapter)
2482{
2483        struct e1000_hw *hw = &adapter->hw;
2484        u16 current_itr;
2485        u32 new_itr = adapter->itr;
2486
2487        if (unlikely(hw->mac_type < e1000_82540))
2488                return;
2489
2490        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2491        if (unlikely(adapter->link_speed != SPEED_1000)) {
2492                current_itr = 0;
2493                new_itr = 4000;
2494                goto set_itr_now;
2495        }
2496
2497        adapter->tx_itr = e1000_update_itr(adapter,
2498                                    adapter->tx_itr,
2499                                    adapter->total_tx_packets,
2500                                    adapter->total_tx_bytes);
2501        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2502        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2503                adapter->tx_itr = low_latency;
2504
2505        adapter->rx_itr = e1000_update_itr(adapter,
2506                                    adapter->rx_itr,
2507                                    adapter->total_rx_packets,
2508                                    adapter->total_rx_bytes);
2509        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2510        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2511                adapter->rx_itr = low_latency;
2512
2513        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2514
2515        switch (current_itr) {
2516        /* counts and packets in update_itr are dependent on these numbers */
2517        case lowest_latency:
2518                new_itr = 70000;
2519                break;
2520        case low_latency:
2521                new_itr = 20000; /* aka hwitr = ~200 */
2522                break;
2523        case bulk_latency:
2524                new_itr = 4000;
2525                break;
2526        default:
2527                break;
2528        }
2529
2530set_itr_now:
2531        if (new_itr != adapter->itr) {
2532                /* this attempts to bias the interrupt rate towards Bulk
2533                 * by adding intermediate steps when interrupt rate is
2534                 * increasing */
2535                new_itr = new_itr > adapter->itr ?
2536                             min(adapter->itr + (new_itr >> 2), new_itr) :
2537                             new_itr;
2538                adapter->itr = new_itr;
2539                ew32(ITR, 1000000000 / (new_itr * 256));
2540        }
2541
2542        return;
2543}
2544
2545#define E1000_TX_FLAGS_CSUM             0x00000001
2546#define E1000_TX_FLAGS_VLAN             0x00000002
2547#define E1000_TX_FLAGS_TSO              0x00000004
2548#define E1000_TX_FLAGS_IPV4             0x00000008
2549#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2550#define E1000_TX_FLAGS_VLAN_SHIFT       16
2551
2552static int e1000_tso(struct e1000_adapter *adapter,
2553                     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2554{
2555        struct e1000_context_desc *context_desc;
2556        struct e1000_buffer *buffer_info;
2557        unsigned int i;
2558        u32 cmd_length = 0;
2559        u16 ipcse = 0, tucse, mss;
2560        u8 ipcss, ipcso, tucss, tucso, hdr_len;
2561        int err;
2562
2563        if (skb_is_gso(skb)) {
2564                if (skb_header_cloned(skb)) {
2565                        err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2566                        if (err)
2567                                return err;
2568                }
2569
2570                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2571                mss = skb_shinfo(skb)->gso_size;
2572                if (skb->protocol == htons(ETH_P_IP)) {
2573                        struct iphdr *iph = ip_hdr(skb);
2574                        iph->tot_len = 0;
2575                        iph->check = 0;
2576                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2577                                                                 iph->daddr, 0,
2578                                                                 IPPROTO_TCP,
2579                                                                 0);
2580                        cmd_length = E1000_TXD_CMD_IP;
2581                        ipcse = skb_transport_offset(skb) - 1;
2582                } else if (skb->protocol == htons(ETH_P_IPV6)) {
2583                        ipv6_hdr(skb)->payload_len = 0;
2584                        tcp_hdr(skb)->check =
2585                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2586                                                 &ipv6_hdr(skb)->daddr,
2587                                                 0, IPPROTO_TCP, 0);
2588                        ipcse = 0;
2589                }
2590                ipcss = skb_network_offset(skb);
2591                ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2592                tucss = skb_transport_offset(skb);
2593                tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2594                tucse = 0;
2595
2596                cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2597                               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2598
2599                i = tx_ring->next_to_use;
2600                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2601                buffer_info = &tx_ring->buffer_info[i];
2602
2603                context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2604                context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2605                context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2606                context_desc->upper_setup.tcp_fields.tucss = tucss;
2607                context_desc->upper_setup.tcp_fields.tucso = tucso;
2608                context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2609                context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2610                context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2611                context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2612
2613                buffer_info->time_stamp = jiffies;
2614                buffer_info->next_to_watch = i;
2615
2616                if (++i == tx_ring->count) i = 0;
2617                tx_ring->next_to_use = i;
2618
2619                return true;
2620        }
2621        return false;
2622}
2623
2624static bool e1000_tx_csum(struct e1000_adapter *adapter,
2625                          struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2626{
2627        struct e1000_context_desc *context_desc;
2628        struct e1000_buffer *buffer_info;
2629        unsigned int i;
2630        u8 css;
2631        u32 cmd_len = E1000_TXD_CMD_DEXT;
2632
2633        if (skb->ip_summed != CHECKSUM_PARTIAL)
2634                return false;
2635
2636        switch (skb->protocol) {
2637        case cpu_to_be16(ETH_P_IP):
2638                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2639                        cmd_len |= E1000_TXD_CMD_TCP;
2640                break;
2641        case cpu_to_be16(ETH_P_IPV6):
2642                /* XXX not handling all IPV6 headers */
2643                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2644                        cmd_len |= E1000_TXD_CMD_TCP;
2645                break;
2646        default:
2647                if (unlikely(net_ratelimit()))
2648                        DPRINTK(DRV, WARNING,
2649                                "checksum_partial proto=%x!\n", skb->protocol);
2650                break;
2651        }
2652
2653        css = skb_transport_offset(skb);
2654
2655        i = tx_ring->next_to_use;
2656        buffer_info = &tx_ring->buffer_info[i];
2657        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2658
2659        context_desc->lower_setup.ip_config = 0;
2660        context_desc->upper_setup.tcp_fields.tucss = css;
2661        context_desc->upper_setup.tcp_fields.tucso =
2662                css + skb->csum_offset;
2663        context_desc->upper_setup.tcp_fields.tucse = 0;
2664        context_desc->tcp_seg_setup.data = 0;
2665        context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2666
2667        buffer_info->time_stamp = jiffies;
2668        buffer_info->next_to_watch = i;
2669
2670        if (unlikely(++i == tx_ring->count)) i = 0;
2671        tx_ring->next_to_use = i;
2672
2673        return true;
2674}
2675
2676#define E1000_MAX_TXD_PWR       12
2677#define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2678
2679static int e1000_tx_map(struct e1000_adapter *adapter,
2680                        struct e1000_tx_ring *tx_ring,
2681                        struct sk_buff *skb, unsigned int first,
2682                        unsigned int max_per_txd, unsigned int nr_frags,
2683                        unsigned int mss)
2684{
2685        struct e1000_hw *hw = &adapter->hw;
2686        struct e1000_buffer *buffer_info;
2687        unsigned int len = skb_headlen(skb);
2688        unsigned int offset, size, count = 0, i;
2689        unsigned int f;
2690        dma_addr_t *map;
2691
2692        i = tx_ring->next_to_use;
2693
2694        if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2695                dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2696                return 0;
2697        }
2698
2699        map = skb_shinfo(skb)->dma_maps;
2700        offset = 0;
2701
2702        while (len) {
2703                buffer_info = &tx_ring->buffer_info[i];
2704                size = min(len, max_per_txd);
2705                /* Workaround for Controller erratum --
2706                 * descriptor for non-tso packet in a linear SKB that follows a
2707                 * tso gets written back prematurely before the data is fully
2708                 * DMA'd to the controller */
2709                if (!skb->data_len && tx_ring->last_tx_tso &&
2710                    !skb_is_gso(skb)) {
2711                        tx_ring->last_tx_tso = 0;
2712                        size -= 4;
2713                }
2714
2715                /* Workaround for premature desc write-backs
2716                 * in TSO mode.  Append 4-byte sentinel desc */
2717                if (unlikely(mss && !nr_frags && size == len && size > 8))
2718                        size -= 4;
2719                /* work-around for errata 10 and it applies
2720                 * to all controllers in PCI-X mode
2721                 * The fix is to make sure that the first descriptor of a
2722                 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2723                 */
2724                if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2725                                (size > 2015) && count == 0))
2726                        size = 2015;
2727
2728                /* Workaround for potential 82544 hang in PCI-X.  Avoid
2729                 * terminating buffers within evenly-aligned dwords. */
2730                if (unlikely(adapter->pcix_82544 &&
2731                   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2732                   size > 4))
2733                        size -= 4;
2734
2735                buffer_info->length = size;
2736                /* set time_stamp *before* dma to help avoid a possible race */
2737                buffer_info->time_stamp = jiffies;
2738                buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
2739                buffer_info->next_to_watch = i;
2740
2741                len -= size;
2742                offset += size;
2743                count++;
2744                if (len) {
2745                        i++;
2746                        if (unlikely(i == tx_ring->count))
2747                                i = 0;
2748                }
2749        }
2750
2751        for (f = 0; f < nr_frags; f++) {
2752                struct skb_frag_struct *frag;
2753
2754                frag = &skb_shinfo(skb)->frags[f];
2755                len = frag->size;
2756                offset = 0;
2757
2758                while (len) {
2759                        i++;
2760                        if (unlikely(i == tx_ring->count))
2761                                i = 0;
2762
2763                        buffer_info = &tx_ring->buffer_info[i];
2764                        size = min(len, max_per_txd);
2765                        /* Workaround for premature desc write-backs
2766                         * in TSO mode.  Append 4-byte sentinel desc */
2767                        if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2768                                size -= 4;
2769                        /* Workaround for potential 82544 hang in PCI-X.
2770                         * Avoid terminating buffers within evenly-aligned
2771                         * dwords. */
2772                        if (unlikely(adapter->pcix_82544 &&
2773                            !((unsigned long)(page_to_phys(frag->page) + offset
2774                                              + size - 1) & 4) &&
2775                            size > 4))
2776                                size -= 4;
2777
2778                        buffer_info->length = size;
2779                        buffer_info->time_stamp = jiffies;
2780                        buffer_info->dma = map[f] + offset;
2781                        buffer_info->next_to_watch = i;
2782
2783                        len -= size;
2784                        offset += size;
2785                        count++;
2786                }
2787        }
2788
2789        tx_ring->buffer_info[i].skb = skb;
2790        tx_ring->buffer_info[first].next_to_watch = i;
2791
2792        return count;
2793}
2794
2795static void e1000_tx_queue(struct e1000_adapter *adapter,
2796                           struct e1000_tx_ring *tx_ring, int tx_flags,
2797                           int count)
2798{
2799        struct e1000_hw *hw = &adapter->hw;
2800        struct e1000_tx_desc *tx_desc = NULL;
2801        struct e1000_buffer *buffer_info;
2802        u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2803        unsigned int i;
2804
2805        if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2806                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2807                             E1000_TXD_CMD_TSE;
2808                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2809
2810                if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2811                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2812        }
2813
2814        if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2815                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2816                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2817        }
2818
2819        if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2820                txd_lower |= E1000_TXD_CMD_VLE;
2821                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2822        }
2823
2824        i = tx_ring->next_to_use;
2825
2826        while (count--) {
2827                buffer_info = &tx_ring->buffer_info[i];
2828                tx_desc = E1000_TX_DESC(*tx_ring, i);
2829                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2830                tx_desc->lower.data =
2831                        cpu_to_le32(txd_lower | buffer_info->length);
2832                tx_desc->upper.data = cpu_to_le32(txd_upper);
2833                if (unlikely(++i == tx_ring->count)) i = 0;
2834        }
2835
2836        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2837
2838        /* Force memory writes to complete before letting h/w
2839         * know there are new descriptors to fetch.  (Only
2840         * applicable for weak-ordered memory model archs,
2841         * such as IA-64). */
2842        wmb();
2843
2844        tx_ring->next_to_use = i;
2845        writel(i, hw->hw_addr + tx_ring->tdt);
2846        /* we need this if more than one processor can write to our tail
2847         * at a time, it syncronizes IO on IA64/Altix systems */
2848        mmiowb();
2849}
2850
2851/**
2852 * 82547 workaround to avoid controller hang in half-duplex environment.
2853 * The workaround is to avoid queuing a large packet that would span
2854 * the internal Tx FIFO ring boundary by notifying the stack to resend
2855 * the packet at a later time.  This gives the Tx FIFO an opportunity to
2856 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2857 * to the beginning of the Tx FIFO.
2858 **/
2859
2860#define E1000_FIFO_HDR                  0x10
2861#define E1000_82547_PAD_LEN             0x3E0
2862
2863static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2864                                       struct sk_buff *skb)
2865{
2866        u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2867        u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2868
2869        skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2870
2871        if (adapter->link_duplex != HALF_DUPLEX)
2872                goto no_fifo_stall_required;
2873
2874        if (atomic_read(&adapter->tx_fifo_stall))
2875                return 1;
2876
2877        if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2878                atomic_set(&adapter->tx_fifo_stall, 1);
2879                return 1;
2880        }
2881
2882no_fifo_stall_required:
2883        adapter->tx_fifo_head += skb_fifo_len;
2884        if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2885                adapter->tx_fifo_head -= adapter->tx_fifo_size;
2886        return 0;
2887}
2888
2889static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2890{
2891        struct e1000_adapter *adapter = netdev_priv(netdev);
2892        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2893
2894        netif_stop_queue(netdev);
2895        /* Herbert's original patch had:
2896         *  smp_mb__after_netif_stop_queue();
2897         * but since that doesn't exist yet, just open code it. */
2898        smp_mb();
2899
2900        /* We need to check again in a case another CPU has just
2901         * made room available. */
2902        if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2903                return -EBUSY;
2904
2905        /* A reprieve! */
2906        netif_start_queue(netdev);
2907        ++adapter->restart_queue;
2908        return 0;
2909}
2910
2911static int e1000_maybe_stop_tx(struct net_device *netdev,
2912                               struct e1000_tx_ring *tx_ring, int size)
2913{
2914        if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2915                return 0;
2916        return __e1000_maybe_stop_tx(netdev, size);
2917}
2918
2919#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2920static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2921                                    struct net_device *netdev)
2922{
2923        struct e1000_adapter *adapter = netdev_priv(netdev);
2924        struct e1000_hw *hw = &adapter->hw;
2925        struct e1000_tx_ring *tx_ring;
2926        unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2927        unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2928        unsigned int tx_flags = 0;
2929        unsigned int len = skb->len - skb->data_len;
2930        unsigned int nr_frags;
2931        unsigned int mss;
2932        int count = 0;
2933        int tso;
2934        unsigned int f;
2935
2936        /* This goes back to the question of how to logically map a tx queue
2937         * to a flow.  Right now, performance is impacted slightly negatively
2938         * if using multiple tx queues.  If the stack breaks away from a
2939         * single qdisc implementation, we can look at this again. */
2940        tx_ring = adapter->tx_ring;
2941
2942        if (unlikely(skb->len <= 0)) {
2943                dev_kfree_skb_any(skb);
2944                return NETDEV_TX_OK;
2945        }
2946
2947        mss = skb_shinfo(skb)->gso_size;
2948        /* The controller does a simple calculation to
2949         * make sure there is enough room in the FIFO before
2950         * initiating the DMA for each buffer.  The calc is:
2951         * 4 = ceil(buffer len/mss).  To make sure we don't
2952         * overrun the FIFO, adjust the max buffer len if mss
2953         * drops. */
2954        if (mss) {
2955                u8 hdr_len;
2956                max_per_txd = min(mss << 2, max_per_txd);
2957                max_txd_pwr = fls(max_per_txd) - 1;
2958
2959                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2960                if (skb->data_len && hdr_len == len) {
2961                        switch (hw->mac_type) {
2962                                unsigned int pull_size;
2963                        case e1000_82544:
2964                                /* Make sure we have room to chop off 4 bytes,
2965                                 * and that the end alignment will work out to
2966                                 * this hardware's requirements
2967                                 * NOTE: this is a TSO only workaround
2968                                 * if end byte alignment not correct move us
2969                                 * into the next dword */
2970                                if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2971                                        break;
2972                                /* fall through */
2973                                pull_size = min((unsigned int)4, skb->data_len);
2974                                if (!__pskb_pull_tail(skb, pull_size)) {
2975                                        DPRINTK(DRV, ERR,
2976                                                "__pskb_pull_tail failed.\n");
2977                                        dev_kfree_skb_any(skb);
2978                                        return NETDEV_TX_OK;
2979                                }
2980                                len = skb->len - skb->data_len;
2981                                break;
2982                        default:
2983                                /* do nothing */
2984                                break;
2985                        }
2986                }
2987        }
2988
2989        /* reserve a descriptor for the offload context */
2990        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
2991                count++;
2992        count++;
2993
2994        /* Controller Erratum workaround */
2995        if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2996                count++;
2997
2998        count += TXD_USE_COUNT(len, max_txd_pwr);
2999
3000        if (adapter->pcix_82544)
3001                count++;
3002
3003        /* work-around for errata 10 and it applies to all controllers
3004         * in PCI-X mode, so add one more descriptor to the count
3005         */
3006        if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3007                        (len > 2015)))
3008                count++;
3009
3010        nr_frags = skb_shinfo(skb)->nr_frags;
3011        for (f = 0; f < nr_frags; f++)
3012                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3013                                       max_txd_pwr);
3014        if (adapter->pcix_82544)
3015                count += nr_frags;
3016
3017        /* need: count + 2 desc gap to keep tail from touching
3018         * head, otherwise try next time */
3019        if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3020                return NETDEV_TX_BUSY;
3021
3022        if (unlikely(hw->mac_type == e1000_82547)) {
3023                if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3024                        netif_stop_queue(netdev);
3025                        if (!test_bit(__E1000_DOWN, &adapter->flags))
3026                                mod_timer(&adapter->tx_fifo_stall_timer,
3027                                          jiffies + 1);
3028                        return NETDEV_TX_BUSY;
3029                }
3030        }
3031
3032        if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3033                tx_flags |= E1000_TX_FLAGS_VLAN;
3034                tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3035        }
3036
3037        first = tx_ring->next_to_use;
3038
3039        tso = e1000_tso(adapter, tx_ring, skb);
3040        if (tso < 0) {
3041                dev_kfree_skb_any(skb);
3042                return NETDEV_TX_OK;
3043        }
3044
3045        if (likely(tso)) {
3046                if (likely(hw->mac_type != e1000_82544))
3047                        tx_ring->last_tx_tso = 1;
3048                tx_flags |= E1000_TX_FLAGS_TSO;
3049        } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3050                tx_flags |= E1000_TX_FLAGS_CSUM;
3051
3052        if (likely(skb->protocol == htons(ETH_P_IP)))
3053                tx_flags |= E1000_TX_FLAGS_IPV4;
3054
3055        count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3056                             nr_frags, mss);
3057
3058        if (count) {
3059                e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3060                /* Make sure there is space in the ring for the next send. */
3061                e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3062
3063        } else {
3064                dev_kfree_skb_any(skb);
3065                tx_ring->buffer_info[first].time_stamp = 0;
3066                tx_ring->next_to_use = first;
3067        }
3068
3069        return NETDEV_TX_OK;
3070}
3071
3072/**
3073 * e1000_tx_timeout - Respond to a Tx Hang
3074 * @netdev: network interface device structure
3075 **/
3076
3077static void e1000_tx_timeout(struct net_device *netdev)
3078{
3079        struct e1000_adapter *adapter = netdev_priv(netdev);
3080
3081        /* Do the reset outside of interrupt context */
3082        adapter->tx_timeout_count++;
3083        schedule_work(&adapter->reset_task);
3084}
3085
3086static void e1000_reset_task(struct work_struct *work)
3087{
3088        struct e1000_adapter *adapter =
3089                container_of(work, struct e1000_adapter, reset_task);
3090
3091        e1000_reinit_locked(adapter);
3092}
3093
3094/**
3095 * e1000_get_stats - Get System Network Statistics
3096 * @netdev: network interface device structure
3097 *
3098 * Returns the address of the device statistics structure.
3099 * The statistics are actually updated from the timer callback.
3100 **/
3101
3102static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3103{
3104        struct e1000_adapter *adapter = netdev_priv(netdev);
3105
3106        /* only return the current stats */
3107        return &adapter->net_stats;
3108}
3109
3110/**
3111 * e1000_change_mtu - Change the Maximum Transfer Unit
3112 * @netdev: network interface device structure
3113 * @new_mtu: new value for maximum frame size
3114 *
3115 * Returns 0 on success, negative on failure
3116 **/
3117
3118static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3119{
3120        struct e1000_adapter *adapter = netdev_priv(netdev);
3121        struct e1000_hw *hw = &adapter->hw;
3122        int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3123
3124        if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3125            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3126                DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3127                return -EINVAL;
3128        }
3129
3130        /* Adapter-specific max frame size limits. */
3131        switch (hw->mac_type) {
3132        case e1000_undefined ... e1000_82542_rev2_1:
3133                if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3134                        DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3135                        return -EINVAL;
3136                }
3137                break;
3138        default:
3139                /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3140                break;
3141        }
3142
3143        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3144                msleep(1);
3145        /* e1000_down has a dependency on max_frame_size */
3146        hw->max_frame_size = max_frame;
3147        if (netif_running(netdev))
3148                e1000_down(adapter);
3149
3150        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3151         * means we reserve 2 more, this pushes us to allocate from the next
3152         * larger slab size.
3153         * i.e. RXBUFFER_2048 --> size-4096 slab
3154         *  however with the new *_jumbo_rx* routines, jumbo receives will use
3155         *  fragmented skbs */
3156
3157        if (max_frame <= E1000_RXBUFFER_256)
3158                adapter->rx_buffer_len = E1000_RXBUFFER_256;
3159        else if (max_frame <= E1000_RXBUFFER_512)
3160                adapter->rx_buffer_len = E1000_RXBUFFER_512;
3161        else if (max_frame <= E1000_RXBUFFER_1024)
3162                adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3163        else if (max_frame <= E1000_RXBUFFER_2048)
3164                adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3165        else
3166#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3167                adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3168#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3169                adapter->rx_buffer_len = PAGE_SIZE;
3170#endif
3171
3172        /* adjust allocation if LPE protects us, and we aren't using SBP */
3173        if (!hw->tbi_compatibility_on &&
3174            ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3175             (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3176                adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3177
3178        printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3179               netdev->name, netdev->mtu, new_mtu);
3180        netdev->mtu = new_mtu;
3181
3182        if (netif_running(netdev))
3183                e1000_up(adapter);
3184        else
3185                e1000_reset(adapter);
3186
3187        clear_bit(__E1000_RESETTING, &adapter->flags);
3188
3189        return 0;
3190}
3191
3192/**
3193 * e1000_update_stats - Update the board statistics counters
3194 * @adapter: board private structure
3195 **/
3196
3197void e1000_update_stats(struct e1000_adapter *adapter)
3198{
3199        struct e1000_hw *hw = &adapter->hw;
3200        struct pci_dev *pdev = adapter->pdev;
3201        unsigned long flags;
3202        u16 phy_tmp;
3203
3204#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3205
3206        /*
3207         * Prevent stats update while adapter is being reset, or if the pci
3208         * connection is down.
3209         */
3210        if (adapter->link_speed == 0)
3211                return;
3212        if (pci_channel_offline(pdev))
3213                return;
3214
3215        spin_lock_irqsave(&adapter->stats_lock, flags);
3216
3217        /* these counters are modified from e1000_tbi_adjust_stats,
3218         * called from the interrupt context, so they must only
3219         * be written while holding adapter->stats_lock
3220         */
3221
3222        adapter->stats.crcerrs += er32(CRCERRS);
3223        adapter->stats.gprc += er32(GPRC);
3224        adapter->stats.gorcl += er32(GORCL);
3225        adapter->stats.gorch += er32(GORCH);
3226        adapter->stats.bprc += er32(BPRC);
3227        adapter->stats.mprc += er32(MPRC);
3228        adapter->stats.roc += er32(ROC);
3229
3230        adapter->stats.prc64 += er32(PRC64);
3231        adapter->stats.prc127 += er32(PRC127);
3232        adapter->stats.prc255 += er32(PRC255);
3233        adapter->stats.prc511 += er32(PRC511);
3234        adapter->stats.prc1023 += er32(PRC1023);
3235        adapter->stats.prc1522 += er32(PRC1522);
3236
3237        adapter->stats.symerrs += er32(SYMERRS);
3238        adapter->stats.mpc += er32(MPC);
3239        adapter->stats.scc += er32(SCC);
3240        adapter->stats.ecol += er32(ECOL);
3241        adapter->stats.mcc += er32(MCC);
3242        adapter->stats.latecol += er32(LATECOL);
3243        adapter->stats.dc += er32(DC);
3244        adapter->stats.sec += er32(SEC);
3245        adapter->stats.rlec += er32(RLEC);
3246        adapter->stats.xonrxc += er32(XONRXC);
3247        adapter->stats.xontxc += er32(XONTXC);
3248        adapter->stats.xoffrxc += er32(XOFFRXC);
3249        adapter->stats.xofftxc += er32(XOFFTXC);
3250        adapter->stats.fcruc += er32(FCRUC);
3251        adapter->stats.gptc += er32(GPTC);
3252        adapter->stats.gotcl += er32(GOTCL);
3253        adapter->stats.gotch += er32(GOTCH);
3254        adapter->stats.rnbc += er32(RNBC);
3255        adapter->stats.ruc += er32(RUC);
3256        adapter->stats.rfc += er32(RFC);
3257        adapter->stats.rjc += er32(RJC);
3258        adapter->stats.torl += er32(TORL);
3259        adapter->stats.torh += er32(TORH);
3260        adapter->stats.totl += er32(TOTL);
3261        adapter->stats.toth += er32(TOTH);
3262        adapter->stats.tpr += er32(TPR);
3263
3264        adapter->stats.ptc64 += er32(PTC64);
3265        adapter->stats.ptc127 += er32(PTC127);
3266        adapter->stats.ptc255 += er32(PTC255);
3267        adapter->stats.ptc511 += er32(PTC511);
3268        adapter->stats.ptc1023 += er32(PTC1023);
3269        adapter->stats.ptc1522 += er32(PTC1522);
3270
3271        adapter->stats.mptc += er32(MPTC);
3272        adapter->stats.bptc += er32(BPTC);
3273
3274        /* used for adaptive IFS */
3275
3276        hw->tx_packet_delta = er32(TPT);
3277        adapter->stats.tpt += hw->tx_packet_delta;
3278        hw->collision_delta = er32(COLC);
3279        adapter->stats.colc += hw->collision_delta;
3280
3281        if (hw->mac_type >= e1000_82543) {
3282                adapter->stats.algnerrc += er32(ALGNERRC);
3283                adapter->stats.rxerrc += er32(RXERRC);
3284                adapter->stats.tncrs += er32(TNCRS);
3285                adapter->stats.cexterr += er32(CEXTERR);
3286                adapter->stats.tsctc += er32(TSCTC);
3287                adapter->stats.tsctfc += er32(TSCTFC);
3288        }
3289
3290        /* Fill out the OS statistics structure */
3291        adapter->net_stats.multicast = adapter->stats.mprc;
3292        adapter->net_stats.collisions = adapter->stats.colc;
3293
3294        /* Rx Errors */
3295
3296        /* RLEC on some newer hardware can be incorrect so build
3297        * our own version based on RUC and ROC */
3298        adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3299                adapter->stats.crcerrs + adapter->stats.algnerrc +
3300                adapter->stats.ruc + adapter->stats.roc +
3301                adapter->stats.cexterr;
3302        adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3303        adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3304        adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3305        adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3306        adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3307
3308        /* Tx Errors */
3309        adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3310        adapter->net_stats.tx_errors = adapter->stats.txerrc;
3311        adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3312        adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3313        adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3314        if (hw->bad_tx_carr_stats_fd &&
3315            adapter->link_duplex == FULL_DUPLEX) {
3316                adapter->net_stats.tx_carrier_errors = 0;
3317                adapter->stats.tncrs = 0;
3318        }
3319
3320        /* Tx Dropped needs to be maintained elsewhere */
3321
3322        /* Phy Stats */
3323        if (hw->media_type == e1000_media_type_copper) {
3324                if ((adapter->link_speed == SPEED_1000) &&
3325                   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3326                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3327                        adapter->phy_stats.idle_errors += phy_tmp;
3328                }
3329
3330                if ((hw->mac_type <= e1000_82546) &&
3331                   (hw->phy_type == e1000_phy_m88) &&
3332                   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3333                        adapter->phy_stats.receive_errors += phy_tmp;
3334        }
3335
3336        /* Management Stats */
3337        if (hw->has_smbus) {
3338                adapter->stats.mgptc += er32(MGTPTC);
3339                adapter->stats.mgprc += er32(MGTPRC);
3340                adapter->stats.mgpdc += er32(MGTPDC);
3341        }
3342
3343        spin_unlock_irqrestore(&adapter->stats_lock, flags);
3344}
3345
3346/**
3347 * e1000_intr - Interrupt Handler
3348 * @irq: interrupt number
3349 * @data: pointer to a network interface device structure
3350 **/
3351
3352static irqreturn_t e1000_intr(int irq, void *data)
3353{
3354        struct net_device *netdev = data;
3355        struct e1000_adapter *adapter = netdev_priv(netdev);
3356        struct e1000_hw *hw = &adapter->hw;
3357        u32 icr = er32(ICR);
3358
3359        if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3360                return IRQ_NONE;  /* Not our interrupt */
3361
3362        if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3363                hw->get_link_status = 1;
3364                /* guard against interrupt when we're going down */
3365                if (!test_bit(__E1000_DOWN, &adapter->flags))
3366                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
3367        }
3368
3369        /* disable interrupts, without the synchronize_irq bit */
3370        ew32(IMC, ~0);
3371        E1000_WRITE_FLUSH();
3372
3373        if (likely(napi_schedule_prep(&adapter->napi))) {
3374                adapter->total_tx_bytes = 0;
3375                adapter->total_tx_packets = 0;
3376                adapter->total_rx_bytes = 0;
3377                adapter->total_rx_packets = 0;
3378                __napi_schedule(&adapter->napi);
3379        } else {
3380                /* this really should not happen! if it does it is basically a
3381                 * bug, but not a hard error, so enable ints and continue */
3382                if (!test_bit(__E1000_DOWN, &adapter->flags))
3383                        e1000_irq_enable(adapter);
3384        }
3385
3386        return IRQ_HANDLED;
3387}
3388
3389/**
3390 * e1000_clean - NAPI Rx polling callback
3391 * @adapter: board private structure
3392 **/
3393static int e1000_clean(struct napi_struct *napi, int budget)
3394{
3395        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3396        int tx_clean_complete = 0, work_done = 0;
3397
3398        tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3399
3400        adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3401
3402        if (!tx_clean_complete)
3403                work_done = budget;
3404
3405        /* If budget not fully consumed, exit the polling mode */
3406        if (work_done < budget) {
3407                if (likely(adapter->itr_setting & 3))
3408                        e1000_set_itr(adapter);
3409                napi_complete(napi);
3410                if (!test_bit(__E1000_DOWN, &adapter->flags))
3411                        e1000_irq_enable(adapter);
3412        }
3413
3414        return work_done;
3415}
3416
3417/**
3418 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3419 * @adapter: board private structure
3420 **/
3421static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3422                               struct e1000_tx_ring *tx_ring)
3423{
3424        struct e1000_hw *hw = &adapter->hw;
3425        struct net_device *netdev = adapter->netdev;
3426        struct e1000_tx_desc *tx_desc, *eop_desc;
3427        struct e1000_buffer *buffer_info;
3428        unsigned int i, eop;
3429        unsigned int count = 0;
3430        unsigned int total_tx_bytes=0, total_tx_packets=0;
3431
3432        i = tx_ring->next_to_clean;
3433        eop = tx_ring->buffer_info[i].next_to_watch;
3434        eop_desc = E1000_TX_DESC(*tx_ring, eop);
3435
3436        while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3437               (count < tx_ring->count)) {
3438                bool cleaned = false;
3439                for ( ; !cleaned; count++) {
3440                        tx_desc = E1000_TX_DESC(*tx_ring, i);
3441                        buffer_info = &tx_ring->buffer_info[i];
3442                        cleaned = (i == eop);
3443
3444                        if (cleaned) {
3445                                struct sk_buff *skb = buffer_info->skb;
3446                                unsigned int segs, bytecount;
3447                                segs = skb_shinfo(skb)->gso_segs ?: 1;
3448                                /* multiply data chunks by size of headers */
3449                                bytecount = ((segs - 1) * skb_headlen(skb)) +
3450                                            skb->len;
3451                                total_tx_packets += segs;
3452                                total_tx_bytes += bytecount;
3453                        }
3454                        e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3455                        tx_desc->upper.data = 0;
3456
3457                        if (unlikely(++i == tx_ring->count)) i = 0;
3458                }
3459
3460                eop = tx_ring->buffer_info[i].next_to_watch;
3461                eop_desc = E1000_TX_DESC(*tx_ring, eop);
3462        }
3463
3464        tx_ring->next_to_clean = i;
3465
3466#define TX_WAKE_THRESHOLD 32
3467        if (unlikely(count && netif_carrier_ok(netdev) &&
3468                     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3469                /* Make sure that anybody stopping the queue after this
3470                 * sees the new next_to_clean.
3471                 */
3472                smp_mb();
3473
3474                if (netif_queue_stopped(netdev) &&
3475                    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3476                        netif_wake_queue(netdev);
3477                        ++adapter->restart_queue;
3478                }
3479        }
3480
3481        if (adapter->detect_tx_hung) {
3482                /* Detect a transmit hang in hardware, this serializes the
3483                 * check with the clearing of time_stamp and movement of i */
3484                adapter->detect_tx_hung = false;
3485                if (tx_ring->buffer_info[eop].time_stamp &&
3486                    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3487                               (adapter->tx_timeout_factor * HZ))
3488                    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3489
3490                        /* detected Tx unit hang */
3491                        DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3492                                        "  Tx Queue             <%lu>\n"
3493                                        "  TDH                  <%x>\n"
3494                                        "  TDT                  <%x>\n"
3495                                        "  next_to_use          <%x>\n"
3496                                        "  next_to_clean        <%x>\n"
3497                                        "buffer_info[next_to_clean]\n"
3498                                        "  time_stamp           <%lx>\n"
3499                                        "  next_to_watch        <%x>\n"
3500                                        "  jiffies              <%lx>\n"
3501                                        "  next_to_watch.status <%x>\n",
3502                                (unsigned long)((tx_ring - adapter->tx_ring) /
3503                                        sizeof(struct e1000_tx_ring)),
3504                                readl(hw->hw_addr + tx_ring->tdh),
3505                                readl(hw->hw_addr + tx_ring->tdt),
3506                                tx_ring->next_to_use,
3507                                tx_ring->next_to_clean,
3508                                tx_ring->buffer_info[eop].time_stamp,
3509                                eop,
3510                                jiffies,
3511                                eop_desc->upper.fields.status);
3512                        netif_stop_queue(netdev);
3513                }
3514        }
3515        adapter->total_tx_bytes += total_tx_bytes;
3516        adapter->total_tx_packets += total_tx_packets;
3517        adapter->net_stats.tx_bytes += total_tx_bytes;
3518        adapter->net_stats.tx_packets += total_tx_packets;
3519        return (count < tx_ring->count);
3520}
3521
3522/**
3523 * e1000_rx_checksum - Receive Checksum Offload for 82543
3524 * @adapter:     board private structure
3525 * @status_err:  receive descriptor status and error fields
3526 * @csum:        receive descriptor csum field
3527 * @sk_buff:     socket buffer with received data
3528 **/
3529
3530static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3531                              u32 csum, struct sk_buff *skb)
3532{
3533        struct e1000_hw *hw = &adapter->hw;
3534        u16 status = (u16)status_err;
3535        u8 errors = (u8)(status_err >> 24);
3536        skb->ip_summed = CHECKSUM_NONE;
3537
3538        /* 82543 or newer only */
3539        if (unlikely(hw->mac_type < e1000_82543)) return;
3540        /* Ignore Checksum bit is set */
3541        if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3542        /* TCP/UDP checksum error bit is set */
3543        if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3544                /* let the stack verify checksum errors */
3545                adapter->hw_csum_err++;
3546                return;
3547        }
3548        /* TCP/UDP Checksum has not been calculated */
3549        if (!(status & E1000_RXD_STAT_TCPCS))
3550                return;
3551
3552        /* It must be a TCP or UDP packet with a valid checksum */
3553        if (likely(status & E1000_RXD_STAT_TCPCS)) {
3554                /* TCP checksum is good */
3555                skb->ip_summed = CHECKSUM_UNNECESSARY;
3556        }
3557        adapter->hw_csum_good++;
3558}
3559
3560/**
3561 * e1000_consume_page - helper function
3562 **/
3563static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3564                               u16 length)
3565{
3566        bi->page = NULL;
3567        skb->len += length;
3568        skb->data_len += length;
3569        skb->truesize += length;
3570}
3571
3572/**
3573 * e1000_receive_skb - helper function to handle rx indications
3574 * @adapter: board private structure
3575 * @status: descriptor status field as written by hardware
3576 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3577 * @skb: pointer to sk_buff to be indicated to stack
3578 */
3579static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3580                              __le16 vlan, struct sk_buff *skb)
3581{
3582        if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3583                vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3584                                         le16_to_cpu(vlan) &
3585                                         E1000_RXD_SPC_VLAN_MASK);
3586        } else {
3587                netif_receive_skb(skb);
3588        }
3589}
3590
3591/**
3592 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3593 * @adapter: board private structure
3594 * @rx_ring: ring to clean
3595 * @work_done: amount of napi work completed this call
3596 * @work_to_do: max amount of work allowed for this call to do
3597 *
3598 * the return value indicates whether actual cleaning was done, there
3599 * is no guarantee that everything was cleaned
3600 */
3601static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3602                                     struct e1000_rx_ring *rx_ring,
3603                                     int *work_done, int work_to_do)
3604{
3605        struct e1000_hw *hw = &adapter->hw;
3606        struct net_device *netdev = adapter->netdev;
3607        struct pci_dev *pdev = adapter->pdev;
3608        struct e1000_rx_desc *rx_desc, *next_rxd;
3609        struct e1000_buffer *buffer_info, *next_buffer;
3610        unsigned long irq_flags;
3611        u32 length;
3612        unsigned int i;
3613        int cleaned_count = 0;
3614        bool cleaned = false;
3615        unsigned int total_rx_bytes=0, total_rx_packets=0;
3616
3617        i = rx_ring->next_to_clean;
3618        rx_desc = E1000_RX_DESC(*rx_ring, i);
3619        buffer_info = &rx_ring->buffer_info[i];
3620
3621        while (rx_desc->status & E1000_RXD_STAT_DD) {
3622                struct sk_buff *skb;
3623                u8 status;
3624
3625                if (*work_done >= work_to_do)
3626                        break;
3627                (*work_done)++;
3628
3629                status = rx_desc->status;
3630                skb = buffer_info->skb;
3631                buffer_info->skb = NULL;
3632
3633                if (++i == rx_ring->count) i = 0;
3634                next_rxd = E1000_RX_DESC(*rx_ring, i);
3635                prefetch(next_rxd);
3636
3637                next_buffer = &rx_ring->buffer_info[i];
3638
3639                cleaned = true;
3640                cleaned_count++;
3641                pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
3642                               PCI_DMA_FROMDEVICE);
3643                buffer_info->dma = 0;
3644
3645                length = le16_to_cpu(rx_desc->length);
3646
3647                /* errors is only valid for DD + EOP descriptors */
3648                if (unlikely((status & E1000_RXD_STAT_EOP) &&
3649                    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3650                        u8 last_byte = *(skb->data + length - 1);
3651                        if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3652                                       last_byte)) {
3653                                spin_lock_irqsave(&adapter->stats_lock,
3654                                                  irq_flags);
3655                                e1000_tbi_adjust_stats(hw, &adapter->stats,
3656                                                       length, skb->data);
3657                                spin_unlock_irqrestore(&adapter->stats_lock,
3658                                                       irq_flags);
3659                                length--;
3660                        } else {
3661                                /* recycle both page and skb */
3662                                buffer_info->skb = skb;
3663                                /* an error means any chain goes out the window
3664                                 * too */
3665                                if (rx_ring->rx_skb_top)
3666                                        dev_kfree_skb(rx_ring->rx_skb_top);
3667                                rx_ring->rx_skb_top = NULL;
3668                                goto next_desc;
3669                        }
3670                }
3671
3672#define rxtop rx_ring->rx_skb_top
3673                if (!(status & E1000_RXD_STAT_EOP)) {
3674                        /* this descriptor is only the beginning (or middle) */
3675                        if (!rxtop) {
3676                                /* this is the beginning of a chain */
3677                                rxtop = skb;
3678                                skb_fill_page_desc(rxtop, 0, buffer_info->page,
3679                                                   0, length);
3680                        } else {
3681                                /* this is the middle of a chain */
3682                                skb_fill_page_desc(rxtop,
3683                                    skb_shinfo(rxtop)->nr_frags,
3684                                    buffer_info->page, 0, length);
3685                                /* re-use the skb, only consumed the page */
3686                                buffer_info->skb = skb;
3687                        }
3688                        e1000_consume_page(buffer_info, rxtop, length);
3689                        goto next_desc;
3690                } else {
3691                        if (rxtop) {
3692                                /* end of the chain */
3693                                skb_fill_page_desc(rxtop,
3694                                    skb_shinfo(rxtop)->nr_frags,
3695                                    buffer_info->page, 0, length);
3696                                /* re-use the current skb, we only consumed the
3697                                 * page */
3698                                buffer_info->skb = skb;
3699                                skb = rxtop;
3700                                rxtop = NULL;
3701                                e1000_consume_page(buffer_info, skb, length);
3702                        } else {
3703                                /* no chain, got EOP, this buf is the packet
3704                                 * copybreak to save the put_page/alloc_page */
3705                                if (length <= copybreak &&
3706                                    skb_tailroom(skb) >= length) {
3707                                        u8 *vaddr;
3708                                        vaddr = kmap_atomic(buffer_info->page,
3709                                                            KM_SKB_DATA_SOFTIRQ);
3710                                        memcpy(skb_tail_pointer(skb), vaddr, length);
3711                                        kunmap_atomic(vaddr,
3712                                                      KM_SKB_DATA_SOFTIRQ);
3713                                        /* re-use the page, so don't erase
3714                                         * buffer_info->page */
3715                                        skb_put(skb, length);
3716                                } else {
3717                                        skb_fill_page_desc(skb, 0,
3718                                                           buffer_info->page, 0,
3719                                                           length);
3720                                        e1000_consume_page(buffer_info, skb,
3721                                                           length);
3722                                }
3723                        }
3724                }
3725
3726                /* Receive Checksum Offload XXX recompute due to CRC strip? */
3727                e1000_rx_checksum(adapter,
3728                                  (u32)(status) |
3729                                  ((u32)(rx_desc->errors) << 24),
3730                                  le16_to_cpu(rx_desc->csum), skb);
3731
3732                pskb_trim(skb, skb->len - 4);
3733
3734                /* probably a little skewed due to removing CRC */
3735                total_rx_bytes += skb->len;
3736                total_rx_packets++;
3737
3738                /* eth type trans needs skb->data to point to something */
3739                if (!pskb_may_pull(skb, ETH_HLEN)) {
3740                        DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3741                        dev_kfree_skb(skb);
3742                        goto next_desc;
3743                }
3744
3745                skb->protocol = eth_type_trans(skb, netdev);
3746
3747                e1000_receive_skb(adapter, status, rx_desc->special, skb);
3748
3749next_desc:
3750                rx_desc->status = 0;
3751
3752                /* return some buffers to hardware, one at a time is too slow */
3753                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3754                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3755                        cleaned_count = 0;
3756                }
3757
3758                /* use prefetched values */
3759                rx_desc = next_rxd;
3760                buffer_info = next_buffer;
3761        }
3762        rx_ring->next_to_clean = i;
3763
3764        cleaned_count = E1000_DESC_UNUSED(rx_ring);
3765        if (cleaned_count)
3766                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3767
3768        adapter->total_rx_packets += total_rx_packets;
3769        adapter->total_rx_bytes += total_rx_bytes;
3770        adapter->net_stats.rx_bytes += total_rx_bytes;
3771        adapter->net_stats.rx_packets += total_rx_packets;
3772        return cleaned;
3773}
3774
3775/**
3776 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3777 * @adapter: board private structure
3778 * @rx_ring: ring to clean
3779 * @work_done: amount of napi work completed this call
3780 * @work_to_do: max amount of work allowed for this call to do
3781 */
3782static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3783                               struct e1000_rx_ring *rx_ring,
3784                               int *work_done, int work_to_do)
3785{
3786        struct e1000_hw *hw = &adapter->hw;
3787        struct net_device *netdev = adapter->netdev;
3788        struct pci_dev *pdev = adapter->pdev;
3789        struct e1000_rx_desc *rx_desc, *next_rxd;
3790        struct e1000_buffer *buffer_info, *next_buffer;
3791        unsigned long flags;
3792        u32 length;
3793        unsigned int i;
3794        int cleaned_count = 0;
3795        bool cleaned = false;
3796        unsigned int total_rx_bytes=0, total_rx_packets=0;
3797
3798        i = rx_ring->next_to_clean;
3799        rx_desc = E1000_RX_DESC(*rx_ring, i);
3800        buffer_info = &rx_ring->buffer_info[i];
3801
3802        while (rx_desc->status & E1000_RXD_STAT_DD) {
3803                struct sk_buff *skb;
3804                u8 status;
3805
3806                if (*work_done >= work_to_do)
3807                        break;
3808                (*work_done)++;
3809
3810                status = rx_desc->status;
3811                skb = buffer_info->skb;
3812                buffer_info->skb = NULL;
3813
3814                prefetch(skb->data - NET_IP_ALIGN);
3815
3816                if (++i == rx_ring->count) i = 0;
3817                next_rxd = E1000_RX_DESC(*rx_ring, i);
3818                prefetch(next_rxd);
3819
3820                next_buffer = &rx_ring->buffer_info[i];
3821
3822                cleaned = true;
3823                cleaned_count++;
3824                pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
3825                                 PCI_DMA_FROMDEVICE);
3826                buffer_info->dma = 0;
3827
3828                length = le16_to_cpu(rx_desc->length);
3829                /* !EOP means multiple descriptors were used to store a single
3830                 * packet, also make sure the frame isn't just CRC only */
3831                if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
3832                        /* All receives must fit into a single buffer */
3833                        E1000_DBG("%s: Receive packet consumed multiple"
3834                                  " buffers\n", netdev->name);
3835                        /* recycle */
3836                        buffer_info->skb = skb;
3837                        goto next_desc;
3838                }
3839
3840                if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3841                        u8 last_byte = *(skb->data + length - 1);
3842                        if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3843                                       last_byte)) {
3844                                spin_lock_irqsave(&adapter->stats_lock, flags);
3845                                e1000_tbi_adjust_stats(hw, &adapter->stats,
3846                                                       length, skb->data);
3847                                spin_unlock_irqrestore(&adapter->stats_lock,
3848                                                       flags);
3849                                length--;
3850                        } else {
3851                                /* recycle */
3852                                buffer_info->skb = skb;
3853                                goto next_desc;
3854                        }
3855                }
3856
3857                /* adjust length to remove Ethernet CRC, this must be
3858                 * done after the TBI_ACCEPT workaround above */
3859                length -= 4;
3860
3861                /* probably a little skewed due to removing CRC */
3862                total_rx_bytes += length;
3863                total_rx_packets++;
3864
3865                /* code added for copybreak, this should improve
3866                 * performance for small packets with large amounts
3867                 * of reassembly being done in the stack */
3868                if (length < copybreak) {
3869                        struct sk_buff *new_skb =
3870                            netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3871                        if (new_skb) {
3872                                skb_reserve(new_skb, NET_IP_ALIGN);
3873                                skb_copy_to_linear_data_offset(new_skb,
3874                                                               -NET_IP_ALIGN,
3875                                                               (skb->data -
3876                                                                NET_IP_ALIGN),
3877                                                               (length +
3878                                                                NET_IP_ALIGN));
3879                                /* save the skb in buffer_info as good */
3880                                buffer_info->skb = skb;
3881                                skb = new_skb;
3882                        }
3883                        /* else just continue with the old one */
3884                }
3885                /* end copybreak code */
3886                skb_put(skb, length);
3887
3888                /* Receive Checksum Offload */
3889                e1000_rx_checksum(adapter,
3890                                  (u32)(status) |
3891                                  ((u32)(rx_desc->errors) << 24),
3892                                  le16_to_cpu(rx_desc->csum), skb);
3893
3894                skb->protocol = eth_type_trans(skb, netdev);
3895
3896                e1000_receive_skb(adapter, status, rx_desc->special, skb);
3897
3898next_desc:
3899                rx_desc->status = 0;
3900
3901                /* return some buffers to hardware, one at a time is too slow */
3902                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3903                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3904                        cleaned_count = 0;
3905                }
3906
3907                /* use prefetched values */
3908                rx_desc = next_rxd;
3909                buffer_info = next_buffer;
3910        }
3911        rx_ring->next_to_clean = i;
3912
3913        cleaned_count = E1000_DESC_UNUSED(rx_ring);
3914        if (cleaned_count)
3915                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3916
3917        adapter->total_rx_packets += total_rx_packets;
3918        adapter->total_rx_bytes += total_rx_bytes;
3919        adapter->net_stats.rx_bytes += total_rx_bytes;
3920        adapter->net_stats.rx_packets += total_rx_packets;
3921        return cleaned;
3922}
3923
3924/**
3925 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3926 * @adapter: address of board private structure
3927 * @rx_ring: pointer to receive ring structure
3928 * @cleaned_count: number of buffers to allocate this pass
3929 **/
3930
3931static void
3932e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3933                             struct e1000_rx_ring *rx_ring, int cleaned_count)
3934{
3935        struct net_device *netdev = adapter->netdev;
3936        struct pci_dev *pdev = adapter->pdev;
3937        struct e1000_rx_desc *rx_desc;
3938        struct e1000_buffer *buffer_info;
3939        struct sk_buff *skb;
3940        unsigned int i;
3941        unsigned int bufsz = 256 -
3942                             16 /*for skb_reserve */ -
3943                             NET_IP_ALIGN;
3944
3945        i = rx_ring->next_to_use;
3946        buffer_info = &rx_ring->buffer_info[i];
3947
3948        while (cleaned_count--) {
3949                skb = buffer_info->skb;
3950                if (skb) {
3951                        skb_trim(skb, 0);
3952                        goto check_page;
3953                }
3954
3955                skb = netdev_alloc_skb(netdev, bufsz);
3956                if (unlikely(!skb)) {
3957                        /* Better luck next round */
3958                        adapter->alloc_rx_buff_failed++;
3959                        break;
3960                }
3961
3962                /* Fix for errata 23, can't cross 64kB boundary */
3963                if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3964                        struct sk_buff *oldskb = skb;
3965                        DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3966                                             "at %p\n", bufsz, skb->data);
3967                        /* Try again, without freeing the previous */
3968                        skb = netdev_alloc_skb(netdev, bufsz);
3969                        /* Failed allocation, critical failure */
3970                        if (!skb) {
3971                                dev_kfree_skb(oldskb);
3972                                adapter->alloc_rx_buff_failed++;
3973                                break;
3974                        }
3975
3976                        if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3977                                /* give up */
3978                                dev_kfree_skb(skb);
3979                                dev_kfree_skb(oldskb);
3980                                break; /* while (cleaned_count--) */
3981                        }
3982
3983                        /* Use new allocation */
3984                        dev_kfree_skb(oldskb);
3985                }
3986                /* Make buffer alignment 2 beyond a 16 byte boundary
3987                 * this will result in a 16 byte aligned IP header after
3988                 * the 14 byte MAC header is removed
3989                 */
3990                skb_reserve(skb, NET_IP_ALIGN);
3991
3992                buffer_info->skb = skb;
3993                buffer_info->length = adapter->rx_buffer_len;
3994check_page:
3995                /* allocate a new page if necessary */
3996                if (!buffer_info->page) {
3997                        buffer_info->page = alloc_page(GFP_ATOMIC);
3998                        if (unlikely(!buffer_info->page)) {
3999                                adapter->alloc_rx_buff_failed++;
4000                                break;
4001                        }
4002                }
4003
4004                if (!buffer_info->dma)
4005                        buffer_info->dma = pci_map_page(pdev,
4006                                                        buffer_info->page, 0,
4007                                                        buffer_info->length,
4008                                                        PCI_DMA_FROMDEVICE);
4009
4010                rx_desc = E1000_RX_DESC(*rx_ring, i);
4011                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4012
4013                if (unlikely(++i == rx_ring->count))
4014                        i = 0;
4015                buffer_info = &rx_ring->buffer_info[i];
4016        }
4017
4018        if (likely(rx_ring->next_to_use != i)) {
4019                rx_ring->next_to_use = i;
4020                if (unlikely(i-- == 0))
4021                        i = (rx_ring->count - 1);
4022
4023                /* Force memory writes to complete before letting h/w
4024                 * know there are new descriptors to fetch.  (Only
4025                 * applicable for weak-ordered memory model archs,
4026                 * such as IA-64). */
4027                wmb();
4028                writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4029        }
4030}
4031
4032/**
4033 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4034 * @adapter: address of board private structure
4035 **/
4036
4037static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4038                                   struct e1000_rx_ring *rx_ring,
4039                                   int cleaned_count)
4040{
4041        struct e1000_hw *hw = &adapter->hw;
4042        struct net_device *netdev = adapter->netdev;
4043        struct pci_dev *pdev = adapter->pdev;
4044        struct e1000_rx_desc *rx_desc;
4045        struct e1000_buffer *buffer_info;
4046        struct sk_buff *skb;
4047        unsigned int i;
4048        unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4049
4050        i = rx_ring->next_to_use;
4051        buffer_info = &rx_ring->buffer_info[i];
4052
4053        while (cleaned_count--) {
4054                skb = buffer_info->skb;
4055                if (skb) {
4056                        skb_trim(skb, 0);
4057                        goto map_skb;
4058                }
4059
4060                skb = netdev_alloc_skb(netdev, bufsz);
4061                if (unlikely(!skb)) {
4062                        /* Better luck next round */
4063                        adapter->alloc_rx_buff_failed++;
4064                        break;
4065                }
4066
4067                /* Fix for errata 23, can't cross 64kB boundary */
4068                if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4069                        struct sk_buff *oldskb = skb;
4070                        DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4071                                             "at %p\n", bufsz, skb->data);
4072                        /* Try again, without freeing the previous */
4073                        skb = netdev_alloc_skb(netdev, bufsz);
4074                        /* Failed allocation, critical failure */
4075                        if (!skb) {
4076                                dev_kfree_skb(oldskb);
4077                                adapter->alloc_rx_buff_failed++;
4078                                break;
4079                        }
4080
4081                        if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4082                                /* give up */
4083                                dev_kfree_skb(skb);
4084                                dev_kfree_skb(oldskb);
4085                                adapter->alloc_rx_buff_failed++;
4086                                break; /* while !buffer_info->skb */
4087                        }
4088
4089                        /* Use new allocation */
4090                        dev_kfree_skb(oldskb);
4091                }
4092                /* Make buffer alignment 2 beyond a 16 byte boundary
4093                 * this will result in a 16 byte aligned IP header after
4094                 * the 14 byte MAC header is removed
4095                 */
4096                skb_reserve(skb, NET_IP_ALIGN);
4097
4098                buffer_info->skb = skb;
4099                buffer_info->length = adapter->rx_buffer_len;
4100map_skb:
4101                buffer_info->dma = pci_map_single(pdev,
4102                                                  skb->data,
4103                                                  buffer_info->length,
4104                                                  PCI_DMA_FROMDEVICE);
4105
4106                /*
4107                 * XXX if it was allocated cleanly it will never map to a
4108                 * boundary crossing
4109                 */
4110
4111                /* Fix for errata 23, can't cross 64kB boundary */
4112                if (!e1000_check_64k_bound(adapter,
4113                                        (void *)(unsigned long)buffer_info->dma,
4114                                        adapter->rx_buffer_len)) {
4115                        DPRINTK(RX_ERR, ERR,
4116                                "dma align check failed: %u bytes at %p\n",
4117                                adapter->rx_buffer_len,
4118                                (void *)(unsigned long)buffer_info->dma);
4119                        dev_kfree_skb(skb);
4120                        buffer_info->skb = NULL;
4121
4122                        pci_unmap_single(pdev, buffer_info->dma,
4123                                         adapter->rx_buffer_len,
4124                                         PCI_DMA_FROMDEVICE);
4125                        buffer_info->dma = 0;
4126
4127                        adapter->alloc_rx_buff_failed++;
4128                        break; /* while !buffer_info->skb */
4129                }
4130                rx_desc = E1000_RX_DESC(*rx_ring, i);
4131                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4132
4133                if (unlikely(++i == rx_ring->count))
4134                        i = 0;
4135                buffer_info = &rx_ring->buffer_info[i];
4136        }
4137
4138        if (likely(rx_ring->next_to_use != i)) {
4139                rx_ring->next_to_use = i;
4140                if (unlikely(i-- == 0))
4141                        i = (rx_ring->count - 1);
4142
4143                /* Force memory writes to complete before letting h/w
4144                 * know there are new descriptors to fetch.  (Only
4145                 * applicable for weak-ordered memory model archs,
4146                 * such as IA-64). */
4147                wmb();
4148                writel(i, hw->hw_addr + rx_ring->rdt);
4149        }
4150}
4151
4152/**
4153 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4154 * @adapter:
4155 **/
4156
4157static void e1000_smartspeed(struct e1000_adapter *adapter)
4158{
4159        struct e1000_hw *hw = &adapter->hw;
4160        u16 phy_status;
4161        u16 phy_ctrl;
4162
4163        if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4164           !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4165                return;
4166
4167        if (adapter->smartspeed == 0) {
4168                /* If Master/Slave config fault is asserted twice,
4169                 * we assume back-to-back */
4170                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4171                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4172                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4173                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4174                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4175                if (phy_ctrl & CR_1000T_MS_ENABLE) {
4176                        phy_ctrl &= ~CR_1000T_MS_ENABLE;
4177                        e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4178                                            phy_ctrl);
4179                        adapter->smartspeed++;
4180                        if (!e1000_phy_setup_autoneg(hw) &&
4181                           !e1000_read_phy_reg(hw, PHY_CTRL,
4182                                               &phy_ctrl)) {
4183                                phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4184                                             MII_CR_RESTART_AUTO_NEG);
4185                                e1000_write_phy_reg(hw, PHY_CTRL,
4186                                                    phy_ctrl);
4187                        }
4188                }
4189                return;
4190        } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4191                /* If still no link, perhaps using 2/3 pair cable */
4192                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4193                phy_ctrl |= CR_1000T_MS_ENABLE;
4194                e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4195                if (!e1000_phy_setup_autoneg(hw) &&
4196                   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4197                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4198                                     MII_CR_RESTART_AUTO_NEG);
4199                        e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4200                }
4201        }
4202        /* Restart process after E1000_SMARTSPEED_MAX iterations */
4203        if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4204                adapter->smartspeed = 0;
4205}
4206
4207/**
4208 * e1000_ioctl -
4209 * @netdev:
4210 * @ifreq:
4211 * @cmd:
4212 **/
4213
4214static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4215{
4216        switch (cmd) {
4217        case SIOCGMIIPHY:
4218        case SIOCGMIIREG:
4219        case SIOCSMIIREG:
4220                return e1000_mii_ioctl(netdev, ifr, cmd);
4221        default:
4222                return -EOPNOTSUPP;
4223        }
4224}
4225
4226/**
4227 * e1000_mii_ioctl -
4228 * @netdev:
4229 * @ifreq:
4230 * @cmd:
4231 **/
4232
4233static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4234                           int cmd)
4235{
4236        struct e1000_adapter *adapter = netdev_priv(netdev);
4237        struct e1000_hw *hw = &adapter->hw;
4238        struct mii_ioctl_data *data = if_mii(ifr);
4239        int retval;
4240        u16 mii_reg;
4241        u16 spddplx;
4242        unsigned long flags;
4243
4244        if (hw->media_type != e1000_media_type_copper)
4245                return -EOPNOTSUPP;
4246
4247        switch (cmd) {
4248        case SIOCGMIIPHY:
4249                data->phy_id = hw->phy_addr;
4250                break;
4251        case SIOCGMIIREG:
4252                spin_lock_irqsave(&adapter->stats_lock, flags);
4253                if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4254                                   &data->val_out)) {
4255                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4256                        return -EIO;
4257                }
4258                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4259                break;
4260        case SIOCSMIIREG:
4261                if (data->reg_num & ~(0x1F))
4262                        return -EFAULT;
4263                mii_reg = data->val_in;
4264                spin_lock_irqsave(&adapter->stats_lock, flags);
4265                if (e1000_write_phy_reg(hw, data->reg_num,
4266                                        mii_reg)) {
4267                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4268                        return -EIO;
4269                }
4270                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4271                if (hw->media_type == e1000_media_type_copper) {
4272                        switch (data->reg_num) {
4273                        case PHY_CTRL:
4274                                if (mii_reg & MII_CR_POWER_DOWN)
4275                                        break;
4276                                if (mii_reg & MII_CR_AUTO_NEG_EN) {
4277                                        hw->autoneg = 1;
4278                                        hw->autoneg_advertised = 0x2F;
4279                                } else {
4280                                        if (mii_reg & 0x40)
4281                                                spddplx = SPEED_1000;
4282                                        else if (mii_reg & 0x2000)
4283                                                spddplx = SPEED_100;
4284                                        else
4285                                                spddplx = SPEED_10;
4286                                        spddplx += (mii_reg & 0x100)
4287                                                   ? DUPLEX_FULL :
4288                                                   DUPLEX_HALF;
4289                                        retval = e1000_set_spd_dplx(adapter,
4290                                                                    spddplx);
4291                                        if (retval)
4292                                                return retval;
4293                                }
4294                                if (netif_running(adapter->netdev))
4295                                        e1000_reinit_locked(adapter);
4296                                else
4297                                        e1000_reset(adapter);
4298                                break;
4299                        case M88E1000_PHY_SPEC_CTRL:
4300                        case M88E1000_EXT_PHY_SPEC_CTRL:
4301                                if (e1000_phy_reset(hw))
4302                                        return -EIO;
4303                                break;
4304                        }
4305                } else {
4306                        switch (data->reg_num) {
4307                        case PHY_CTRL:
4308                                if (mii_reg & MII_CR_POWER_DOWN)
4309                                        break;
4310                                if (netif_running(adapter->netdev))
4311                                        e1000_reinit_locked(adapter);
4312                                else
4313                                        e1000_reset(adapter);
4314                                break;
4315                        }
4316                }
4317                break;
4318        default:
4319                return -EOPNOTSUPP;
4320        }
4321        return E1000_SUCCESS;
4322}
4323
4324void e1000_pci_set_mwi(struct e1000_hw *hw)
4325{
4326        struct e1000_adapter *adapter = hw->back;
4327        int ret_val = pci_set_mwi(adapter->pdev);
4328
4329        if (ret_val)
4330                DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4331}
4332
4333void e1000_pci_clear_mwi(struct e1000_hw *hw)
4334{
4335        struct e1000_adapter *adapter = hw->back;
4336
4337        pci_clear_mwi(adapter->pdev);
4338}
4339
4340int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4341{
4342        struct e1000_adapter *adapter = hw->back;
4343        return pcix_get_mmrbc(adapter->pdev);
4344}
4345
4346void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4347{
4348        struct e1000_adapter *adapter = hw->back;
4349        pcix_set_mmrbc(adapter->pdev, mmrbc);
4350}
4351
4352void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4353{
4354        outl(value, port);
4355}
4356
4357static void e1000_vlan_rx_register(struct net_device *netdev,
4358                                   struct vlan_group *grp)
4359{
4360        struct e1000_adapter *adapter = netdev_priv(netdev);
4361        struct e1000_hw *hw = &adapter->hw;
4362        u32 ctrl, rctl;
4363
4364        if (!test_bit(__E1000_DOWN, &adapter->flags))
4365                e1000_irq_disable(adapter);
4366        adapter->vlgrp = grp;
4367
4368        if (grp) {
4369                /* enable VLAN tag insert/strip */
4370                ctrl = er32(CTRL);
4371                ctrl |= E1000_CTRL_VME;
4372                ew32(CTRL, ctrl);
4373
4374                /* enable VLAN receive filtering */
4375                rctl = er32(RCTL);
4376                rctl &= ~E1000_RCTL_CFIEN;
4377                if (!(netdev->flags & IFF_PROMISC))
4378                        rctl |= E1000_RCTL_VFE;
4379                ew32(RCTL, rctl);
4380                e1000_update_mng_vlan(adapter);
4381        } else {
4382                /* disable VLAN tag insert/strip */
4383                ctrl = er32(CTRL);
4384                ctrl &= ~E1000_CTRL_VME;
4385                ew32(CTRL, ctrl);
4386
4387                /* disable VLAN receive filtering */
4388                rctl = er32(RCTL);
4389                rctl &= ~E1000_RCTL_VFE;
4390                ew32(RCTL, rctl);
4391
4392                if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4393                        e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4394                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4395                }
4396        }
4397
4398        if (!test_bit(__E1000_DOWN, &adapter->flags))
4399                e1000_irq_enable(adapter);
4400}
4401
4402static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4403{
4404        struct e1000_adapter *adapter = netdev_priv(netdev);
4405        struct e1000_hw *hw = &adapter->hw;
4406        u32 vfta, index;
4407
4408        if ((hw->mng_cookie.status &
4409             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4410            (vid == adapter->mng_vlan_id))
4411                return;
4412        /* add VID to filter table */
4413        index = (vid >> 5) & 0x7F;
4414        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4415        vfta |= (1 << (vid & 0x1F));
4416        e1000_write_vfta(hw, index, vfta);
4417}
4418
4419static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4420{
4421        struct e1000_adapter *adapter = netdev_priv(netdev);
4422        struct e1000_hw *hw = &adapter->hw;
4423        u32 vfta, index;
4424
4425        if (!test_bit(__E1000_DOWN, &adapter->flags))
4426                e1000_irq_disable(adapter);
4427        vlan_group_set_device(adapter->vlgrp, vid, NULL);
4428        if (!test_bit(__E1000_DOWN, &adapter->flags))
4429                e1000_irq_enable(adapter);
4430
4431        /* remove VID from filter table */
4432        index = (vid >> 5) & 0x7F;
4433        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4434        vfta &= ~(1 << (vid & 0x1F));
4435        e1000_write_vfta(hw, index, vfta);
4436}
4437
4438static void e1000_restore_vlan(struct e1000_adapter *adapter)
4439{
4440        e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4441
4442        if (adapter->vlgrp) {
4443                u16 vid;
4444                for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4445                        if (!vlan_group_get_device(adapter->vlgrp, vid))
4446                                continue;
4447                        e1000_vlan_rx_add_vid(adapter->netdev, vid);
4448                }
4449        }
4450}
4451
4452int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4453{
4454        struct e1000_hw *hw = &adapter->hw;
4455
4456        hw->autoneg = 0;
4457
4458        /* Fiber NICs only allow 1000 gbps Full duplex */
4459        if ((hw->media_type == e1000_media_type_fiber) &&
4460                spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4461                DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4462                return -EINVAL;
4463        }
4464
4465        switch (spddplx) {
4466        case SPEED_10 + DUPLEX_HALF:
4467                hw->forced_speed_duplex = e1000_10_half;
4468                break;
4469        case SPEED_10 + DUPLEX_FULL:
4470                hw->forced_speed_duplex = e1000_10_full;
4471                break;
4472        case SPEED_100 + DUPLEX_HALF:
4473                hw->forced_speed_duplex = e1000_100_half;
4474                break;
4475        case SPEED_100 + DUPLEX_FULL:
4476                hw->forced_speed_duplex = e1000_100_full;
4477                break;
4478        case SPEED_1000 + DUPLEX_FULL:
4479                hw->autoneg = 1;
4480                hw->autoneg_advertised = ADVERTISE_1000_FULL;
4481                break;
4482        case SPEED_1000 + DUPLEX_HALF: /* not supported */
4483        default:
4484                DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4485                return -EINVAL;
4486        }
4487        return 0;
4488}
4489
4490static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4491{
4492        struct net_device *netdev = pci_get_drvdata(pdev);
4493        struct e1000_adapter *adapter = netdev_priv(netdev);
4494        struct e1000_hw *hw = &adapter->hw;
4495        u32 ctrl, ctrl_ext, rctl, status;
4496        u32 wufc = adapter->wol;
4497#ifdef CONFIG_PM
4498        int retval = 0;
4499#endif
4500
4501        netif_device_detach(netdev);
4502
4503        if (netif_running(netdev)) {
4504                WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4505                e1000_down(adapter);
4506        }
4507
4508#ifdef CONFIG_PM
4509        retval = pci_save_state(pdev);
4510        if (retval)
4511                return retval;
4512#endif
4513
4514        status = er32(STATUS);
4515        if (status & E1000_STATUS_LU)
4516                wufc &= ~E1000_WUFC_LNKC;
4517
4518        if (wufc) {
4519                e1000_setup_rctl(adapter);
4520                e1000_set_rx_mode(netdev);
4521
4522                /* turn on all-multi mode if wake on multicast is enabled */
4523                if (wufc & E1000_WUFC_MC) {
4524                        rctl = er32(RCTL);
4525                        rctl |= E1000_RCTL_MPE;
4526                        ew32(RCTL, rctl);
4527                }
4528
4529                if (hw->mac_type >= e1000_82540) {
4530                        ctrl = er32(CTRL);
4531                        /* advertise wake from D3Cold */
4532                        #define E1000_CTRL_ADVD3WUC 0x00100000
4533                        /* phy power management enable */
4534                        #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4535                        ctrl |= E1000_CTRL_ADVD3WUC |
4536                                E1000_CTRL_EN_PHY_PWR_MGMT;
4537                        ew32(CTRL, ctrl);
4538                }
4539
4540                if (hw->media_type == e1000_media_type_fiber ||
4541                    hw->media_type == e1000_media_type_internal_serdes) {
4542                        /* keep the laser running in D3 */
4543                        ctrl_ext = er32(CTRL_EXT);
4544                        ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4545                        ew32(CTRL_EXT, ctrl_ext);
4546                }
4547
4548                ew32(WUC, E1000_WUC_PME_EN);
4549                ew32(WUFC, wufc);
4550        } else {
4551                ew32(WUC, 0);
4552                ew32(WUFC, 0);
4553        }
4554
4555        e1000_release_manageability(adapter);
4556
4557        *enable_wake = !!wufc;
4558
4559        /* make sure adapter isn't asleep if manageability is enabled */
4560        if (adapter->en_mng_pt)
4561                *enable_wake = true;
4562
4563        if (netif_running(netdev))
4564                e1000_free_irq(adapter);
4565
4566        pci_disable_device(pdev);
4567
4568        return 0;
4569}
4570
4571#ifdef CONFIG_PM
4572static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4573{
4574        int retval;
4575        bool wake;
4576
4577        retval = __e1000_shutdown(pdev, &wake);
4578        if (retval)
4579                return retval;
4580
4581        if (wake) {
4582                pci_prepare_to_sleep(pdev);
4583        } else {
4584                pci_wake_from_d3(pdev, false);
4585                pci_set_power_state(pdev, PCI_D3hot);
4586        }
4587
4588        return 0;
4589}
4590
4591static int e1000_resume(struct pci_dev *pdev)
4592{
4593        struct net_device *netdev = pci_get_drvdata(pdev);
4594        struct e1000_adapter *adapter = netdev_priv(netdev);
4595        struct e1000_hw *hw = &adapter->hw;
4596        u32 err;
4597
4598        pci_set_power_state(pdev, PCI_D0);
4599        pci_restore_state(pdev);
4600
4601        if (adapter->need_ioport)
4602                err = pci_enable_device(pdev);
4603        else
4604                err = pci_enable_device_mem(pdev);
4605        if (err) {
4606                printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4607                return err;
4608        }
4609        pci_set_master(pdev);
4610
4611        pci_enable_wake(pdev, PCI_D3hot, 0);
4612        pci_enable_wake(pdev, PCI_D3cold, 0);
4613
4614        if (netif_running(netdev)) {
4615                err = e1000_request_irq(adapter);
4616                if (err)
4617                        return err;
4618        }
4619
4620        e1000_power_up_phy(adapter);
4621        e1000_reset(adapter);
4622        ew32(WUS, ~0);
4623
4624        e1000_init_manageability(adapter);
4625
4626        if (netif_running(netdev))
4627                e1000_up(adapter);
4628
4629        netif_device_attach(netdev);
4630
4631        return 0;
4632}
4633#endif
4634
4635static void e1000_shutdown(struct pci_dev *pdev)
4636{
4637        bool wake;
4638
4639        __e1000_shutdown(pdev, &wake);
4640
4641        if (system_state == SYSTEM_POWER_OFF) {
4642                pci_wake_from_d3(pdev, wake);
4643                pci_set_power_state(pdev, PCI_D3hot);
4644        }
4645}
4646
4647#ifdef CONFIG_NET_POLL_CONTROLLER
4648/*
4649 * Polling 'interrupt' - used by things like netconsole to send skbs
4650 * without having to re-enable interrupts. It's not called while
4651 * the interrupt routine is executing.
4652 */
4653static void e1000_netpoll(struct net_device *netdev)
4654{
4655        struct e1000_adapter *adapter = netdev_priv(netdev);
4656
4657        disable_irq(adapter->pdev->irq);
4658        e1000_intr(adapter->pdev->irq, netdev);
4659        enable_irq(adapter->pdev->irq);
4660}
4661#endif
4662
4663/**
4664 * e1000_io_error_detected - called when PCI error is detected
4665 * @pdev: Pointer to PCI device
4666 * @state: The current pci connection state
4667 *
4668 * This function is called after a PCI bus error affecting
4669 * this device has been detected.
4670 */
4671static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4672                                                pci_channel_state_t state)
4673{
4674        struct net_device *netdev = pci_get_drvdata(pdev);
4675        struct e1000_adapter *adapter = netdev_priv(netdev);
4676
4677        netif_device_detach(netdev);
4678
4679        if (state == pci_channel_io_perm_failure)
4680                return PCI_ERS_RESULT_DISCONNECT;
4681
4682        if (netif_running(netdev))
4683                e1000_down(adapter);
4684        pci_disable_device(pdev);
4685
4686        /* Request a slot slot reset. */
4687        return PCI_ERS_RESULT_NEED_RESET;
4688}
4689
4690/**
4691 * e1000_io_slot_reset - called after the pci bus has been reset.
4692 * @pdev: Pointer to PCI device
4693 *
4694 * Restart the card from scratch, as if from a cold-boot. Implementation
4695 * resembles the first-half of the e1000_resume routine.
4696 */
4697static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4698{
4699        struct net_device *netdev = pci_get_drvdata(pdev);
4700        struct e1000_adapter *adapter = netdev_priv(netdev);
4701        struct e1000_hw *hw = &adapter->hw;
4702        int err;
4703
4704        if (adapter->need_ioport)
4705                err = pci_enable_device(pdev);
4706        else
4707                err = pci_enable_device_mem(pdev);
4708        if (err) {
4709                printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4710                return PCI_ERS_RESULT_DISCONNECT;
4711        }
4712        pci_set_master(pdev);
4713
4714        pci_enable_wake(pdev, PCI_D3hot, 0);
4715        pci_enable_wake(pdev, PCI_D3cold, 0);
4716
4717        e1000_reset(adapter);
4718        ew32(WUS, ~0);
4719
4720        return PCI_ERS_RESULT_RECOVERED;
4721}
4722
4723/**
4724 * e1000_io_resume - called when traffic can start flowing again.
4725 * @pdev: Pointer to PCI device
4726 *
4727 * This callback is called when the error recovery driver tells us that
4728 * its OK to resume normal operation. Implementation resembles the
4729 * second-half of the e1000_resume routine.
4730 */
4731static void e1000_io_resume(struct pci_dev *pdev)
4732{
4733        struct net_device *netdev = pci_get_drvdata(pdev);
4734        struct e1000_adapter *adapter = netdev_priv(netdev);
4735
4736        e1000_init_manageability(adapter);
4737
4738        if (netif_running(netdev)) {
4739                if (e1000_up(adapter)) {
4740                        printk("e1000: can't bring device back up after reset\n");
4741                        return;
4742                }
4743        }
4744
4745        netif_device_attach(netdev);
4746}
4747
4748/* e1000_main.c */
4749