linux/drivers/net/fec.c
<<
>>
Prefs
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/string.h>
  25#include <linux/ptrace.h>
  26#include <linux/errno.h>
  27#include <linux/ioport.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>
  30#include <linux/pci.h>
  31#include <linux/init.h>
  32#include <linux/delay.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/spinlock.h>
  37#include <linux/workqueue.h>
  38#include <linux/bitops.h>
  39#include <linux/io.h>
  40#include <linux/irq.h>
  41#include <linux/clk.h>
  42#include <linux/platform_device.h>
  43
  44#include <asm/cacheflush.h>
  45
  46#ifndef CONFIG_ARCH_MXC
  47#include <asm/coldfire.h>
  48#include <asm/mcfsim.h>
  49#endif
  50
  51#include "fec.h"
  52
  53#ifdef CONFIG_ARCH_MXC
  54#include <mach/hardware.h>
  55#define FEC_ALIGNMENT   0xf
  56#else
  57#define FEC_ALIGNMENT   0x3
  58#endif
  59
  60/*
  61 * Define the fixed address of the FEC hardware.
  62 */
  63#if defined(CONFIG_M5272)
  64#define HAVE_mii_link_interrupt
  65
  66static unsigned char    fec_mac_default[] = {
  67        0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  68};
  69
  70/*
  71 * Some hardware gets it MAC address out of local flash memory.
  72 * if this is non-zero then assume it is the address to get MAC from.
  73 */
  74#if defined(CONFIG_NETtel)
  75#define FEC_FLASHMAC    0xf0006006
  76#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
  77#define FEC_FLASHMAC    0xf0006000
  78#elif defined(CONFIG_CANCam)
  79#define FEC_FLASHMAC    0xf0020000
  80#elif defined (CONFIG_M5272C3)
  81#define FEC_FLASHMAC    (0xffe04000 + 4)
  82#elif defined(CONFIG_MOD5272)
  83#define FEC_FLASHMAC    0xffc0406b
  84#else
  85#define FEC_FLASHMAC    0
  86#endif
  87#endif /* CONFIG_M5272 */
  88
  89/* Forward declarations of some structures to support different PHYs */
  90
  91typedef struct {
  92        uint mii_data;
  93        void (*funct)(uint mii_reg, struct net_device *dev);
  94} phy_cmd_t;
  95
  96typedef struct {
  97        uint id;
  98        char *name;
  99
 100        const phy_cmd_t *config;
 101        const phy_cmd_t *startup;
 102        const phy_cmd_t *ack_int;
 103        const phy_cmd_t *shutdown;
 104} phy_info_t;
 105
 106/* The number of Tx and Rx buffers.  These are allocated from the page
 107 * pool.  The code may assume these are power of two, so it it best
 108 * to keep them that size.
 109 * We don't need to allocate pages for the transmitter.  We just use
 110 * the skbuffer directly.
 111 */
 112#define FEC_ENET_RX_PAGES       8
 113#define FEC_ENET_RX_FRSIZE      2048
 114#define FEC_ENET_RX_FRPPG       (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
 115#define RX_RING_SIZE            (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
 116#define FEC_ENET_TX_FRSIZE      2048
 117#define FEC_ENET_TX_FRPPG       (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
 118#define TX_RING_SIZE            16      /* Must be power of two */
 119#define TX_RING_MOD_MASK        15      /*   for this to work */
 120
 121#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
 122#error "FEC: descriptor ring size constants too large"
 123#endif
 124
 125/* Interrupt events/masks. */
 126#define FEC_ENET_HBERR  ((uint)0x80000000)      /* Heartbeat error */
 127#define FEC_ENET_BABR   ((uint)0x40000000)      /* Babbling receiver */
 128#define FEC_ENET_BABT   ((uint)0x20000000)      /* Babbling transmitter */
 129#define FEC_ENET_GRA    ((uint)0x10000000)      /* Graceful stop complete */
 130#define FEC_ENET_TXF    ((uint)0x08000000)      /* Full frame transmitted */
 131#define FEC_ENET_TXB    ((uint)0x04000000)      /* A buffer was transmitted */
 132#define FEC_ENET_RXF    ((uint)0x02000000)      /* Full frame received */
 133#define FEC_ENET_RXB    ((uint)0x01000000)      /* A buffer was received */
 134#define FEC_ENET_MII    ((uint)0x00800000)      /* MII interrupt */
 135#define FEC_ENET_EBERR  ((uint)0x00400000)      /* SDMA bus error */
 136
 137/* The FEC stores dest/src/type, data, and checksum for receive packets.
 138 */
 139#define PKT_MAXBUF_SIZE         1518
 140#define PKT_MINBUF_SIZE         64
 141#define PKT_MAXBLR_SIZE         1520
 142
 143
 144/*
 145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 146 * size bits. Other FEC hardware does not, so we need to take that into
 147 * account when setting it.
 148 */
 149#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 150    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
 151#define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
 152#else
 153#define OPT_FRAME_SIZE  0
 154#endif
 155
 156/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 157 * tx_bd_base always point to the base of the buffer descriptors.  The
 158 * cur_rx and cur_tx point to the currently available buffer.
 159 * The dirty_tx tracks the current buffer that is being sent by the
 160 * controller.  The cur_tx and dirty_tx are equal under both completely
 161 * empty and completely full conditions.  The empty/ready indicator in
 162 * the buffer descriptor determines the actual condition.
 163 */
 164struct fec_enet_private {
 165        /* Hardware registers of the FEC device */
 166        void __iomem *hwp;
 167
 168        struct net_device *netdev;
 169
 170        struct clk *clk;
 171
 172        /* The saved address of a sent-in-place packet/buffer, for skfree(). */
 173        unsigned char *tx_bounce[TX_RING_SIZE];
 174        struct  sk_buff* tx_skbuff[TX_RING_SIZE];
 175        struct  sk_buff* rx_skbuff[RX_RING_SIZE];
 176        ushort  skb_cur;
 177        ushort  skb_dirty;
 178
 179        /* CPM dual port RAM relative addresses */
 180        dma_addr_t      bd_dma;
 181        /* Address of Rx and Tx buffers */
 182        struct bufdesc  *rx_bd_base;
 183        struct bufdesc  *tx_bd_base;
 184        /* The next free ring entry */
 185        struct bufdesc  *cur_rx, *cur_tx; 
 186        /* The ring entries to be free()ed */
 187        struct bufdesc  *dirty_tx;
 188
 189        uint    tx_full;
 190        /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
 191        spinlock_t hw_lock;
 192        /* hold while accessing the mii_list_t() elements */
 193        spinlock_t mii_lock;
 194
 195        uint    phy_id;
 196        uint    phy_id_done;
 197        uint    phy_status;
 198        uint    phy_speed;
 199        phy_info_t const        *phy;
 200        struct work_struct phy_task;
 201
 202        uint    sequence_done;
 203        uint    mii_phy_task_queued;
 204
 205        uint    phy_addr;
 206
 207        int     index;
 208        int     opened;
 209        int     link;
 210        int     old_link;
 211        int     full_duplex;
 212};
 213
 214static void fec_enet_mii(struct net_device *dev);
 215static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
 216static void fec_enet_tx(struct net_device *dev);
 217static void fec_enet_rx(struct net_device *dev);
 218static int fec_enet_close(struct net_device *dev);
 219static void fec_restart(struct net_device *dev, int duplex);
 220static void fec_stop(struct net_device *dev);
 221
 222
 223/* MII processing.  We keep this as simple as possible.  Requests are
 224 * placed on the list (if there is room).  When the request is finished
 225 * by the MII, an optional function may be called.
 226 */
 227typedef struct mii_list {
 228        uint    mii_regval;
 229        void    (*mii_func)(uint val, struct net_device *dev);
 230        struct  mii_list *mii_next;
 231} mii_list_t;
 232
 233#define         NMII    20
 234static mii_list_t       mii_cmds[NMII];
 235static mii_list_t       *mii_free;
 236static mii_list_t       *mii_head;
 237static mii_list_t       *mii_tail;
 238
 239static int      mii_queue(struct net_device *dev, int request,
 240                                void (*func)(uint, struct net_device *));
 241
 242/* Make MII read/write commands for the FEC */
 243#define mk_mii_read(REG)        (0x60020000 | ((REG & 0x1f) << 18))
 244#define mk_mii_write(REG, VAL)  (0x50020000 | ((REG & 0x1f) << 18) | \
 245                                                (VAL & 0xffff))
 246#define mk_mii_end      0
 247
 248/* Transmitter timeout */
 249#define TX_TIMEOUT (2 * HZ)
 250
 251/* Register definitions for the PHY */
 252
 253#define MII_REG_CR          0  /* Control Register                         */
 254#define MII_REG_SR          1  /* Status Register                          */
 255#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
 256#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
 257#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
 258#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
 259#define MII_REG_ANER        6  /* A-N Expansion Register                   */
 260#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
 261#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */
 262
 263/* values for phy_status */
 264
 265#define PHY_CONF_ANE    0x0001  /* 1 auto-negotiation enabled */
 266#define PHY_CONF_LOOP   0x0002  /* 1 loopback mode enabled */
 267#define PHY_CONF_SPMASK 0x00f0  /* mask for speed */
 268#define PHY_CONF_10HDX  0x0010  /* 10 Mbit half duplex supported */
 269#define PHY_CONF_10FDX  0x0020  /* 10 Mbit full duplex supported */
 270#define PHY_CONF_100HDX 0x0040  /* 100 Mbit half duplex supported */
 271#define PHY_CONF_100FDX 0x0080  /* 100 Mbit full duplex supported */
 272
 273#define PHY_STAT_LINK   0x0100  /* 1 up - 0 down */
 274#define PHY_STAT_FAULT  0x0200  /* 1 remote fault */
 275#define PHY_STAT_ANC    0x0400  /* 1 auto-negotiation complete  */
 276#define PHY_STAT_SPMASK 0xf000  /* mask for speed */
 277#define PHY_STAT_10HDX  0x1000  /* 10 Mbit half duplex selected */
 278#define PHY_STAT_10FDX  0x2000  /* 10 Mbit full duplex selected */
 279#define PHY_STAT_100HDX 0x4000  /* 100 Mbit half duplex selected */
 280#define PHY_STAT_100FDX 0x8000  /* 100 Mbit full duplex selected */
 281
 282
 283static int
 284fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 285{
 286        struct fec_enet_private *fep = netdev_priv(dev);
 287        struct bufdesc *bdp;
 288        void *bufaddr;
 289        unsigned short  status;
 290        unsigned long flags;
 291
 292        if (!fep->link) {
 293                /* Link is down or autonegotiation is in progress. */
 294                return NETDEV_TX_BUSY;
 295        }
 296
 297        spin_lock_irqsave(&fep->hw_lock, flags);
 298        /* Fill in a Tx ring entry */
 299        bdp = fep->cur_tx;
 300
 301        status = bdp->cbd_sc;
 302
 303        if (status & BD_ENET_TX_READY) {
 304                /* Ooops.  All transmit buffers are full.  Bail out.
 305                 * This should not happen, since dev->tbusy should be set.
 306                 */
 307                printk("%s: tx queue full!.\n", dev->name);
 308                spin_unlock_irqrestore(&fep->hw_lock, flags);
 309                return NETDEV_TX_BUSY;
 310        }
 311
 312        /* Clear all of the status flags */
 313        status &= ~BD_ENET_TX_STATS;
 314
 315        /* Set buffer length and buffer pointer */
 316        bufaddr = skb->data;
 317        bdp->cbd_datlen = skb->len;
 318
 319        /*
 320         * On some FEC implementations data must be aligned on
 321         * 4-byte boundaries. Use bounce buffers to copy data
 322         * and get it aligned. Ugh.
 323         */
 324        if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 325                unsigned int index;
 326                index = bdp - fep->tx_bd_base;
 327                memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
 328                bufaddr = fep->tx_bounce[index];
 329        }
 330
 331        /* Save skb pointer */
 332        fep->tx_skbuff[fep->skb_cur] = skb;
 333
 334        dev->stats.tx_bytes += skb->len;
 335        fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
 336
 337        /* Push the data cache so the CPM does not get stale memory
 338         * data.
 339         */
 340        bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
 341                        FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 342
 343        /* Send it on its way.  Tell FEC it's ready, interrupt when done,
 344         * it's the last BD of the frame, and to put the CRC on the end.
 345         */
 346        status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 347                        | BD_ENET_TX_LAST | BD_ENET_TX_TC);
 348        bdp->cbd_sc = status;
 349
 350        dev->trans_start = jiffies;
 351
 352        /* Trigger transmission start */
 353        writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 354
 355        /* If this was the last BD in the ring, start at the beginning again. */
 356        if (status & BD_ENET_TX_WRAP)
 357                bdp = fep->tx_bd_base;
 358        else
 359                bdp++;
 360
 361        if (bdp == fep->dirty_tx) {
 362                fep->tx_full = 1;
 363                netif_stop_queue(dev);
 364        }
 365
 366        fep->cur_tx = bdp;
 367
 368        spin_unlock_irqrestore(&fep->hw_lock, flags);
 369
 370        return NETDEV_TX_OK;
 371}
 372
 373static void
 374fec_timeout(struct net_device *dev)
 375{
 376        struct fec_enet_private *fep = netdev_priv(dev);
 377
 378        dev->stats.tx_errors++;
 379
 380        fec_restart(dev, fep->full_duplex);
 381        netif_wake_queue(dev);
 382}
 383
 384static irqreturn_t
 385fec_enet_interrupt(int irq, void * dev_id)
 386{
 387        struct  net_device *dev = dev_id;
 388        struct fec_enet_private *fep = netdev_priv(dev);
 389        uint    int_events;
 390        irqreturn_t ret = IRQ_NONE;
 391
 392        do {
 393                int_events = readl(fep->hwp + FEC_IEVENT);
 394                writel(int_events, fep->hwp + FEC_IEVENT);
 395
 396                if (int_events & FEC_ENET_RXF) {
 397                        ret = IRQ_HANDLED;
 398                        fec_enet_rx(dev);
 399                }
 400
 401                /* Transmit OK, or non-fatal error. Update the buffer
 402                 * descriptors. FEC handles all errors, we just discover
 403                 * them as part of the transmit process.
 404                 */
 405                if (int_events & FEC_ENET_TXF) {
 406                        ret = IRQ_HANDLED;
 407                        fec_enet_tx(dev);
 408                }
 409
 410                if (int_events & FEC_ENET_MII) {
 411                        ret = IRQ_HANDLED;
 412                        fec_enet_mii(dev);
 413                }
 414
 415        } while (int_events);
 416
 417        return ret;
 418}
 419
 420
 421static void
 422fec_enet_tx(struct net_device *dev)
 423{
 424        struct  fec_enet_private *fep;
 425        struct bufdesc *bdp;
 426        unsigned short status;
 427        struct  sk_buff *skb;
 428
 429        fep = netdev_priv(dev);
 430        spin_lock(&fep->hw_lock);
 431        bdp = fep->dirty_tx;
 432
 433        while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 434                if (bdp == fep->cur_tx && fep->tx_full == 0)
 435                        break;
 436
 437                dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 438                bdp->cbd_bufaddr = 0;
 439
 440                skb = fep->tx_skbuff[fep->skb_dirty];
 441                /* Check for errors. */
 442                if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 443                                   BD_ENET_TX_RL | BD_ENET_TX_UN |
 444                                   BD_ENET_TX_CSL)) {
 445                        dev->stats.tx_errors++;
 446                        if (status & BD_ENET_TX_HB)  /* No heartbeat */
 447                                dev->stats.tx_heartbeat_errors++;
 448                        if (status & BD_ENET_TX_LC)  /* Late collision */
 449                                dev->stats.tx_window_errors++;
 450                        if (status & BD_ENET_TX_RL)  /* Retrans limit */
 451                                dev->stats.tx_aborted_errors++;
 452                        if (status & BD_ENET_TX_UN)  /* Underrun */
 453                                dev->stats.tx_fifo_errors++;
 454                        if (status & BD_ENET_TX_CSL) /* Carrier lost */
 455                                dev->stats.tx_carrier_errors++;
 456                } else {
 457                        dev->stats.tx_packets++;
 458                }
 459
 460                if (status & BD_ENET_TX_READY)
 461                        printk("HEY! Enet xmit interrupt and TX_READY.\n");
 462
 463                /* Deferred means some collisions occurred during transmit,
 464                 * but we eventually sent the packet OK.
 465                 */
 466                if (status & BD_ENET_TX_DEF)
 467                        dev->stats.collisions++;
 468
 469                /* Free the sk buffer associated with this last transmit */
 470                dev_kfree_skb_any(skb);
 471                fep->tx_skbuff[fep->skb_dirty] = NULL;
 472                fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
 473
 474                /* Update pointer to next buffer descriptor to be transmitted */
 475                if (status & BD_ENET_TX_WRAP)
 476                        bdp = fep->tx_bd_base;
 477                else
 478                        bdp++;
 479
 480                /* Since we have freed up a buffer, the ring is no longer full
 481                 */
 482                if (fep->tx_full) {
 483                        fep->tx_full = 0;
 484                        if (netif_queue_stopped(dev))
 485                                netif_wake_queue(dev);
 486                }
 487        }
 488        fep->dirty_tx = bdp;
 489        spin_unlock(&fep->hw_lock);
 490}
 491
 492
 493/* During a receive, the cur_rx points to the current incoming buffer.
 494 * When we update through the ring, if the next incoming buffer has
 495 * not been given to the system, we just set the empty indicator,
 496 * effectively tossing the packet.
 497 */
 498static void
 499fec_enet_rx(struct net_device *dev)
 500{
 501        struct  fec_enet_private *fep = netdev_priv(dev);
 502        struct bufdesc *bdp;
 503        unsigned short status;
 504        struct  sk_buff *skb;
 505        ushort  pkt_len;
 506        __u8 *data;
 507
 508#ifdef CONFIG_M532x
 509        flush_cache_all();
 510#endif
 511
 512        spin_lock(&fep->hw_lock);
 513
 514        /* First, grab all of the stats for the incoming packet.
 515         * These get messed up if we get called due to a busy condition.
 516         */
 517        bdp = fep->cur_rx;
 518
 519        while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 520
 521                /* Since we have allocated space to hold a complete frame,
 522                 * the last indicator should be set.
 523                 */
 524                if ((status & BD_ENET_RX_LAST) == 0)
 525                        printk("FEC ENET: rcv is not +last\n");
 526
 527                if (!fep->opened)
 528                        goto rx_processing_done;
 529
 530                /* Check for errors. */
 531                if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 532                           BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 533                        dev->stats.rx_errors++;
 534                        if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 535                                /* Frame too long or too short. */
 536                                dev->stats.rx_length_errors++;
 537                        }
 538                        if (status & BD_ENET_RX_NO)     /* Frame alignment */
 539                                dev->stats.rx_frame_errors++;
 540                        if (status & BD_ENET_RX_CR)     /* CRC Error */
 541                                dev->stats.rx_crc_errors++;
 542                        if (status & BD_ENET_RX_OV)     /* FIFO overrun */
 543                                dev->stats.rx_fifo_errors++;
 544                }
 545
 546                /* Report late collisions as a frame error.
 547                 * On this error, the BD is closed, but we don't know what we
 548                 * have in the buffer.  So, just drop this frame on the floor.
 549                 */
 550                if (status & BD_ENET_RX_CL) {
 551                        dev->stats.rx_errors++;
 552                        dev->stats.rx_frame_errors++;
 553                        goto rx_processing_done;
 554                }
 555
 556                /* Process the incoming frame. */
 557                dev->stats.rx_packets++;
 558                pkt_len = bdp->cbd_datlen;
 559                dev->stats.rx_bytes += pkt_len;
 560                data = (__u8*)__va(bdp->cbd_bufaddr);
 561
 562                dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
 563                                DMA_FROM_DEVICE);
 564
 565                /* This does 16 byte alignment, exactly what we need.
 566                 * The packet length includes FCS, but we don't want to
 567                 * include that when passing upstream as it messes up
 568                 * bridging applications.
 569                 */
 570                skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
 571
 572                if (unlikely(!skb)) {
 573                        printk("%s: Memory squeeze, dropping packet.\n",
 574                                        dev->name);
 575                        dev->stats.rx_dropped++;
 576                } else {
 577                        skb_reserve(skb, NET_IP_ALIGN);
 578                        skb_put(skb, pkt_len - 4);      /* Make room */
 579                        skb_copy_to_linear_data(skb, data, pkt_len - 4);
 580                        skb->protocol = eth_type_trans(skb, dev);
 581                        netif_rx(skb);
 582                }
 583
 584                bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
 585                        DMA_FROM_DEVICE);
 586rx_processing_done:
 587                /* Clear the status flags for this buffer */
 588                status &= ~BD_ENET_RX_STATS;
 589
 590                /* Mark the buffer empty */
 591                status |= BD_ENET_RX_EMPTY;
 592                bdp->cbd_sc = status;
 593
 594                /* Update BD pointer to next entry */
 595                if (status & BD_ENET_RX_WRAP)
 596                        bdp = fep->rx_bd_base;
 597                else
 598                        bdp++;
 599                /* Doing this here will keep the FEC running while we process
 600                 * incoming frames.  On a heavily loaded network, we should be
 601                 * able to keep up at the expense of system resources.
 602                 */
 603                writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 604        }
 605        fep->cur_rx = bdp;
 606
 607        spin_unlock(&fep->hw_lock);
 608}
 609
 610/* called from interrupt context */
 611static void
 612fec_enet_mii(struct net_device *dev)
 613{
 614        struct  fec_enet_private *fep;
 615        mii_list_t      *mip;
 616
 617        fep = netdev_priv(dev);
 618        spin_lock(&fep->mii_lock);
 619
 620        if ((mip = mii_head) == NULL) {
 621                printk("MII and no head!\n");
 622                goto unlock;
 623        }
 624
 625        if (mip->mii_func != NULL)
 626                (*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev);
 627
 628        mii_head = mip->mii_next;
 629        mip->mii_next = mii_free;
 630        mii_free = mip;
 631
 632        if ((mip = mii_head) != NULL)
 633                writel(mip->mii_regval, fep->hwp + FEC_MII_DATA);
 634
 635unlock:
 636        spin_unlock(&fep->mii_lock);
 637}
 638
 639static int
 640mii_queue_unlocked(struct net_device *dev, int regval,
 641                void (*func)(uint, struct net_device *))
 642{
 643        struct fec_enet_private *fep;
 644        mii_list_t      *mip;
 645        int             retval;
 646
 647        /* Add PHY address to register command */
 648        fep = netdev_priv(dev);
 649
 650        regval |= fep->phy_addr << 23;
 651        retval = 0;
 652
 653        if ((mip = mii_free) != NULL) {
 654                mii_free = mip->mii_next;
 655                mip->mii_regval = regval;
 656                mip->mii_func = func;
 657                mip->mii_next = NULL;
 658                if (mii_head) {
 659                        mii_tail->mii_next = mip;
 660                        mii_tail = mip;
 661                } else {
 662                        mii_head = mii_tail = mip;
 663                        writel(regval, fep->hwp + FEC_MII_DATA);
 664                }
 665        } else {
 666                retval = 1;
 667        }
 668
 669        return retval;
 670}
 671
 672static int
 673mii_queue(struct net_device *dev, int regval,
 674                void (*func)(uint, struct net_device *))
 675{
 676        struct fec_enet_private *fep;
 677        unsigned long   flags;
 678        int             retval;
 679        fep = netdev_priv(dev);
 680        spin_lock_irqsave(&fep->mii_lock, flags);
 681        retval = mii_queue_unlocked(dev, regval, func);
 682        spin_unlock_irqrestore(&fep->mii_lock, flags);
 683        return retval;
 684}
 685
 686static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
 687{
 688        if(!c)
 689                return;
 690
 691        for (; c->mii_data != mk_mii_end; c++)
 692                mii_queue(dev, c->mii_data, c->funct);
 693}
 694
 695static void mii_parse_sr(uint mii_reg, struct net_device *dev)
 696{
 697        struct fec_enet_private *fep = netdev_priv(dev);
 698        volatile uint *s = &(fep->phy_status);
 699        uint status;
 700
 701        status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
 702
 703        if (mii_reg & 0x0004)
 704                status |= PHY_STAT_LINK;
 705        if (mii_reg & 0x0010)
 706                status |= PHY_STAT_FAULT;
 707        if (mii_reg & 0x0020)
 708                status |= PHY_STAT_ANC;
 709        *s = status;
 710}
 711
 712static void mii_parse_cr(uint mii_reg, struct net_device *dev)
 713{
 714        struct fec_enet_private *fep = netdev_priv(dev);
 715        volatile uint *s = &(fep->phy_status);
 716        uint status;
 717
 718        status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
 719
 720        if (mii_reg & 0x1000)
 721                status |= PHY_CONF_ANE;
 722        if (mii_reg & 0x4000)
 723                status |= PHY_CONF_LOOP;
 724        *s = status;
 725}
 726
 727static void mii_parse_anar(uint mii_reg, struct net_device *dev)
 728{
 729        struct fec_enet_private *fep = netdev_priv(dev);
 730        volatile uint *s = &(fep->phy_status);
 731        uint status;
 732
 733        status = *s & ~(PHY_CONF_SPMASK);
 734
 735        if (mii_reg & 0x0020)
 736                status |= PHY_CONF_10HDX;
 737        if (mii_reg & 0x0040)
 738                status |= PHY_CONF_10FDX;
 739        if (mii_reg & 0x0080)
 740                status |= PHY_CONF_100HDX;
 741        if (mii_reg & 0x00100)
 742                status |= PHY_CONF_100FDX;
 743        *s = status;
 744}
 745
 746/* ------------------------------------------------------------------------- */
 747/* The Level one LXT970 is used by many boards                               */
 748
 749#define MII_LXT970_MIRROR    16  /* Mirror register           */
 750#define MII_LXT970_IER       17  /* Interrupt Enable Register */
 751#define MII_LXT970_ISR       18  /* Interrupt Status Register */
 752#define MII_LXT970_CONFIG    19  /* Configuration Register    */
 753#define MII_LXT970_CSR       20  /* Chip Status Register      */
 754
 755static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
 756{
 757        struct fec_enet_private *fep = netdev_priv(dev);
 758        volatile uint *s = &(fep->phy_status);
 759        uint status;
 760
 761        status = *s & ~(PHY_STAT_SPMASK);
 762        if (mii_reg & 0x0800) {
 763                if (mii_reg & 0x1000)
 764                        status |= PHY_STAT_100FDX;
 765                else
 766                        status |= PHY_STAT_100HDX;
 767        } else {
 768                if (mii_reg & 0x1000)
 769                        status |= PHY_STAT_10FDX;
 770                else
 771                        status |= PHY_STAT_10HDX;
 772        }
 773        *s = status;
 774}
 775
 776static phy_cmd_t const phy_cmd_lxt970_config[] = {
 777                { mk_mii_read(MII_REG_CR), mii_parse_cr },
 778                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 779                { mk_mii_end, }
 780        };
 781static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
 782                { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
 783                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 784                { mk_mii_end, }
 785        };
 786static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
 787                /* read SR and ISR to acknowledge */
 788                { mk_mii_read(MII_REG_SR), mii_parse_sr },
 789                { mk_mii_read(MII_LXT970_ISR), NULL },
 790
 791                /* find out the current status */
 792                { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
 793                { mk_mii_end, }
 794        };
 795static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
 796                { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
 797                { mk_mii_end, }
 798        };
 799static phy_info_t const phy_info_lxt970 = {
 800        .id = 0x07810000,
 801        .name = "LXT970",
 802        .config = phy_cmd_lxt970_config,
 803        .startup = phy_cmd_lxt970_startup,
 804        .ack_int = phy_cmd_lxt970_ack_int,
 805        .shutdown = phy_cmd_lxt970_shutdown
 806};
 807
 808/* ------------------------------------------------------------------------- */
 809/* The Level one LXT971 is used on some of my custom boards                  */
 810
 811/* register definitions for the 971 */
 812
 813#define MII_LXT971_PCR       16  /* Port Control Register     */
 814#define MII_LXT971_SR2       17  /* Status Register 2         */
 815#define MII_LXT971_IER       18  /* Interrupt Enable Register */
 816#define MII_LXT971_ISR       19  /* Interrupt Status Register */
 817#define MII_LXT971_LCR       20  /* LED Control Register      */
 818#define MII_LXT971_TCR       30  /* Transmit Control Register */
 819
 820/*
 821 * I had some nice ideas of running the MDIO faster...
 822 * The 971 should support 8MHz and I tried it, but things acted really
 823 * weird, so 2.5 MHz ought to be enough for anyone...
 824 */
 825
 826static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
 827{
 828        struct fec_enet_private *fep = netdev_priv(dev);
 829        volatile uint *s = &(fep->phy_status);
 830        uint status;
 831
 832        status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
 833
 834        if (mii_reg & 0x0400) {
 835                fep->link = 1;
 836                status |= PHY_STAT_LINK;
 837        } else {
 838                fep->link = 0;
 839        }
 840        if (mii_reg & 0x0080)
 841                status |= PHY_STAT_ANC;
 842        if (mii_reg & 0x4000) {
 843                if (mii_reg & 0x0200)
 844                        status |= PHY_STAT_100FDX;
 845                else
 846                        status |= PHY_STAT_100HDX;
 847        } else {
 848                if (mii_reg & 0x0200)
 849                        status |= PHY_STAT_10FDX;
 850                else
 851                        status |= PHY_STAT_10HDX;
 852        }
 853        if (mii_reg & 0x0008)
 854                status |= PHY_STAT_FAULT;
 855
 856        *s = status;
 857}
 858
 859static phy_cmd_t const phy_cmd_lxt971_config[] = {
 860                /* limit to 10MBit because my prototype board
 861                 * doesn't work with 100. */
 862                { mk_mii_read(MII_REG_CR), mii_parse_cr },
 863                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 864                { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
 865                { mk_mii_end, }
 866        };
 867static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
 868                { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
 869                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 870                { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
 871                /* Somehow does the 971 tell me that the link is down
 872                 * the first read after power-up.
 873                 * read here to get a valid value in ack_int */
 874                { mk_mii_read(MII_REG_SR), mii_parse_sr },
 875                { mk_mii_end, }
 876        };
 877static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
 878                /* acknowledge the int before reading status ! */
 879                { mk_mii_read(MII_LXT971_ISR), NULL },
 880                /* find out the current status */
 881                { mk_mii_read(MII_REG_SR), mii_parse_sr },
 882                { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
 883                { mk_mii_end, }
 884        };
 885static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
 886                { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
 887                { mk_mii_end, }
 888        };
 889static phy_info_t const phy_info_lxt971 = {
 890        .id = 0x0001378e,
 891        .name = "LXT971",
 892        .config = phy_cmd_lxt971_config,
 893        .startup = phy_cmd_lxt971_startup,
 894        .ack_int = phy_cmd_lxt971_ack_int,
 895        .shutdown = phy_cmd_lxt971_shutdown
 896};
 897
 898/* ------------------------------------------------------------------------- */
 899/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */
 900
 901/* register definitions */
 902
 903#define MII_QS6612_MCR       17  /* Mode Control Register      */
 904#define MII_QS6612_FTR       27  /* Factory Test Register      */
 905#define MII_QS6612_MCO       28  /* Misc. Control Register     */
 906#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
 907#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
 908#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */
 909
 910static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
 911{
 912        struct fec_enet_private *fep = netdev_priv(dev);
 913        volatile uint *s = &(fep->phy_status);
 914        uint status;
 915
 916        status = *s & ~(PHY_STAT_SPMASK);
 917
 918        switch((mii_reg >> 2) & 7) {
 919        case 1: status |= PHY_STAT_10HDX; break;
 920        case 2: status |= PHY_STAT_100HDX; break;
 921        case 5: status |= PHY_STAT_10FDX; break;
 922        case 6: status |= PHY_STAT_100FDX; break;
 923}
 924
 925        *s = status;
 926}
 927
 928static phy_cmd_t const phy_cmd_qs6612_config[] = {
 929                /* The PHY powers up isolated on the RPX,
 930                 * so send a command to allow operation.
 931                 */
 932                { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
 933
 934                /* parse cr and anar to get some info */
 935                { mk_mii_read(MII_REG_CR), mii_parse_cr },
 936                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
 937                { mk_mii_end, }
 938        };
 939static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
 940                { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
 941                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
 942                { mk_mii_end, }
 943        };
 944static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
 945                /* we need to read ISR, SR and ANER to acknowledge */
 946                { mk_mii_read(MII_QS6612_ISR), NULL },
 947                { mk_mii_read(MII_REG_SR), mii_parse_sr },
 948                { mk_mii_read(MII_REG_ANER), NULL },
 949
 950                /* read pcr to get info */
 951                { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
 952                { mk_mii_end, }
 953        };
 954static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
 955                { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
 956                { mk_mii_end, }
 957        };
 958static phy_info_t const phy_info_qs6612 = {
 959        .id = 0x00181440,
 960        .name = "QS6612",
 961        .config = phy_cmd_qs6612_config,
 962        .startup = phy_cmd_qs6612_startup,
 963        .ack_int = phy_cmd_qs6612_ack_int,
 964        .shutdown = phy_cmd_qs6612_shutdown
 965};
 966
 967/* ------------------------------------------------------------------------- */
 968/* AMD AM79C874 phy                                                          */
 969
 970/* register definitions for the 874 */
 971
 972#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
 973#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
 974#define MII_AM79C874_DR        18  /* Diagnostic Register            */
 975#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
 976#define MII_AM79C874_MCR       21  /* ModeControl Register           */
 977#define MII_AM79C874_DC        23  /* Disconnect Counter             */
 978#define MII_AM79C874_REC       24  /* Recieve Error Counter          */
 979
 980static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
 981{
 982        struct fec_enet_private *fep = netdev_priv(dev);
 983        volatile uint *s = &(fep->phy_status);
 984        uint status;
 985
 986        status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
 987
 988        if (mii_reg & 0x0080)
 989                status |= PHY_STAT_ANC;
 990        if (mii_reg & 0x0400)
 991                status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
 992        else
 993                status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
 994
 995        *s = status;
 996}
 997
 998static phy_cmd_t const phy_cmd_am79c874_config[] = {
 999                { mk_mii_read(MII_REG_CR), mii_parse_cr },
1000                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1001                { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1002                { mk_mii_end, }
1003        };
1004static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
1005                { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1006                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1007                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1008                { mk_mii_end, }
1009        };
1010static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1011                /* find out the current status */
1012                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1013                { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1014                /* we only need to read ISR to acknowledge */
1015                { mk_mii_read(MII_AM79C874_ICSR), NULL },
1016                { mk_mii_end, }
1017        };
1018static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1019                { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1020                { mk_mii_end, }
1021        };
1022static phy_info_t const phy_info_am79c874 = {
1023        .id = 0x00022561,
1024        .name = "AM79C874",
1025        .config = phy_cmd_am79c874_config,
1026        .startup = phy_cmd_am79c874_startup,
1027        .ack_int = phy_cmd_am79c874_ack_int,
1028        .shutdown = phy_cmd_am79c874_shutdown
1029};
1030
1031
1032/* ------------------------------------------------------------------------- */
1033/* Kendin KS8721BL phy                                                       */
1034
1035/* register definitions for the 8721 */
1036
1037#define MII_KS8721BL_RXERCR     21
1038#define MII_KS8721BL_ICSR       27
1039#define MII_KS8721BL_PHYCR      31
1040
1041static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1042                { mk_mii_read(MII_REG_CR), mii_parse_cr },
1043                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1044                { mk_mii_end, }
1045        };
1046static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
1047                { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1048                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1049                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1050                { mk_mii_end, }
1051        };
1052static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1053                /* find out the current status */
1054                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1055                /* we only need to read ISR to acknowledge */
1056                { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1057                { mk_mii_end, }
1058        };
1059static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1060                { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1061                { mk_mii_end, }
1062        };
1063static phy_info_t const phy_info_ks8721bl = {
1064        .id = 0x00022161,
1065        .name = "KS8721BL",
1066        .config = phy_cmd_ks8721bl_config,
1067        .startup = phy_cmd_ks8721bl_startup,
1068        .ack_int = phy_cmd_ks8721bl_ack_int,
1069        .shutdown = phy_cmd_ks8721bl_shutdown
1070};
1071
1072/* ------------------------------------------------------------------------- */
1073/* register definitions for the DP83848 */
1074
1075#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */
1076
1077static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1078{
1079        struct fec_enet_private *fep = netdev_priv(dev);
1080        volatile uint *s = &(fep->phy_status);
1081
1082        *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1083
1084        /* Link up */
1085        if (mii_reg & 0x0001) {
1086                fep->link = 1;
1087                *s |= PHY_STAT_LINK;
1088        } else
1089                fep->link = 0;
1090        /* Status of link */
1091        if (mii_reg & 0x0010)   /* Autonegotioation complete */
1092                *s |= PHY_STAT_ANC;
1093        if (mii_reg & 0x0002) {   /* 10MBps? */
1094                if (mii_reg & 0x0004)   /* Full Duplex? */
1095                        *s |= PHY_STAT_10FDX;
1096                else
1097                        *s |= PHY_STAT_10HDX;
1098        } else {                  /* 100 Mbps? */
1099                if (mii_reg & 0x0004)   /* Full Duplex? */
1100                        *s |= PHY_STAT_100FDX;
1101                else
1102                        *s |= PHY_STAT_100HDX;
1103        }
1104        if (mii_reg & 0x0008)
1105                *s |= PHY_STAT_FAULT;
1106}
1107
1108static phy_info_t phy_info_dp83848= {
1109        0x020005c9,
1110        "DP83848",
1111
1112        (const phy_cmd_t []) {  /* config */
1113                { mk_mii_read(MII_REG_CR), mii_parse_cr },
1114                { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1115                { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1116                { mk_mii_end, }
1117        },
1118        (const phy_cmd_t []) {  /* startup - enable interrupts */
1119                { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1120                { mk_mii_read(MII_REG_SR), mii_parse_sr },
1121                { mk_mii_end, }
1122        },
1123        (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1124                { mk_mii_end, }
1125        },
1126        (const phy_cmd_t []) {  /* shutdown */
1127                { mk_mii_end, }
1128        },
1129};
1130
1131/* ------------------------------------------------------------------------- */
1132
1133static phy_info_t const * const phy_info[] = {
1134        &phy_info_lxt970,
1135        &phy_info_lxt971,
1136        &phy_info_qs6612,
1137        &phy_info_am79c874,
1138        &phy_info_ks8721bl,
1139        &phy_info_dp83848,
1140        NULL
1141};
1142
1143/* ------------------------------------------------------------------------- */
1144#ifdef HAVE_mii_link_interrupt
1145static irqreturn_t
1146mii_link_interrupt(int irq, void * dev_id);
1147
1148/*
1149 *      This is specific to the MII interrupt setup of the M5272EVB.
1150 */
1151static void __inline__ fec_request_mii_intr(struct net_device *dev)
1152{
1153        if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
1154                printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
1155}
1156
1157static void __inline__ fec_disable_phy_intr(struct net_device *dev)
1158{
1159        free_irq(66, dev);
1160}
1161#endif
1162
1163#ifdef CONFIG_M5272
1164static void __inline__ fec_get_mac(struct net_device *dev)
1165{
1166        struct fec_enet_private *fep = netdev_priv(dev);
1167        unsigned char *iap, tmpaddr[ETH_ALEN];
1168
1169        if (FEC_FLASHMAC) {
1170                /*
1171                 * Get MAC address from FLASH.
1172                 * If it is all 1's or 0's, use the default.
1173                 */
1174                iap = (unsigned char *)FEC_FLASHMAC;
1175                if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1176                    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1177                        iap = fec_mac_default;
1178                if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1179                    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1180                        iap = fec_mac_default;
1181        } else {
1182                *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
1183                *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1184                iap = &tmpaddr[0];
1185        }
1186
1187        memcpy(dev->dev_addr, iap, ETH_ALEN);
1188
1189        /* Adjust MAC if using default MAC address */
1190        if (iap == fec_mac_default)
1191                 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1192}
1193#endif
1194
1195/* ------------------------------------------------------------------------- */
1196
1197static void mii_display_status(struct net_device *dev)
1198{
1199        struct fec_enet_private *fep = netdev_priv(dev);
1200        volatile uint *s = &(fep->phy_status);
1201
1202        if (!fep->link && !fep->old_link) {
1203                /* Link is still down - don't print anything */
1204                return;
1205        }
1206
1207        printk("%s: status: ", dev->name);
1208
1209        if (!fep->link) {
1210                printk("link down");
1211        } else {
1212                printk("link up");
1213
1214                switch(*s & PHY_STAT_SPMASK) {
1215                case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1216                case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1217                case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1218                case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1219                default:
1220                        printk(", Unknown speed/duplex");
1221                }
1222
1223                if (*s & PHY_STAT_ANC)
1224                        printk(", auto-negotiation complete");
1225        }
1226
1227        if (*s & PHY_STAT_FAULT)
1228                printk(", remote fault");
1229
1230        printk(".\n");
1231}
1232
1233static void mii_display_config(struct work_struct *work)
1234{
1235        struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1236        struct net_device *dev = fep->netdev;
1237        uint status = fep->phy_status;
1238
1239        /*
1240        ** When we get here, phy_task is already removed from
1241        ** the workqueue.  It is thus safe to allow to reuse it.
1242        */
1243        fep->mii_phy_task_queued = 0;
1244        printk("%s: config: auto-negotiation ", dev->name);
1245
1246        if (status & PHY_CONF_ANE)
1247                printk("on");
1248        else
1249                printk("off");
1250
1251        if (status & PHY_CONF_100FDX)
1252                printk(", 100FDX");
1253        if (status & PHY_CONF_100HDX)
1254                printk(", 100HDX");
1255        if (status & PHY_CONF_10FDX)
1256                printk(", 10FDX");
1257        if (status & PHY_CONF_10HDX)
1258                printk(", 10HDX");
1259        if (!(status & PHY_CONF_SPMASK))
1260                printk(", No speed/duplex selected?");
1261
1262        if (status & PHY_CONF_LOOP)
1263                printk(", loopback enabled");
1264
1265        printk(".\n");
1266
1267        fep->sequence_done = 1;
1268}
1269
1270static void mii_relink(struct work_struct *work)
1271{
1272        struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1273        struct net_device *dev = fep->netdev;
1274        int duplex;
1275
1276        /*
1277        ** When we get here, phy_task is already removed from
1278        ** the workqueue.  It is thus safe to allow to reuse it.
1279        */
1280        fep->mii_phy_task_queued = 0;
1281        fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1282        mii_display_status(dev);
1283        fep->old_link = fep->link;
1284
1285        if (fep->link) {
1286                duplex = 0;
1287                if (fep->phy_status
1288                    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1289                        duplex = 1;
1290                fec_restart(dev, duplex);
1291        } else
1292                fec_stop(dev);
1293}
1294
1295/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1296static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1297{
1298        struct fec_enet_private *fep = netdev_priv(dev);
1299
1300        /*
1301         * We cannot queue phy_task twice in the workqueue.  It
1302         * would cause an endless loop in the workqueue.
1303         * Fortunately, if the last mii_relink entry has not yet been
1304         * executed now, it will do the job for the current interrupt,
1305         * which is just what we want.
1306         */
1307        if (fep->mii_phy_task_queued)
1308                return;
1309
1310        fep->mii_phy_task_queued = 1;
1311        INIT_WORK(&fep->phy_task, mii_relink);
1312        schedule_work(&fep->phy_task);
1313}
1314
1315/* mii_queue_config is called in interrupt context from fec_enet_mii */
1316static void mii_queue_config(uint mii_reg, struct net_device *dev)
1317{
1318        struct fec_enet_private *fep = netdev_priv(dev);
1319
1320        if (fep->mii_phy_task_queued)
1321                return;
1322
1323        fep->mii_phy_task_queued = 1;
1324        INIT_WORK(&fep->phy_task, mii_display_config);
1325        schedule_work(&fep->phy_task);
1326}
1327
1328phy_cmd_t const phy_cmd_relink[] = {
1329        { mk_mii_read(MII_REG_CR), mii_queue_relink },
1330        { mk_mii_end, }
1331        };
1332phy_cmd_t const phy_cmd_config[] = {
1333        { mk_mii_read(MII_REG_CR), mii_queue_config },
1334        { mk_mii_end, }
1335        };
1336
1337/* Read remainder of PHY ID. */
1338static void
1339mii_discover_phy3(uint mii_reg, struct net_device *dev)
1340{
1341        struct fec_enet_private *fep;
1342        int i;
1343
1344        fep = netdev_priv(dev);
1345        fep->phy_id |= (mii_reg & 0xffff);
1346        printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1347
1348        for(i = 0; phy_info[i]; i++) {
1349                if(phy_info[i]->id == (fep->phy_id >> 4))
1350                        break;
1351        }
1352
1353        if (phy_info[i])
1354                printk(" -- %s\n", phy_info[i]->name);
1355        else
1356                printk(" -- unknown PHY!\n");
1357
1358        fep->phy = phy_info[i];
1359        fep->phy_id_done = 1;
1360}
1361
1362/* Scan all of the MII PHY addresses looking for someone to respond
1363 * with a valid ID.  This usually happens quickly.
1364 */
1365static void
1366mii_discover_phy(uint mii_reg, struct net_device *dev)
1367{
1368        struct fec_enet_private *fep;
1369        uint phytype;
1370
1371        fep = netdev_priv(dev);
1372
1373        if (fep->phy_addr < 32) {
1374                if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1375
1376                        /* Got first part of ID, now get remainder */
1377                        fep->phy_id = phytype << 16;
1378                        mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR2),
1379                                                        mii_discover_phy3);
1380                } else {
1381                        fep->phy_addr++;
1382                        mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR1),
1383                                                        mii_discover_phy);
1384                }
1385        } else {
1386                printk("FEC: No PHY device found.\n");
1387                /* Disable external MII interface */
1388                writel(0, fep->hwp + FEC_MII_SPEED);
1389                fep->phy_speed = 0;
1390#ifdef HAVE_mii_link_interrupt
1391                fec_disable_phy_intr(dev);
1392#endif
1393        }
1394}
1395
1396/* This interrupt occurs when the PHY detects a link change */
1397#ifdef HAVE_mii_link_interrupt
1398static irqreturn_t
1399mii_link_interrupt(int irq, void * dev_id)
1400{
1401        struct  net_device *dev = dev_id;
1402        struct fec_enet_private *fep = netdev_priv(dev);
1403
1404        mii_do_cmd(dev, fep->phy->ack_int);
1405        mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */
1406
1407        return IRQ_HANDLED;
1408}
1409#endif
1410
1411static void fec_enet_free_buffers(struct net_device *dev)
1412{
1413        struct fec_enet_private *fep = netdev_priv(dev);
1414        int i;
1415        struct sk_buff *skb;
1416        struct bufdesc  *bdp;
1417
1418        bdp = fep->rx_bd_base;
1419        for (i = 0; i < RX_RING_SIZE; i++) {
1420                skb = fep->rx_skbuff[i];
1421
1422                if (bdp->cbd_bufaddr)
1423                        dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
1424                                        FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1425                if (skb)
1426                        dev_kfree_skb(skb);
1427                bdp++;
1428        }
1429
1430        bdp = fep->tx_bd_base;
1431        for (i = 0; i < TX_RING_SIZE; i++)
1432                kfree(fep->tx_bounce[i]);
1433}
1434
1435static int fec_enet_alloc_buffers(struct net_device *dev)
1436{
1437        struct fec_enet_private *fep = netdev_priv(dev);
1438        int i;
1439        struct sk_buff *skb;
1440        struct bufdesc  *bdp;
1441
1442        bdp = fep->rx_bd_base;
1443        for (i = 0; i < RX_RING_SIZE; i++) {
1444                skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1445                if (!skb) {
1446                        fec_enet_free_buffers(dev);
1447                        return -ENOMEM;
1448                }
1449                fep->rx_skbuff[i] = skb;
1450
1451                bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
1452                                FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1453                bdp->cbd_sc = BD_ENET_RX_EMPTY;
1454                bdp++;
1455        }
1456
1457        /* Set the last buffer to wrap. */
1458        bdp--;
1459        bdp->cbd_sc |= BD_SC_WRAP;
1460
1461        bdp = fep->tx_bd_base;
1462        for (i = 0; i < TX_RING_SIZE; i++) {
1463                fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1464
1465                bdp->cbd_sc = 0;
1466                bdp->cbd_bufaddr = 0;
1467                bdp++;
1468        }
1469
1470        /* Set the last buffer to wrap. */
1471        bdp--;
1472        bdp->cbd_sc |= BD_SC_WRAP;
1473
1474        return 0;
1475}
1476
1477static int
1478fec_enet_open(struct net_device *dev)
1479{
1480        struct fec_enet_private *fep = netdev_priv(dev);
1481        int ret;
1482
1483        /* I should reset the ring buffers here, but I don't yet know
1484         * a simple way to do that.
1485         */
1486
1487        ret = fec_enet_alloc_buffers(dev);
1488        if (ret)
1489                return ret;
1490
1491        fep->sequence_done = 0;
1492        fep->link = 0;
1493
1494        fec_restart(dev, 1);
1495
1496        if (fep->phy) {
1497                mii_do_cmd(dev, fep->phy->ack_int);
1498                mii_do_cmd(dev, fep->phy->config);
1499                mii_do_cmd(dev, phy_cmd_config);  /* display configuration */
1500
1501                /* Poll until the PHY tells us its configuration
1502                 * (not link state).
1503                 * Request is initiated by mii_do_cmd above, but answer
1504                 * comes by interrupt.
1505                 * This should take about 25 usec per register at 2.5 MHz,
1506                 * and we read approximately 5 registers.
1507                 */
1508                while(!fep->sequence_done)
1509                        schedule();
1510
1511                mii_do_cmd(dev, fep->phy->startup);
1512        }
1513
1514        /* Set the initial link state to true. A lot of hardware
1515         * based on this device does not implement a PHY interrupt,
1516         * so we are never notified of link change.
1517         */
1518        fep->link = 1;
1519
1520        netif_start_queue(dev);
1521        fep->opened = 1;
1522        return 0;
1523}
1524
1525static int
1526fec_enet_close(struct net_device *dev)
1527{
1528        struct fec_enet_private *fep = netdev_priv(dev);
1529
1530        /* Don't know what to do yet. */
1531        fep->opened = 0;
1532        netif_stop_queue(dev);
1533        fec_stop(dev);
1534
1535        fec_enet_free_buffers(dev);
1536
1537        return 0;
1538}
1539
1540/* Set or clear the multicast filter for this adaptor.
1541 * Skeleton taken from sunlance driver.
1542 * The CPM Ethernet implementation allows Multicast as well as individual
1543 * MAC address filtering.  Some of the drivers check to make sure it is
1544 * a group multicast address, and discard those that are not.  I guess I
1545 * will do the same for now, but just remove the test if you want
1546 * individual filtering as well (do the upper net layers want or support
1547 * this kind of feature?).
1548 */
1549
1550#define HASH_BITS       6               /* #bits in hash */
1551#define CRC32_POLY      0xEDB88320
1552
1553static void set_multicast_list(struct net_device *dev)
1554{
1555        struct fec_enet_private *fep = netdev_priv(dev);
1556        struct dev_mc_list *dmi;
1557        unsigned int i, j, bit, data, crc, tmp;
1558        unsigned char hash;
1559
1560        if (dev->flags & IFF_PROMISC) {
1561                tmp = readl(fep->hwp + FEC_R_CNTRL);
1562                tmp |= 0x8;
1563                writel(tmp, fep->hwp + FEC_R_CNTRL);
1564                return;
1565        }
1566
1567        tmp = readl(fep->hwp + FEC_R_CNTRL);
1568        tmp &= ~0x8;
1569        writel(tmp, fep->hwp + FEC_R_CNTRL);
1570
1571        if (dev->flags & IFF_ALLMULTI) {
1572                /* Catch all multicast addresses, so set the
1573                 * filter to all 1's
1574                 */
1575                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1576                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1577
1578                return;
1579        }
1580
1581        /* Clear filter and add the addresses in hash register
1582         */
1583        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1584        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1585
1586        dmi = dev->mc_list;
1587
1588        for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) {
1589                /* Only support group multicast for now */
1590                if (!(dmi->dmi_addr[0] & 1))
1591                        continue;
1592
1593                /* calculate crc32 value of mac address */
1594                crc = 0xffffffff;
1595
1596                for (i = 0; i < dmi->dmi_addrlen; i++) {
1597                        data = dmi->dmi_addr[i];
1598                        for (bit = 0; bit < 8; bit++, data >>= 1) {
1599                                crc = (crc >> 1) ^
1600                                (((crc ^ data) & 1) ? CRC32_POLY : 0);
1601                        }
1602                }
1603
1604                /* only upper 6 bits (HASH_BITS) are used
1605                 * which point to specific bit in he hash registers
1606                 */
1607                hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1608
1609                if (hash > 31) {
1610                        tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1611                        tmp |= 1 << (hash - 32);
1612                        writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1613                } else {
1614                        tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1615                        tmp |= 1 << hash;
1616                        writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1617                }
1618        }
1619}
1620
1621/* Set a MAC change in hardware. */
1622static int
1623fec_set_mac_address(struct net_device *dev, void *p)
1624{
1625        struct fec_enet_private *fep = netdev_priv(dev);
1626        struct sockaddr *addr = p;
1627
1628        if (!is_valid_ether_addr(addr->sa_data))
1629                return -EADDRNOTAVAIL;
1630
1631        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1632
1633        writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1634                (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1635                fep->hwp + FEC_ADDR_LOW);
1636        writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1637                fep + FEC_ADDR_HIGH);
1638        return 0;
1639}
1640
1641static const struct net_device_ops fec_netdev_ops = {
1642        .ndo_open               = fec_enet_open,
1643        .ndo_stop               = fec_enet_close,
1644        .ndo_start_xmit         = fec_enet_start_xmit,
1645        .ndo_set_multicast_list = set_multicast_list,
1646        .ndo_change_mtu         = eth_change_mtu,
1647        .ndo_validate_addr      = eth_validate_addr,
1648        .ndo_tx_timeout         = fec_timeout,
1649        .ndo_set_mac_address    = fec_set_mac_address,
1650};
1651
1652 /*
1653  * XXX:  We need to clean up on failure exits here.
1654  *
1655  * index is only used in legacy code
1656  */
1657static int fec_enet_init(struct net_device *dev, int index)
1658{
1659        struct fec_enet_private *fep = netdev_priv(dev);
1660        struct bufdesc *cbd_base;
1661        int i;
1662
1663        /* Allocate memory for buffer descriptors. */
1664        cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1665                        GFP_KERNEL);
1666        if (!cbd_base) {
1667                printk("FEC: allocate descriptor memory failed?\n");
1668                return -ENOMEM;
1669        }
1670
1671        spin_lock_init(&fep->hw_lock);
1672        spin_lock_init(&fep->mii_lock);
1673
1674        fep->index = index;
1675        fep->hwp = (void __iomem *)dev->base_addr;
1676        fep->netdev = dev;
1677
1678        /* Set the Ethernet address */
1679#ifdef CONFIG_M5272
1680        fec_get_mac(dev);
1681#else
1682        {
1683                unsigned long l;
1684                l = readl(fep->hwp + FEC_ADDR_LOW);
1685                dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1686                dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1687                dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1688                dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1689                l = readl(fep->hwp + FEC_ADDR_HIGH);
1690                dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1691                dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1692        }
1693#endif
1694
1695        /* Set receive and transmit descriptor base. */
1696        fep->rx_bd_base = cbd_base;
1697        fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1698
1699#ifdef HAVE_mii_link_interrupt
1700        fec_request_mii_intr(dev);
1701#endif
1702        /* The FEC Ethernet specific entries in the device structure */
1703        dev->watchdog_timeo = TX_TIMEOUT;
1704        dev->netdev_ops = &fec_netdev_ops;
1705
1706        for (i=0; i<NMII-1; i++)
1707                mii_cmds[i].mii_next = &mii_cmds[i+1];
1708        mii_free = mii_cmds;
1709
1710        /* Set MII speed to 2.5 MHz */
1711        fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
1712                                        / 2500000) / 2) & 0x3F) << 1;
1713        fec_restart(dev, 0);
1714
1715        /* Queue up command to detect the PHY and initialize the
1716         * remainder of the interface.
1717         */
1718        fep->phy_id_done = 0;
1719        fep->phy_addr = 0;
1720        mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
1721
1722        return 0;
1723}
1724
1725/* This function is called to start or restart the FEC during a link
1726 * change.  This only happens when switching between half and full
1727 * duplex.
1728 */
1729static void
1730fec_restart(struct net_device *dev, int duplex)
1731{
1732        struct fec_enet_private *fep = netdev_priv(dev);
1733        struct bufdesc *bdp;
1734        int i;
1735
1736        /* Whack a reset.  We should wait for this. */
1737        writel(1, fep->hwp + FEC_ECNTRL);
1738        udelay(10);
1739
1740        /* Clear any outstanding interrupt. */
1741        writel(0xffc00000, fep->hwp + FEC_IEVENT);
1742
1743        /* Reset all multicast. */
1744        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1745        writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1746#ifndef CONFIG_M5272
1747        writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1748        writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1749#endif
1750
1751        /* Set maximum receive buffer size. */
1752        writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1753
1754        /* Set receive and transmit descriptor base. */
1755        writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1756        writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1757                        fep->hwp + FEC_X_DES_START);
1758
1759        fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1760        fep->cur_rx = fep->rx_bd_base;
1761
1762        /* Reset SKB transmit buffers. */
1763        fep->skb_cur = fep->skb_dirty = 0;
1764        for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1765                if (fep->tx_skbuff[i]) {
1766                        dev_kfree_skb_any(fep->tx_skbuff[i]);
1767                        fep->tx_skbuff[i] = NULL;
1768                }
1769        }
1770
1771        /* Initialize the receive buffer descriptors. */
1772        bdp = fep->rx_bd_base;
1773        for (i = 0; i < RX_RING_SIZE; i++) {
1774
1775                /* Initialize the BD for every fragment in the page. */
1776                bdp->cbd_sc = BD_ENET_RX_EMPTY;
1777                bdp++;
1778        }
1779
1780        /* Set the last buffer to wrap */
1781        bdp--;
1782        bdp->cbd_sc |= BD_SC_WRAP;
1783
1784        /* ...and the same for transmit */
1785        bdp = fep->tx_bd_base;
1786        for (i = 0; i < TX_RING_SIZE; i++) {
1787
1788                /* Initialize the BD for every fragment in the page. */
1789                bdp->cbd_sc = 0;
1790                bdp->cbd_bufaddr = 0;
1791                bdp++;
1792        }
1793
1794        /* Set the last buffer to wrap */
1795        bdp--;
1796        bdp->cbd_sc |= BD_SC_WRAP;
1797
1798        /* Enable MII mode */
1799        if (duplex) {
1800                /* MII enable / FD enable */
1801                writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1802                writel(0x04, fep->hwp + FEC_X_CNTRL);
1803        } else {
1804                /* MII enable / No Rcv on Xmit */
1805                writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1806                writel(0x0, fep->hwp + FEC_X_CNTRL);
1807        }
1808        fep->full_duplex = duplex;
1809
1810        /* Set MII speed */
1811        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1812
1813        /* And last, enable the transmit and receive processing */
1814        writel(2, fep->hwp + FEC_ECNTRL);
1815        writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1816
1817        /* Enable interrupts we wish to service */
1818        writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
1819                        fep->hwp + FEC_IMASK);
1820}
1821
1822static void
1823fec_stop(struct net_device *dev)
1824{
1825        struct fec_enet_private *fep = netdev_priv(dev);
1826
1827        /* We cannot expect a graceful transmit stop without link !!! */
1828        if (fep->link) {
1829                writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1830                udelay(10);
1831                if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1832                        printk("fec_stop : Graceful transmit stop did not complete !\n");
1833        }
1834
1835        /* Whack a reset.  We should wait for this. */
1836        writel(1, fep->hwp + FEC_ECNTRL);
1837        udelay(10);
1838
1839        /* Clear outstanding MII command interrupts. */
1840        writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1841
1842        writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1843        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1844}
1845
1846static int __devinit
1847fec_probe(struct platform_device *pdev)
1848{
1849        struct fec_enet_private *fep;
1850        struct net_device *ndev;
1851        int i, irq, ret = 0;
1852        struct resource *r;
1853
1854        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1855        if (!r)
1856                return -ENXIO;
1857
1858        r = request_mem_region(r->start, resource_size(r), pdev->name);
1859        if (!r)
1860                return -EBUSY;
1861
1862        /* Init network device */
1863        ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1864        if (!ndev)
1865                return -ENOMEM;
1866
1867        SET_NETDEV_DEV(ndev, &pdev->dev);
1868
1869        /* setup board info structure */
1870        fep = netdev_priv(ndev);
1871        memset(fep, 0, sizeof(*fep));
1872
1873        ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1874
1875        if (!ndev->base_addr) {
1876                ret = -ENOMEM;
1877                goto failed_ioremap;
1878        }
1879
1880        platform_set_drvdata(pdev, ndev);
1881
1882        /* This device has up to three irqs on some platforms */
1883        for (i = 0; i < 3; i++) {
1884                irq = platform_get_irq(pdev, i);
1885                if (i && irq < 0)
1886                        break;
1887                ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1888                if (ret) {
1889                        while (i >= 0) {
1890                                irq = platform_get_irq(pdev, i);
1891                                free_irq(irq, ndev);
1892                                i--;
1893                        }
1894                        goto failed_irq;
1895                }
1896        }
1897
1898        fep->clk = clk_get(&pdev->dev, "fec_clk");
1899        if (IS_ERR(fep->clk)) {
1900                ret = PTR_ERR(fep->clk);
1901                goto failed_clk;
1902        }
1903        clk_enable(fep->clk);
1904
1905        ret = fec_enet_init(ndev, 0);
1906        if (ret)
1907                goto failed_init;
1908
1909        ret = register_netdev(ndev);
1910        if (ret)
1911                goto failed_register;
1912
1913        return 0;
1914
1915failed_register:
1916failed_init:
1917        clk_disable(fep->clk);
1918        clk_put(fep->clk);
1919failed_clk:
1920        for (i = 0; i < 3; i++) {
1921                irq = platform_get_irq(pdev, i);
1922                if (irq > 0)
1923                        free_irq(irq, ndev);
1924        }
1925failed_irq:
1926        iounmap((void __iomem *)ndev->base_addr);
1927failed_ioremap:
1928        free_netdev(ndev);
1929
1930        return ret;
1931}
1932
1933static int __devexit
1934fec_drv_remove(struct platform_device *pdev)
1935{
1936        struct net_device *ndev = platform_get_drvdata(pdev);
1937        struct fec_enet_private *fep = netdev_priv(ndev);
1938
1939        platform_set_drvdata(pdev, NULL);
1940
1941        fec_stop(ndev);
1942        clk_disable(fep->clk);
1943        clk_put(fep->clk);
1944        iounmap((void __iomem *)ndev->base_addr);
1945        unregister_netdev(ndev);
1946        free_netdev(ndev);
1947        return 0;
1948}
1949
1950static int
1951fec_suspend(struct platform_device *dev, pm_message_t state)
1952{
1953        struct net_device *ndev = platform_get_drvdata(dev);
1954        struct fec_enet_private *fep;
1955
1956        if (ndev) {
1957                fep = netdev_priv(ndev);
1958                if (netif_running(ndev)) {
1959                        netif_device_detach(ndev);
1960                        fec_stop(ndev);
1961                }
1962        }
1963        return 0;
1964}
1965
1966static int
1967fec_resume(struct platform_device *dev)
1968{
1969        struct net_device *ndev = platform_get_drvdata(dev);
1970
1971        if (ndev) {
1972                if (netif_running(ndev)) {
1973                        fec_enet_init(ndev, 0);
1974                        netif_device_attach(ndev);
1975                }
1976        }
1977        return 0;
1978}
1979
1980static struct platform_driver fec_driver = {
1981        .driver = {
1982                .name    = "fec",
1983                .owner   = THIS_MODULE,
1984        },
1985        .probe   = fec_probe,
1986        .remove  = __devexit_p(fec_drv_remove),
1987        .suspend = fec_suspend,
1988        .resume  = fec_resume,
1989};
1990
1991static int __init
1992fec_enet_module_init(void)
1993{
1994        printk(KERN_INFO "FEC Ethernet Driver\n");
1995
1996        return platform_driver_register(&fec_driver);
1997}
1998
1999static void __exit
2000fec_enet_cleanup(void)
2001{
2002        platform_driver_unregister(&fec_driver);
2003}
2004
2005module_exit(fec_enet_cleanup);
2006module_init(fec_enet_module_init);
2007
2008MODULE_LICENSE("GPL");
2009