linux/drivers/net/igb/e1000_phy.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2009 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30
  31#include "e1000_mac.h"
  32#include "e1000_phy.h"
  33
  34static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
  35static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
  36                                               u16 *phy_ctrl);
  37static s32  igb_wait_autoneg(struct e1000_hw *hw);
  38
  39/* Cable length tables */
  40static const u16 e1000_m88_cable_length_table[] =
  41        { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
  42
  43static const u16 e1000_igp_2_cable_length_table[] =
  44    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
  45      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
  46      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
  47      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
  48      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
  49      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
  50      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
  51      104, 109, 114, 118, 121, 124};
  52#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  53                (sizeof(e1000_igp_2_cable_length_table) / \
  54                 sizeof(e1000_igp_2_cable_length_table[0]))
  55
  56/**
  57 *  igb_check_reset_block - Check if PHY reset is blocked
  58 *  @hw: pointer to the HW structure
  59 *
  60 *  Read the PHY management control register and check whether a PHY reset
  61 *  is blocked.  If a reset is not blocked return 0, otherwise
  62 *  return E1000_BLK_PHY_RESET (12).
  63 **/
  64s32 igb_check_reset_block(struct e1000_hw *hw)
  65{
  66        u32 manc;
  67
  68        manc = rd32(E1000_MANC);
  69
  70        return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
  71               E1000_BLK_PHY_RESET : 0;
  72}
  73
  74/**
  75 *  igb_get_phy_id - Retrieve the PHY ID and revision
  76 *  @hw: pointer to the HW structure
  77 *
  78 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  79 *  revision in the hardware structure.
  80 **/
  81s32 igb_get_phy_id(struct e1000_hw *hw)
  82{
  83        struct e1000_phy_info *phy = &hw->phy;
  84        s32 ret_val = 0;
  85        u16 phy_id;
  86
  87        ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
  88        if (ret_val)
  89                goto out;
  90
  91        phy->id = (u32)(phy_id << 16);
  92        udelay(20);
  93        ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
  94        if (ret_val)
  95                goto out;
  96
  97        phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  98        phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  99
 100out:
 101        return ret_val;
 102}
 103
 104/**
 105 *  igb_phy_reset_dsp - Reset PHY DSP
 106 *  @hw: pointer to the HW structure
 107 *
 108 *  Reset the digital signal processor.
 109 **/
 110static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
 111{
 112        s32 ret_val;
 113
 114        ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 115        if (ret_val)
 116                goto out;
 117
 118        ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
 119
 120out:
 121        return ret_val;
 122}
 123
 124/**
 125 *  igb_read_phy_reg_mdic - Read MDI control register
 126 *  @hw: pointer to the HW structure
 127 *  @offset: register offset to be read
 128 *  @data: pointer to the read data
 129 *
 130 *  Reads the MDI control regsiter in the PHY at offset and stores the
 131 *  information read to data.
 132 **/
 133static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 134{
 135        struct e1000_phy_info *phy = &hw->phy;
 136        u32 i, mdic = 0;
 137        s32 ret_val = 0;
 138
 139        if (offset > MAX_PHY_REG_ADDRESS) {
 140                hw_dbg("PHY Address %d is out of range\n", offset);
 141                ret_val = -E1000_ERR_PARAM;
 142                goto out;
 143        }
 144
 145        /*
 146         * Set up Op-code, Phy Address, and register offset in the MDI
 147         * Control register.  The MAC will take care of interfacing with the
 148         * PHY to retrieve the desired data.
 149         */
 150        mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 151                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 152                (E1000_MDIC_OP_READ));
 153
 154        wr32(E1000_MDIC, mdic);
 155
 156        /*
 157         * Poll the ready bit to see if the MDI read completed
 158         * Increasing the time out as testing showed failures with
 159         * the lower time out
 160         */
 161        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 162                udelay(50);
 163                mdic = rd32(E1000_MDIC);
 164                if (mdic & E1000_MDIC_READY)
 165                        break;
 166        }
 167        if (!(mdic & E1000_MDIC_READY)) {
 168                hw_dbg("MDI Read did not complete\n");
 169                ret_val = -E1000_ERR_PHY;
 170                goto out;
 171        }
 172        if (mdic & E1000_MDIC_ERROR) {
 173                hw_dbg("MDI Error\n");
 174                ret_val = -E1000_ERR_PHY;
 175                goto out;
 176        }
 177        *data = (u16) mdic;
 178
 179out:
 180        return ret_val;
 181}
 182
 183/**
 184 *  igb_write_phy_reg_mdic - Write MDI control register
 185 *  @hw: pointer to the HW structure
 186 *  @offset: register offset to write to
 187 *  @data: data to write to register at offset
 188 *
 189 *  Writes data to MDI control register in the PHY at offset.
 190 **/
 191static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 192{
 193        struct e1000_phy_info *phy = &hw->phy;
 194        u32 i, mdic = 0;
 195        s32 ret_val = 0;
 196
 197        if (offset > MAX_PHY_REG_ADDRESS) {
 198                hw_dbg("PHY Address %d is out of range\n", offset);
 199                ret_val = -E1000_ERR_PARAM;
 200                goto out;
 201        }
 202
 203        /*
 204         * Set up Op-code, Phy Address, and register offset in the MDI
 205         * Control register.  The MAC will take care of interfacing with the
 206         * PHY to retrieve the desired data.
 207         */
 208        mdic = (((u32)data) |
 209                (offset << E1000_MDIC_REG_SHIFT) |
 210                (phy->addr << E1000_MDIC_PHY_SHIFT) |
 211                (E1000_MDIC_OP_WRITE));
 212
 213        wr32(E1000_MDIC, mdic);
 214
 215        /*
 216         * Poll the ready bit to see if the MDI read completed
 217         * Increasing the time out as testing showed failures with
 218         * the lower time out
 219         */
 220        for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 221                udelay(50);
 222                mdic = rd32(E1000_MDIC);
 223                if (mdic & E1000_MDIC_READY)
 224                        break;
 225        }
 226        if (!(mdic & E1000_MDIC_READY)) {
 227                hw_dbg("MDI Write did not complete\n");
 228                ret_val = -E1000_ERR_PHY;
 229                goto out;
 230        }
 231        if (mdic & E1000_MDIC_ERROR) {
 232                hw_dbg("MDI Error\n");
 233                ret_val = -E1000_ERR_PHY;
 234                goto out;
 235        }
 236
 237out:
 238        return ret_val;
 239}
 240
 241/**
 242 *  igb_read_phy_reg_igp - Read igp PHY register
 243 *  @hw: pointer to the HW structure
 244 *  @offset: register offset to be read
 245 *  @data: pointer to the read data
 246 *
 247 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 248 *  and storing the retrieved information in data.  Release any acquired
 249 *  semaphores before exiting.
 250 **/
 251s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 252{
 253        s32 ret_val = 0;
 254
 255        if (!(hw->phy.ops.acquire))
 256                goto out;
 257
 258        ret_val = hw->phy.ops.acquire(hw);
 259        if (ret_val)
 260                goto out;
 261
 262        if (offset > MAX_PHY_MULTI_PAGE_REG) {
 263                ret_val = igb_write_phy_reg_mdic(hw,
 264                                                   IGP01E1000_PHY_PAGE_SELECT,
 265                                                   (u16)offset);
 266                if (ret_val) {
 267                        hw->phy.ops.release(hw);
 268                        goto out;
 269                }
 270        }
 271
 272        ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 273                                        data);
 274
 275        hw->phy.ops.release(hw);
 276
 277out:
 278        return ret_val;
 279}
 280
 281/**
 282 *  igb_write_phy_reg_igp - Write igp PHY register
 283 *  @hw: pointer to the HW structure
 284 *  @offset: register offset to write to
 285 *  @data: data to write at register offset
 286 *
 287 *  Acquires semaphore, if necessary, then writes the data to PHY register
 288 *  at the offset.  Release any acquired semaphores before exiting.
 289 **/
 290s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 291{
 292        s32 ret_val = 0;
 293
 294        if (!(hw->phy.ops.acquire))
 295                goto out;
 296
 297        ret_val = hw->phy.ops.acquire(hw);
 298        if (ret_val)
 299                goto out;
 300
 301        if (offset > MAX_PHY_MULTI_PAGE_REG) {
 302                ret_val = igb_write_phy_reg_mdic(hw,
 303                                                   IGP01E1000_PHY_PAGE_SELECT,
 304                                                   (u16)offset);
 305                if (ret_val) {
 306                        hw->phy.ops.release(hw);
 307                        goto out;
 308                }
 309        }
 310
 311        ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 312                                           data);
 313
 314        hw->phy.ops.release(hw);
 315
 316out:
 317        return ret_val;
 318}
 319
 320/**
 321 *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
 322 *  @hw: pointer to the HW structure
 323 *
 324 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 325 *  and downshift values are set also.
 326 **/
 327s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
 328{
 329        struct e1000_phy_info *phy = &hw->phy;
 330        s32 ret_val;
 331        u16 phy_data;
 332
 333        if (phy->reset_disable) {
 334                ret_val = 0;
 335                goto out;
 336        }
 337
 338        /* Enable CRS on TX. This must be set for half-duplex operation. */
 339        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 340        if (ret_val)
 341                goto out;
 342
 343        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 344
 345        /*
 346         * Options:
 347         *   MDI/MDI-X = 0 (default)
 348         *   0 - Auto for all speeds
 349         *   1 - MDI mode
 350         *   2 - MDI-X mode
 351         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 352         */
 353        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 354
 355        switch (phy->mdix) {
 356        case 1:
 357                phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 358                break;
 359        case 2:
 360                phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 361                break;
 362        case 3:
 363                phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 364                break;
 365        case 0:
 366        default:
 367                phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 368                break;
 369        }
 370
 371        /*
 372         * Options:
 373         *   disable_polarity_correction = 0 (default)
 374         *       Automatic Correction for Reversed Cable Polarity
 375         *   0 - Disabled
 376         *   1 - Enabled
 377         */
 378        phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 379        if (phy->disable_polarity_correction == 1)
 380                phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 381
 382        ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 383        if (ret_val)
 384                goto out;
 385
 386        if (phy->revision < E1000_REVISION_4) {
 387                /*
 388                 * Force TX_CLK in the Extended PHY Specific Control Register
 389                 * to 25MHz clock.
 390                 */
 391                ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 392                                             &phy_data);
 393                if (ret_val)
 394                        goto out;
 395
 396                phy_data |= M88E1000_EPSCR_TX_CLK_25;
 397
 398                if ((phy->revision == E1000_REVISION_2) &&
 399                    (phy->id == M88E1111_I_PHY_ID)) {
 400                        /* 82573L PHY - set the downshift counter to 5x. */
 401                        phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 402                        phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 403                } else {
 404                        /* Configure Master and Slave downshift values */
 405                        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 406                                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 407                        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 408                                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 409                }
 410                ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
 411                                             phy_data);
 412                if (ret_val)
 413                        goto out;
 414        }
 415
 416        /* Commit the changes. */
 417        ret_val = igb_phy_sw_reset(hw);
 418        if (ret_val) {
 419                hw_dbg("Error committing the PHY changes\n");
 420                goto out;
 421        }
 422
 423out:
 424        return ret_val;
 425}
 426
 427/**
 428 *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
 429 *  @hw: pointer to the HW structure
 430 *
 431 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 432 *  igp PHY's.
 433 **/
 434s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
 435{
 436        struct e1000_phy_info *phy = &hw->phy;
 437        s32 ret_val;
 438        u16 data;
 439
 440        if (phy->reset_disable) {
 441                ret_val = 0;
 442                goto out;
 443        }
 444
 445        ret_val = phy->ops.reset(hw);
 446        if (ret_val) {
 447                hw_dbg("Error resetting the PHY.\n");
 448                goto out;
 449        }
 450
 451        /*
 452         * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 453         * timeout issues when LFS is enabled.
 454         */
 455        msleep(100);
 456
 457        /*
 458         * The NVM settings will configure LPLU in D3 for
 459         * non-IGP1 PHYs.
 460         */
 461        if (phy->type == e1000_phy_igp) {
 462                /* disable lplu d3 during driver init */
 463                if (phy->ops.set_d3_lplu_state)
 464                        ret_val = phy->ops.set_d3_lplu_state(hw, false);
 465                if (ret_val) {
 466                        hw_dbg("Error Disabling LPLU D3\n");
 467                        goto out;
 468                }
 469        }
 470
 471        /* disable lplu d0 during driver init */
 472        ret_val = phy->ops.set_d0_lplu_state(hw, false);
 473        if (ret_val) {
 474                hw_dbg("Error Disabling LPLU D0\n");
 475                goto out;
 476        }
 477        /* Configure mdi-mdix settings */
 478        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 479        if (ret_val)
 480                goto out;
 481
 482        data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 483
 484        switch (phy->mdix) {
 485        case 1:
 486                data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 487                break;
 488        case 2:
 489                data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 490                break;
 491        case 0:
 492        default:
 493                data |= IGP01E1000_PSCR_AUTO_MDIX;
 494                break;
 495        }
 496        ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
 497        if (ret_val)
 498                goto out;
 499
 500        /* set auto-master slave resolution settings */
 501        if (hw->mac.autoneg) {
 502                /*
 503                 * when autonegotiation advertisement is only 1000Mbps then we
 504                 * should disable SmartSpeed and enable Auto MasterSlave
 505                 * resolution as hardware default.
 506                 */
 507                if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 508                        /* Disable SmartSpeed */
 509                        ret_val = phy->ops.read_reg(hw,
 510                                                    IGP01E1000_PHY_PORT_CONFIG,
 511                                                    &data);
 512                        if (ret_val)
 513                                goto out;
 514
 515                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 516                        ret_val = phy->ops.write_reg(hw,
 517                                                     IGP01E1000_PHY_PORT_CONFIG,
 518                                                     data);
 519                        if (ret_val)
 520                                goto out;
 521
 522                        /* Set auto Master/Slave resolution process */
 523                        ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 524                        if (ret_val)
 525                                goto out;
 526
 527                        data &= ~CR_1000T_MS_ENABLE;
 528                        ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 529                        if (ret_val)
 530                                goto out;
 531                }
 532
 533                ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
 534                if (ret_val)
 535                        goto out;
 536
 537                /* load defaults for future use */
 538                phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
 539                        ((data & CR_1000T_MS_VALUE) ?
 540                        e1000_ms_force_master :
 541                        e1000_ms_force_slave) :
 542                        e1000_ms_auto;
 543
 544                switch (phy->ms_type) {
 545                case e1000_ms_force_master:
 546                        data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 547                        break;
 548                case e1000_ms_force_slave:
 549                        data |= CR_1000T_MS_ENABLE;
 550                        data &= ~(CR_1000T_MS_VALUE);
 551                        break;
 552                case e1000_ms_auto:
 553                        data &= ~CR_1000T_MS_ENABLE;
 554                default:
 555                        break;
 556                }
 557                ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
 558                if (ret_val)
 559                        goto out;
 560        }
 561
 562out:
 563        return ret_val;
 564}
 565
 566/**
 567 *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
 568 *  @hw: pointer to the HW structure
 569 *
 570 *  Performs initial bounds checking on autoneg advertisement parameter, then
 571 *  configure to advertise the full capability.  Setup the PHY to autoneg
 572 *  and restart the negotiation process between the link partner.  If
 573 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
 574 **/
 575s32 igb_copper_link_autoneg(struct e1000_hw *hw)
 576{
 577        struct e1000_phy_info *phy = &hw->phy;
 578        s32 ret_val;
 579        u16 phy_ctrl;
 580
 581        /*
 582         * Perform some bounds checking on the autoneg advertisement
 583         * parameter.
 584         */
 585        phy->autoneg_advertised &= phy->autoneg_mask;
 586
 587        /*
 588         * If autoneg_advertised is zero, we assume it was not defaulted
 589         * by the calling code so we set to advertise full capability.
 590         */
 591        if (phy->autoneg_advertised == 0)
 592                phy->autoneg_advertised = phy->autoneg_mask;
 593
 594        hw_dbg("Reconfiguring auto-neg advertisement params\n");
 595        ret_val = igb_phy_setup_autoneg(hw);
 596        if (ret_val) {
 597                hw_dbg("Error Setting up Auto-Negotiation\n");
 598                goto out;
 599        }
 600        hw_dbg("Restarting Auto-Neg\n");
 601
 602        /*
 603         * Restart auto-negotiation by setting the Auto Neg Enable bit and
 604         * the Auto Neg Restart bit in the PHY control register.
 605         */
 606        ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
 607        if (ret_val)
 608                goto out;
 609
 610        phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 611        ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
 612        if (ret_val)
 613                goto out;
 614
 615        /*
 616         * Does the user want to wait for Auto-Neg to complete here, or
 617         * check at a later time (for example, callback routine).
 618         */
 619        if (phy->autoneg_wait_to_complete) {
 620                ret_val = igb_wait_autoneg(hw);
 621                if (ret_val) {
 622                        hw_dbg("Error while waiting for "
 623                               "autoneg to complete\n");
 624                        goto out;
 625                }
 626        }
 627
 628        hw->mac.get_link_status = true;
 629
 630out:
 631        return ret_val;
 632}
 633
 634/**
 635 *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
 636 *  @hw: pointer to the HW structure
 637 *
 638 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 639 *  register and if the PHY is already setup for auto-negotiation, then
 640 *  return successful.  Otherwise, setup advertisement and flow control to
 641 *  the appropriate values for the wanted auto-negotiation.
 642 **/
 643static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
 644{
 645        struct e1000_phy_info *phy = &hw->phy;
 646        s32 ret_val;
 647        u16 mii_autoneg_adv_reg;
 648        u16 mii_1000t_ctrl_reg = 0;
 649
 650        phy->autoneg_advertised &= phy->autoneg_mask;
 651
 652        /* Read the MII Auto-Neg Advertisement Register (Address 4). */
 653        ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 654        if (ret_val)
 655                goto out;
 656
 657        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 658                /* Read the MII 1000Base-T Control Register (Address 9). */
 659                ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
 660                                            &mii_1000t_ctrl_reg);
 661                if (ret_val)
 662                        goto out;
 663        }
 664
 665        /*
 666         * Need to parse both autoneg_advertised and fc and set up
 667         * the appropriate PHY registers.  First we will parse for
 668         * autoneg_advertised software override.  Since we can advertise
 669         * a plethora of combinations, we need to check each bit
 670         * individually.
 671         */
 672
 673        /*
 674         * First we clear all the 10/100 mb speed bits in the Auto-Neg
 675         * Advertisement Register (Address 4) and the 1000 mb speed bits in
 676         * the  1000Base-T Control Register (Address 9).
 677         */
 678        mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 679                                 NWAY_AR_100TX_HD_CAPS |
 680                                 NWAY_AR_10T_FD_CAPS   |
 681                                 NWAY_AR_10T_HD_CAPS);
 682        mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 683
 684        hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 685
 686        /* Do we want to advertise 10 Mb Half Duplex? */
 687        if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 688                hw_dbg("Advertise 10mb Half duplex\n");
 689                mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 690        }
 691
 692        /* Do we want to advertise 10 Mb Full Duplex? */
 693        if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 694                hw_dbg("Advertise 10mb Full duplex\n");
 695                mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 696        }
 697
 698        /* Do we want to advertise 100 Mb Half Duplex? */
 699        if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 700                hw_dbg("Advertise 100mb Half duplex\n");
 701                mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 702        }
 703
 704        /* Do we want to advertise 100 Mb Full Duplex? */
 705        if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 706                hw_dbg("Advertise 100mb Full duplex\n");
 707                mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 708        }
 709
 710        /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 711        if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 712                hw_dbg("Advertise 1000mb Half duplex request denied!\n");
 713
 714        /* Do we want to advertise 1000 Mb Full Duplex? */
 715        if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 716                hw_dbg("Advertise 1000mb Full duplex\n");
 717                mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
 718        }
 719
 720        /*
 721         * Check for a software override of the flow control settings, and
 722         * setup the PHY advertisement registers accordingly.  If
 723         * auto-negotiation is enabled, then software will have to set the
 724         * "PAUSE" bits to the correct value in the Auto-Negotiation
 725         * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
 726         * negotiation.
 727         *
 728         * The possible values of the "fc" parameter are:
 729         *      0:  Flow control is completely disabled
 730         *      1:  Rx flow control is enabled (we can receive pause frames
 731         *          but not send pause frames).
 732         *      2:  Tx flow control is enabled (we can send pause frames
 733         *          but we do not support receiving pause frames).
 734         *      3:  Both Rx and TX flow control (symmetric) are enabled.
 735         *  other:  No software override.  The flow control configuration
 736         *          in the EEPROM is used.
 737         */
 738        switch (hw->fc.current_mode) {
 739        case e1000_fc_none:
 740                /*
 741                 * Flow control (RX & TX) is completely disabled by a
 742                 * software over-ride.
 743                 */
 744                mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 745                break;
 746        case e1000_fc_rx_pause:
 747                /*
 748                 * RX Flow control is enabled, and TX Flow control is
 749                 * disabled, by a software over-ride.
 750                 *
 751                 * Since there really isn't a way to advertise that we are
 752                 * capable of RX Pause ONLY, we will advertise that we
 753                 * support both symmetric and asymmetric RX PAUSE.  Later
 754                 * (in e1000_config_fc_after_link_up) we will disable the
 755                 * hw's ability to send PAUSE frames.
 756                 */
 757                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 758                break;
 759        case e1000_fc_tx_pause:
 760                /*
 761                 * TX Flow control is enabled, and RX Flow control is
 762                 * disabled, by a software over-ride.
 763                 */
 764                mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
 765                mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
 766                break;
 767        case e1000_fc_full:
 768                /*
 769                 * Flow control (both RX and TX) is enabled by a software
 770                 * over-ride.
 771                 */
 772                mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 773                break;
 774        default:
 775                hw_dbg("Flow control param set incorrectly\n");
 776                ret_val = -E1000_ERR_CONFIG;
 777                goto out;
 778        }
 779
 780        ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
 781        if (ret_val)
 782                goto out;
 783
 784        hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 785
 786        if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 787                ret_val = phy->ops.write_reg(hw,
 788                                             PHY_1000T_CTRL,
 789                                             mii_1000t_ctrl_reg);
 790                if (ret_val)
 791                        goto out;
 792        }
 793
 794out:
 795        return ret_val;
 796}
 797
 798/**
 799 *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
 800 *  @hw: pointer to the HW structure
 801 *
 802 *  Calls the PHY setup function to force speed and duplex.  Clears the
 803 *  auto-crossover to force MDI manually.  Waits for link and returns
 804 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
 805 **/
 806s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
 807{
 808        struct e1000_phy_info *phy = &hw->phy;
 809        s32 ret_val;
 810        u16 phy_data;
 811        bool link;
 812
 813        ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
 814        if (ret_val)
 815                goto out;
 816
 817        igb_phy_force_speed_duplex_setup(hw, &phy_data);
 818
 819        ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
 820        if (ret_val)
 821                goto out;
 822
 823        /*
 824         * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
 825         * forced whenever speed and duplex are forced.
 826         */
 827        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
 828        if (ret_val)
 829                goto out;
 830
 831        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 832        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 833
 834        ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
 835        if (ret_val)
 836                goto out;
 837
 838        hw_dbg("IGP PSCR: %X\n", phy_data);
 839
 840        udelay(1);
 841
 842        if (phy->autoneg_wait_to_complete) {
 843                hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
 844
 845                ret_val = igb_phy_has_link(hw,
 846                                                     PHY_FORCE_LIMIT,
 847                                                     100000,
 848                                                     &link);
 849                if (ret_val)
 850                        goto out;
 851
 852                if (!link)
 853                        hw_dbg("Link taking longer than expected.\n");
 854
 855                /* Try once more */
 856                ret_val = igb_phy_has_link(hw,
 857                                                     PHY_FORCE_LIMIT,
 858                                                     100000,
 859                                                     &link);
 860                if (ret_val)
 861                        goto out;
 862        }
 863
 864out:
 865        return ret_val;
 866}
 867
 868/**
 869 *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
 870 *  @hw: pointer to the HW structure
 871 *
 872 *  Calls the PHY setup function to force speed and duplex.  Clears the
 873 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
 874 *  changes.  If time expires while waiting for link up, we reset the DSP.
 875 *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
 876 *  successful completion, else return corresponding error code.
 877 **/
 878s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
 879{
 880        struct e1000_phy_info *phy = &hw->phy;
 881        s32 ret_val;
 882        u16 phy_data;
 883        bool link;
 884
 885        /*
 886         * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 887         * forced whenever speed and duplex are forced.
 888         */
 889        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 890        if (ret_val)
 891                goto out;
 892
 893        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 894        ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 895        if (ret_val)
 896                goto out;
 897
 898        hw_dbg("M88E1000 PSCR: %X\n", phy_data);
 899
 900        ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
 901        if (ret_val)
 902                goto out;
 903
 904        igb_phy_force_speed_duplex_setup(hw, &phy_data);
 905
 906        /* Reset the phy to commit changes. */
 907        phy_data |= MII_CR_RESET;
 908
 909        ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
 910        if (ret_val)
 911                goto out;
 912
 913        udelay(1);
 914
 915        if (phy->autoneg_wait_to_complete) {
 916                hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
 917
 918                ret_val = igb_phy_has_link(hw,
 919                                                     PHY_FORCE_LIMIT,
 920                                                     100000,
 921                                                     &link);
 922                if (ret_val)
 923                        goto out;
 924
 925                if (!link) {
 926                        /*
 927                         * We didn't get link.
 928                         * Reset the DSP and cross our fingers.
 929                         */
 930                        ret_val = phy->ops.write_reg(hw,
 931                                                      M88E1000_PHY_PAGE_SELECT,
 932                                                      0x001d);
 933                        if (ret_val)
 934                                goto out;
 935                        ret_val = igb_phy_reset_dsp(hw);
 936                        if (ret_val)
 937                                goto out;
 938                }
 939
 940                /* Try once more */
 941                ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
 942                                             100000, &link);
 943                if (ret_val)
 944                        goto out;
 945        }
 946
 947        ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 948        if (ret_val)
 949                goto out;
 950
 951        /*
 952         * Resetting the phy means we need to re-force TX_CLK in the
 953         * Extended PHY Specific Control Register to 25MHz clock from
 954         * the reset value of 2.5MHz.
 955         */
 956        phy_data |= M88E1000_EPSCR_TX_CLK_25;
 957        ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 958        if (ret_val)
 959                goto out;
 960
 961        /*
 962         * In addition, we must re-enable CRS on Tx for both half and full
 963         * duplex.
 964         */
 965        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 966        if (ret_val)
 967                goto out;
 968
 969        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 970        ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 971
 972out:
 973        return ret_val;
 974}
 975
 976/**
 977 *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
 978 *  @hw: pointer to the HW structure
 979 *  @phy_ctrl: pointer to current value of PHY_CONTROL
 980 *
 981 *  Forces speed and duplex on the PHY by doing the following: disable flow
 982 *  control, force speed/duplex on the MAC, disable auto speed detection,
 983 *  disable auto-negotiation, configure duplex, configure speed, configure
 984 *  the collision distance, write configuration to CTRL register.  The
 985 *  caller must write to the PHY_CONTROL register for these settings to
 986 *  take affect.
 987 **/
 988static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
 989                                               u16 *phy_ctrl)
 990{
 991        struct e1000_mac_info *mac = &hw->mac;
 992        u32 ctrl;
 993
 994        /* Turn off flow control when forcing speed/duplex */
 995        hw->fc.current_mode = e1000_fc_none;
 996
 997        /* Force speed/duplex on the mac */
 998        ctrl = rd32(E1000_CTRL);
 999        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1000        ctrl &= ~E1000_CTRL_SPD_SEL;
1001
1002        /* Disable Auto Speed Detection */
1003        ctrl &= ~E1000_CTRL_ASDE;
1004
1005        /* Disable autoneg on the phy */
1006        *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1007
1008        /* Forcing Full or Half Duplex? */
1009        if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1010                ctrl &= ~E1000_CTRL_FD;
1011                *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1012                hw_dbg("Half Duplex\n");
1013        } else {
1014                ctrl |= E1000_CTRL_FD;
1015                *phy_ctrl |= MII_CR_FULL_DUPLEX;
1016                hw_dbg("Full Duplex\n");
1017        }
1018
1019        /* Forcing 10mb or 100mb? */
1020        if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1021                ctrl |= E1000_CTRL_SPD_100;
1022                *phy_ctrl |= MII_CR_SPEED_100;
1023                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1024                hw_dbg("Forcing 100mb\n");
1025        } else {
1026                ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1027                *phy_ctrl |= MII_CR_SPEED_10;
1028                *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1029                hw_dbg("Forcing 10mb\n");
1030        }
1031
1032        igb_config_collision_dist(hw);
1033
1034        wr32(E1000_CTRL, ctrl);
1035}
1036
1037/**
1038 *  igb_set_d3_lplu_state - Sets low power link up state for D3
1039 *  @hw: pointer to the HW structure
1040 *  @active: boolean used to enable/disable lplu
1041 *
1042 *  Success returns 0, Failure returns 1
1043 *
1044 *  The low power link up (lplu) state is set to the power management level D3
1045 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1046 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1047 *  is used during Dx states where the power conservation is most important.
1048 *  During driver activity, SmartSpeed should be enabled so performance is
1049 *  maintained.
1050 **/
1051s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1052{
1053        struct e1000_phy_info *phy = &hw->phy;
1054        s32 ret_val;
1055        u16 data;
1056
1057        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1058        if (ret_val)
1059                goto out;
1060
1061        if (!active) {
1062                data &= ~IGP02E1000_PM_D3_LPLU;
1063                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1064                                             data);
1065                if (ret_val)
1066                        goto out;
1067                /*
1068                 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1069                 * during Dx states where the power conservation is most
1070                 * important.  During driver activity we should enable
1071                 * SmartSpeed, so performance is maintained.
1072                 */
1073                if (phy->smart_speed == e1000_smart_speed_on) {
1074                        ret_val = phy->ops.read_reg(hw,
1075                                                    IGP01E1000_PHY_PORT_CONFIG,
1076                                                    &data);
1077                        if (ret_val)
1078                                goto out;
1079
1080                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1081                        ret_val = phy->ops.write_reg(hw,
1082                                                     IGP01E1000_PHY_PORT_CONFIG,
1083                                                     data);
1084                        if (ret_val)
1085                                goto out;
1086                } else if (phy->smart_speed == e1000_smart_speed_off) {
1087                        ret_val = phy->ops.read_reg(hw,
1088                                                     IGP01E1000_PHY_PORT_CONFIG,
1089                                                     &data);
1090                        if (ret_val)
1091                                goto out;
1092
1093                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1094                        ret_val = phy->ops.write_reg(hw,
1095                                                     IGP01E1000_PHY_PORT_CONFIG,
1096                                                     data);
1097                        if (ret_val)
1098                                goto out;
1099                }
1100        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1101                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1102                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1103                data |= IGP02E1000_PM_D3_LPLU;
1104                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1105                                              data);
1106                if (ret_val)
1107                        goto out;
1108
1109                /* When LPLU is enabled, we should disable SmartSpeed */
1110                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1111                                             &data);
1112                if (ret_val)
1113                        goto out;
1114
1115                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1116                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1117                                              data);
1118        }
1119
1120out:
1121        return ret_val;
1122}
1123
1124/**
1125 *  igb_check_downshift - Checks whether a downshift in speed occured
1126 *  @hw: pointer to the HW structure
1127 *
1128 *  Success returns 0, Failure returns 1
1129 *
1130 *  A downshift is detected by querying the PHY link health.
1131 **/
1132s32 igb_check_downshift(struct e1000_hw *hw)
1133{
1134        struct e1000_phy_info *phy = &hw->phy;
1135        s32 ret_val;
1136        u16 phy_data, offset, mask;
1137
1138        switch (phy->type) {
1139        case e1000_phy_m88:
1140        case e1000_phy_gg82563:
1141                offset  = M88E1000_PHY_SPEC_STATUS;
1142                mask    = M88E1000_PSSR_DOWNSHIFT;
1143                break;
1144        case e1000_phy_igp_2:
1145        case e1000_phy_igp:
1146        case e1000_phy_igp_3:
1147                offset  = IGP01E1000_PHY_LINK_HEALTH;
1148                mask    = IGP01E1000_PLHR_SS_DOWNGRADE;
1149                break;
1150        default:
1151                /* speed downshift not supported */
1152                phy->speed_downgraded = false;
1153                ret_val = 0;
1154                goto out;
1155        }
1156
1157        ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1158
1159        if (!ret_val)
1160                phy->speed_downgraded = (phy_data & mask) ? true : false;
1161
1162out:
1163        return ret_val;
1164}
1165
1166/**
1167 *  igb_check_polarity_m88 - Checks the polarity.
1168 *  @hw: pointer to the HW structure
1169 *
1170 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1171 *
1172 *  Polarity is determined based on the PHY specific status register.
1173 **/
1174static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1175{
1176        struct e1000_phy_info *phy = &hw->phy;
1177        s32 ret_val;
1178        u16 data;
1179
1180        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1181
1182        if (!ret_val)
1183                phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1184                                      ? e1000_rev_polarity_reversed
1185                                      : e1000_rev_polarity_normal;
1186
1187        return ret_val;
1188}
1189
1190/**
1191 *  igb_check_polarity_igp - Checks the polarity.
1192 *  @hw: pointer to the HW structure
1193 *
1194 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1195 *
1196 *  Polarity is determined based on the PHY port status register, and the
1197 *  current speed (since there is no polarity at 100Mbps).
1198 **/
1199static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1200{
1201        struct e1000_phy_info *phy = &hw->phy;
1202        s32 ret_val;
1203        u16 data, offset, mask;
1204
1205        /*
1206         * Polarity is determined based on the speed of
1207         * our connection.
1208         */
1209        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1210        if (ret_val)
1211                goto out;
1212
1213        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1214            IGP01E1000_PSSR_SPEED_1000MBPS) {
1215                offset  = IGP01E1000_PHY_PCS_INIT_REG;
1216                mask    = IGP01E1000_PHY_POLARITY_MASK;
1217        } else {
1218                /*
1219                 * This really only applies to 10Mbps since
1220                 * there is no polarity for 100Mbps (always 0).
1221                 */
1222                offset  = IGP01E1000_PHY_PORT_STATUS;
1223                mask    = IGP01E1000_PSSR_POLARITY_REVERSED;
1224        }
1225
1226        ret_val = phy->ops.read_reg(hw, offset, &data);
1227
1228        if (!ret_val)
1229                phy->cable_polarity = (data & mask)
1230                                      ? e1000_rev_polarity_reversed
1231                                      : e1000_rev_polarity_normal;
1232
1233out:
1234        return ret_val;
1235}
1236
1237/**
1238 *  igb_wait_autoneg - Wait for auto-neg compeletion
1239 *  @hw: pointer to the HW structure
1240 *
1241 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1242 *  limit to expire, which ever happens first.
1243 **/
1244static s32 igb_wait_autoneg(struct e1000_hw *hw)
1245{
1246        s32 ret_val = 0;
1247        u16 i, phy_status;
1248
1249        /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1250        for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1251                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1252                if (ret_val)
1253                        break;
1254                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1255                if (ret_val)
1256                        break;
1257                if (phy_status & MII_SR_AUTONEG_COMPLETE)
1258                        break;
1259                msleep(100);
1260        }
1261
1262        /*
1263         * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1264         * has completed.
1265         */
1266        return ret_val;
1267}
1268
1269/**
1270 *  igb_phy_has_link - Polls PHY for link
1271 *  @hw: pointer to the HW structure
1272 *  @iterations: number of times to poll for link
1273 *  @usec_interval: delay between polling attempts
1274 *  @success: pointer to whether polling was successful or not
1275 *
1276 *  Polls the PHY status register for link, 'iterations' number of times.
1277 **/
1278s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1279                               u32 usec_interval, bool *success)
1280{
1281        s32 ret_val = 0;
1282        u16 i, phy_status;
1283
1284        for (i = 0; i < iterations; i++) {
1285                /*
1286                 * Some PHYs require the PHY_STATUS register to be read
1287                 * twice due to the link bit being sticky.  No harm doing
1288                 * it across the board.
1289                 */
1290                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1291                if (ret_val)
1292                        break;
1293                ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1294                if (ret_val)
1295                        break;
1296                if (phy_status & MII_SR_LINK_STATUS)
1297                        break;
1298                if (usec_interval >= 1000)
1299                        mdelay(usec_interval/1000);
1300                else
1301                        udelay(usec_interval);
1302        }
1303
1304        *success = (i < iterations) ? true : false;
1305
1306        return ret_val;
1307}
1308
1309/**
1310 *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1311 *  @hw: pointer to the HW structure
1312 *
1313 *  Reads the PHY specific status register to retrieve the cable length
1314 *  information.  The cable length is determined by averaging the minimum and
1315 *  maximum values to get the "average" cable length.  The m88 PHY has four
1316 *  possible cable length values, which are:
1317 *      Register Value          Cable Length
1318 *      0                       < 50 meters
1319 *      1                       50 - 80 meters
1320 *      2                       80 - 110 meters
1321 *      3                       110 - 140 meters
1322 *      4                       > 140 meters
1323 **/
1324s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1325{
1326        struct e1000_phy_info *phy = &hw->phy;
1327        s32 ret_val;
1328        u16 phy_data, index;
1329
1330        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1331        if (ret_val)
1332                goto out;
1333
1334        index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1335                M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1336        phy->min_cable_length = e1000_m88_cable_length_table[index];
1337        phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1338
1339        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1340
1341out:
1342        return ret_val;
1343}
1344
1345/**
1346 *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1347 *  @hw: pointer to the HW structure
1348 *
1349 *  The automatic gain control (agc) normalizes the amplitude of the
1350 *  received signal, adjusting for the attenuation produced by the
1351 *  cable.  By reading the AGC registers, which represent the
1352 *  combination of coarse and fine gain value, the value can be put
1353 *  into a lookup table to obtain the approximate cable length
1354 *  for each channel.
1355 **/
1356s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1357{
1358        struct e1000_phy_info *phy = &hw->phy;
1359        s32 ret_val = 0;
1360        u16 phy_data, i, agc_value = 0;
1361        u16 cur_agc_index, max_agc_index = 0;
1362        u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1363        u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1364                                                         {IGP02E1000_PHY_AGC_A,
1365                                                          IGP02E1000_PHY_AGC_B,
1366                                                          IGP02E1000_PHY_AGC_C,
1367                                                          IGP02E1000_PHY_AGC_D};
1368
1369        /* Read the AGC registers for all channels */
1370        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1371                ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1372                if (ret_val)
1373                        goto out;
1374
1375                /*
1376                 * Getting bits 15:9, which represent the combination of
1377                 * coarse and fine gain values.  The result is a number
1378                 * that can be put into the lookup table to obtain the
1379                 * approximate cable length.
1380                 */
1381                cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1382                                IGP02E1000_AGC_LENGTH_MASK;
1383
1384                /* Array index bound check. */
1385                if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1386                    (cur_agc_index == 0)) {
1387                        ret_val = -E1000_ERR_PHY;
1388                        goto out;
1389                }
1390
1391                /* Remove min & max AGC values from calculation. */
1392                if (e1000_igp_2_cable_length_table[min_agc_index] >
1393                    e1000_igp_2_cable_length_table[cur_agc_index])
1394                        min_agc_index = cur_agc_index;
1395                if (e1000_igp_2_cable_length_table[max_agc_index] <
1396                    e1000_igp_2_cable_length_table[cur_agc_index])
1397                        max_agc_index = cur_agc_index;
1398
1399                agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1400        }
1401
1402        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1403                      e1000_igp_2_cable_length_table[max_agc_index]);
1404        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1405
1406        /* Calculate cable length with the error range of +/- 10 meters. */
1407        phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1408                                 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1409        phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1410
1411        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1412
1413out:
1414        return ret_val;
1415}
1416
1417/**
1418 *  igb_get_phy_info_m88 - Retrieve PHY information
1419 *  @hw: pointer to the HW structure
1420 *
1421 *  Valid for only copper links.  Read the PHY status register (sticky read)
1422 *  to verify that link is up.  Read the PHY special control register to
1423 *  determine the polarity and 10base-T extended distance.  Read the PHY
1424 *  special status register to determine MDI/MDIx and current speed.  If
1425 *  speed is 1000, then determine cable length, local and remote receiver.
1426 **/
1427s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1428{
1429        struct e1000_phy_info *phy = &hw->phy;
1430        s32  ret_val;
1431        u16 phy_data;
1432        bool link;
1433
1434        if (phy->media_type != e1000_media_type_copper) {
1435                hw_dbg("Phy info is only valid for copper media\n");
1436                ret_val = -E1000_ERR_CONFIG;
1437                goto out;
1438        }
1439
1440        ret_val = igb_phy_has_link(hw, 1, 0, &link);
1441        if (ret_val)
1442                goto out;
1443
1444        if (!link) {
1445                hw_dbg("Phy info is only valid if link is up\n");
1446                ret_val = -E1000_ERR_CONFIG;
1447                goto out;
1448        }
1449
1450        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1451        if (ret_val)
1452                goto out;
1453
1454        phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1455                                   ? true : false;
1456
1457        ret_val = igb_check_polarity_m88(hw);
1458        if (ret_val)
1459                goto out;
1460
1461        ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1462        if (ret_val)
1463                goto out;
1464
1465        phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1466
1467        if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1468                ret_val = phy->ops.get_cable_length(hw);
1469                if (ret_val)
1470                        goto out;
1471
1472                ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1473                if (ret_val)
1474                        goto out;
1475
1476                phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1477                                ? e1000_1000t_rx_status_ok
1478                                : e1000_1000t_rx_status_not_ok;
1479
1480                phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1481                                 ? e1000_1000t_rx_status_ok
1482                                 : e1000_1000t_rx_status_not_ok;
1483        } else {
1484                /* Set values to "undefined" */
1485                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1486                phy->local_rx = e1000_1000t_rx_status_undefined;
1487                phy->remote_rx = e1000_1000t_rx_status_undefined;
1488        }
1489
1490out:
1491        return ret_val;
1492}
1493
1494/**
1495 *  igb_get_phy_info_igp - Retrieve igp PHY information
1496 *  @hw: pointer to the HW structure
1497 *
1498 *  Read PHY status to determine if link is up.  If link is up, then
1499 *  set/determine 10base-T extended distance and polarity correction.  Read
1500 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1501 *  determine on the cable length, local and remote receiver.
1502 **/
1503s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1504{
1505        struct e1000_phy_info *phy = &hw->phy;
1506        s32 ret_val;
1507        u16 data;
1508        bool link;
1509
1510        ret_val = igb_phy_has_link(hw, 1, 0, &link);
1511        if (ret_val)
1512                goto out;
1513
1514        if (!link) {
1515                hw_dbg("Phy info is only valid if link is up\n");
1516                ret_val = -E1000_ERR_CONFIG;
1517                goto out;
1518        }
1519
1520        phy->polarity_correction = true;
1521
1522        ret_val = igb_check_polarity_igp(hw);
1523        if (ret_val)
1524                goto out;
1525
1526        ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1527        if (ret_val)
1528                goto out;
1529
1530        phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1531
1532        if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1533            IGP01E1000_PSSR_SPEED_1000MBPS) {
1534                ret_val = phy->ops.get_cable_length(hw);
1535                if (ret_val)
1536                        goto out;
1537
1538                ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1539                if (ret_val)
1540                        goto out;
1541
1542                phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1543                                ? e1000_1000t_rx_status_ok
1544                                : e1000_1000t_rx_status_not_ok;
1545
1546                phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1547                                 ? e1000_1000t_rx_status_ok
1548                                 : e1000_1000t_rx_status_not_ok;
1549        } else {
1550                phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1551                phy->local_rx = e1000_1000t_rx_status_undefined;
1552                phy->remote_rx = e1000_1000t_rx_status_undefined;
1553        }
1554
1555out:
1556        return ret_val;
1557}
1558
1559/**
1560 *  igb_phy_sw_reset - PHY software reset
1561 *  @hw: pointer to the HW structure
1562 *
1563 *  Does a software reset of the PHY by reading the PHY control register and
1564 *  setting/write the control register reset bit to the PHY.
1565 **/
1566s32 igb_phy_sw_reset(struct e1000_hw *hw)
1567{
1568        s32 ret_val = 0;
1569        u16 phy_ctrl;
1570
1571        if (!(hw->phy.ops.read_reg))
1572                goto out;
1573
1574        ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1575        if (ret_val)
1576                goto out;
1577
1578        phy_ctrl |= MII_CR_RESET;
1579        ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1580        if (ret_val)
1581                goto out;
1582
1583        udelay(1);
1584
1585out:
1586        return ret_val;
1587}
1588
1589/**
1590 *  igb_phy_hw_reset - PHY hardware reset
1591 *  @hw: pointer to the HW structure
1592 *
1593 *  Verify the reset block is not blocking us from resetting.  Acquire
1594 *  semaphore (if necessary) and read/set/write the device control reset
1595 *  bit in the PHY.  Wait the appropriate delay time for the device to
1596 *  reset and relase the semaphore (if necessary).
1597 **/
1598s32 igb_phy_hw_reset(struct e1000_hw *hw)
1599{
1600        struct e1000_phy_info *phy = &hw->phy;
1601        s32  ret_val;
1602        u32 ctrl;
1603
1604        ret_val = igb_check_reset_block(hw);
1605        if (ret_val) {
1606                ret_val = 0;
1607                goto out;
1608        }
1609
1610        ret_val = phy->ops.acquire(hw);
1611        if (ret_val)
1612                goto out;
1613
1614        ctrl = rd32(E1000_CTRL);
1615        wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
1616        wrfl();
1617
1618        udelay(phy->reset_delay_us);
1619
1620        wr32(E1000_CTRL, ctrl);
1621        wrfl();
1622
1623        udelay(150);
1624
1625        phy->ops.release(hw);
1626
1627        ret_val = phy->ops.get_cfg_done(hw);
1628
1629out:
1630        return ret_val;
1631}
1632
1633/**
1634 *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
1635 *  @hw: pointer to the HW structure
1636 *
1637 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
1638 **/
1639s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
1640{
1641        hw_dbg("Running IGP 3 PHY init script\n");
1642
1643        /* PHY init IGP 3 */
1644        /* Enable rise/fall, 10-mode work in class-A */
1645        hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
1646        /* Remove all caps from Replica path filter */
1647        hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
1648        /* Bias trimming for ADC, AFE and Driver (Default) */
1649        hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
1650        /* Increase Hybrid poly bias */
1651        hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
1652        /* Add 4% to TX amplitude in Giga mode */
1653        hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
1654        /* Disable trimming (TTT) */
1655        hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
1656        /* Poly DC correction to 94.6% + 2% for all channels */
1657        hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
1658        /* ABS DC correction to 95.9% */
1659        hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
1660        /* BG temp curve trim */
1661        hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
1662        /* Increasing ADC OPAMP stage 1 currents to max */
1663        hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
1664        /* Force 1000 ( required for enabling PHY regs configuration) */
1665        hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
1666        /* Set upd_freq to 6 */
1667        hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
1668        /* Disable NPDFE */
1669        hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
1670        /* Disable adaptive fixed FFE (Default) */
1671        hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
1672        /* Enable FFE hysteresis */
1673        hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
1674        /* Fixed FFE for short cable lengths */
1675        hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
1676        /* Fixed FFE for medium cable lengths */
1677        hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
1678        /* Fixed FFE for long cable lengths */
1679        hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
1680        /* Enable Adaptive Clip Threshold */
1681        hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
1682        /* AHT reset limit to 1 */
1683        hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
1684        /* Set AHT master delay to 127 msec */
1685        hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
1686        /* Set scan bits for AHT */
1687        hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
1688        /* Set AHT Preset bits */
1689        hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
1690        /* Change integ_factor of channel A to 3 */
1691        hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
1692        /* Change prop_factor of channels BCD to 8 */
1693        hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
1694        /* Change cg_icount + enable integbp for channels BCD */
1695        hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
1696        /*
1697         * Change cg_icount + enable integbp + change prop_factor_master
1698         * to 8 for channel A
1699         */
1700        hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
1701        /* Disable AHT in Slave mode on channel A */
1702        hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
1703        /*
1704         * Enable LPLU and disable AN to 1000 in non-D0a states,
1705         * Enable SPD+B2B
1706         */
1707        hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
1708        /* Enable restart AN on an1000_dis change */
1709        hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
1710        /* Enable wh_fifo read clock in 10/100 modes */
1711        hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
1712        /* Restart AN, Speed selection is 1000 */
1713        hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
1714
1715        return 0;
1716}
1717
1718