linux/drivers/net/irda/au1k_ir.c
<<
>>
Prefs
   1/*
   2 * Alchemy Semi Au1000 IrDA driver
   3 *
   4 * Copyright 2001 MontaVista Software Inc.
   5 * Author: MontaVista Software, Inc.
   6 *              ppopov@mvista.com or source@mvista.com
   7 *
   8 *  This program is free software; you can distribute it and/or modify it
   9 *  under the terms of the GNU General Public License (Version 2) as
  10 *  published by the Free Software Foundation.
  11 *
  12 *  This program is distributed in the hope it will be useful, but WITHOUT
  13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15 *  for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License along
  18 *  with this program; if not, write to the Free Software Foundation, Inc.,
  19 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  20 */
  21#include <linux/module.h>
  22#include <linux/types.h>
  23#include <linux/init.h>
  24#include <linux/errno.h>
  25#include <linux/netdevice.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/interrupt.h>
  29#include <linux/pm.h>
  30#include <linux/bitops.h>
  31
  32#include <asm/irq.h>
  33#include <asm/io.h>
  34#include <asm/au1000.h>
  35#if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
  36#include <asm/pb1000.h>
  37#elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
  38#include <asm/db1x00.h>
  39#else 
  40#error au1k_ir: unsupported board
  41#endif
  42
  43#include <net/irda/irda.h>
  44#include <net/irda/irmod.h>
  45#include <net/irda/wrapper.h>
  46#include <net/irda/irda_device.h>
  47#include "au1000_ircc.h"
  48
  49static int au1k_irda_net_init(struct net_device *);
  50static int au1k_irda_start(struct net_device *);
  51static int au1k_irda_stop(struct net_device *dev);
  52static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
  53static int au1k_irda_rx(struct net_device *);
  54static void au1k_irda_interrupt(int, void *);
  55static void au1k_tx_timeout(struct net_device *);
  56static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
  57static int au1k_irda_set_speed(struct net_device *dev, int speed);
  58
  59static void *dma_alloc(size_t, dma_addr_t *);
  60static void dma_free(void *, size_t);
  61
  62static int qos_mtt_bits = 0x07;  /* 1 ms or more */
  63static struct net_device *ir_devs[NUM_IR_IFF];
  64static char version[] __devinitdata =
  65    "au1k_ircc:1.2 ppopov@mvista.com\n";
  66
  67#define RUN_AT(x) (jiffies + (x))
  68
  69#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
  70static BCSR * const bcsr = (BCSR *)0xAE000000;
  71#endif
  72
  73static DEFINE_SPINLOCK(ir_lock);
  74
  75/*
  76 * IrDA peripheral bug. You have to read the register
  77 * twice to get the right value.
  78 */
  79u32 read_ir_reg(u32 addr) 
  80{ 
  81        readl(addr);
  82        return readl(addr);
  83}
  84
  85
  86/*
  87 * Buffer allocation/deallocation routines. The buffer descriptor returned
  88 * has the virtual and dma address of a buffer suitable for 
  89 * both, receive and transmit operations.
  90 */
  91static db_dest_t *GetFreeDB(struct au1k_private *aup)
  92{
  93        db_dest_t *pDB;
  94        pDB = aup->pDBfree;
  95
  96        if (pDB) {
  97                aup->pDBfree = pDB->pnext;
  98        }
  99        return pDB;
 100}
 101
 102static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
 103{
 104        db_dest_t *pDBfree = aup->pDBfree;
 105        if (pDBfree)
 106                pDBfree->pnext = pDB;
 107        aup->pDBfree = pDB;
 108}
 109
 110
 111/*
 112  DMA memory allocation, derived from pci_alloc_consistent.
 113  However, the Au1000 data cache is coherent (when programmed
 114  so), therefore we return KSEG0 address, not KSEG1.
 115*/
 116static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
 117{
 118        void *ret;
 119        int gfp = GFP_ATOMIC | GFP_DMA;
 120
 121        ret = (void *) __get_free_pages(gfp, get_order(size));
 122
 123        if (ret != NULL) {
 124                memset(ret, 0, size);
 125                *dma_handle = virt_to_bus(ret);
 126                ret = (void *)KSEG0ADDR(ret);
 127        }
 128        return ret;
 129}
 130
 131
 132static void dma_free(void *vaddr, size_t size)
 133{
 134        vaddr = (void *)KSEG0ADDR(vaddr);
 135        free_pages((unsigned long) vaddr, get_order(size));
 136}
 137
 138
 139static void 
 140setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
 141{
 142        int i;
 143        for (i=0; i<NUM_IR_DESC; i++) {
 144                aup->rx_ring[i] = (volatile ring_dest_t *) 
 145                        (rx_base + sizeof(ring_dest_t)*i);
 146        }
 147        for (i=0; i<NUM_IR_DESC; i++) {
 148                aup->tx_ring[i] = (volatile ring_dest_t *) 
 149                        (tx_base + sizeof(ring_dest_t)*i);
 150        }
 151}
 152
 153static int au1k_irda_init(void)
 154{
 155        static unsigned version_printed = 0;
 156        struct au1k_private *aup;
 157        struct net_device *dev;
 158        int err;
 159
 160        if (version_printed++ == 0) printk(version);
 161
 162        dev = alloc_irdadev(sizeof(struct au1k_private));
 163        if (!dev)
 164                return -ENOMEM;
 165
 166        dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
 167        err = au1k_irda_net_init(dev);
 168        if (err)
 169                goto out;
 170        err = register_netdev(dev);
 171        if (err)
 172                goto out1;
 173        ir_devs[0] = dev;
 174        printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
 175        return 0;
 176
 177out1:
 178        aup = netdev_priv(dev);
 179        dma_free((void *)aup->db[0].vaddr,
 180                MAX_BUF_SIZE * 2*NUM_IR_DESC);
 181        dma_free((void *)aup->rx_ring[0],
 182                2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
 183        kfree(aup->rx_buff.head);
 184out:
 185        free_netdev(dev);
 186        return err;
 187}
 188
 189static int au1k_irda_init_iobuf(iobuff_t *io, int size)
 190{
 191        io->head = kmalloc(size, GFP_KERNEL);
 192        if (io->head != NULL) {
 193                io->truesize = size;
 194                io->in_frame = FALSE;
 195                io->state    = OUTSIDE_FRAME;
 196                io->data     = io->head;
 197        }
 198        return io->head ? 0 : -ENOMEM;
 199}
 200
 201static const struct net_device_ops au1k_irda_netdev_ops = {
 202        .ndo_open               = au1k_irda_start,
 203        .ndo_stop               = au1k_irda_stop,
 204        .ndo_start_xmit         = au1k_irda_hard_xmit,
 205        .ndo_tx_timeout         = au1k_tx_timeout,
 206        .ndo_do_ioctl           = au1k_irda_ioctl,
 207};
 208
 209static int au1k_irda_net_init(struct net_device *dev)
 210{
 211        struct au1k_private *aup = netdev_priv(dev);
 212        int i, retval = 0, err;
 213        db_dest_t *pDB, *pDBfree;
 214        dma_addr_t temp;
 215
 216        err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
 217        if (err)
 218                goto out1;
 219
 220        dev->netdev_ops = &au1k_irda_netdev_ops;
 221
 222        irda_init_max_qos_capabilies(&aup->qos);
 223
 224        /* The only value we must override it the baudrate */
 225        aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
 226                IR_115200|IR_576000 |(IR_4000000 << 8);
 227        
 228        aup->qos.min_turn_time.bits = qos_mtt_bits;
 229        irda_qos_bits_to_value(&aup->qos);
 230
 231        retval = -ENOMEM;
 232
 233        /* Tx ring follows rx ring + 512 bytes */
 234        /* we need a 1k aligned buffer */
 235        aup->rx_ring[0] = (ring_dest_t *)
 236                dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
 237        if (!aup->rx_ring[0])
 238                goto out2;
 239
 240        /* allocate the data buffers */
 241        aup->db[0].vaddr = 
 242                (void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
 243        if (!aup->db[0].vaddr)
 244                goto out3;
 245
 246        setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
 247
 248        pDBfree = NULL;
 249        pDB = aup->db;
 250        for (i=0; i<(2*NUM_IR_DESC); i++) {
 251                pDB->pnext = pDBfree;
 252                pDBfree = pDB;
 253                pDB->vaddr = 
 254                        (u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
 255                pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
 256                pDB++;
 257        }
 258        aup->pDBfree = pDBfree;
 259
 260        /* attach a data buffer to each descriptor */
 261        for (i=0; i<NUM_IR_DESC; i++) {
 262                pDB = GetFreeDB(aup);
 263                if (!pDB) goto out;
 264                aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
 265                aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
 266                aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
 267                aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
 268                aup->rx_db_inuse[i] = pDB;
 269        }
 270        for (i=0; i<NUM_IR_DESC; i++) {
 271                pDB = GetFreeDB(aup);
 272                if (!pDB) goto out;
 273                aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
 274                aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
 275                aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
 276                aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
 277                aup->tx_ring[i]->count_0 = 0;
 278                aup->tx_ring[i]->count_1 = 0;
 279                aup->tx_ring[i]->flags = 0;
 280                aup->tx_db_inuse[i] = pDB;
 281        }
 282
 283#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
 284        /* power on */
 285        bcsr->resets &= ~BCSR_RESETS_IRDA_MODE_MASK;
 286        bcsr->resets |= BCSR_RESETS_IRDA_MODE_FULL;
 287        au_sync();
 288#endif
 289
 290        return 0;
 291
 292out3:
 293        dma_free((void *)aup->rx_ring[0],
 294                2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
 295out2:
 296        kfree(aup->rx_buff.head);
 297out1:
 298        printk(KERN_ERR "au1k_init_module failed.  Returns %d\n", retval);
 299        return retval;
 300}
 301
 302
 303static int au1k_init(struct net_device *dev)
 304{
 305        struct au1k_private *aup = netdev_priv(dev);
 306        int i;
 307        u32 control;
 308        u32 ring_address;
 309
 310        /* bring the device out of reset */
 311        control = 0xe; /* coherent, clock enable, one half system clock */
 312                          
 313#ifndef CONFIG_CPU_LITTLE_ENDIAN
 314        control |= 1;
 315#endif
 316        aup->tx_head = 0;
 317        aup->tx_tail = 0;
 318        aup->rx_head = 0;
 319
 320        for (i=0; i<NUM_IR_DESC; i++) {
 321                aup->rx_ring[i]->flags = AU_OWN;
 322        }
 323
 324        writel(control, IR_INTERFACE_CONFIG);
 325        au_sync_delay(10);
 326
 327        writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
 328        au_sync_delay(1);
 329
 330        writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
 331
 332        ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
 333        writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
 334        writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
 335
 336        writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
 337
 338        writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
 339        writel(0, IR_RING_ADDR_CMPR);
 340
 341        au1k_irda_set_speed(dev, 9600);
 342        return 0;
 343}
 344
 345static int au1k_irda_start(struct net_device *dev)
 346{
 347        int retval;
 348        char hwname[32];
 349        struct au1k_private *aup = netdev_priv(dev);
 350
 351        if ((retval = au1k_init(dev))) {
 352                printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
 353                return retval;
 354        }
 355
 356        if ((retval = request_irq(AU1000_IRDA_TX_INT, &au1k_irda_interrupt, 
 357                                        0, dev->name, dev))) {
 358                printk(KERN_ERR "%s: unable to get IRQ %d\n", 
 359                                dev->name, dev->irq);
 360                return retval;
 361        }
 362        if ((retval = request_irq(AU1000_IRDA_RX_INT, &au1k_irda_interrupt, 
 363                                        0, dev->name, dev))) {
 364                free_irq(AU1000_IRDA_TX_INT, dev);
 365                printk(KERN_ERR "%s: unable to get IRQ %d\n", 
 366                                dev->name, dev->irq);
 367                return retval;
 368        }
 369
 370        /* Give self a hardware name */
 371        sprintf(hwname, "Au1000 SIR/FIR");
 372        aup->irlap = irlap_open(dev, &aup->qos, hwname);
 373        netif_start_queue(dev);
 374
 375        writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
 376
 377        aup->timer.expires = RUN_AT((3*HZ)); 
 378        aup->timer.data = (unsigned long)dev;
 379        return 0;
 380}
 381
 382static int au1k_irda_stop(struct net_device *dev)
 383{
 384        struct au1k_private *aup = netdev_priv(dev);
 385
 386        /* disable interrupts */
 387        writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
 388        writel(0, IR_CONFIG_1); 
 389        writel(0, IR_INTERFACE_CONFIG); /* disable clock */
 390        au_sync();
 391
 392        if (aup->irlap) {
 393                irlap_close(aup->irlap);
 394                aup->irlap = NULL;
 395        }
 396
 397        netif_stop_queue(dev);
 398        del_timer(&aup->timer);
 399
 400        /* disable the interrupt */
 401        free_irq(AU1000_IRDA_TX_INT, dev);
 402        free_irq(AU1000_IRDA_RX_INT, dev);
 403        return 0;
 404}
 405
 406static void __exit au1k_irda_exit(void)
 407{
 408        struct net_device *dev = ir_devs[0];
 409        struct au1k_private *aup = netdev_priv(dev);
 410
 411        unregister_netdev(dev);
 412
 413        dma_free((void *)aup->db[0].vaddr,
 414                MAX_BUF_SIZE * 2*NUM_IR_DESC);
 415        dma_free((void *)aup->rx_ring[0],
 416                2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
 417        kfree(aup->rx_buff.head);
 418        free_netdev(dev);
 419}
 420
 421
 422static inline void 
 423update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
 424{
 425        struct au1k_private *aup = netdev_priv(dev);
 426        struct net_device_stats *ps = &aup->stats;
 427
 428        ps->tx_packets++;
 429        ps->tx_bytes += pkt_len;
 430
 431        if (status & IR_TX_ERROR) {
 432                ps->tx_errors++;
 433                ps->tx_aborted_errors++;
 434        }
 435}
 436
 437
 438static void au1k_tx_ack(struct net_device *dev)
 439{
 440        struct au1k_private *aup = netdev_priv(dev);
 441        volatile ring_dest_t *ptxd;
 442
 443        ptxd = aup->tx_ring[aup->tx_tail];
 444        while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
 445                update_tx_stats(dev, ptxd->flags, 
 446                                ptxd->count_1<<8 | ptxd->count_0);
 447                ptxd->count_0 = 0;
 448                ptxd->count_1 = 0;
 449                au_sync();
 450
 451                aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
 452                ptxd = aup->tx_ring[aup->tx_tail];
 453
 454                if (aup->tx_full) {
 455                        aup->tx_full = 0;
 456                        netif_wake_queue(dev);
 457                }
 458        }
 459
 460        if (aup->tx_tail == aup->tx_head) {
 461                if (aup->newspeed) {
 462                        au1k_irda_set_speed(dev, aup->newspeed);
 463                        aup->newspeed = 0;
 464                }
 465                else {
 466                        writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE, 
 467                                        IR_CONFIG_1); 
 468                        au_sync();
 469                        writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE, 
 470                                        IR_CONFIG_1); 
 471                        writel(0, IR_RING_PROMPT);
 472                        au_sync();
 473                }
 474        }
 475}
 476
 477
 478/*
 479 * Au1000 transmit routine.
 480 */
 481static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
 482{
 483        struct au1k_private *aup = netdev_priv(dev);
 484        int speed = irda_get_next_speed(skb);
 485        volatile ring_dest_t *ptxd;
 486        u32 len;
 487
 488        u32 flags;
 489        db_dest_t *pDB;
 490
 491        if (speed != aup->speed && speed != -1) {
 492                aup->newspeed = speed;
 493        }
 494
 495        if ((skb->len == 0) && (aup->newspeed)) {
 496                if (aup->tx_tail == aup->tx_head) {
 497                        au1k_irda_set_speed(dev, speed);
 498                        aup->newspeed = 0;
 499                }
 500                dev_kfree_skb(skb);
 501                return NETDEV_TX_OK;
 502        }
 503
 504        ptxd = aup->tx_ring[aup->tx_head];
 505        flags = ptxd->flags;
 506
 507        if (flags & AU_OWN) {
 508                printk(KERN_DEBUG "%s: tx_full\n", dev->name);
 509                netif_stop_queue(dev);
 510                aup->tx_full = 1;
 511                return NETDEV_TX_BUSY;
 512        }
 513        else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
 514                printk(KERN_DEBUG "%s: tx_full\n", dev->name);
 515                netif_stop_queue(dev);
 516                aup->tx_full = 1;
 517                return NETDEV_TX_BUSY;
 518        }
 519
 520        pDB = aup->tx_db_inuse[aup->tx_head];
 521
 522#if 0
 523        if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
 524                printk("tx warning: rx byte cnt %x\n", 
 525                                read_ir_reg(IR_RX_BYTE_CNT));
 526        }
 527#endif
 528        
 529        if (aup->speed == 4000000) {
 530                /* FIR */
 531                skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
 532                ptxd->count_0 = skb->len & 0xff;
 533                ptxd->count_1 = (skb->len >> 8) & 0xff;
 534
 535        }
 536        else {
 537                /* SIR */
 538                len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
 539                ptxd->count_0 = len & 0xff;
 540                ptxd->count_1 = (len >> 8) & 0xff;
 541                ptxd->flags |= IR_DIS_CRC;
 542                au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
 543        }
 544        ptxd->flags |= AU_OWN;
 545        au_sync();
 546
 547        writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1); 
 548        writel(0, IR_RING_PROMPT);
 549        au_sync();
 550
 551        dev_kfree_skb(skb);
 552        aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
 553        dev->trans_start = jiffies;
 554        return NETDEV_TX_OK;
 555}
 556
 557
 558static inline void 
 559update_rx_stats(struct net_device *dev, u32 status, u32 count)
 560{
 561        struct au1k_private *aup = netdev_priv(dev);
 562        struct net_device_stats *ps = &aup->stats;
 563
 564        ps->rx_packets++;
 565
 566        if (status & IR_RX_ERROR) {
 567                ps->rx_errors++;
 568                if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
 569                        ps->rx_missed_errors++;
 570                if (status & IR_MAX_LEN)
 571                        ps->rx_length_errors++;
 572                if (status & IR_CRC_ERROR)
 573                        ps->rx_crc_errors++;
 574        }
 575        else 
 576                ps->rx_bytes += count;
 577}
 578
 579/*
 580 * Au1000 receive routine.
 581 */
 582static int au1k_irda_rx(struct net_device *dev)
 583{
 584        struct au1k_private *aup = netdev_priv(dev);
 585        struct sk_buff *skb;
 586        volatile ring_dest_t *prxd;
 587        u32 flags, count;
 588        db_dest_t *pDB;
 589
 590        prxd = aup->rx_ring[aup->rx_head];
 591        flags = prxd->flags;
 592
 593        while (!(flags & AU_OWN))  {
 594                pDB = aup->rx_db_inuse[aup->rx_head];
 595                count = prxd->count_1<<8 | prxd->count_0;
 596                if (!(flags & IR_RX_ERROR))  {
 597                        /* good frame */
 598                        update_rx_stats(dev, flags, count);
 599                        skb=alloc_skb(count+1,GFP_ATOMIC);
 600                        if (skb == NULL) {
 601                                aup->netdev->stats.rx_dropped++;
 602                                continue;
 603                        }
 604                        skb_reserve(skb, 1);
 605                        if (aup->speed == 4000000)
 606                                skb_put(skb, count);
 607                        else
 608                                skb_put(skb, count-2);
 609                        skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
 610                        skb->dev = dev;
 611                        skb_reset_mac_header(skb);
 612                        skb->protocol = htons(ETH_P_IRDA);
 613                        netif_rx(skb);
 614                        prxd->count_0 = 0;
 615                        prxd->count_1 = 0;
 616                }
 617                prxd->flags |= AU_OWN;
 618                aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
 619                writel(0, IR_RING_PROMPT);
 620                au_sync();
 621
 622                /* next descriptor */
 623                prxd = aup->rx_ring[aup->rx_head];
 624                flags = prxd->flags;
 625
 626        }
 627        return 0;
 628}
 629
 630
 631static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
 632{
 633        struct net_device *dev = dev_id;
 634
 635        writel(0, IR_INT_CLEAR); /* ack irda interrupts */
 636
 637        au1k_irda_rx(dev);
 638        au1k_tx_ack(dev);
 639
 640        return IRQ_HANDLED;
 641}
 642
 643
 644/*
 645 * The Tx ring has been full longer than the watchdog timeout
 646 * value. The transmitter must be hung?
 647 */
 648static void au1k_tx_timeout(struct net_device *dev)
 649{
 650        u32 speed;
 651        struct au1k_private *aup = netdev_priv(dev);
 652
 653        printk(KERN_ERR "%s: tx timeout\n", dev->name);
 654        speed = aup->speed;
 655        aup->speed = 0;
 656        au1k_irda_set_speed(dev, speed);
 657        aup->tx_full = 0;
 658        netif_wake_queue(dev);
 659}
 660
 661
 662/*
 663 * Set the IrDA communications speed.
 664 */
 665static int 
 666au1k_irda_set_speed(struct net_device *dev, int speed)
 667{
 668        unsigned long flags;
 669        struct au1k_private *aup = netdev_priv(dev);
 670        u32 control;
 671        int ret = 0, timeout = 10, i;
 672        volatile ring_dest_t *ptxd;
 673#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
 674        unsigned long irda_resets;
 675#endif
 676
 677        if (speed == aup->speed)
 678                return ret;
 679
 680        spin_lock_irqsave(&ir_lock, flags);
 681
 682        /* disable PHY first */
 683        writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
 684
 685        /* disable RX/TX */
 686        writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE), 
 687                        IR_CONFIG_1);
 688        au_sync_delay(1);
 689        while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
 690                mdelay(1);
 691                if (!timeout--) {
 692                        printk(KERN_ERR "%s: rx/tx disable timeout\n",
 693                                        dev->name);
 694                        break;
 695                }
 696        }
 697
 698        /* disable DMA */
 699        writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
 700        au_sync_delay(1);
 701
 702        /* 
 703         *  After we disable tx/rx. the index pointers
 704         * go back to zero.
 705         */
 706        aup->tx_head = aup->tx_tail = aup->rx_head = 0;
 707        for (i=0; i<NUM_IR_DESC; i++) {
 708                ptxd = aup->tx_ring[i];
 709                ptxd->flags = 0;
 710                ptxd->count_0 = 0;
 711                ptxd->count_1 = 0;
 712        }
 713
 714        for (i=0; i<NUM_IR_DESC; i++) {
 715                ptxd = aup->rx_ring[i];
 716                ptxd->count_0 = 0;
 717                ptxd->count_1 = 0;
 718                ptxd->flags = AU_OWN;
 719        }
 720
 721        if (speed == 4000000) {
 722#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
 723                bcsr->resets |= BCSR_RESETS_FIR_SEL;
 724#else /* Pb1000 and Pb1100 */
 725                writel(1<<13, CPLD_AUX1);
 726#endif
 727        }
 728        else {
 729#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
 730                bcsr->resets &= ~BCSR_RESETS_FIR_SEL;
 731#else /* Pb1000 and Pb1100 */
 732                writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
 733#endif
 734        }
 735
 736        switch (speed) {
 737        case 9600:      
 738                writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
 739                writel(IR_SIR_MODE, IR_CONFIG_1); 
 740                break;
 741        case 19200:     
 742                writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
 743                writel(IR_SIR_MODE, IR_CONFIG_1); 
 744                break;
 745        case 38400:
 746                writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
 747                writel(IR_SIR_MODE, IR_CONFIG_1); 
 748                break;
 749        case 57600:     
 750                writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
 751                writel(IR_SIR_MODE, IR_CONFIG_1); 
 752                break;
 753        case 115200: 
 754                writel(12<<5, IR_WRITE_PHY_CONFIG); 
 755                writel(IR_SIR_MODE, IR_CONFIG_1); 
 756                break;
 757        case 4000000:
 758                writel(0xF, IR_WRITE_PHY_CONFIG);
 759                writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1); 
 760                break;
 761        default:
 762                printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
 763                ret = -EINVAL;
 764                break;
 765        }
 766
 767        aup->speed = speed;
 768        writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
 769        au_sync();
 770
 771        control = read_ir_reg(IR_ENABLE);
 772        writel(0, IR_RING_PROMPT);
 773        au_sync();
 774
 775        if (control & (1<<14)) {
 776                printk(KERN_ERR "%s: configuration error\n", dev->name);
 777        }
 778        else {
 779                if (control & (1<<11))
 780                        printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
 781                if (control & (1<<12))
 782                        printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
 783                if (control & (1<<13))
 784                        printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
 785                if (control & (1<<10))
 786                        printk(KERN_DEBUG "%s TX enabled\n", dev->name);
 787                if (control & (1<<9))
 788                        printk(KERN_DEBUG "%s RX enabled\n", dev->name);
 789        }
 790
 791        spin_unlock_irqrestore(&ir_lock, flags);
 792        return ret;
 793}
 794
 795static int 
 796au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
 797{
 798        struct if_irda_req *rq = (struct if_irda_req *)ifreq;
 799        struct au1k_private *aup = netdev_priv(dev);
 800        int ret = -EOPNOTSUPP;
 801
 802        switch (cmd) {
 803        case SIOCSBANDWIDTH:
 804                if (capable(CAP_NET_ADMIN)) {
 805                        /*
 806                         * We are unable to set the speed if the
 807                         * device is not running.
 808                         */
 809                        if (aup->open)
 810                                ret = au1k_irda_set_speed(dev,
 811                                                rq->ifr_baudrate);
 812                        else {
 813                                printk(KERN_ERR "%s ioctl: !netif_running\n",
 814                                                dev->name);
 815                                ret = 0;
 816                        }
 817                }
 818                break;
 819
 820        case SIOCSMEDIABUSY:
 821                ret = -EPERM;
 822                if (capable(CAP_NET_ADMIN)) {
 823                        irda_device_set_media_busy(dev, TRUE);
 824                        ret = 0;
 825                }
 826                break;
 827
 828        case SIOCGRECEIVING:
 829                rq->ifr_receiving = 0;
 830                break;
 831        default:
 832                break;
 833        }
 834        return ret;
 835}
 836
 837MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
 838MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
 839
 840module_init(au1k_irda_init);
 841module_exit(au1k_irda_exit);
 842