linux/drivers/net/ks8851.c
<<
>>
Prefs
   1/* drivers/net/ks8651.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *      http://www.simtec.co.uk/
   5 *      Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define DEBUG
  13
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/cache.h>
  20#include <linux/crc32.h>
  21#include <linux/mii.h>
  22
  23#include <linux/spi/spi.h>
  24
  25#include "ks8851.h"
  26
  27/**
  28 * struct ks8851_rxctrl - KS8851 driver rx control
  29 * @mchash: Multicast hash-table data.
  30 * @rxcr1: KS_RXCR1 register setting
  31 * @rxcr2: KS_RXCR2 register setting
  32 *
  33 * Representation of the settings needs to control the receive filtering
  34 * such as the multicast hash-filter and the receive register settings. This
  35 * is used to make the job of working out if the receive settings change and
  36 * then issuing the new settings to the worker that will send the necessary
  37 * commands.
  38 */
  39struct ks8851_rxctrl {
  40        u16     mchash[4];
  41        u16     rxcr1;
  42        u16     rxcr2;
  43};
  44
  45/**
  46 * union ks8851_tx_hdr - tx header data
  47 * @txb: The header as bytes
  48 * @txw: The header as 16bit, little-endian words
  49 *
  50 * A dual representation of the tx header data to allow
  51 * access to individual bytes, and to allow 16bit accesses
  52 * with 16bit alignment.
  53 */
  54union ks8851_tx_hdr {
  55        u8      txb[6];
  56        __le16  txw[3];
  57};
  58
  59/**
  60 * struct ks8851_net - KS8851 driver private data
  61 * @netdev: The network device we're bound to
  62 * @spidev: The spi device we're bound to.
  63 * @lock: Lock to ensure that the device is not accessed when busy.
  64 * @statelock: Lock on this structure for tx list.
  65 * @mii: The MII state information for the mii calls.
  66 * @rxctrl: RX settings for @rxctrl_work.
  67 * @tx_work: Work queue for tx packets
  68 * @irq_work: Work queue for servicing interrupts
  69 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  70 * @txq: Queue of packets for transmission.
  71 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  72 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  73 * @txh: Space for generating packet TX header in DMA-able data
  74 * @rxd: Space for receiving SPI data, in DMA-able space.
  75 * @txd: Space for transmitting SPI data, in DMA-able space.
  76 * @msg_enable: The message flags controlling driver output (see ethtool).
  77 * @fid: Incrementing frame id tag.
  78 * @rc_ier: Cached copy of KS_IER.
  79 * @rc_rxqcr: Cached copy of KS_RXQCR.
  80 *
  81 * The @lock ensures that the chip is protected when certain operations are
  82 * in progress. When the read or write packet transfer is in progress, most
  83 * of the chip registers are not ccessible until the transfer is finished and
  84 * the DMA has been de-asserted.
  85 *
  86 * The @statelock is used to protect information in the structure which may
  87 * need to be accessed via several sources, such as the network driver layer
  88 * or one of the work queues.
  89 *
  90 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
  91 * wants to DMA map them, it will not have any problems with data the driver
  92 * modifies.
  93 */
  94struct ks8851_net {
  95        struct net_device       *netdev;
  96        struct spi_device       *spidev;
  97        struct mutex            lock;
  98        spinlock_t              statelock;
  99
 100        union ks8851_tx_hdr     txh ____cacheline_aligned;
 101        u8                      rxd[8];
 102        u8                      txd[8];
 103
 104        u32                     msg_enable ____cacheline_aligned;
 105        u16                     tx_space;
 106        u8                      fid;
 107
 108        u16                     rc_ier;
 109        u16                     rc_rxqcr;
 110
 111        struct mii_if_info      mii;
 112        struct ks8851_rxctrl    rxctrl;
 113
 114        struct work_struct      tx_work;
 115        struct work_struct      irq_work;
 116        struct work_struct      rxctrl_work;
 117
 118        struct sk_buff_head     txq;
 119
 120        struct spi_message      spi_msg1;
 121        struct spi_message      spi_msg2;
 122        struct spi_transfer     spi_xfer1;
 123        struct spi_transfer     spi_xfer2[2];
 124};
 125
 126static int msg_enable;
 127
 128#define ks_info(_ks, _msg...) dev_info(&(_ks)->spidev->dev, _msg)
 129#define ks_warn(_ks, _msg...) dev_warn(&(_ks)->spidev->dev, _msg)
 130#define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->spidev->dev, _msg)
 131#define ks_err(_ks, _msg...) dev_err(&(_ks)->spidev->dev, _msg)
 132
 133/* shift for byte-enable data */
 134#define BYTE_EN(_x)     ((_x) << 2)
 135
 136/* turn register number and byte-enable mask into data for start of packet */
 137#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 138
 139/* SPI register read/write calls.
 140 *
 141 * All these calls issue SPI transactions to access the chip's registers. They
 142 * all require that the necessary lock is held to prevent accesses when the
 143 * chip is busy transfering packet data (RX/TX FIFO accesses).
 144 */
 145
 146/**
 147 * ks8851_wrreg16 - write 16bit register value to chip
 148 * @ks: The chip state
 149 * @reg: The register address
 150 * @val: The value to write
 151 *
 152 * Issue a write to put the value @val into the register specified in @reg.
 153 */
 154static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 155{
 156        struct spi_transfer *xfer = &ks->spi_xfer1;
 157        struct spi_message *msg = &ks->spi_msg1;
 158        __le16 txb[2];
 159        int ret;
 160
 161        txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 162        txb[1] = cpu_to_le16(val);
 163
 164        xfer->tx_buf = txb;
 165        xfer->rx_buf = NULL;
 166        xfer->len = 4;
 167
 168        ret = spi_sync(ks->spidev, msg);
 169        if (ret < 0)
 170                ks_err(ks, "spi_sync() failed\n");
 171}
 172
 173/**
 174 * ks8851_wrreg8 - write 8bit register value to chip
 175 * @ks: The chip state
 176 * @reg: The register address
 177 * @val: The value to write
 178 *
 179 * Issue a write to put the value @val into the register specified in @reg.
 180 */
 181static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 182{
 183        struct spi_transfer *xfer = &ks->spi_xfer1;
 184        struct spi_message *msg = &ks->spi_msg1;
 185        __le16 txb[2];
 186        int ret;
 187        int bit;
 188
 189        bit = 1 << (reg & 3);
 190
 191        txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 192        txb[1] = val;
 193
 194        xfer->tx_buf = txb;
 195        xfer->rx_buf = NULL;
 196        xfer->len = 3;
 197
 198        ret = spi_sync(ks->spidev, msg);
 199        if (ret < 0)
 200                ks_err(ks, "spi_sync() failed\n");
 201}
 202
 203/**
 204 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 205 * @ks: The device structure
 206 *
 207 * Return whether to generate a single message with a tx and rx buffer
 208 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 209 * as separate messages.
 210 *
 211 * Depending on the hardware in use, a single message may be more efficient
 212 * on interrupts or work done by the driver.
 213 *
 214 * This currently always returns true until we add some per-device data passed
 215 * from the platform code to specify which mode is better.
 216 */
 217static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
 218{
 219        return true;
 220}
 221
 222/**
 223 * ks8851_rdreg - issue read register command and return the data
 224 * @ks: The device state
 225 * @op: The register address and byte enables in message format.
 226 * @rxb: The RX buffer to return the result into
 227 * @rxl: The length of data expected.
 228 *
 229 * This is the low level read call that issues the necessary spi message(s)
 230 * to read data from the register specified in @op.
 231 */
 232static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 233                         u8 *rxb, unsigned rxl)
 234{
 235        struct spi_transfer *xfer;
 236        struct spi_message *msg;
 237        __le16 *txb = (__le16 *)ks->txd;
 238        u8 *trx = ks->rxd;
 239        int ret;
 240
 241        txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 242
 243        if (ks8851_rx_1msg(ks)) {
 244                msg = &ks->spi_msg1;
 245                xfer = &ks->spi_xfer1;
 246
 247                xfer->tx_buf = txb;
 248                xfer->rx_buf = trx;
 249                xfer->len = rxl + 2;
 250        } else {
 251                msg = &ks->spi_msg2;
 252                xfer = ks->spi_xfer2;
 253
 254                xfer->tx_buf = txb;
 255                xfer->rx_buf = NULL;
 256                xfer->len = 2;
 257
 258                xfer++;
 259                xfer->tx_buf = NULL;
 260                xfer->rx_buf = trx;
 261                xfer->len = rxl;
 262        }
 263
 264        ret = spi_sync(ks->spidev, msg);
 265        if (ret < 0)
 266                ks_err(ks, "read: spi_sync() failed\n");
 267        else if (ks8851_rx_1msg(ks))
 268                memcpy(rxb, trx + 2, rxl);
 269        else
 270                memcpy(rxb, trx, rxl);
 271}
 272
 273/**
 274 * ks8851_rdreg8 - read 8 bit register from device
 275 * @ks: The chip information
 276 * @reg: The register address
 277 *
 278 * Read a 8bit register from the chip, returning the result
 279*/
 280static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 281{
 282        u8 rxb[1];
 283
 284        ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 285        return rxb[0];
 286}
 287
 288/**
 289 * ks8851_rdreg16 - read 16 bit register from device
 290 * @ks: The chip information
 291 * @reg: The register address
 292 *
 293 * Read a 16bit register from the chip, returning the result
 294*/
 295static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 296{
 297        __le16 rx = 0;
 298
 299        ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 300        return le16_to_cpu(rx);
 301}
 302
 303/**
 304 * ks8851_rdreg32 - read 32 bit register from device
 305 * @ks: The chip information
 306 * @reg: The register address
 307 *
 308 * Read a 32bit register from the chip.
 309 *
 310 * Note, this read requires the address be aligned to 4 bytes.
 311*/
 312static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 313{
 314        __le32 rx = 0;
 315
 316        WARN_ON(reg & 3);
 317
 318        ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 319        return le32_to_cpu(rx);
 320}
 321
 322/**
 323 * ks8851_soft_reset - issue one of the soft reset to the device
 324 * @ks: The device state.
 325 * @op: The bit(s) to set in the GRR
 326 *
 327 * Issue the relevant soft-reset command to the device's GRR register
 328 * specified by @op.
 329 *
 330 * Note, the delays are in there as a caution to ensure that the reset
 331 * has time to take effect and then complete. Since the datasheet does
 332 * not currently specify the exact sequence, we have chosen something
 333 * that seems to work with our device.
 334 */
 335static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 336{
 337        ks8851_wrreg16(ks, KS_GRR, op);
 338        mdelay(1);      /* wait a short time to effect reset */
 339        ks8851_wrreg16(ks, KS_GRR, 0);
 340        mdelay(1);      /* wait for condition to clear */
 341}
 342
 343/**
 344 * ks8851_write_mac_addr - write mac address to device registers
 345 * @dev: The network device
 346 *
 347 * Update the KS8851 MAC address registers from the address in @dev.
 348 *
 349 * This call assumes that the chip is not running, so there is no need to
 350 * shutdown the RXQ process whilst setting this.
 351*/
 352static int ks8851_write_mac_addr(struct net_device *dev)
 353{
 354        struct ks8851_net *ks = netdev_priv(dev);
 355        int i;
 356
 357        mutex_lock(&ks->lock);
 358
 359        for (i = 0; i < ETH_ALEN; i++)
 360                ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 361
 362        mutex_unlock(&ks->lock);
 363
 364        return 0;
 365}
 366
 367/**
 368 * ks8851_init_mac - initialise the mac address
 369 * @ks: The device structure
 370 *
 371 * Get or create the initial mac address for the device and then set that
 372 * into the station address register. Currently we assume that the device
 373 * does not have a valid mac address in it, and so we use random_ether_addr()
 374 * to create a new one.
 375 *
 376 * In future, the driver should check to see if the device has an EEPROM
 377 * attached and whether that has a valid ethernet address in it.
 378 */
 379static void ks8851_init_mac(struct ks8851_net *ks)
 380{
 381        struct net_device *dev = ks->netdev;
 382
 383        random_ether_addr(dev->dev_addr);
 384        ks8851_write_mac_addr(dev);
 385}
 386
 387/**
 388 * ks8851_irq - device interrupt handler
 389 * @irq: Interrupt number passed from the IRQ hnalder.
 390 * @pw: The private word passed to register_irq(), our struct ks8851_net.
 391 *
 392 * Disable the interrupt from happening again until we've processed the
 393 * current status by scheduling ks8851_irq_work().
 394 */
 395static irqreturn_t ks8851_irq(int irq, void *pw)
 396{
 397        struct ks8851_net *ks = pw;
 398
 399        disable_irq_nosync(irq);
 400        schedule_work(&ks->irq_work);
 401        return IRQ_HANDLED;
 402}
 403
 404/**
 405 * ks8851_rdfifo - read data from the receive fifo
 406 * @ks: The device state.
 407 * @buff: The buffer address
 408 * @len: The length of the data to read
 409 *
 410 * Issue an RXQ FIFO read command and read the @len ammount of data from
 411 * the FIFO into the buffer specified by @buff.
 412 */
 413static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 414{
 415        struct spi_transfer *xfer = ks->spi_xfer2;
 416        struct spi_message *msg = &ks->spi_msg2;
 417        u8 txb[1];
 418        int ret;
 419
 420        if (netif_msg_rx_status(ks))
 421                ks_dbg(ks, "%s: %d@%p\n", __func__, len, buff);
 422
 423        /* set the operation we're issuing */
 424        txb[0] = KS_SPIOP_RXFIFO;
 425
 426        xfer->tx_buf = txb;
 427        xfer->rx_buf = NULL;
 428        xfer->len = 1;
 429
 430        xfer++;
 431        xfer->rx_buf = buff;
 432        xfer->tx_buf = NULL;
 433        xfer->len = len;
 434
 435        ret = spi_sync(ks->spidev, msg);
 436        if (ret < 0)
 437                ks_err(ks, "%s: spi_sync() failed\n", __func__);
 438}
 439
 440/**
 441 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 442 * @ks: The device state
 443 * @rxpkt: The data for the received packet
 444 *
 445 * Dump the initial data from the packet to dev_dbg().
 446*/
 447static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 448{
 449        ks_dbg(ks, "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 450               rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 451               rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 452               rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 453}
 454
 455/**
 456 * ks8851_rx_pkts - receive packets from the host
 457 * @ks: The device information.
 458 *
 459 * This is called from the IRQ work queue when the system detects that there
 460 * are packets in the receive queue. Find out how many packets there are and
 461 * read them from the FIFO.
 462 */
 463static void ks8851_rx_pkts(struct ks8851_net *ks)
 464{
 465        struct sk_buff *skb;
 466        unsigned rxfc;
 467        unsigned rxlen;
 468        unsigned rxstat;
 469        u32 rxh;
 470        u8 *rxpkt;
 471
 472        rxfc = ks8851_rdreg8(ks, KS_RXFC);
 473
 474        if (netif_msg_rx_status(ks))
 475                ks_dbg(ks, "%s: %d packets\n", __func__, rxfc);
 476
 477        /* Currently we're issuing a read per packet, but we could possibly
 478         * improve the code by issuing a single read, getting the receive
 479         * header, allocating the packet and then reading the packet data
 480         * out in one go.
 481         *
 482         * This form of operation would require us to hold the SPI bus'
 483         * chipselect low during the entie transaction to avoid any
 484         * reset to the data stream comming from the chip.
 485         */
 486
 487        for (; rxfc != 0; rxfc--) {
 488                rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 489                rxstat = rxh & 0xffff;
 490                rxlen = rxh >> 16;
 491
 492                if (netif_msg_rx_status(ks))
 493                        ks_dbg(ks, "rx: stat 0x%04x, len 0x%04x\n",
 494                                rxstat, rxlen);
 495
 496                /* the length of the packet includes the 32bit CRC */
 497
 498                /* set dma read address */
 499                ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 500
 501                /* start the packet dma process, and set auto-dequeue rx */
 502                ks8851_wrreg16(ks, KS_RXQCR,
 503                               ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 504
 505                if (rxlen > 0) {
 506                        skb = netdev_alloc_skb(ks->netdev, rxlen + 2 + 8);
 507                        if (!skb) {
 508                                /* todo - dump frame and move on */
 509                        }
 510
 511                        /* two bytes to ensure ip is aligned, and four bytes
 512                         * for the status header and 4 bytes of garbage */
 513                        skb_reserve(skb, 2 + 4 + 4);
 514
 515                        rxpkt = skb_put(skb, rxlen - 4) - 8;
 516
 517                        /* align the packet length to 4 bytes, and add 4 bytes
 518                         * as we're getting the rx status header as well */
 519                        ks8851_rdfifo(ks, rxpkt, ALIGN(rxlen, 4) + 8);
 520
 521                        if (netif_msg_pktdata(ks))
 522                                ks8851_dbg_dumpkkt(ks, rxpkt);
 523
 524                        skb->protocol = eth_type_trans(skb, ks->netdev);
 525                        netif_rx(skb);
 526
 527                        ks->netdev->stats.rx_packets++;
 528                        ks->netdev->stats.rx_bytes += rxlen - 4;
 529                }
 530
 531                ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 532        }
 533}
 534
 535/**
 536 * ks8851_irq_work - work queue handler for dealing with interrupt requests
 537 * @work: The work structure that was scheduled by schedule_work()
 538 *
 539 * This is the handler invoked when the ks8851_irq() is called to find out
 540 * what happened, as we cannot allow ourselves to sleep whilst waiting for
 541 * anything other process has the chip's lock.
 542 *
 543 * Read the interrupt status, work out what needs to be done and then clear
 544 * any of the interrupts that are not needed.
 545 */
 546static void ks8851_irq_work(struct work_struct *work)
 547{
 548        struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
 549        unsigned status;
 550        unsigned handled = 0;
 551
 552        mutex_lock(&ks->lock);
 553
 554        status = ks8851_rdreg16(ks, KS_ISR);
 555
 556        if (netif_msg_intr(ks))
 557                dev_dbg(&ks->spidev->dev, "%s: status 0x%04x\n",
 558                        __func__, status);
 559
 560        if (status & IRQ_LCI) {
 561                /* should do something about checking link status */
 562                handled |= IRQ_LCI;
 563        }
 564
 565        if (status & IRQ_LDI) {
 566                u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 567                pmecr &= ~PMECR_WKEVT_MASK;
 568                ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 569
 570                handled |= IRQ_LDI;
 571        }
 572
 573        if (status & IRQ_RXPSI)
 574                handled |= IRQ_RXPSI;
 575
 576        if (status & IRQ_TXI) {
 577                handled |= IRQ_TXI;
 578
 579                /* no lock here, tx queue should have been stopped */
 580
 581                /* update our idea of how much tx space is available to the
 582                 * system */
 583                ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 584
 585                if (netif_msg_intr(ks))
 586                        ks_dbg(ks, "%s: txspace %d\n", __func__, ks->tx_space);
 587        }
 588
 589        if (status & IRQ_RXI)
 590                handled |= IRQ_RXI;
 591
 592        if (status & IRQ_SPIBEI) {
 593                dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 594                handled |= IRQ_SPIBEI;
 595        }
 596
 597        ks8851_wrreg16(ks, KS_ISR, handled);
 598
 599        if (status & IRQ_RXI) {
 600                /* the datasheet says to disable the rx interrupt during
 601                 * packet read-out, however we're masking the interrupt
 602                 * from the device so do not bother masking just the RX
 603                 * from the device. */
 604
 605                ks8851_rx_pkts(ks);
 606        }
 607
 608        /* if something stopped the rx process, probably due to wanting
 609         * to change the rx settings, then do something about restarting
 610         * it. */
 611        if (status & IRQ_RXPSI) {
 612                struct ks8851_rxctrl *rxc = &ks->rxctrl;
 613
 614                /* update the multicast hash table */
 615                ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 616                ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 617                ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 618                ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 619
 620                ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 621                ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 622        }
 623
 624        mutex_unlock(&ks->lock);
 625
 626        if (status & IRQ_TXI)
 627                netif_wake_queue(ks->netdev);
 628
 629        enable_irq(ks->netdev->irq);
 630}
 631
 632/**
 633 * calc_txlen - calculate size of message to send packet
 634 * @len: Lenght of data
 635 *
 636 * Returns the size of the TXFIFO message needed to send
 637 * this packet.
 638 */
 639static inline unsigned calc_txlen(unsigned len)
 640{
 641        return ALIGN(len + 4, 4);
 642}
 643
 644/**
 645 * ks8851_wrpkt - write packet to TX FIFO
 646 * @ks: The device state.
 647 * @txp: The sk_buff to transmit.
 648 * @irq: IRQ on completion of the packet.
 649 *
 650 * Send the @txp to the chip. This means creating the relevant packet header
 651 * specifying the length of the packet and the other information the chip
 652 * needs, such as IRQ on completion. Send the header and the packet data to
 653 * the device.
 654 */
 655static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 656{
 657        struct spi_transfer *xfer = ks->spi_xfer2;
 658        struct spi_message *msg = &ks->spi_msg2;
 659        unsigned fid = 0;
 660        int ret;
 661
 662        if (netif_msg_tx_queued(ks))
 663                dev_dbg(&ks->spidev->dev, "%s: skb %p, %d@%p, irq %d\n",
 664                        __func__, txp, txp->len, txp->data, irq);
 665
 666        fid = ks->fid++;
 667        fid &= TXFR_TXFID_MASK;
 668
 669        if (irq)
 670                fid |= TXFR_TXIC;       /* irq on completion */
 671
 672        /* start header at txb[1] to align txw entries */
 673        ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 674        ks->txh.txw[1] = cpu_to_le16(fid);
 675        ks->txh.txw[2] = cpu_to_le16(txp->len);
 676
 677        xfer->tx_buf = &ks->txh.txb[1];
 678        xfer->rx_buf = NULL;
 679        xfer->len = 5;
 680
 681        xfer++;
 682        xfer->tx_buf = txp->data;
 683        xfer->rx_buf = NULL;
 684        xfer->len = ALIGN(txp->len, 4);
 685
 686        ret = spi_sync(ks->spidev, msg);
 687        if (ret < 0)
 688                ks_err(ks, "%s: spi_sync() failed\n", __func__);
 689}
 690
 691/**
 692 * ks8851_done_tx - update and then free skbuff after transmitting
 693 * @ks: The device state
 694 * @txb: The buffer transmitted
 695 */
 696static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 697{
 698        struct net_device *dev = ks->netdev;
 699
 700        dev->stats.tx_bytes += txb->len;
 701        dev->stats.tx_packets++;
 702
 703        dev_kfree_skb(txb);
 704}
 705
 706/**
 707 * ks8851_tx_work - process tx packet(s)
 708 * @work: The work strucutre what was scheduled.
 709 *
 710 * This is called when a number of packets have been scheduled for
 711 * transmission and need to be sent to the device.
 712 */
 713static void ks8851_tx_work(struct work_struct *work)
 714{
 715        struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 716        struct sk_buff *txb;
 717        bool last = false;
 718
 719        mutex_lock(&ks->lock);
 720
 721        while (!last) {
 722                txb = skb_dequeue(&ks->txq);
 723                last = skb_queue_empty(&ks->txq);
 724
 725                ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 726                ks8851_wrpkt(ks, txb, last);
 727                ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 728                ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 729
 730                ks8851_done_tx(ks, txb);
 731        }
 732
 733        mutex_unlock(&ks->lock);
 734}
 735
 736/**
 737 * ks8851_set_powermode - set power mode of the device
 738 * @ks: The device state
 739 * @pwrmode: The power mode value to write to KS_PMECR.
 740 *
 741 * Change the power mode of the chip.
 742 */
 743static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 744{
 745        unsigned pmecr;
 746
 747        if (netif_msg_hw(ks))
 748                ks_dbg(ks, "setting power mode %d\n", pwrmode);
 749
 750        pmecr = ks8851_rdreg16(ks, KS_PMECR);
 751        pmecr &= ~PMECR_PM_MASK;
 752        pmecr |= pwrmode;
 753
 754        ks8851_wrreg16(ks, KS_PMECR, pmecr);
 755}
 756
 757/**
 758 * ks8851_net_open - open network device
 759 * @dev: The network device being opened.
 760 *
 761 * Called when the network device is marked active, such as a user executing
 762 * 'ifconfig up' on the device.
 763 */
 764static int ks8851_net_open(struct net_device *dev)
 765{
 766        struct ks8851_net *ks = netdev_priv(dev);
 767
 768        /* lock the card, even if we may not actually be doing anything
 769         * else at the moment */
 770        mutex_lock(&ks->lock);
 771
 772        if (netif_msg_ifup(ks))
 773                ks_dbg(ks, "opening %s\n", dev->name);
 774
 775        /* bring chip out of any power saving mode it was in */
 776        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 777
 778        /* issue a soft reset to the RX/TX QMU to put it into a known
 779         * state. */
 780        ks8851_soft_reset(ks, GRR_QMU);
 781
 782        /* setup transmission parameters */
 783
 784        ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 785                                     TXCR_TXPE | /* pad to min length */
 786                                     TXCR_TXCRC | /* add CRC */
 787                                     TXCR_TXFCE)); /* enable flow control */
 788
 789        /* auto-increment tx data, reset tx pointer */
 790        ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 791
 792        /* setup receiver control */
 793
 794        ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 795                                      RXCR1_RXFCE | /* enable flow control */
 796                                      RXCR1_RXBE | /* broadcast enable */
 797                                      RXCR1_RXUE | /* unicast enable */
 798                                      RXCR1_RXE)); /* enable rx block */
 799
 800        /* transfer entire frames out in one go */
 801        ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 802
 803        /* set receive counter timeouts */
 804        ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 805        ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 806        ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 807
 808        ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 809                        RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 810                        RXQCR_RXDTTE);  /* IRQ on time exceeded */
 811
 812        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 813
 814        /* clear then enable interrupts */
 815
 816#define STD_IRQ (IRQ_LCI |      /* Link Change */       \
 817                 IRQ_TXI |      /* TX done */           \
 818                 IRQ_RXI |      /* RX done */           \
 819                 IRQ_SPIBEI |   /* SPI bus error */     \
 820                 IRQ_TXPSI |    /* TX process stop */   \
 821                 IRQ_RXPSI)     /* RX process stop */
 822
 823        ks->rc_ier = STD_IRQ;
 824        ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 825        ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 826
 827        netif_start_queue(ks->netdev);
 828
 829        if (netif_msg_ifup(ks))
 830                ks_dbg(ks, "network device %s up\n", dev->name);
 831
 832        mutex_unlock(&ks->lock);
 833        return 0;
 834}
 835
 836/**
 837 * ks8851_net_stop - close network device
 838 * @dev: The device being closed.
 839 *
 840 * Called to close down a network device which has been active. Cancell any
 841 * work, shutdown the RX and TX process and then place the chip into a low
 842 * power state whilst it is not being used.
 843 */
 844static int ks8851_net_stop(struct net_device *dev)
 845{
 846        struct ks8851_net *ks = netdev_priv(dev);
 847
 848        if (netif_msg_ifdown(ks))
 849                ks_info(ks, "%s: shutting down\n", dev->name);
 850
 851        netif_stop_queue(dev);
 852
 853        mutex_lock(&ks->lock);
 854
 855        /* stop any outstanding work */
 856        flush_work(&ks->irq_work);
 857        flush_work(&ks->tx_work);
 858        flush_work(&ks->rxctrl_work);
 859
 860        /* turn off the IRQs and ack any outstanding */
 861        ks8851_wrreg16(ks, KS_IER, 0x0000);
 862        ks8851_wrreg16(ks, KS_ISR, 0xffff);
 863
 864        /* shutdown RX process */
 865        ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 866
 867        /* shutdown TX process */
 868        ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 869
 870        /* set powermode to soft power down to save power */
 871        ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 872
 873        /* ensure any queued tx buffers are dumped */
 874        while (!skb_queue_empty(&ks->txq)) {
 875                struct sk_buff *txb = skb_dequeue(&ks->txq);
 876
 877                if (netif_msg_ifdown(ks))
 878                        ks_dbg(ks, "%s: freeing txb %p\n", __func__, txb);
 879
 880                dev_kfree_skb(txb);
 881        }
 882
 883        mutex_unlock(&ks->lock);
 884        return 0;
 885}
 886
 887/**
 888 * ks8851_start_xmit - transmit packet
 889 * @skb: The buffer to transmit
 890 * @dev: The device used to transmit the packet.
 891 *
 892 * Called by the network layer to transmit the @skb. Queue the packet for
 893 * the device and schedule the necessary work to transmit the packet when
 894 * it is free.
 895 *
 896 * We do this to firstly avoid sleeping with the network device locked,
 897 * and secondly so we can round up more than one packet to transmit which
 898 * means we can try and avoid generating too many transmit done interrupts.
 899 */
 900static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 901                                     struct net_device *dev)
 902{
 903        struct ks8851_net *ks = netdev_priv(dev);
 904        unsigned needed = calc_txlen(skb->len);
 905        netdev_tx_t ret = NETDEV_TX_OK;
 906
 907        if (netif_msg_tx_queued(ks))
 908                ks_dbg(ks, "%s: skb %p, %d@%p\n", __func__,
 909                       skb, skb->len, skb->data);
 910
 911        spin_lock(&ks->statelock);
 912
 913        if (needed > ks->tx_space) {
 914                netif_stop_queue(dev);
 915                ret = NETDEV_TX_BUSY;
 916        } else {
 917                ks->tx_space -= needed;
 918                skb_queue_tail(&ks->txq, skb);
 919        }
 920
 921        spin_unlock(&ks->statelock);
 922        schedule_work(&ks->tx_work);
 923
 924        return ret;
 925}
 926
 927/**
 928 * ks8851_rxctrl_work - work handler to change rx mode
 929 * @work: The work structure this belongs to.
 930 *
 931 * Lock the device and issue the necessary changes to the receive mode from
 932 * the network device layer. This is done so that we can do this without
 933 * having to sleep whilst holding the network device lock.
 934 *
 935 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 936 * receive parameters are programmed, we issue a write to disable the RXQ and
 937 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 938 * complete. The interrupt handler then writes the new values into the chip.
 939 */
 940static void ks8851_rxctrl_work(struct work_struct *work)
 941{
 942        struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 943
 944        mutex_lock(&ks->lock);
 945
 946        /* need to shutdown RXQ before modifying filter parameters */
 947        ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 948
 949        mutex_unlock(&ks->lock);
 950}
 951
 952static void ks8851_set_rx_mode(struct net_device *dev)
 953{
 954        struct ks8851_net *ks = netdev_priv(dev);
 955        struct ks8851_rxctrl rxctrl;
 956
 957        memset(&rxctrl, 0, sizeof(rxctrl));
 958
 959        if (dev->flags & IFF_PROMISC) {
 960                /* interface to receive everything */
 961
 962                rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 963        } else if (dev->flags & IFF_ALLMULTI) {
 964                /* accept all multicast packets */
 965
 966                rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 967                                RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 968        } else if (dev->flags & IFF_MULTICAST && dev->mc_count > 0) {
 969                struct dev_mc_list *mcptr = dev->mc_list;
 970                u32 crc;
 971                int i;
 972
 973                /* accept some multicast */
 974
 975                for (i = dev->mc_count; i > 0; i--) {
 976                        crc = ether_crc(ETH_ALEN, mcptr->dmi_addr);
 977                        crc >>= (32 - 6);  /* get top six bits */
 978
 979                        rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 980                        mcptr = mcptr->next;
 981                }
 982
 983                rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 984        } else {
 985                /* just accept broadcast / unicast */
 986                rxctrl.rxcr1 = RXCR1_RXPAFMA;
 987        }
 988
 989        rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 990                         RXCR1_RXBE | /* broadcast enable */
 991                         RXCR1_RXE | /* RX process enable */
 992                         RXCR1_RXFCE); /* enable flow control */
 993
 994        rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
 995
 996        /* schedule work to do the actual set of the data if needed */
 997
 998        spin_lock(&ks->statelock);
 999
1000        if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1001                memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1002                schedule_work(&ks->rxctrl_work);
1003        }
1004
1005        spin_unlock(&ks->statelock);
1006}
1007
1008static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1009{
1010        struct sockaddr *sa = addr;
1011
1012        if (netif_running(dev))
1013                return -EBUSY;
1014
1015        if (!is_valid_ether_addr(sa->sa_data))
1016                return -EADDRNOTAVAIL;
1017
1018        memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1019        return ks8851_write_mac_addr(dev);
1020}
1021
1022static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1023{
1024        struct ks8851_net *ks = netdev_priv(dev);
1025
1026        if (!netif_running(dev))
1027                return -EINVAL;
1028
1029        return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1030}
1031
1032static const struct net_device_ops ks8851_netdev_ops = {
1033        .ndo_open               = ks8851_net_open,
1034        .ndo_stop               = ks8851_net_stop,
1035        .ndo_do_ioctl           = ks8851_net_ioctl,
1036        .ndo_start_xmit         = ks8851_start_xmit,
1037        .ndo_set_mac_address    = ks8851_set_mac_address,
1038        .ndo_set_rx_mode        = ks8851_set_rx_mode,
1039        .ndo_change_mtu         = eth_change_mtu,
1040        .ndo_validate_addr      = eth_validate_addr,
1041};
1042
1043/* ethtool support */
1044
1045static void ks8851_get_drvinfo(struct net_device *dev,
1046                               struct ethtool_drvinfo *di)
1047{
1048        strlcpy(di->driver, "KS8851", sizeof(di->driver));
1049        strlcpy(di->version, "1.00", sizeof(di->version));
1050        strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1051}
1052
1053static u32 ks8851_get_msglevel(struct net_device *dev)
1054{
1055        struct ks8851_net *ks = netdev_priv(dev);
1056        return ks->msg_enable;
1057}
1058
1059static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1060{
1061        struct ks8851_net *ks = netdev_priv(dev);
1062        ks->msg_enable = to;
1063}
1064
1065static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1066{
1067        struct ks8851_net *ks = netdev_priv(dev);
1068        return mii_ethtool_gset(&ks->mii, cmd);
1069}
1070
1071static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1072{
1073        struct ks8851_net *ks = netdev_priv(dev);
1074        return mii_ethtool_sset(&ks->mii, cmd);
1075}
1076
1077static u32 ks8851_get_link(struct net_device *dev)
1078{
1079        struct ks8851_net *ks = netdev_priv(dev);
1080        return mii_link_ok(&ks->mii);
1081}
1082
1083static int ks8851_nway_reset(struct net_device *dev)
1084{
1085        struct ks8851_net *ks = netdev_priv(dev);
1086        return mii_nway_restart(&ks->mii);
1087}
1088
1089static const struct ethtool_ops ks8851_ethtool_ops = {
1090        .get_drvinfo    = ks8851_get_drvinfo,
1091        .get_msglevel   = ks8851_get_msglevel,
1092        .set_msglevel   = ks8851_set_msglevel,
1093        .get_settings   = ks8851_get_settings,
1094        .set_settings   = ks8851_set_settings,
1095        .get_link       = ks8851_get_link,
1096        .nway_reset     = ks8851_nway_reset,
1097};
1098
1099/* MII interface controls */
1100
1101/**
1102 * ks8851_phy_reg - convert MII register into a KS8851 register
1103 * @reg: MII register number.
1104 *
1105 * Return the KS8851 register number for the corresponding MII PHY register
1106 * if possible. Return zero if the MII register has no direct mapping to the
1107 * KS8851 register set.
1108 */
1109static int ks8851_phy_reg(int reg)
1110{
1111        switch (reg) {
1112        case MII_BMCR:
1113                return KS_P1MBCR;
1114        case MII_BMSR:
1115                return KS_P1MBSR;
1116        case MII_PHYSID1:
1117                return KS_PHY1ILR;
1118        case MII_PHYSID2:
1119                return KS_PHY1IHR;
1120        case MII_ADVERTISE:
1121                return KS_P1ANAR;
1122        case MII_LPA:
1123                return KS_P1ANLPR;
1124        }
1125
1126        return 0x0;
1127}
1128
1129/**
1130 * ks8851_phy_read - MII interface PHY register read.
1131 * @dev: The network device the PHY is on.
1132 * @phy_addr: Address of PHY (ignored as we only have one)
1133 * @reg: The register to read.
1134 *
1135 * This call reads data from the PHY register specified in @reg. Since the
1136 * device does not support all the MII registers, the non-existant values
1137 * are always returned as zero.
1138 *
1139 * We return zero for unsupported registers as the MII code does not check
1140 * the value returned for any error status, and simply returns it to the
1141 * caller. The mii-tool that the driver was tested with takes any -ve error
1142 * as real PHY capabilities, thus displaying incorrect data to the user.
1143 */
1144static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1145{
1146        struct ks8851_net *ks = netdev_priv(dev);
1147        int ksreg;
1148        int result;
1149
1150        ksreg = ks8851_phy_reg(reg);
1151        if (!ksreg)
1152                return 0x0;     /* no error return allowed, so use zero */
1153
1154        mutex_lock(&ks->lock);
1155        result = ks8851_rdreg16(ks, ksreg);
1156        mutex_unlock(&ks->lock);
1157
1158        return result;
1159}
1160
1161static void ks8851_phy_write(struct net_device *dev,
1162                             int phy, int reg, int value)
1163{
1164        struct ks8851_net *ks = netdev_priv(dev);
1165        int ksreg;
1166
1167        ksreg = ks8851_phy_reg(reg);
1168        if (ksreg) {
1169                mutex_lock(&ks->lock);
1170                ks8851_wrreg16(ks, ksreg, value);
1171                mutex_unlock(&ks->lock);
1172        }
1173}
1174
1175/**
1176 * ks8851_read_selftest - read the selftest memory info.
1177 * @ks: The device state
1178 *
1179 * Read and check the TX/RX memory selftest information.
1180 */
1181static int ks8851_read_selftest(struct ks8851_net *ks)
1182{
1183        unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1184        int ret = 0;
1185        unsigned rd;
1186
1187        rd = ks8851_rdreg16(ks, KS_MBIR);
1188
1189        if ((rd & both_done) != both_done) {
1190                ks_warn(ks, "Memory selftest not finished\n");
1191                return 0;
1192        }
1193
1194        if (rd & MBIR_TXMBFA) {
1195                ks_err(ks, "TX memory selftest fail\n");
1196                ret |= 1;
1197        }
1198
1199        if (rd & MBIR_RXMBFA) {
1200                ks_err(ks, "RX memory selftest fail\n");
1201                ret |= 2;
1202        }
1203
1204        return 0;
1205}
1206
1207/* driver bus management functions */
1208
1209static int __devinit ks8851_probe(struct spi_device *spi)
1210{
1211        struct net_device *ndev;
1212        struct ks8851_net *ks;
1213        int ret;
1214
1215        ndev = alloc_etherdev(sizeof(struct ks8851_net));
1216        if (!ndev) {
1217                dev_err(&spi->dev, "failed to alloc ethernet device\n");
1218                return -ENOMEM;
1219        }
1220
1221        spi->bits_per_word = 8;
1222
1223        ks = netdev_priv(ndev);
1224
1225        ks->netdev = ndev;
1226        ks->spidev = spi;
1227        ks->tx_space = 6144;
1228
1229        mutex_init(&ks->lock);
1230        spin_lock_init(&ks->statelock);
1231
1232        INIT_WORK(&ks->tx_work, ks8851_tx_work);
1233        INIT_WORK(&ks->irq_work, ks8851_irq_work);
1234        INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1235
1236        /* initialise pre-made spi transfer messages */
1237
1238        spi_message_init(&ks->spi_msg1);
1239        spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1240
1241        spi_message_init(&ks->spi_msg2);
1242        spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1243        spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1244
1245        /* setup mii state */
1246        ks->mii.dev             = ndev;
1247        ks->mii.phy_id          = 1,
1248        ks->mii.phy_id_mask     = 1;
1249        ks->mii.reg_num_mask    = 0xf;
1250        ks->mii.mdio_read       = ks8851_phy_read;
1251        ks->mii.mdio_write      = ks8851_phy_write;
1252
1253        dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1254
1255        /* set the default message enable */
1256        ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1257                                                     NETIF_MSG_PROBE |
1258                                                     NETIF_MSG_LINK));
1259
1260        skb_queue_head_init(&ks->txq);
1261
1262        SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1263        SET_NETDEV_DEV(ndev, &spi->dev);
1264
1265        dev_set_drvdata(&spi->dev, ks);
1266
1267        ndev->if_port = IF_PORT_100BASET;
1268        ndev->netdev_ops = &ks8851_netdev_ops;
1269        ndev->irq = spi->irq;
1270
1271        /* issue a global soft reset to reset the device. */
1272        ks8851_soft_reset(ks, GRR_GSR);
1273
1274        /* simple check for a valid chip being connected to the bus */
1275
1276        if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1277                dev_err(&spi->dev, "failed to read device ID\n");
1278                ret = -ENODEV;
1279                goto err_id;
1280        }
1281
1282        ks8851_read_selftest(ks);
1283        ks8851_init_mac(ks);
1284
1285        ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1286                          ndev->name, ks);
1287        if (ret < 0) {
1288                dev_err(&spi->dev, "failed to get irq\n");
1289                goto err_irq;
1290        }
1291
1292        ret = register_netdev(ndev);
1293        if (ret) {
1294                dev_err(&spi->dev, "failed to register network device\n");
1295                goto err_netdev;
1296        }
1297
1298        dev_info(&spi->dev, "revision %d, MAC %pM, IRQ %d\n",
1299                 CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1300                 ndev->dev_addr, ndev->irq);
1301
1302        return 0;
1303
1304
1305err_netdev:
1306        free_irq(ndev->irq, ndev);
1307
1308err_id:
1309err_irq:
1310        free_netdev(ndev);
1311        return ret;
1312}
1313
1314static int __devexit ks8851_remove(struct spi_device *spi)
1315{
1316        struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1317
1318        if (netif_msg_drv(priv))
1319                dev_info(&spi->dev, "remove");
1320
1321        unregister_netdev(priv->netdev);
1322        free_irq(spi->irq, priv);
1323        free_netdev(priv->netdev);
1324
1325        return 0;
1326}
1327
1328static struct spi_driver ks8851_driver = {
1329        .driver = {
1330                .name = "ks8851",
1331                .owner = THIS_MODULE,
1332        },
1333        .probe = ks8851_probe,
1334        .remove = __devexit_p(ks8851_remove),
1335};
1336
1337static int __init ks8851_init(void)
1338{
1339        return spi_register_driver(&ks8851_driver);
1340}
1341
1342static void __exit ks8851_exit(void)
1343{
1344        spi_unregister_driver(&ks8851_driver);
1345}
1346
1347module_init(ks8851_init);
1348module_exit(ks8851_exit);
1349
1350MODULE_DESCRIPTION("KS8851 Network driver");
1351MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1352MODULE_LICENSE("GPL");
1353
1354module_param_named(message, msg_enable, int, 0);
1355MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1356MODULE_ALIAS("spi:ks8851");
1357