linux/drivers/net/natsemi.c
<<
>>
Prefs
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3        Written/copyright 1999-2001 by Donald Becker.
   4        Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5        Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6        Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8        This software may be used and distributed according to the terms of
   9        the GNU General Public License (GPL), incorporated herein by reference.
  10        Drivers based on or derived from this code fall under the GPL and must
  11        retain the authorship, copyright and license notice.  This file is not
  12        a complete program and may only be used when the entire operating
  13        system is licensed under the GPL.  License for under other terms may be
  14        available.  Contact the original author for details.
  15
  16        The original author may be reached as becker@scyld.com, or at
  17        Scyld Computing Corporation
  18        410 Severn Ave., Suite 210
  19        Annapolis MD 21403
  20
  21        Support information and updates available at
  22        http://www.scyld.com/network/netsemi.html
  23        [link no longer provides useful info -jgarzik]
  24
  25
  26        TODO:
  27        * big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>      /* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <asm/uaccess.h>
  55
  56#define DRV_NAME        "natsemi"
  57#define DRV_VERSION     "2.1"
  58#define DRV_RELDATE     "Sept 11, 2006"
  59
  60#define RX_OFFSET       2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG         (NETIF_MSG_DRV          | \
  68                                 NETIF_MSG_LINK         | \
  69                                 NETIF_MSG_WOL          | \
  70                                 NETIF_MSG_RX_ERR       | \
  71                                 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8             /* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE    16
 103#define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE    32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT      400
 111#define NATSEMI_TIMER_FREQ      5*HZ
 112#define NATSEMI_PG0_NREGS       64
 113#define NATSEMI_RFDR_NREGS      8
 114#define NATSEMI_PG1_NREGS       4
 115#define NATSEMI_NREGS           (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116                                 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER        1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE       (NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS         22      /* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING         16      /* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT         1518    /* limit for normal packets */
 127#define NATSEMI_RX_LIMIT        2046    /* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] __devinitconst =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 1);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149        "DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152        "DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156                                Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206recieve and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874  0x0022561b
 229
 230enum {
 231        MII_MCTRL       = 0x15,         /* mode control register */
 232        MII_FX_SEL      = 0x0001,       /* 100BASE-FX (fiber) */
 233        MII_EN_SCRM     = 0x0004,       /* enable scrambler (tp) */
 234};
 235
 236enum {
 237        NATSEMI_FLAG_IGNORE_PHY         = 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242        const char *name;
 243        unsigned long flags;
 244        unsigned int eeprom_size;
 245} natsemi_pci_info[] __devinitdata = {
 246        { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247        { "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
 251        { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252        { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253        { }     /* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263        ChipCmd                 = 0x00,
 264        ChipConfig              = 0x04,
 265        EECtrl                  = 0x08,
 266        PCIBusCfg               = 0x0C,
 267        IntrStatus              = 0x10,
 268        IntrMask                = 0x14,
 269        IntrEnable              = 0x18,
 270        IntrHoldoff             = 0x1C, /* DP83816 only */
 271        TxRingPtr               = 0x20,
 272        TxConfig                = 0x24,
 273        RxRingPtr               = 0x30,
 274        RxConfig                = 0x34,
 275        ClkRun                  = 0x3C,
 276        WOLCmd                  = 0x40,
 277        PauseCmd                = 0x44,
 278        RxFilterAddr            = 0x48,
 279        RxFilterData            = 0x4C,
 280        BootRomAddr             = 0x50,
 281        BootRomData             = 0x54,
 282        SiliconRev              = 0x58,
 283        StatsCtrl               = 0x5C,
 284        StatsData               = 0x60,
 285        RxPktErrs               = 0x60,
 286        RxMissed                = 0x68,
 287        RxCRCErrs               = 0x64,
 288        BasicControl            = 0x80,
 289        BasicStatus             = 0x84,
 290        AnegAdv                 = 0x90,
 291        AnegPeer                = 0x94,
 292        PhyStatus               = 0xC0,
 293        MIntrCtrl               = 0xC4,
 294        MIntrStatus             = 0xC8,
 295        PhyCtrl                 = 0xE4,
 296
 297        /* These are from the spec, around page 78... on a separate table.
 298         * The meaning of these registers depend on the value of PGSEL. */
 299        PGSEL                   = 0xCC,
 300        PMDCSR                  = 0xE4,
 301        TSTDAT                  = 0xFC,
 302        DSPCFG                  = 0xF4,
 303        SDCFG                   = 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL      0x189c  /* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL      0x0
 308#define DSPCFG_VAL      0x5040
 309#define SDCFG_VAL       0x008c  /* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK     0x20    /* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF     0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316        PCIPM                   = 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320        ChipReset               = 0x100,
 321        RxReset                 = 0x20,
 322        TxReset                 = 0x10,
 323        RxOff                   = 0x08,
 324        RxOn                    = 0x04,
 325        TxOff                   = 0x02,
 326        TxOn                    = 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330        CfgPhyDis               = 0x200,
 331        CfgPhyRst               = 0x400,
 332        CfgExtPhy               = 0x1000,
 333        CfgAnegEnable           = 0x2000,
 334        CfgAneg100              = 0x4000,
 335        CfgAnegFull             = 0x8000,
 336        CfgAnegDone             = 0x8000000,
 337        CfgFullDuplex           = 0x20000000,
 338        CfgSpeed100             = 0x40000000,
 339        CfgLink                 = 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343        EE_ShiftClk             = 0x04,
 344        EE_DataIn               = 0x01,
 345        EE_ChipSelect           = 0x08,
 346        EE_DataOut              = 0x02,
 347        MII_Data                = 0x10,
 348        MII_Write               = 0x20,
 349        MII_ShiftClk            = 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353        EepromReload            = 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358        IntrRxDone              = 0x0001,
 359        IntrRxIntr              = 0x0002,
 360        IntrRxErr               = 0x0004,
 361        IntrRxEarly             = 0x0008,
 362        IntrRxIdle              = 0x0010,
 363        IntrRxOverrun           = 0x0020,
 364        IntrTxDone              = 0x0040,
 365        IntrTxIntr              = 0x0080,
 366        IntrTxErr               = 0x0100,
 367        IntrTxIdle              = 0x0200,
 368        IntrTxUnderrun          = 0x0400,
 369        StatsMax                = 0x0800,
 370        SWInt                   = 0x1000,
 371        WOLPkt                  = 0x2000,
 372        LinkChange              = 0x4000,
 373        IntrHighBits            = 0x8000,
 374        RxStatusFIFOOver        = 0x10000,
 375        IntrPCIErr              = 0xf00000,
 376        RxResetDone             = 0x1000000,
 377        TxResetDone             = 0x2000000,
 378        IntrAbnormalSummary     = 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393        TxDrthMask              = 0x3f,
 394        TxFlthMask              = 0x3f00,
 395        TxMxdmaMask             = 0x700000,
 396        TxMxdma_512             = 0x0,
 397        TxMxdma_4               = 0x100000,
 398        TxMxdma_8               = 0x200000,
 399        TxMxdma_16              = 0x300000,
 400        TxMxdma_32              = 0x400000,
 401        TxMxdma_64              = 0x500000,
 402        TxMxdma_128             = 0x600000,
 403        TxMxdma_256             = 0x700000,
 404        TxCollRetry             = 0x800000,
 405        TxAutoPad               = 0x10000000,
 406        TxMacLoop               = 0x20000000,
 407        TxHeartIgn              = 0x40000000,
 408        TxCarrierIgn            = 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL             ((512/32) << 8)
 423#define TX_DRTH_VAL_START       (64/32)
 424#define TX_DRTH_VAL_INC         2
 425#define TX_DRTH_VAL_LIMIT       (1472/32)
 426
 427enum RxConfig_bits {
 428        RxDrthMask              = 0x3e,
 429        RxMxdmaMask             = 0x700000,
 430        RxMxdma_512             = 0x0,
 431        RxMxdma_4               = 0x100000,
 432        RxMxdma_8               = 0x200000,
 433        RxMxdma_16              = 0x300000,
 434        RxMxdma_32              = 0x400000,
 435        RxMxdma_64              = 0x500000,
 436        RxMxdma_128             = 0x600000,
 437        RxMxdma_256             = 0x700000,
 438        RxAcceptLong            = 0x8000000,
 439        RxAcceptTx              = 0x10000000,
 440        RxAcceptRunt            = 0x40000000,
 441        RxAcceptErr             = 0x80000000
 442};
 443#define RX_DRTH_VAL             (128/8)
 444
 445enum ClkRun_bits {
 446        PMEEnable               = 0x100,
 447        PMEStatus               = 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451        WakePhy                 = 0x1,
 452        WakeUnicast             = 0x2,
 453        WakeMulticast           = 0x4,
 454        WakeBroadcast           = 0x8,
 455        WakeArp                 = 0x10,
 456        WakePMatch0             = 0x20,
 457        WakePMatch1             = 0x40,
 458        WakePMatch2             = 0x80,
 459        WakePMatch3             = 0x100,
 460        WakeMagic               = 0x200,
 461        WakeMagicSecure         = 0x400,
 462        SecureHack              = 0x100000,
 463        WokePhy                 = 0x400000,
 464        WokeUnicast             = 0x800000,
 465        WokeMulticast           = 0x1000000,
 466        WokeBroadcast           = 0x2000000,
 467        WokeArp                 = 0x4000000,
 468        WokePMatch0             = 0x8000000,
 469        WokePMatch1             = 0x10000000,
 470        WokePMatch2             = 0x20000000,
 471        WokePMatch3             = 0x40000000,
 472        WokeMagic               = 0x80000000,
 473        WakeOptsSummary         = 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477        RFCRAddressMask         = 0x3ff,
 478        AcceptMulticast         = 0x00200000,
 479        AcceptMyPhys            = 0x08000000,
 480        AcceptAllPhys           = 0x10000000,
 481        AcceptAllMulticast      = 0x20000000,
 482        AcceptBroadcast         = 0x40000000,
 483        RxFilterEnable          = 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487        StatsWarn               = 0x1,
 488        StatsFreeze             = 0x2,
 489        StatsClear              = 0x4,
 490        StatsStrobe             = 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494        MICRIntEn               = 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498        PhyAddrMask             = 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE           32
 502#define PHY_ADDR_INTERNAL       1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C   0x0302
 506#define SRR_DP83815_D   0x0403
 507#define SRR_DP83816_A4  0x0504
 508#define SRR_DP83816_A5  0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514        __le32 next_desc;
 515        __le32 cmd_status;
 516        __le32 addr;
 517        __le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522        DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523        DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524        DescSizeMask=0xfff,
 525
 526        DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527        DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528        DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529        DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531        DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532        DescRxDest=0x01800000, DescRxLong=0x00400000,
 533        DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534        DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535        DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539        /* Descriptor rings first for alignment */
 540        dma_addr_t ring_dma;
 541        struct netdev_desc *rx_ring;
 542        struct netdev_desc *tx_ring;
 543        /* The addresses of receive-in-place skbuffs */
 544        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545        dma_addr_t rx_dma[RX_RING_SIZE];
 546        /* address of a sent-in-place packet/buffer, for later free() */
 547        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548        dma_addr_t tx_dma[TX_RING_SIZE];
 549        struct net_device *dev;
 550        struct napi_struct napi;
 551        struct net_device_stats stats;
 552        /* Media monitoring timer */
 553        struct timer_list timer;
 554        /* Frequently used values: keep some adjacent for cache effect */
 555        struct pci_dev *pci_dev;
 556        struct netdev_desc *rx_head_desc;
 557        /* Producer/consumer ring indices */
 558        unsigned int cur_rx, dirty_rx;
 559        unsigned int cur_tx, dirty_tx;
 560        /* Based on MTU+slack. */
 561        unsigned int rx_buf_sz;
 562        int oom;
 563        /* Interrupt status */
 564        u32 intr_status;
 565        /* Do not touch the nic registers */
 566        int hands_off;
 567        /* Don't pay attention to the reported link state. */
 568        int ignore_phy;
 569        /* external phy that is used: only valid if dev->if_port != PORT_TP */
 570        int mii;
 571        int phy_addr_external;
 572        unsigned int full_duplex;
 573        /* Rx filter */
 574        u32 cur_rx_mode;
 575        u32 rx_filter[16];
 576        /* FIFO and PCI burst thresholds */
 577        u32 tx_config, rx_config;
 578        /* original contents of ClkRun register */
 579        u32 SavedClkRun;
 580        /* silicon revision */
 581        u32 srr;
 582        /* expected DSPCFG value */
 583        u16 dspcfg;
 584        int dspcfg_workaround;
 585        /* parms saved in ethtool format */
 586        u16     speed;          /* The forced speed, 10Mb, 100Mb, gigabit */
 587        u8      duplex;         /* Duplex, half or full */
 588        u8      autoneg;        /* Autonegotiation enabled */
 589        /* MII transceiver section */
 590        u16 advertising;
 591        unsigned int iosize;
 592        spinlock_t lock;
 593        u32 msg_enable;
 594        /* EEPROM data */
 595        int eeprom_size;
 596};
 597
 598static void move_int_phy(struct net_device *dev, int addr);
 599static int eeprom_read(void __iomem *ioaddr, int location);
 600static int mdio_read(struct net_device *dev, int reg);
 601static void mdio_write(struct net_device *dev, int reg, u16 data);
 602static void init_phy_fixup(struct net_device *dev);
 603static int miiport_read(struct net_device *dev, int phy_id, int reg);
 604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 605static int find_mii(struct net_device *dev);
 606static void natsemi_reset(struct net_device *dev);
 607static void natsemi_reload_eeprom(struct net_device *dev);
 608static void natsemi_stop_rxtx(struct net_device *dev);
 609static int netdev_open(struct net_device *dev);
 610static void do_cable_magic(struct net_device *dev);
 611static void undo_cable_magic(struct net_device *dev);
 612static void check_link(struct net_device *dev);
 613static void netdev_timer(unsigned long data);
 614static void dump_ring(struct net_device *dev);
 615static void ns_tx_timeout(struct net_device *dev);
 616static int alloc_ring(struct net_device *dev);
 617static void refill_rx(struct net_device *dev);
 618static void init_ring(struct net_device *dev);
 619static void drain_tx(struct net_device *dev);
 620static void drain_ring(struct net_device *dev);
 621static void free_ring(struct net_device *dev);
 622static void reinit_ring(struct net_device *dev);
 623static void init_registers(struct net_device *dev);
 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 625static irqreturn_t intr_handler(int irq, void *dev_instance);
 626static void netdev_error(struct net_device *dev, int intr_status);
 627static int natsemi_poll(struct napi_struct *napi, int budget);
 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 629static void netdev_tx_done(struct net_device *dev);
 630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 631#ifdef CONFIG_NET_POLL_CONTROLLER
 632static void natsemi_poll_controller(struct net_device *dev);
 633#endif
 634static void __set_rx_mode(struct net_device *dev);
 635static void set_rx_mode(struct net_device *dev);
 636static void __get_stats(struct net_device *dev);
 637static struct net_device_stats *get_stats(struct net_device *dev);
 638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 639static int netdev_set_wol(struct net_device *dev, u32 newval);
 640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 642static int netdev_get_sopass(struct net_device *dev, u8 *data);
 643static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 644static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 645static void enable_wol_mode(struct net_device *dev, int enable_intr);
 646static int netdev_close(struct net_device *dev);
 647static int netdev_get_regs(struct net_device *dev, u8 *buf);
 648static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 649static const struct ethtool_ops ethtool_ops;
 650
 651#define NATSEMI_ATTR(_name) \
 652static ssize_t natsemi_show_##_name(struct device *dev, \
 653         struct device_attribute *attr, char *buf); \
 654         static ssize_t natsemi_set_##_name(struct device *dev, \
 655                struct device_attribute *attr, \
 656                const char *buf, size_t count); \
 657         static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 658
 659#define NATSEMI_CREATE_FILE(_dev, _name) \
 660         device_create_file(&_dev->dev, &dev_attr_##_name)
 661#define NATSEMI_REMOVE_FILE(_dev, _name) \
 662         device_remove_file(&_dev->dev, &dev_attr_##_name)
 663
 664NATSEMI_ATTR(dspcfg_workaround);
 665
 666static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 667                                              struct device_attribute *attr,
 668                                              char *buf)
 669{
 670        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 671
 672        return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 673}
 674
 675static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 676                                             struct device_attribute *attr,
 677                                             const char *buf, size_t count)
 678{
 679        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 680        int new_setting;
 681        unsigned long flags;
 682
 683        /* Find out the new setting */
 684        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 685                new_setting = 1;
 686        else if (!strncmp("off", buf, count - 1)
 687                 || !strncmp("0", buf, count - 1))
 688                new_setting = 0;
 689        else
 690                 return count;
 691
 692        spin_lock_irqsave(&np->lock, flags);
 693
 694        np->dspcfg_workaround = new_setting;
 695
 696        spin_unlock_irqrestore(&np->lock, flags);
 697
 698        return count;
 699}
 700
 701static inline void __iomem *ns_ioaddr(struct net_device *dev)
 702{
 703        return (void __iomem *) dev->base_addr;
 704}
 705
 706static inline void natsemi_irq_enable(struct net_device *dev)
 707{
 708        writel(1, ns_ioaddr(dev) + IntrEnable);
 709        readl(ns_ioaddr(dev) + IntrEnable);
 710}
 711
 712static inline void natsemi_irq_disable(struct net_device *dev)
 713{
 714        writel(0, ns_ioaddr(dev) + IntrEnable);
 715        readl(ns_ioaddr(dev) + IntrEnable);
 716}
 717
 718static void move_int_phy(struct net_device *dev, int addr)
 719{
 720        struct netdev_private *np = netdev_priv(dev);
 721        void __iomem *ioaddr = ns_ioaddr(dev);
 722        int target = 31;
 723
 724        /*
 725         * The internal phy is visible on the external mii bus. Therefore we must
 726         * move it away before we can send commands to an external phy.
 727         * There are two addresses we must avoid:
 728         * - the address on the external phy that is used for transmission.
 729         * - the address that we want to access. User space can access phys
 730         *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
 731         *   phy that is used for transmission.
 732         */
 733
 734        if (target == addr)
 735                target--;
 736        if (target == np->phy_addr_external)
 737                target--;
 738        writew(target, ioaddr + PhyCtrl);
 739        readw(ioaddr + PhyCtrl);
 740        udelay(1);
 741}
 742
 743static void __devinit natsemi_init_media (struct net_device *dev)
 744{
 745        struct netdev_private *np = netdev_priv(dev);
 746        u32 tmp;
 747
 748        if (np->ignore_phy)
 749                netif_carrier_on(dev);
 750        else
 751                netif_carrier_off(dev);
 752
 753        /* get the initial settings from hardware */
 754        tmp            = mdio_read(dev, MII_BMCR);
 755        np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 756        np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 757        np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 758        np->advertising= mdio_read(dev, MII_ADVERTISE);
 759
 760        if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
 761         && netif_msg_probe(np)) {
 762                printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 763                        "10%s %s duplex.\n",
 764                        pci_name(np->pci_dev),
 765                        (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 766                          "enabled, advertise" : "disabled, force",
 767                        (np->advertising &
 768                          (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 769                            "0" : "",
 770                        (np->advertising &
 771                          (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 772                            "full" : "half");
 773        }
 774        if (netif_msg_probe(np))
 775                printk(KERN_INFO
 776                        "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 777                        pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 778                        np->advertising);
 779
 780}
 781
 782static const struct net_device_ops natsemi_netdev_ops = {
 783        .ndo_open               = netdev_open,
 784        .ndo_stop               = netdev_close,
 785        .ndo_start_xmit         = start_tx,
 786        .ndo_get_stats          = get_stats,
 787        .ndo_set_multicast_list = set_rx_mode,
 788        .ndo_change_mtu         = natsemi_change_mtu,
 789        .ndo_do_ioctl           = netdev_ioctl,
 790        .ndo_tx_timeout         = ns_tx_timeout,
 791        .ndo_set_mac_address    = eth_mac_addr,
 792        .ndo_validate_addr      = eth_validate_addr,
 793#ifdef CONFIG_NET_POLL_CONTROLLER
 794        .ndo_poll_controller    = natsemi_poll_controller,
 795#endif
 796};
 797
 798static int __devinit natsemi_probe1 (struct pci_dev *pdev,
 799        const struct pci_device_id *ent)
 800{
 801        struct net_device *dev;
 802        struct netdev_private *np;
 803        int i, option, irq, chip_idx = ent->driver_data;
 804        static int find_cnt = -1;
 805        resource_size_t iostart;
 806        unsigned long iosize;
 807        void __iomem *ioaddr;
 808        const int pcibar = 1; /* PCI base address register */
 809        int prev_eedata;
 810        u32 tmp;
 811
 812/* when built into the kernel, we only print version if device is found */
 813#ifndef MODULE
 814        static int printed_version;
 815        if (!printed_version++)
 816                printk(version);
 817#endif
 818
 819        i = pci_enable_device(pdev);
 820        if (i) return i;
 821
 822        /* natsemi has a non-standard PM control register
 823         * in PCI config space.  Some boards apparently need
 824         * to be brought to D0 in this manner.
 825         */
 826        pci_read_config_dword(pdev, PCIPM, &tmp);
 827        if (tmp & PCI_PM_CTRL_STATE_MASK) {
 828                /* D0 state, disable PME assertion */
 829                u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 830                pci_write_config_dword(pdev, PCIPM, newtmp);
 831        }
 832
 833        find_cnt++;
 834        iostart = pci_resource_start(pdev, pcibar);
 835        iosize = pci_resource_len(pdev, pcibar);
 836        irq = pdev->irq;
 837
 838        pci_set_master(pdev);
 839
 840        dev = alloc_etherdev(sizeof (struct netdev_private));
 841        if (!dev)
 842                return -ENOMEM;
 843        SET_NETDEV_DEV(dev, &pdev->dev);
 844
 845        i = pci_request_regions(pdev, DRV_NAME);
 846        if (i)
 847                goto err_pci_request_regions;
 848
 849        ioaddr = ioremap(iostart, iosize);
 850        if (!ioaddr) {
 851                i = -ENOMEM;
 852                goto err_ioremap;
 853        }
 854
 855        /* Work around the dropped serial bit. */
 856        prev_eedata = eeprom_read(ioaddr, 6);
 857        for (i = 0; i < 3; i++) {
 858                int eedata = eeprom_read(ioaddr, i + 7);
 859                dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 860                dev->dev_addr[i*2+1] = eedata >> 7;
 861                prev_eedata = eedata;
 862        }
 863
 864        dev->base_addr = (unsigned long __force) ioaddr;
 865        dev->irq = irq;
 866
 867        np = netdev_priv(dev);
 868        netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 869        np->dev = dev;
 870
 871        np->pci_dev = pdev;
 872        pci_set_drvdata(pdev, dev);
 873        np->iosize = iosize;
 874        spin_lock_init(&np->lock);
 875        np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 876        np->hands_off = 0;
 877        np->intr_status = 0;
 878        np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 879        if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 880                np->ignore_phy = 1;
 881        else
 882                np->ignore_phy = 0;
 883        np->dspcfg_workaround = dspcfg_workaround;
 884
 885        /* Initial port:
 886         * - If configured to ignore the PHY set up for external.
 887         * - If the nic was configured to use an external phy and if find_mii
 888         *   finds a phy: use external port, first phy that replies.
 889         * - Otherwise: internal port.
 890         * Note that the phy address for the internal phy doesn't matter:
 891         * The address would be used to access a phy over the mii bus, but
 892         * the internal phy is accessed through mapped registers.
 893         */
 894        if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 895                dev->if_port = PORT_MII;
 896        else
 897                dev->if_port = PORT_TP;
 898        /* Reset the chip to erase previous misconfiguration. */
 899        natsemi_reload_eeprom(dev);
 900        natsemi_reset(dev);
 901
 902        if (dev->if_port != PORT_TP) {
 903                np->phy_addr_external = find_mii(dev);
 904                /* If we're ignoring the PHY it doesn't matter if we can't
 905                 * find one. */
 906                if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 907                        dev->if_port = PORT_TP;
 908                        np->phy_addr_external = PHY_ADDR_INTERNAL;
 909                }
 910        } else {
 911                np->phy_addr_external = PHY_ADDR_INTERNAL;
 912        }
 913
 914        option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 915        if (dev->mem_start)
 916                option = dev->mem_start;
 917
 918        /* The lower four bits are the media type. */
 919        if (option) {
 920                if (option & 0x200)
 921                        np->full_duplex = 1;
 922                if (option & 15)
 923                        printk(KERN_INFO
 924                                "natsemi %s: ignoring user supplied media type %d",
 925                                pci_name(np->pci_dev), option & 15);
 926        }
 927        if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 928                np->full_duplex = 1;
 929
 930        dev->netdev_ops = &natsemi_netdev_ops;
 931        dev->watchdog_timeo = TX_TIMEOUT;
 932
 933        SET_ETHTOOL_OPS(dev, &ethtool_ops);
 934
 935        if (mtu)
 936                dev->mtu = mtu;
 937
 938        natsemi_init_media(dev);
 939
 940        /* save the silicon revision for later querying */
 941        np->srr = readl(ioaddr + SiliconRev);
 942        if (netif_msg_hw(np))
 943                printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 944                                pci_name(np->pci_dev), np->srr);
 945
 946        i = register_netdev(dev);
 947        if (i)
 948                goto err_register_netdev;
 949
 950        if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
 951                goto err_create_file;
 952
 953        if (netif_msg_drv(np)) {
 954                printk(KERN_INFO "natsemi %s: %s at %#08llx "
 955                       "(%s), %pM, IRQ %d",
 956                       dev->name, natsemi_pci_info[chip_idx].name,
 957                       (unsigned long long)iostart, pci_name(np->pci_dev),
 958                       dev->dev_addr, irq);
 959                if (dev->if_port == PORT_TP)
 960                        printk(", port TP.\n");
 961                else if (np->ignore_phy)
 962                        printk(", port MII, ignoring PHY\n");
 963                else
 964                        printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 965        }
 966        return 0;
 967
 968 err_create_file:
 969        unregister_netdev(dev);
 970
 971 err_register_netdev:
 972        iounmap(ioaddr);
 973
 974 err_ioremap:
 975        pci_release_regions(pdev);
 976        pci_set_drvdata(pdev, NULL);
 977
 978 err_pci_request_regions:
 979        free_netdev(dev);
 980        return i;
 981}
 982
 983
 984/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 985   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 986
 987/* Delay between EEPROM clock transitions.
 988   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 989   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 990   made udelay() unreliable.
 991   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 992   deprecated.
 993*/
 994#define eeprom_delay(ee_addr)   readl(ee_addr)
 995
 996#define EE_Write0 (EE_ChipSelect)
 997#define EE_Write1 (EE_ChipSelect | EE_DataIn)
 998
 999/* The EEPROM commands include the alway-set leading bit. */
1000enum EEPROM_Cmds {
1001        EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1002};
1003
1004static int eeprom_read(void __iomem *addr, int location)
1005{
1006        int i;
1007        int retval = 0;
1008        void __iomem *ee_addr = addr + EECtrl;
1009        int read_cmd = location | EE_ReadCmd;
1010
1011        writel(EE_Write0, ee_addr);
1012
1013        /* Shift the read command bits out. */
1014        for (i = 10; i >= 0; i--) {
1015                short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1016                writel(dataval, ee_addr);
1017                eeprom_delay(ee_addr);
1018                writel(dataval | EE_ShiftClk, ee_addr);
1019                eeprom_delay(ee_addr);
1020        }
1021        writel(EE_ChipSelect, ee_addr);
1022        eeprom_delay(ee_addr);
1023
1024        for (i = 0; i < 16; i++) {
1025                writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1026                eeprom_delay(ee_addr);
1027                retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1028                writel(EE_ChipSelect, ee_addr);
1029                eeprom_delay(ee_addr);
1030        }
1031
1032        /* Terminate the EEPROM access. */
1033        writel(EE_Write0, ee_addr);
1034        writel(0, ee_addr);
1035        return retval;
1036}
1037
1038/* MII transceiver control section.
1039 * The 83815 series has an internal transceiver, and we present the
1040 * internal management registers as if they were MII connected.
1041 * External Phy registers are referenced through the MII interface.
1042 */
1043
1044/* clock transitions >= 20ns (25MHz)
1045 * One readl should be good to PCI @ 100MHz
1046 */
1047#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1048
1049static int mii_getbit (struct net_device *dev)
1050{
1051        int data;
1052        void __iomem *ioaddr = ns_ioaddr(dev);
1053
1054        writel(MII_ShiftClk, ioaddr + EECtrl);
1055        data = readl(ioaddr + EECtrl);
1056        writel(0, ioaddr + EECtrl);
1057        mii_delay(ioaddr);
1058        return (data & MII_Data)? 1 : 0;
1059}
1060
1061static void mii_send_bits (struct net_device *dev, u32 data, int len)
1062{
1063        u32 i;
1064        void __iomem *ioaddr = ns_ioaddr(dev);
1065
1066        for (i = (1 << (len-1)); i; i >>= 1)
1067        {
1068                u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1069                writel(mdio_val, ioaddr + EECtrl);
1070                mii_delay(ioaddr);
1071                writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1072                mii_delay(ioaddr);
1073        }
1074        writel(0, ioaddr + EECtrl);
1075        mii_delay(ioaddr);
1076}
1077
1078static int miiport_read(struct net_device *dev, int phy_id, int reg)
1079{
1080        u32 cmd;
1081        int i;
1082        u32 retval = 0;
1083
1084        /* Ensure sync */
1085        mii_send_bits (dev, 0xffffffff, 32);
1086        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1087        /* ST,OP = 0110'b for read operation */
1088        cmd = (0x06 << 10) | (phy_id << 5) | reg;
1089        mii_send_bits (dev, cmd, 14);
1090        /* Turnaround */
1091        if (mii_getbit (dev))
1092                return 0;
1093        /* Read data */
1094        for (i = 0; i < 16; i++) {
1095                retval <<= 1;
1096                retval |= mii_getbit (dev);
1097        }
1098        /* End cycle */
1099        mii_getbit (dev);
1100        return retval;
1101}
1102
1103static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1104{
1105        u32 cmd;
1106
1107        /* Ensure sync */
1108        mii_send_bits (dev, 0xffffffff, 32);
1109        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1110        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1111        cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1112        mii_send_bits (dev, cmd, 32);
1113        /* End cycle */
1114        mii_getbit (dev);
1115}
1116
1117static int mdio_read(struct net_device *dev, int reg)
1118{
1119        struct netdev_private *np = netdev_priv(dev);
1120        void __iomem *ioaddr = ns_ioaddr(dev);
1121
1122        /* The 83815 series has two ports:
1123         * - an internal transceiver
1124         * - an external mii bus
1125         */
1126        if (dev->if_port == PORT_TP)
1127                return readw(ioaddr+BasicControl+(reg<<2));
1128        else
1129                return miiport_read(dev, np->phy_addr_external, reg);
1130}
1131
1132static void mdio_write(struct net_device *dev, int reg, u16 data)
1133{
1134        struct netdev_private *np = netdev_priv(dev);
1135        void __iomem *ioaddr = ns_ioaddr(dev);
1136
1137        /* The 83815 series has an internal transceiver; handle separately */
1138        if (dev->if_port == PORT_TP)
1139                writew(data, ioaddr+BasicControl+(reg<<2));
1140        else
1141                miiport_write(dev, np->phy_addr_external, reg, data);
1142}
1143
1144static void init_phy_fixup(struct net_device *dev)
1145{
1146        struct netdev_private *np = netdev_priv(dev);
1147        void __iomem *ioaddr = ns_ioaddr(dev);
1148        int i;
1149        u32 cfg;
1150        u16 tmp;
1151
1152        /* restore stuff lost when power was out */
1153        tmp = mdio_read(dev, MII_BMCR);
1154        if (np->autoneg == AUTONEG_ENABLE) {
1155                /* renegotiate if something changed */
1156                if ((tmp & BMCR_ANENABLE) == 0
1157                 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1158                {
1159                        /* turn on autonegotiation and force negotiation */
1160                        tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1161                        mdio_write(dev, MII_ADVERTISE, np->advertising);
1162                }
1163        } else {
1164                /* turn off auto negotiation, set speed and duplexity */
1165                tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1166                if (np->speed == SPEED_100)
1167                        tmp |= BMCR_SPEED100;
1168                if (np->duplex == DUPLEX_FULL)
1169                        tmp |= BMCR_FULLDPLX;
1170                /*
1171                 * Note: there is no good way to inform the link partner
1172                 * that our capabilities changed. The user has to unplug
1173                 * and replug the network cable after some changes, e.g.
1174                 * after switching from 10HD, autoneg off to 100 HD,
1175                 * autoneg off.
1176                 */
1177        }
1178        mdio_write(dev, MII_BMCR, tmp);
1179        readl(ioaddr + ChipConfig);
1180        udelay(1);
1181
1182        /* find out what phy this is */
1183        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1184                                + mdio_read(dev, MII_PHYSID2);
1185
1186        /* handle external phys here */
1187        switch (np->mii) {
1188        case PHYID_AM79C874:
1189                /* phy specific configuration for fibre/tp operation */
1190                tmp = mdio_read(dev, MII_MCTRL);
1191                tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1192                if (dev->if_port == PORT_FIBRE)
1193                        tmp |= MII_FX_SEL;
1194                else
1195                        tmp |= MII_EN_SCRM;
1196                mdio_write(dev, MII_MCTRL, tmp);
1197                break;
1198        default:
1199                break;
1200        }
1201        cfg = readl(ioaddr + ChipConfig);
1202        if (cfg & CfgExtPhy)
1203                return;
1204
1205        /* On page 78 of the spec, they recommend some settings for "optimum
1206           performance" to be done in sequence.  These settings optimize some
1207           of the 100Mbit autodetection circuitry.  They say we only want to
1208           do this for rev C of the chip, but engineers at NSC (Bradley
1209           Kennedy) recommends always setting them.  If you don't, you get
1210           errors on some autonegotiations that make the device unusable.
1211
1212           It seems that the DSP needs a few usec to reinitialize after
1213           the start of the phy. Just retry writing these values until they
1214           stick.
1215        */
1216        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1217
1218                int dspcfg;
1219                writew(1, ioaddr + PGSEL);
1220                writew(PMDCSR_VAL, ioaddr + PMDCSR);
1221                writew(TSTDAT_VAL, ioaddr + TSTDAT);
1222                np->dspcfg = (np->srr <= SRR_DP83815_C)?
1223                        DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1224                writew(np->dspcfg, ioaddr + DSPCFG);
1225                writew(SDCFG_VAL, ioaddr + SDCFG);
1226                writew(0, ioaddr + PGSEL);
1227                readl(ioaddr + ChipConfig);
1228                udelay(10);
1229
1230                writew(1, ioaddr + PGSEL);
1231                dspcfg = readw(ioaddr + DSPCFG);
1232                writew(0, ioaddr + PGSEL);
1233                if (np->dspcfg == dspcfg)
1234                        break;
1235        }
1236
1237        if (netif_msg_link(np)) {
1238                if (i==NATSEMI_HW_TIMEOUT) {
1239                        printk(KERN_INFO
1240                                "%s: DSPCFG mismatch after retrying for %d usec.\n",
1241                                dev->name, i*10);
1242                } else {
1243                        printk(KERN_INFO
1244                                "%s: DSPCFG accepted after %d usec.\n",
1245                                dev->name, i*10);
1246                }
1247        }
1248        /*
1249         * Enable PHY Specific event based interrupts.  Link state change
1250         * and Auto-Negotiation Completion are among the affected.
1251         * Read the intr status to clear it (needed for wake events).
1252         */
1253        readw(ioaddr + MIntrStatus);
1254        writew(MICRIntEn, ioaddr + MIntrCtrl);
1255}
1256
1257static int switch_port_external(struct net_device *dev)
1258{
1259        struct netdev_private *np = netdev_priv(dev);
1260        void __iomem *ioaddr = ns_ioaddr(dev);
1261        u32 cfg;
1262
1263        cfg = readl(ioaddr + ChipConfig);
1264        if (cfg & CfgExtPhy)
1265                return 0;
1266
1267        if (netif_msg_link(np)) {
1268                printk(KERN_INFO "%s: switching to external transceiver.\n",
1269                                dev->name);
1270        }
1271
1272        /* 1) switch back to external phy */
1273        writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1274        readl(ioaddr + ChipConfig);
1275        udelay(1);
1276
1277        /* 2) reset the external phy: */
1278        /* resetting the external PHY has been known to cause a hub supplying
1279         * power over Ethernet to kill the power.  We don't want to kill
1280         * power to this computer, so we avoid resetting the phy.
1281         */
1282
1283        /* 3) reinit the phy fixup, it got lost during power down. */
1284        move_int_phy(dev, np->phy_addr_external);
1285        init_phy_fixup(dev);
1286
1287        return 1;
1288}
1289
1290static int switch_port_internal(struct net_device *dev)
1291{
1292        struct netdev_private *np = netdev_priv(dev);
1293        void __iomem *ioaddr = ns_ioaddr(dev);
1294        int i;
1295        u32 cfg;
1296        u16 bmcr;
1297
1298        cfg = readl(ioaddr + ChipConfig);
1299        if (!(cfg &CfgExtPhy))
1300                return 0;
1301
1302        if (netif_msg_link(np)) {
1303                printk(KERN_INFO "%s: switching to internal transceiver.\n",
1304                                dev->name);
1305        }
1306        /* 1) switch back to internal phy: */
1307        cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1308        writel(cfg, ioaddr + ChipConfig);
1309        readl(ioaddr + ChipConfig);
1310        udelay(1);
1311
1312        /* 2) reset the internal phy: */
1313        bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1314        writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1315        readl(ioaddr + ChipConfig);
1316        udelay(10);
1317        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1318                bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1319                if (!(bmcr & BMCR_RESET))
1320                        break;
1321                udelay(10);
1322        }
1323        if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1324                printk(KERN_INFO
1325                        "%s: phy reset did not complete in %d usec.\n",
1326                        dev->name, i*10);
1327        }
1328        /* 3) reinit the phy fixup, it got lost during power down. */
1329        init_phy_fixup(dev);
1330
1331        return 1;
1332}
1333
1334/* Scan for a PHY on the external mii bus.
1335 * There are two tricky points:
1336 * - Do not scan while the internal phy is enabled. The internal phy will
1337 *   crash: e.g. reads from the DSPCFG register will return odd values and
1338 *   the nasty random phy reset code will reset the nic every few seconds.
1339 * - The internal phy must be moved around, an external phy could
1340 *   have the same address as the internal phy.
1341 */
1342static int find_mii(struct net_device *dev)
1343{
1344        struct netdev_private *np = netdev_priv(dev);
1345        int tmp;
1346        int i;
1347        int did_switch;
1348
1349        /* Switch to external phy */
1350        did_switch = switch_port_external(dev);
1351
1352        /* Scan the possible phy addresses:
1353         *
1354         * PHY address 0 means that the phy is in isolate mode. Not yet
1355         * supported due to lack of test hardware. User space should
1356         * handle it through ethtool.
1357         */
1358        for (i = 1; i <= 31; i++) {
1359                move_int_phy(dev, i);
1360                tmp = miiport_read(dev, i, MII_BMSR);
1361                if (tmp != 0xffff && tmp != 0x0000) {
1362                        /* found something! */
1363                        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1364                                        + mdio_read(dev, MII_PHYSID2);
1365                        if (netif_msg_probe(np)) {
1366                                printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1367                                                pci_name(np->pci_dev), np->mii, i);
1368                        }
1369                        break;
1370                }
1371        }
1372        /* And switch back to internal phy: */
1373        if (did_switch)
1374                switch_port_internal(dev);
1375        return i;
1376}
1377
1378/* CFG bits [13:16] [18:23] */
1379#define CFG_RESET_SAVE 0xfde000
1380/* WCSR bits [0:4] [9:10] */
1381#define WCSR_RESET_SAVE 0x61f
1382/* RFCR bits [20] [22] [27:31] */
1383#define RFCR_RESET_SAVE 0xf8500000;
1384
1385static void natsemi_reset(struct net_device *dev)
1386{
1387        int i;
1388        u32 cfg;
1389        u32 wcsr;
1390        u32 rfcr;
1391        u16 pmatch[3];
1392        u16 sopass[3];
1393        struct netdev_private *np = netdev_priv(dev);
1394        void __iomem *ioaddr = ns_ioaddr(dev);
1395
1396        /*
1397         * Resetting the chip causes some registers to be lost.
1398         * Natsemi suggests NOT reloading the EEPROM while live, so instead
1399         * we save the state that would have been loaded from EEPROM
1400         * on a normal power-up (see the spec EEPROM map).  This assumes
1401         * whoever calls this will follow up with init_registers() eventually.
1402         */
1403
1404        /* CFG */
1405        cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1406        /* WCSR */
1407        wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1408        /* RFCR */
1409        rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1410        /* PMATCH */
1411        for (i = 0; i < 3; i++) {
1412                writel(i*2, ioaddr + RxFilterAddr);
1413                pmatch[i] = readw(ioaddr + RxFilterData);
1414        }
1415        /* SOPAS */
1416        for (i = 0; i < 3; i++) {
1417                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1418                sopass[i] = readw(ioaddr + RxFilterData);
1419        }
1420
1421        /* now whack the chip */
1422        writel(ChipReset, ioaddr + ChipCmd);
1423        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1424                if (!(readl(ioaddr + ChipCmd) & ChipReset))
1425                        break;
1426                udelay(5);
1427        }
1428        if (i==NATSEMI_HW_TIMEOUT) {
1429                printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1430                        dev->name, i*5);
1431        } else if (netif_msg_hw(np)) {
1432                printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1433                        dev->name, i*5);
1434        }
1435
1436        /* restore CFG */
1437        cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1438        /* turn on external phy if it was selected */
1439        if (dev->if_port == PORT_TP)
1440                cfg &= ~(CfgExtPhy | CfgPhyDis);
1441        else
1442                cfg |= (CfgExtPhy | CfgPhyDis);
1443        writel(cfg, ioaddr + ChipConfig);
1444        /* restore WCSR */
1445        wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1446        writel(wcsr, ioaddr + WOLCmd);
1447        /* read RFCR */
1448        rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1449        /* restore PMATCH */
1450        for (i = 0; i < 3; i++) {
1451                writel(i*2, ioaddr + RxFilterAddr);
1452                writew(pmatch[i], ioaddr + RxFilterData);
1453        }
1454        for (i = 0; i < 3; i++) {
1455                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1456                writew(sopass[i], ioaddr + RxFilterData);
1457        }
1458        /* restore RFCR */
1459        writel(rfcr, ioaddr + RxFilterAddr);
1460}
1461
1462static void reset_rx(struct net_device *dev)
1463{
1464        int i;
1465        struct netdev_private *np = netdev_priv(dev);
1466        void __iomem *ioaddr = ns_ioaddr(dev);
1467
1468        np->intr_status &= ~RxResetDone;
1469
1470        writel(RxReset, ioaddr + ChipCmd);
1471
1472        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1473                np->intr_status |= readl(ioaddr + IntrStatus);
1474                if (np->intr_status & RxResetDone)
1475                        break;
1476                udelay(15);
1477        }
1478        if (i==NATSEMI_HW_TIMEOUT) {
1479                printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1480                       dev->name, i*15);
1481        } else if (netif_msg_hw(np)) {
1482                printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1483                       dev->name, i*15);
1484        }
1485}
1486
1487static void natsemi_reload_eeprom(struct net_device *dev)
1488{
1489        struct netdev_private *np = netdev_priv(dev);
1490        void __iomem *ioaddr = ns_ioaddr(dev);
1491        int i;
1492
1493        writel(EepromReload, ioaddr + PCIBusCfg);
1494        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1495                udelay(50);
1496                if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1497                        break;
1498        }
1499        if (i==NATSEMI_HW_TIMEOUT) {
1500                printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1501                        pci_name(np->pci_dev), i*50);
1502        } else if (netif_msg_hw(np)) {
1503                printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1504                        pci_name(np->pci_dev), i*50);
1505        }
1506}
1507
1508static void natsemi_stop_rxtx(struct net_device *dev)
1509{
1510        void __iomem * ioaddr = ns_ioaddr(dev);
1511        struct netdev_private *np = netdev_priv(dev);
1512        int i;
1513
1514        writel(RxOff | TxOff, ioaddr + ChipCmd);
1515        for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1516                if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1517                        break;
1518                udelay(5);
1519        }
1520        if (i==NATSEMI_HW_TIMEOUT) {
1521                printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1522                        dev->name, i*5);
1523        } else if (netif_msg_hw(np)) {
1524                printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1525                        dev->name, i*5);
1526        }
1527}
1528
1529static int netdev_open(struct net_device *dev)
1530{
1531        struct netdev_private *np = netdev_priv(dev);
1532        void __iomem * ioaddr = ns_ioaddr(dev);
1533        int i;
1534
1535        /* Reset the chip, just in case. */
1536        natsemi_reset(dev);
1537
1538        i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1539        if (i) return i;
1540
1541        if (netif_msg_ifup(np))
1542                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543                        dev->name, dev->irq);
1544        i = alloc_ring(dev);
1545        if (i < 0) {
1546                free_irq(dev->irq, dev);
1547                return i;
1548        }
1549        napi_enable(&np->napi);
1550
1551        init_ring(dev);
1552        spin_lock_irq(&np->lock);
1553        init_registers(dev);
1554        /* now set the MAC address according to dev->dev_addr */
1555        for (i = 0; i < 3; i++) {
1556                u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557
1558                writel(i*2, ioaddr + RxFilterAddr);
1559                writew(mac, ioaddr + RxFilterData);
1560        }
1561        writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562        spin_unlock_irq(&np->lock);
1563
1564        netif_start_queue(dev);
1565
1566        if (netif_msg_ifup(np))
1567                printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568                        dev->name, (int)readl(ioaddr + ChipCmd));
1569
1570        /* Set the timer to check for link beat. */
1571        init_timer(&np->timer);
1572        np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573        np->timer.data = (unsigned long)dev;
1574        np->timer.function = &netdev_timer; /* timer handler */
1575        add_timer(&np->timer);
1576
1577        return 0;
1578}
1579
1580static void do_cable_magic(struct net_device *dev)
1581{
1582        struct netdev_private *np = netdev_priv(dev);
1583        void __iomem *ioaddr = ns_ioaddr(dev);
1584
1585        if (dev->if_port != PORT_TP)
1586                return;
1587
1588        if (np->srr >= SRR_DP83816_A5)
1589                return;
1590
1591        /*
1592         * 100 MBit links with short cables can trip an issue with the chip.
1593         * The problem manifests as lots of CRC errors and/or flickering
1594         * activity LED while idle.  This process is based on instructions
1595         * from engineers at National.
1596         */
1597        if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1598                u16 data;
1599
1600                writew(1, ioaddr + PGSEL);
1601                /*
1602                 * coefficient visibility should already be enabled via
1603                 * DSPCFG | 0x1000
1604                 */
1605                data = readw(ioaddr + TSTDAT) & 0xff;
1606                /*
1607                 * the value must be negative, and within certain values
1608                 * (these values all come from National)
1609                 */
1610                if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1611                        np = netdev_priv(dev);
1612
1613                        /* the bug has been triggered - fix the coefficient */
1614                        writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1615                        /* lock the value */
1616                        data = readw(ioaddr + DSPCFG);
1617                        np->dspcfg = data | DSPCFG_LOCK;
1618                        writew(np->dspcfg, ioaddr + DSPCFG);
1619                }
1620                writew(0, ioaddr + PGSEL);
1621        }
1622}
1623
1624static void undo_cable_magic(struct net_device *dev)
1625{
1626        u16 data;
1627        struct netdev_private *np = netdev_priv(dev);
1628        void __iomem * ioaddr = ns_ioaddr(dev);
1629
1630        if (dev->if_port != PORT_TP)
1631                return;
1632
1633        if (np->srr >= SRR_DP83816_A5)
1634                return;
1635
1636        writew(1, ioaddr + PGSEL);
1637        /* make sure the lock bit is clear */
1638        data = readw(ioaddr + DSPCFG);
1639        np->dspcfg = data & ~DSPCFG_LOCK;
1640        writew(np->dspcfg, ioaddr + DSPCFG);
1641        writew(0, ioaddr + PGSEL);
1642}
1643
1644static void check_link(struct net_device *dev)
1645{
1646        struct netdev_private *np = netdev_priv(dev);
1647        void __iomem * ioaddr = ns_ioaddr(dev);
1648        int duplex = np->duplex;
1649        u16 bmsr;
1650
1651        /* If we are ignoring the PHY then don't try reading it. */
1652        if (np->ignore_phy)
1653                goto propagate_state;
1654
1655        /* The link status field is latched: it remains low after a temporary
1656         * link failure until it's read. We need the current link status,
1657         * thus read twice.
1658         */
1659        mdio_read(dev, MII_BMSR);
1660        bmsr = mdio_read(dev, MII_BMSR);
1661
1662        if (!(bmsr & BMSR_LSTATUS)) {
1663                if (netif_carrier_ok(dev)) {
1664                        if (netif_msg_link(np))
1665                                printk(KERN_NOTICE "%s: link down.\n",
1666                                       dev->name);
1667                        netif_carrier_off(dev);
1668                        undo_cable_magic(dev);
1669                }
1670                return;
1671        }
1672        if (!netif_carrier_ok(dev)) {
1673                if (netif_msg_link(np))
1674                        printk(KERN_NOTICE "%s: link up.\n", dev->name);
1675                netif_carrier_on(dev);
1676                do_cable_magic(dev);
1677        }
1678
1679        duplex = np->full_duplex;
1680        if (!duplex) {
1681                if (bmsr & BMSR_ANEGCOMPLETE) {
1682                        int tmp = mii_nway_result(
1683                                np->advertising & mdio_read(dev, MII_LPA));
1684                        if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1685                                duplex = 1;
1686                } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1687                        duplex = 1;
1688        }
1689
1690propagate_state:
1691        /* if duplex is set then bit 28 must be set, too */
1692        if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1693                if (netif_msg_link(np))
1694                        printk(KERN_INFO
1695                                "%s: Setting %s-duplex based on negotiated "
1696                                "link capability.\n", dev->name,
1697                                duplex ? "full" : "half");
1698                if (duplex) {
1699                        np->rx_config |= RxAcceptTx;
1700                        np->tx_config |= TxCarrierIgn | TxHeartIgn;
1701                } else {
1702                        np->rx_config &= ~RxAcceptTx;
1703                        np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1704                }
1705                writel(np->tx_config, ioaddr + TxConfig);
1706                writel(np->rx_config, ioaddr + RxConfig);
1707        }
1708}
1709
1710static void init_registers(struct net_device *dev)
1711{
1712        struct netdev_private *np = netdev_priv(dev);
1713        void __iomem * ioaddr = ns_ioaddr(dev);
1714
1715        init_phy_fixup(dev);
1716
1717        /* clear any interrupts that are pending, such as wake events */
1718        readl(ioaddr + IntrStatus);
1719
1720        writel(np->ring_dma, ioaddr + RxRingPtr);
1721        writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1722                ioaddr + TxRingPtr);
1723
1724        /* Initialize other registers.
1725         * Configure the PCI bus bursts and FIFO thresholds.
1726         * Configure for standard, in-spec Ethernet.
1727         * Start with half-duplex. check_link will update
1728         * to the correct settings.
1729         */
1730
1731        /* DRTH: 2: start tx if 64 bytes are in the fifo
1732         * FLTH: 0x10: refill with next packet if 512 bytes are free
1733         * MXDMA: 0: up to 256 byte bursts.
1734         *      MXDMA must be <= FLTH
1735         * ECRETRY=1
1736         * ATP=1
1737         */
1738        np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1739                                TX_FLTH_VAL | TX_DRTH_VAL_START;
1740        writel(np->tx_config, ioaddr + TxConfig);
1741
1742        /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1743         * MXDMA 0: up to 256 byte bursts
1744         */
1745        np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1746        /* if receive ring now has bigger buffers than normal, enable jumbo */
1747        if (np->rx_buf_sz > NATSEMI_LONGPKT)
1748                np->rx_config |= RxAcceptLong;
1749
1750        writel(np->rx_config, ioaddr + RxConfig);
1751
1752        /* Disable PME:
1753         * The PME bit is initialized from the EEPROM contents.
1754         * PCI cards probably have PME disabled, but motherboard
1755         * implementations may have PME set to enable WakeOnLan.
1756         * With PME set the chip will scan incoming packets but
1757         * nothing will be written to memory. */
1758        np->SavedClkRun = readl(ioaddr + ClkRun);
1759        writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1760        if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1761                printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1762                        dev->name, readl(ioaddr + WOLCmd));
1763        }
1764
1765        check_link(dev);
1766        __set_rx_mode(dev);
1767
1768        /* Enable interrupts by setting the interrupt mask. */
1769        writel(DEFAULT_INTR, ioaddr + IntrMask);
1770        natsemi_irq_enable(dev);
1771
1772        writel(RxOn | TxOn, ioaddr + ChipCmd);
1773        writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1774}
1775
1776/*
1777 * netdev_timer:
1778 * Purpose:
1779 * 1) check for link changes. Usually they are handled by the MII interrupt
1780 *    but it doesn't hurt to check twice.
1781 * 2) check for sudden death of the NIC:
1782 *    It seems that a reference set for this chip went out with incorrect info,
1783 *    and there exist boards that aren't quite right.  An unexpected voltage
1784 *    drop can cause the PHY to get itself in a weird state (basically reset).
1785 *    NOTE: this only seems to affect revC chips.  The user can disable
1786 *    this check via dspcfg_workaround sysfs option.
1787 * 3) check of death of the RX path due to OOM
1788 */
1789static void netdev_timer(unsigned long data)
1790{
1791        struct net_device *dev = (struct net_device *)data;
1792        struct netdev_private *np = netdev_priv(dev);
1793        void __iomem * ioaddr = ns_ioaddr(dev);
1794        int next_tick = NATSEMI_TIMER_FREQ;
1795
1796        if (netif_msg_timer(np)) {
1797                /* DO NOT read the IntrStatus register,
1798                 * a read clears any pending interrupts.
1799                 */
1800                printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1801                        dev->name);
1802        }
1803
1804        if (dev->if_port == PORT_TP) {
1805                u16 dspcfg;
1806
1807                spin_lock_irq(&np->lock);
1808                /* check for a nasty random phy-reset - use dspcfg as a flag */
1809                writew(1, ioaddr+PGSEL);
1810                dspcfg = readw(ioaddr+DSPCFG);
1811                writew(0, ioaddr+PGSEL);
1812                if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1813                        if (!netif_queue_stopped(dev)) {
1814                                spin_unlock_irq(&np->lock);
1815                                if (netif_msg_drv(np))
1816                                        printk(KERN_NOTICE "%s: possible phy reset: "
1817                                                "re-initializing\n", dev->name);
1818                                disable_irq(dev->irq);
1819                                spin_lock_irq(&np->lock);
1820                                natsemi_stop_rxtx(dev);
1821                                dump_ring(dev);
1822                                reinit_ring(dev);
1823                                init_registers(dev);
1824                                spin_unlock_irq(&np->lock);
1825                                enable_irq(dev->irq);
1826                        } else {
1827                                /* hurry back */
1828                                next_tick = HZ;
1829                                spin_unlock_irq(&np->lock);
1830                        }
1831                } else {
1832                        /* init_registers() calls check_link() for the above case */
1833                        check_link(dev);
1834                        spin_unlock_irq(&np->lock);
1835                }
1836        } else {
1837                spin_lock_irq(&np->lock);
1838                check_link(dev);
1839                spin_unlock_irq(&np->lock);
1840        }
1841        if (np->oom) {
1842                disable_irq(dev->irq);
1843                np->oom = 0;
1844                refill_rx(dev);
1845                enable_irq(dev->irq);
1846                if (!np->oom) {
1847                        writel(RxOn, ioaddr + ChipCmd);
1848                } else {
1849                        next_tick = 1;
1850                }
1851        }
1852
1853        if (next_tick > 1)
1854                mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1855        else
1856                mod_timer(&np->timer, jiffies + next_tick);
1857}
1858
1859static void dump_ring(struct net_device *dev)
1860{
1861        struct netdev_private *np = netdev_priv(dev);
1862
1863        if (netif_msg_pktdata(np)) {
1864                int i;
1865                printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1866                for (i = 0; i < TX_RING_SIZE; i++) {
1867                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1868                                i, np->tx_ring[i].next_desc,
1869                                np->tx_ring[i].cmd_status,
1870                                np->tx_ring[i].addr);
1871                }
1872                printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1873                for (i = 0; i < RX_RING_SIZE; i++) {
1874                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1875                                i, np->rx_ring[i].next_desc,
1876                                np->rx_ring[i].cmd_status,
1877                                np->rx_ring[i].addr);
1878                }
1879        }
1880}
1881
1882static void ns_tx_timeout(struct net_device *dev)
1883{
1884        struct netdev_private *np = netdev_priv(dev);
1885        void __iomem * ioaddr = ns_ioaddr(dev);
1886
1887        disable_irq(dev->irq);
1888        spin_lock_irq(&np->lock);
1889        if (!np->hands_off) {
1890                if (netif_msg_tx_err(np))
1891                        printk(KERN_WARNING
1892                                "%s: Transmit timed out, status %#08x,"
1893                                " resetting...\n",
1894                                dev->name, readl(ioaddr + IntrStatus));
1895                dump_ring(dev);
1896
1897                natsemi_reset(dev);
1898                reinit_ring(dev);
1899                init_registers(dev);
1900        } else {
1901                printk(KERN_WARNING
1902                        "%s: tx_timeout while in hands_off state?\n",
1903                        dev->name);
1904        }
1905        spin_unlock_irq(&np->lock);
1906        enable_irq(dev->irq);
1907
1908        dev->trans_start = jiffies;
1909        np->stats.tx_errors++;
1910        netif_wake_queue(dev);
1911}
1912
1913static int alloc_ring(struct net_device *dev)
1914{
1915        struct netdev_private *np = netdev_priv(dev);
1916        np->rx_ring = pci_alloc_consistent(np->pci_dev,
1917                sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1918                &np->ring_dma);
1919        if (!np->rx_ring)
1920                return -ENOMEM;
1921        np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922        return 0;
1923}
1924
1925static void refill_rx(struct net_device *dev)
1926{
1927        struct netdev_private *np = netdev_priv(dev);
1928
1929        /* Refill the Rx ring buffers. */
1930        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931                struct sk_buff *skb;
1932                int entry = np->dirty_rx % RX_RING_SIZE;
1933                if (np->rx_skbuff[entry] == NULL) {
1934                        unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935                        skb = dev_alloc_skb(buflen);
1936                        np->rx_skbuff[entry] = skb;
1937                        if (skb == NULL)
1938                                break; /* Better luck next round. */
1939                        skb->dev = dev; /* Mark as being used by this device. */
1940                        np->rx_dma[entry] = pci_map_single(np->pci_dev,
1941                                skb->data, buflen, PCI_DMA_FROMDEVICE);
1942                        np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1943                }
1944                np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1945        }
1946        if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1947                if (netif_msg_rx_err(np))
1948                        printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1949                np->oom = 1;
1950        }
1951}
1952
1953static void set_bufsize(struct net_device *dev)
1954{
1955        struct netdev_private *np = netdev_priv(dev);
1956        if (dev->mtu <= ETH_DATA_LEN)
1957                np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1958        else
1959                np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1960}
1961
1962/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1963static void init_ring(struct net_device *dev)
1964{
1965        struct netdev_private *np = netdev_priv(dev);
1966        int i;
1967
1968        /* 1) TX ring */
1969        np->dirty_tx = np->cur_tx = 0;
1970        for (i = 0; i < TX_RING_SIZE; i++) {
1971                np->tx_skbuff[i] = NULL;
1972                np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1973                        +sizeof(struct netdev_desc)
1974                        *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1975                np->tx_ring[i].cmd_status = 0;
1976        }
1977
1978        /* 2) RX ring */
1979        np->dirty_rx = 0;
1980        np->cur_rx = RX_RING_SIZE;
1981        np->oom = 0;
1982        set_bufsize(dev);
1983
1984        np->rx_head_desc = &np->rx_ring[0];
1985
1986        /* Please be carefull before changing this loop - at least gcc-2.95.1
1987         * miscompiles it otherwise.
1988         */
1989        /* Initialize all Rx descriptors. */
1990        for (i = 0; i < RX_RING_SIZE; i++) {
1991                np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1992                                +sizeof(struct netdev_desc)
1993                                *((i+1)%RX_RING_SIZE));
1994                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1995                np->rx_skbuff[i] = NULL;
1996        }
1997        refill_rx(dev);
1998        dump_ring(dev);
1999}
2000
2001static void drain_tx(struct net_device *dev)
2002{
2003        struct netdev_private *np = netdev_priv(dev);
2004        int i;
2005
2006        for (i = 0; i < TX_RING_SIZE; i++) {
2007                if (np->tx_skbuff[i]) {
2008                        pci_unmap_single(np->pci_dev,
2009                                np->tx_dma[i], np->tx_skbuff[i]->len,
2010                                PCI_DMA_TODEVICE);
2011                        dev_kfree_skb(np->tx_skbuff[i]);
2012                        np->stats.tx_dropped++;
2013                }
2014                np->tx_skbuff[i] = NULL;
2015        }
2016}
2017
2018static void drain_rx(struct net_device *dev)
2019{
2020        struct netdev_private *np = netdev_priv(dev);
2021        unsigned int buflen = np->rx_buf_sz;
2022        int i;
2023
2024        /* Free all the skbuffs in the Rx queue. */
2025        for (i = 0; i < RX_RING_SIZE; i++) {
2026                np->rx_ring[i].cmd_status = 0;
2027                np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2028                if (np->rx_skbuff[i]) {
2029                        pci_unmap_single(np->pci_dev,
2030                                np->rx_dma[i], buflen,
2031                                PCI_DMA_FROMDEVICE);
2032                        dev_kfree_skb(np->rx_skbuff[i]);
2033                }
2034                np->rx_skbuff[i] = NULL;
2035        }
2036}
2037
2038static void drain_ring(struct net_device *dev)
2039{
2040        drain_rx(dev);
2041        drain_tx(dev);
2042}
2043
2044static void free_ring(struct net_device *dev)
2045{
2046        struct netdev_private *np = netdev_priv(dev);
2047        pci_free_consistent(np->pci_dev,
2048                sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2049                np->rx_ring, np->ring_dma);
2050}
2051
2052static void reinit_rx(struct net_device *dev)
2053{
2054        struct netdev_private *np = netdev_priv(dev);
2055        int i;
2056
2057        /* RX Ring */
2058        np->dirty_rx = 0;
2059        np->cur_rx = RX_RING_SIZE;
2060        np->rx_head_desc = &np->rx_ring[0];
2061        /* Initialize all Rx descriptors. */
2062        for (i = 0; i < RX_RING_SIZE; i++)
2063                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2064
2065        refill_rx(dev);
2066}
2067
2068static void reinit_ring(struct net_device *dev)
2069{
2070        struct netdev_private *np = netdev_priv(dev);
2071        int i;
2072
2073        /* drain TX ring */
2074        drain_tx(dev);
2075        np->dirty_tx = np->cur_tx = 0;
2076        for (i=0;i<TX_RING_SIZE;i++)
2077                np->tx_ring[i].cmd_status = 0;
2078
2079        reinit_rx(dev);
2080}
2081
2082static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2083{
2084        struct netdev_private *np = netdev_priv(dev);
2085        void __iomem * ioaddr = ns_ioaddr(dev);
2086        unsigned entry;
2087        unsigned long flags;
2088
2089        /* Note: Ordering is important here, set the field with the
2090           "ownership" bit last, and only then increment cur_tx. */
2091
2092        /* Calculate the next Tx descriptor entry. */
2093        entry = np->cur_tx % TX_RING_SIZE;
2094
2095        np->tx_skbuff[entry] = skb;
2096        np->tx_dma[entry] = pci_map_single(np->pci_dev,
2097                                skb->data,skb->len, PCI_DMA_TODEVICE);
2098
2099        np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2100
2101        spin_lock_irqsave(&np->lock, flags);
2102
2103        if (!np->hands_off) {
2104                np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2105                /* StrongARM: Explicitly cache flush np->tx_ring and
2106                 * skb->data,skb->len. */
2107                wmb();
2108                np->cur_tx++;
2109                if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2110                        netdev_tx_done(dev);
2111                        if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2112                                netif_stop_queue(dev);
2113                }
2114                /* Wake the potentially-idle transmit channel. */
2115                writel(TxOn, ioaddr + ChipCmd);
2116        } else {
2117                dev_kfree_skb_irq(skb);
2118                np->stats.tx_dropped++;
2119        }
2120        spin_unlock_irqrestore(&np->lock, flags);
2121
2122        dev->trans_start = jiffies;
2123
2124        if (netif_msg_tx_queued(np)) {
2125                printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2126                        dev->name, np->cur_tx, entry);
2127        }
2128        return NETDEV_TX_OK;
2129}
2130
2131static void netdev_tx_done(struct net_device *dev)
2132{
2133        struct netdev_private *np = netdev_priv(dev);
2134
2135        for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2136                int entry = np->dirty_tx % TX_RING_SIZE;
2137                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2138                        break;
2139                if (netif_msg_tx_done(np))
2140                        printk(KERN_DEBUG
2141                                "%s: tx frame #%d finished, status %#08x.\n",
2142                                        dev->name, np->dirty_tx,
2143                                        le32_to_cpu(np->tx_ring[entry].cmd_status));
2144                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2145                        np->stats.tx_packets++;
2146                        np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2147                } else { /* Various Tx errors */
2148                        int tx_status =
2149                                le32_to_cpu(np->tx_ring[entry].cmd_status);
2150                        if (tx_status & (DescTxAbort|DescTxExcColl))
2151                                np->stats.tx_aborted_errors++;
2152                        if (tx_status & DescTxFIFO)
2153                                np->stats.tx_fifo_errors++;
2154                        if (tx_status & DescTxCarrier)
2155                                np->stats.tx_carrier_errors++;
2156                        if (tx_status & DescTxOOWCol)
2157                                np->stats.tx_window_errors++;
2158                        np->stats.tx_errors++;
2159                }
2160                pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2161                                        np->tx_skbuff[entry]->len,
2162                                        PCI_DMA_TODEVICE);
2163                /* Free the original skb. */
2164                dev_kfree_skb_irq(np->tx_skbuff[entry]);
2165                np->tx_skbuff[entry] = NULL;
2166        }
2167        if (netif_queue_stopped(dev)
2168                && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2169                /* The ring is no longer full, wake queue. */
2170                netif_wake_queue(dev);
2171        }
2172}
2173
2174/* The interrupt handler doesn't actually handle interrupts itself, it
2175 * schedules a NAPI poll if there is anything to do. */
2176static irqreturn_t intr_handler(int irq, void *dev_instance)
2177{
2178        struct net_device *dev = dev_instance;
2179        struct netdev_private *np = netdev_priv(dev);
2180        void __iomem * ioaddr = ns_ioaddr(dev);
2181
2182        /* Reading IntrStatus automatically acknowledges so don't do
2183         * that while interrupts are disabled, (for example, while a
2184         * poll is scheduled).  */
2185        if (np->hands_off || !readl(ioaddr + IntrEnable))
2186                return IRQ_NONE;
2187
2188        np->intr_status = readl(ioaddr + IntrStatus);
2189
2190        if (!np->intr_status)
2191                return IRQ_NONE;
2192
2193        if (netif_msg_intr(np))
2194                printk(KERN_DEBUG
2195                       "%s: Interrupt, status %#08x, mask %#08x.\n",
2196                       dev->name, np->intr_status,
2197                       readl(ioaddr + IntrMask));
2198
2199        prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2200
2201        if (napi_schedule_prep(&np->napi)) {
2202                /* Disable interrupts and register for poll */
2203                natsemi_irq_disable(dev);
2204                __napi_schedule(&np->napi);
2205        } else
2206                printk(KERN_WARNING
2207                       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2208                       dev->name, np->intr_status,
2209                       readl(ioaddr + IntrMask));
2210
2211        return IRQ_HANDLED;
2212}
2213
2214/* This is the NAPI poll routine.  As well as the standard RX handling
2215 * it also handles all other interrupts that the chip might raise.
2216 */
2217static int natsemi_poll(struct napi_struct *napi, int budget)
2218{
2219        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2220        struct net_device *dev = np->dev;
2221        void __iomem * ioaddr = ns_ioaddr(dev);
2222        int work_done = 0;
2223
2224        do {
2225                if (netif_msg_intr(np))
2226                        printk(KERN_DEBUG
2227                               "%s: Poll, status %#08x, mask %#08x.\n",
2228                               dev->name, np->intr_status,
2229                               readl(ioaddr + IntrMask));
2230
2231                /* netdev_rx() may read IntrStatus again if the RX state
2232                 * machine falls over so do it first. */
2233                if (np->intr_status &
2234                    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2235                     IntrRxErr | IntrRxOverrun)) {
2236                        netdev_rx(dev, &work_done, budget);
2237                }
2238
2239                if (np->intr_status &
2240                    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2241                        spin_lock(&np->lock);
2242                        netdev_tx_done(dev);
2243                        spin_unlock(&np->lock);
2244                }
2245
2246                /* Abnormal error summary/uncommon events handlers. */
2247                if (np->intr_status & IntrAbnormalSummary)
2248                        netdev_error(dev, np->intr_status);
2249
2250                if (work_done >= budget)
2251                        return work_done;
2252
2253                np->intr_status = readl(ioaddr + IntrStatus);
2254        } while (np->intr_status);
2255
2256        napi_complete(napi);
2257
2258        /* Reenable interrupts providing nothing is trying to shut
2259         * the chip down. */
2260        spin_lock(&np->lock);
2261        if (!np->hands_off)
2262                natsemi_irq_enable(dev);
2263        spin_unlock(&np->lock);
2264
2265        return work_done;
2266}
2267
2268/* This routine is logically part of the interrupt handler, but separated
2269   for clarity and better register allocation. */
2270static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2271{
2272        struct netdev_private *np = netdev_priv(dev);
2273        int entry = np->cur_rx % RX_RING_SIZE;
2274        int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2275        s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2276        unsigned int buflen = np->rx_buf_sz;
2277        void __iomem * ioaddr = ns_ioaddr(dev);
2278
2279        /* If the driver owns the next entry it's a new packet. Send it up. */
2280        while (desc_status < 0) { /* e.g. & DescOwn */
2281                int pkt_len;
2282                if (netif_msg_rx_status(np))
2283                        printk(KERN_DEBUG
2284                                "  netdev_rx() entry %d status was %#08x.\n",
2285                                entry, desc_status);
2286                if (--boguscnt < 0)
2287                        break;
2288
2289                if (*work_done >= work_to_do)
2290                        break;
2291
2292                (*work_done)++;
2293
2294                pkt_len = (desc_status & DescSizeMask) - 4;
2295                if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2296                        if (desc_status & DescMore) {
2297                                unsigned long flags;
2298
2299                                if (netif_msg_rx_err(np))
2300                                        printk(KERN_WARNING
2301                                                "%s: Oversized(?) Ethernet "
2302                                                "frame spanned multiple "
2303                                                "buffers, entry %#08x "
2304                                                "status %#08x.\n", dev->name,
2305                                                np->cur_rx, desc_status);
2306                                np->stats.rx_length_errors++;
2307
2308                                /* The RX state machine has probably
2309                                 * locked up beneath us.  Follow the
2310                                 * reset procedure documented in
2311                                 * AN-1287. */
2312
2313                                spin_lock_irqsave(&np->lock, flags);
2314                                reset_rx(dev);
2315                                reinit_rx(dev);
2316                                writel(np->ring_dma, ioaddr + RxRingPtr);
2317                                check_link(dev);
2318                                spin_unlock_irqrestore(&np->lock, flags);
2319
2320                                /* We'll enable RX on exit from this
2321                                 * function. */
2322                                break;
2323
2324                        } else {
2325                                /* There was an error. */
2326                                np->stats.rx_errors++;
2327                                if (desc_status & (DescRxAbort|DescRxOver))
2328                                        np->stats.rx_over_errors++;
2329                                if (desc_status & (DescRxLong|DescRxRunt))
2330                                        np->stats.rx_length_errors++;
2331                                if (desc_status & (DescRxInvalid|DescRxAlign))
2332                                        np->stats.rx_frame_errors++;
2333                                if (desc_status & DescRxCRC)
2334                                        np->stats.rx_crc_errors++;
2335                        }
2336                } else if (pkt_len > np->rx_buf_sz) {
2337                        /* if this is the tail of a double buffer
2338                         * packet, we've already counted the error
2339                         * on the first part.  Ignore the second half.
2340                         */
2341                } else {
2342                        struct sk_buff *skb;
2343                        /* Omit CRC size. */
2344                        /* Check if the packet is long enough to accept
2345                         * without copying to a minimally-sized skbuff. */
2346                        if (pkt_len < rx_copybreak
2347                            && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2348                                /* 16 byte align the IP header */
2349                                skb_reserve(skb, RX_OFFSET);
2350                                pci_dma_sync_single_for_cpu(np->pci_dev,
2351                                        np->rx_dma[entry],
2352                                        buflen,
2353                                        PCI_DMA_FROMDEVICE);
2354                                skb_copy_to_linear_data(skb,
2355                                        np->rx_skbuff[entry]->data, pkt_len);
2356                                skb_put(skb, pkt_len);
2357                                pci_dma_sync_single_for_device(np->pci_dev,
2358                                        np->rx_dma[entry],
2359                                        buflen,
2360                                        PCI_DMA_FROMDEVICE);
2361                        } else {
2362                                pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2363                                        buflen, PCI_DMA_FROMDEVICE);
2364                                skb_put(skb = np->rx_skbuff[entry], pkt_len);
2365                                np->rx_skbuff[entry] = NULL;
2366                        }
2367                        skb->protocol = eth_type_trans(skb, dev);
2368                        netif_receive_skb(skb);
2369                        np->stats.rx_packets++;
2370                        np->stats.rx_bytes += pkt_len;
2371                }
2372                entry = (++np->cur_rx) % RX_RING_SIZE;
2373                np->rx_head_desc = &np->rx_ring[entry];
2374                desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2375        }
2376        refill_rx(dev);
2377
2378        /* Restart Rx engine if stopped. */
2379        if (np->oom)
2380                mod_timer(&np->timer, jiffies + 1);
2381        else
2382                writel(RxOn, ioaddr + ChipCmd);
2383}
2384
2385static void netdev_error(struct net_device *dev, int intr_status)
2386{
2387        struct netdev_private *np = netdev_priv(dev);
2388        void __iomem * ioaddr = ns_ioaddr(dev);
2389
2390        spin_lock(&np->lock);
2391        if (intr_status & LinkChange) {
2392                u16 lpa = mdio_read(dev, MII_LPA);
2393                if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2394                 && netif_msg_link(np)) {
2395                        printk(KERN_INFO
2396                                "%s: Autonegotiation advertising"
2397                                " %#04x  partner %#04x.\n", dev->name,
2398                                np->advertising, lpa);
2399                }
2400
2401                /* read MII int status to clear the flag */
2402                readw(ioaddr + MIntrStatus);
2403                check_link(dev);
2404        }
2405        if (intr_status & StatsMax) {
2406                __get_stats(dev);
2407        }
2408        if (intr_status & IntrTxUnderrun) {
2409                if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2410                        np->tx_config += TX_DRTH_VAL_INC;
2411                        if (netif_msg_tx_err(np))
2412                                printk(KERN_NOTICE
2413                                        "%s: increased tx threshold, txcfg %#08x.\n",
2414                                        dev->name, np->tx_config);
2415                } else {
2416                        if (netif_msg_tx_err(np))
2417                                printk(KERN_NOTICE
2418                                        "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2419                                        dev->name, np->tx_config);
2420                }
2421                writel(np->tx_config, ioaddr + TxConfig);
2422        }
2423        if (intr_status & WOLPkt && netif_msg_wol(np)) {
2424                int wol_status = readl(ioaddr + WOLCmd);
2425                printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2426                        dev->name, wol_status);
2427        }
2428        if (intr_status & RxStatusFIFOOver) {
2429                if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2430                        printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2431                                dev->name);
2432                }
2433                np->stats.rx_fifo_errors++;
2434                np->stats.rx_errors++;
2435        }
2436        /* Hmmmmm, it's not clear how to recover from PCI faults. */
2437        if (intr_status & IntrPCIErr) {
2438                printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2439                        intr_status & IntrPCIErr);
2440                np->stats.tx_fifo_errors++;
2441                np->stats.tx_errors++;
2442                np->stats.rx_fifo_errors++;
2443                np->stats.rx_errors++;
2444        }
2445        spin_unlock(&np->lock);
2446}
2447
2448static void __get_stats(struct net_device *dev)
2449{
2450        void __iomem * ioaddr = ns_ioaddr(dev);
2451        struct netdev_private *np = netdev_priv(dev);
2452
2453        /* The chip only need report frame silently dropped. */
2454        np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2455        np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2456}
2457
2458static struct net_device_stats *get_stats(struct net_device *dev)
2459{
2460        struct netdev_private *np = netdev_priv(dev);
2461
2462        /* The chip only need report frame silently dropped. */
2463        spin_lock_irq(&np->lock);
2464        if (netif_running(dev) && !np->hands_off)
2465                __get_stats(dev);
2466        spin_unlock_irq(&np->lock);
2467
2468        return &np->stats;
2469}
2470
2471#ifdef CONFIG_NET_POLL_CONTROLLER
2472static void natsemi_poll_controller(struct net_device *dev)
2473{
2474        disable_irq(dev->irq);
2475        intr_handler(dev->irq, dev);
2476        enable_irq(dev->irq);
2477}
2478#endif
2479
2480#define HASH_TABLE      0x200
2481static void __set_rx_mode(struct net_device *dev)
2482{
2483        void __iomem * ioaddr = ns_ioaddr(dev);
2484        struct netdev_private *np = netdev_priv(dev);
2485        u8 mc_filter[64]; /* Multicast hash filter */
2486        u32 rx_mode;
2487
2488        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2489                rx_mode = RxFilterEnable | AcceptBroadcast
2490                        | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2491        } else if ((dev->mc_count > multicast_filter_limit)
2492          || (dev->flags & IFF_ALLMULTI)) {
2493                rx_mode = RxFilterEnable | AcceptBroadcast
2494                        | AcceptAllMulticast | AcceptMyPhys;
2495        } else {
2496                struct dev_mc_list *mclist;
2497                int i;
2498                memset(mc_filter, 0, sizeof(mc_filter));
2499                for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2500                         i++, mclist = mclist->next) {
2501                        int b = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2502                        mc_filter[b/8] |= (1 << (b & 0x07));
2503                }
2504                rx_mode = RxFilterEnable | AcceptBroadcast
2505                        | AcceptMulticast | AcceptMyPhys;
2506                for (i = 0; i < 64; i += 2) {
2507                        writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2508                        writel((mc_filter[i + 1] << 8) + mc_filter[i],
2509                               ioaddr + RxFilterData);
2510                }
2511        }
2512        writel(rx_mode, ioaddr + RxFilterAddr);
2513        np->cur_rx_mode = rx_mode;
2514}
2515
2516static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517{
2518        if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2519                return -EINVAL;
2520
2521        dev->mtu = new_mtu;
2522
2523        /* synchronized against open : rtnl_lock() held by caller */
2524        if (netif_running(dev)) {
2525                struct netdev_private *np = netdev_priv(dev);
2526                void __iomem * ioaddr = ns_ioaddr(dev);
2527
2528                disable_irq(dev->irq);
2529                spin_lock(&np->lock);
2530                /* stop engines */
2531                natsemi_stop_rxtx(dev);
2532                /* drain rx queue */
2533                drain_rx(dev);
2534                /* change buffers */
2535                set_bufsize(dev);
2536                reinit_rx(dev);
2537                writel(np->ring_dma, ioaddr + RxRingPtr);
2538                /* restart engines */
2539                writel(RxOn | TxOn, ioaddr + ChipCmd);
2540                spin_unlock(&np->lock);
2541                enable_irq(dev->irq);
2542        }
2543        return 0;
2544}
2545
2546static void set_rx_mode(struct net_device *dev)
2547{
2548        struct netdev_private *np = netdev_priv(dev);
2549        spin_lock_irq(&np->lock);
2550        if (!np->hands_off)
2551                __set_rx_mode(dev);
2552        spin_unlock_irq(&np->lock);
2553}
2554
2555static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556{
2557        struct netdev_private *np = netdev_priv(dev);
2558        strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2559        strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2560        strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2561}
2562
2563static int get_regs_len(struct net_device *dev)
2564{
2565        return NATSEMI_REGS_SIZE;
2566}
2567
2568static int get_eeprom_len(struct net_device *dev)
2569{
2570        struct netdev_private *np = netdev_priv(dev);
2571        return np->eeprom_size;
2572}
2573
2574static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575{
2576        struct netdev_private *np = netdev_priv(dev);
2577        spin_lock_irq(&np->lock);
2578        netdev_get_ecmd(dev, ecmd);
2579        spin_unlock_irq(&np->lock);
2580        return 0;
2581}
2582
2583static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584{
2585        struct netdev_private *np = netdev_priv(dev);
2586        int res;
2587        spin_lock_irq(&np->lock);
2588        res = netdev_set_ecmd(dev, ecmd);
2589        spin_unlock_irq(&np->lock);
2590        return res;
2591}
2592
2593static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594{
2595        struct netdev_private *np = netdev_priv(dev);
2596        spin_lock_irq(&np->lock);
2597        netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2598        netdev_get_sopass(dev, wol->sopass);
2599        spin_unlock_irq(&np->lock);
2600}
2601
2602static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603{
2604        struct netdev_private *np = netdev_priv(dev);
2605        int res;
2606        spin_lock_irq(&np->lock);
2607        netdev_set_wol(dev, wol->wolopts);
2608        res = netdev_set_sopass(dev, wol->sopass);
2609        spin_unlock_irq(&np->lock);
2610        return res;
2611}
2612
2613static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614{
2615        struct netdev_private *np = netdev_priv(dev);
2616        regs->version = NATSEMI_REGS_VER;
2617        spin_lock_irq(&np->lock);
2618        netdev_get_regs(dev, buf);
2619        spin_unlock_irq(&np->lock);
2620}
2621
2622static u32 get_msglevel(struct net_device *dev)
2623{
2624        struct netdev_private *np = netdev_priv(dev);
2625        return np->msg_enable;
2626}
2627
2628static void set_msglevel(struct net_device *dev, u32 val)
2629{
2630        struct netdev_private *np = netdev_priv(dev);
2631        np->msg_enable = val;
2632}
2633
2634static int nway_reset(struct net_device *dev)
2635{
2636        int tmp;
2637        int r = -EINVAL;
2638        /* if autoneg is off, it's an error */
2639        tmp = mdio_read(dev, MII_BMCR);
2640        if (tmp & BMCR_ANENABLE) {
2641                tmp |= (BMCR_ANRESTART);
2642                mdio_write(dev, MII_BMCR, tmp);
2643                r = 0;
2644        }
2645        return r;
2646}
2647
2648static u32 get_link(struct net_device *dev)
2649{
2650        /* LSTATUS is latched low until a read - so read twice */
2651        mdio_read(dev, MII_BMSR);
2652        return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2653}
2654
2655static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656{
2657        struct netdev_private *np = netdev_priv(dev);
2658        u8 *eebuf;
2659        int res;
2660
2661        eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2662        if (!eebuf)
2663                return -ENOMEM;
2664
2665        eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2666        spin_lock_irq(&np->lock);
2667        res = netdev_get_eeprom(dev, eebuf);
2668        spin_unlock_irq(&np->lock);
2669        if (!res)
2670                memcpy(data, eebuf+eeprom->offset, eeprom->len);
2671        kfree(eebuf);
2672        return res;
2673}
2674
2675static const struct ethtool_ops ethtool_ops = {
2676        .get_drvinfo = get_drvinfo,
2677        .get_regs_len = get_regs_len,
2678        .get_eeprom_len = get_eeprom_len,
2679        .get_settings = get_settings,
2680        .set_settings = set_settings,
2681        .get_wol = get_wol,
2682        .set_wol = set_wol,
2683        .get_regs = get_regs,
2684        .get_msglevel = get_msglevel,
2685        .set_msglevel = set_msglevel,
2686        .nway_reset = nway_reset,
2687        .get_link = get_link,
2688        .get_eeprom = get_eeprom,
2689};
2690
2691static int netdev_set_wol(struct net_device *dev, u32 newval)
2692{
2693        struct netdev_private *np = netdev_priv(dev);
2694        void __iomem * ioaddr = ns_ioaddr(dev);
2695        u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696
2697        /* translate to bitmasks this chip understands */
2698        if (newval & WAKE_PHY)
2699                data |= WakePhy;
2700        if (newval & WAKE_UCAST)
2701                data |= WakeUnicast;
2702        if (newval & WAKE_MCAST)
2703                data |= WakeMulticast;
2704        if (newval & WAKE_BCAST)
2705                data |= WakeBroadcast;
2706        if (newval & WAKE_ARP)
2707                data |= WakeArp;
2708        if (newval & WAKE_MAGIC)
2709                data |= WakeMagic;
2710        if (np->srr >= SRR_DP83815_D) {
2711                if (newval & WAKE_MAGICSECURE) {
2712                        data |= WakeMagicSecure;
2713                }
2714        }
2715
2716        writel(data, ioaddr + WOLCmd);
2717
2718        return 0;
2719}
2720
2721static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722{
2723        struct netdev_private *np = netdev_priv(dev);
2724        void __iomem * ioaddr = ns_ioaddr(dev);
2725        u32 regval = readl(ioaddr + WOLCmd);
2726
2727        *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2728                        | WAKE_ARP | WAKE_MAGIC);
2729
2730        if (np->srr >= SRR_DP83815_D) {
2731                /* SOPASS works on revD and higher */
2732                *supported |= WAKE_MAGICSECURE;
2733        }
2734        *cur = 0;
2735
2736        /* translate from chip bitmasks */
2737        if (regval & WakePhy)
2738                *cur |= WAKE_PHY;
2739        if (regval & WakeUnicast)
2740                *cur |= WAKE_UCAST;
2741        if (regval & WakeMulticast)
2742                *cur |= WAKE_MCAST;
2743        if (regval & WakeBroadcast)
2744                *cur |= WAKE_BCAST;
2745        if (regval & WakeArp)
2746                *cur |= WAKE_ARP;
2747        if (regval & WakeMagic)
2748                *cur |= WAKE_MAGIC;
2749        if (regval & WakeMagicSecure) {
2750                /* this can be on in revC, but it's broken */
2751                *cur |= WAKE_MAGICSECURE;
2752        }
2753
2754        return 0;
2755}
2756
2757static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758{
2759        struct netdev_private *np = netdev_priv(dev);
2760        void __iomem * ioaddr = ns_ioaddr(dev);
2761        u16 *sval = (u16 *)newval;
2762        u32 addr;
2763
2764        if (np->srr < SRR_DP83815_D) {
2765                return 0;
2766        }
2767
2768        /* enable writing to these registers by disabling the RX filter */
2769        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2770        addr &= ~RxFilterEnable;
2771        writel(addr, ioaddr + RxFilterAddr);
2772
2773        /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2774        writel(addr | 0xa, ioaddr + RxFilterAddr);
2775        writew(sval[0], ioaddr + RxFilterData);
2776
2777        writel(addr | 0xc, ioaddr + RxFilterAddr);
2778        writew(sval[1], ioaddr + RxFilterData);
2779
2780        writel(addr | 0xe, ioaddr + RxFilterAddr);
2781        writew(sval[2], ioaddr + RxFilterData);
2782
2783        /* re-enable the RX filter */
2784        writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785
2786        return 0;
2787}
2788
2789static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790{
2791        struct netdev_private *np = netdev_priv(dev);
2792        void __iomem * ioaddr = ns_ioaddr(dev);
2793        u16 *sval = (u16 *)data;
2794        u32 addr;
2795
2796        if (np->srr < SRR_DP83815_D) {
2797                sval[0] = sval[1] = sval[2] = 0;
2798                return 0;
2799        }
2800
2801        /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2802        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803
2804        writel(addr | 0xa, ioaddr + RxFilterAddr);
2805        sval[0] = readw(ioaddr + RxFilterData);
2806
2807        writel(addr | 0xc, ioaddr + RxFilterAddr);
2808        sval[1] = readw(ioaddr + RxFilterData);
2809
2810        writel(addr | 0xe, ioaddr + RxFilterAddr);
2811        sval[2] = readw(ioaddr + RxFilterData);
2812
2813        writel(addr, ioaddr + RxFilterAddr);
2814
2815        return 0;
2816}
2817
2818static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819{
2820        struct netdev_private *np = netdev_priv(dev);
2821        u32 tmp;
2822
2823        ecmd->port        = dev->if_port;
2824        ecmd->speed       = np->speed;
2825        ecmd->duplex      = np->duplex;
2826        ecmd->autoneg     = np->autoneg;
2827        ecmd->advertising = 0;
2828        if (np->advertising & ADVERTISE_10HALF)
2829                ecmd->advertising |= ADVERTISED_10baseT_Half;
2830        if (np->advertising & ADVERTISE_10FULL)
2831                ecmd->advertising |= ADVERTISED_10baseT_Full;
2832        if (np->advertising & ADVERTISE_100HALF)
2833                ecmd->advertising |= ADVERTISED_100baseT_Half;
2834        if (np->advertising & ADVERTISE_100FULL)
2835                ecmd->advertising |= ADVERTISED_100baseT_Full;
2836        ecmd->supported   = (SUPPORTED_Autoneg |
2837                SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2838                SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2839                SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2840        ecmd->phy_address = np->phy_addr_external;
2841        /*
2842         * We intentionally report the phy address of the external
2843         * phy, even if the internal phy is used. This is necessary
2844         * to work around a deficiency of the ethtool interface:
2845         * It's only possible to query the settings of the active
2846         * port. Therefore
2847         * # ethtool -s ethX port mii
2848         * actually sends an ioctl to switch to port mii with the
2849         * settings that are used for the current active port.
2850         * If we would report a different phy address in this
2851         * command, then
2852         * # ethtool -s ethX port tp;ethtool -s ethX port mii
2853         * would unintentionally change the phy address.
2854         *
2855         * Fortunately the phy address doesn't matter with the
2856         * internal phy...
2857         */
2858
2859        /* set information based on active port type */
2860        switch (ecmd->port) {
2861        default:
2862        case PORT_TP:
2863                ecmd->advertising |= ADVERTISED_TP;
2864                ecmd->transceiver = XCVR_INTERNAL;
2865                break;
2866        case PORT_MII:
2867                ecmd->advertising |= ADVERTISED_MII;
2868                ecmd->transceiver = XCVR_EXTERNAL;
2869                break;
2870        case PORT_FIBRE:
2871                ecmd->advertising |= ADVERTISED_FIBRE;
2872                ecmd->transceiver = XCVR_EXTERNAL;
2873                break;
2874        }
2875
2876        /* if autonegotiation is on, try to return the active speed/duplex */
2877        if (ecmd->autoneg == AUTONEG_ENABLE) {
2878                ecmd->advertising |= ADVERTISED_Autoneg;
2879                tmp = mii_nway_result(
2880                        np->advertising & mdio_read(dev, MII_LPA));
2881                if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2882                        ecmd->speed  = SPEED_100;
2883                else
2884                        ecmd->speed  = SPEED_10;
2885                if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2886                        ecmd->duplex = DUPLEX_FULL;
2887                else
2888                        ecmd->duplex = DUPLEX_HALF;
2889        }
2890
2891        /* ignore maxtxpkt, maxrxpkt for now */
2892
2893        return 0;
2894}
2895
2896static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897{
2898        struct netdev_private *np = netdev_priv(dev);
2899
2900        if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2901                return -EINVAL;
2902        if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2903                return -EINVAL;
2904        if (ecmd->autoneg == AUTONEG_ENABLE) {
2905                if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2906                                          ADVERTISED_10baseT_Full |
2907                                          ADVERTISED_100baseT_Half |
2908                                          ADVERTISED_100baseT_Full)) == 0) {
2909                        return -EINVAL;
2910                }
2911        } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2912                if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2913                        return -EINVAL;
2914                if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2915                        return -EINVAL;
2916        } else {
2917                return -EINVAL;
2918        }
2919
2920        /*
2921         * If we're ignoring the PHY then autoneg and the internal
2922         * transciever are really not going to work so don't let the
2923         * user select them.
2924         */
2925        if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2926                               ecmd->port == PORT_TP))
2927                return -EINVAL;
2928
2929        /*
2930         * maxtxpkt, maxrxpkt: ignored for now.
2931         *
2932         * transceiver:
2933         * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2934         * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2935         * selects based on ecmd->port.
2936         *
2937         * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2938         * phys that are connected to the mii bus. It's used to apply fibre
2939         * specific updates.
2940         */
2941
2942        /* WHEW! now lets bang some bits */
2943
2944        /* save the parms */
2945        dev->if_port          = ecmd->port;
2946        np->autoneg           = ecmd->autoneg;
2947        np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2948        if (np->autoneg == AUTONEG_ENABLE) {
2949                /* advertise only what has been requested */
2950                np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2951                if (ecmd->advertising & ADVERTISED_10baseT_Half)
2952                        np->advertising |= ADVERTISE_10HALF;
2953                if (ecmd->advertising & ADVERTISED_10baseT_Full)
2954                        np->advertising |= ADVERTISE_10FULL;
2955                if (ecmd->advertising & ADVERTISED_100baseT_Half)
2956                        np->advertising |= ADVERTISE_100HALF;
2957                if (ecmd->advertising & ADVERTISED_100baseT_Full)
2958                        np->advertising |= ADVERTISE_100FULL;
2959        } else {
2960                np->speed  = ecmd->speed;
2961                np->duplex = ecmd->duplex;
2962                /* user overriding the initial full duplex parm? */
2963                if (np->duplex == DUPLEX_HALF)
2964                        np->full_duplex = 0;
2965        }
2966
2967        /* get the right phy enabled */
2968        if (ecmd->port == PORT_TP)
2969                switch_port_internal(dev);
2970        else
2971                switch_port_external(dev);
2972
2973        /* set parms and see how this affected our link status */
2974        init_phy_fixup(dev);
2975        check_link(dev);
2976        return 0;
2977}
2978
2979static int netdev_get_regs(struct net_device *dev, u8 *buf)
2980{
2981        int i;
2982        int j;
2983        u32 rfcr;
2984        u32 *rbuf = (u32 *)buf;
2985        void __iomem * ioaddr = ns_ioaddr(dev);
2986
2987        /* read non-mii page 0 of registers */
2988        for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2989                rbuf[i] = readl(ioaddr + i*4);
2990        }
2991
2992        /* read current mii registers */
2993        for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2994                rbuf[i] = mdio_read(dev, i & 0x1f);
2995
2996        /* read only the 'magic' registers from page 1 */
2997        writew(1, ioaddr + PGSEL);
2998        rbuf[i++] = readw(ioaddr + PMDCSR);
2999        rbuf[i++] = readw(ioaddr + TSTDAT);
3000        rbuf[i++] = readw(ioaddr + DSPCFG);
3001        rbuf[i++] = readw(ioaddr + SDCFG);
3002        writew(0, ioaddr + PGSEL);
3003
3004        /* read RFCR indexed registers */
3005        rfcr = readl(ioaddr + RxFilterAddr);
3006        for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3007                writel(j*2, ioaddr + RxFilterAddr);
3008                rbuf[i++] = readw(ioaddr + RxFilterData);
3009        }
3010        writel(rfcr, ioaddr + RxFilterAddr);
3011
3012        /* the interrupt status is clear-on-read - see if we missed any */
3013        if (rbuf[4] & rbuf[5]) {
3014                printk(KERN_WARNING
3015                        "%s: shoot, we dropped an interrupt (%#08x)\n",
3016                        dev->name, rbuf[4] & rbuf[5]);
3017        }
3018
3019        return 0;
3020}
3021
3022#define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3023                        | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3024                        | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3025                        | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3026                        | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3027                        | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3028                        | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3029                        | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3030
3031static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3032{
3033        int i;
3034        u16 *ebuf = (u16 *)buf;
3035        void __iomem * ioaddr = ns_ioaddr(dev);
3036        struct netdev_private *np = netdev_priv(dev);
3037
3038        /* eeprom_read reads 16 bits, and indexes by 16 bits */
3039        for (i = 0; i < np->eeprom_size/2; i++) {
3040                ebuf[i] = eeprom_read(ioaddr, i);
3041                /* The EEPROM itself stores data bit-swapped, but eeprom_read
3042                 * reads it back "sanely". So we swap it back here in order to
3043                 * present it to userland as it is stored. */
3044                ebuf[i] = SWAP_BITS(ebuf[i]);
3045        }
3046        return 0;
3047}
3048
3049static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050{
3051        struct mii_ioctl_data *data = if_mii(rq);
3052        struct netdev_private *np = netdev_priv(dev);
3053
3054        switch(cmd) {
3055        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
3056                data->phy_id = np->phy_addr_external;
3057                /* Fall Through */
3058
3059        case SIOCGMIIREG:               /* Read MII PHY register. */
3060                /* The phy_id is not enough to uniquely identify
3061                 * the intended target. Therefore the command is sent to
3062                 * the given mii on the current port.
3063                 */
3064                if (dev->if_port == PORT_TP) {
3065                        if ((data->phy_id & 0x1f) == np->phy_addr_external)
3066                                data->val_out = mdio_read(dev,
3067                                                        data->reg_num & 0x1f);
3068                        else
3069                                data->val_out = 0;
3070                } else {
3071                        move_int_phy(dev, data->phy_id & 0x1f);
3072                        data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3073                                                        data->reg_num & 0x1f);
3074                }
3075                return 0;
3076
3077        case SIOCSMIIREG:               /* Write MII PHY register. */
3078                if (dev->if_port == PORT_TP) {
3079                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3080                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3081                                        np->advertising = data->val_in;
3082                                mdio_write(dev, data->reg_num & 0x1f,
3083                                                        data->val_in);
3084                        }
3085                } else {
3086                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3087                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3088                                        np->advertising = data->val_in;
3089                        }
3090                        move_int_phy(dev, data->phy_id & 0x1f);
3091                        miiport_write(dev, data->phy_id & 0x1f,
3092                                                data->reg_num & 0x1f,
3093                                                data->val_in);
3094                }
3095                return 0;
3096        default:
3097                return -EOPNOTSUPP;
3098        }
3099}
3100
3101static void enable_wol_mode(struct net_device *dev, int enable_intr)
3102{
3103        void __iomem * ioaddr = ns_ioaddr(dev);
3104        struct netdev_private *np = netdev_priv(dev);
3105
3106        if (netif_msg_wol(np))
3107                printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3108                        dev->name);
3109
3110        /* For WOL we must restart the rx process in silent mode.
3111         * Write NULL to the RxRingPtr. Only possible if
3112         * rx process is stopped
3113         */
3114        writel(0, ioaddr + RxRingPtr);
3115
3116        /* read WoL status to clear */
3117        readl(ioaddr + WOLCmd);
3118
3119        /* PME on, clear status */
3120        writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3121
3122        /* and restart the rx process */
3123        writel(RxOn, ioaddr + ChipCmd);
3124
3125        if (enable_intr) {
3126                /* enable the WOL interrupt.
3127                 * Could be used to send a netlink message.
3128                 */
3129                writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3130                natsemi_irq_enable(dev);
3131        }
3132}
3133
3134static int netdev_close(struct net_device *dev)
3135{
3136        void __iomem * ioaddr = ns_ioaddr(dev);
3137        struct netdev_private *np = netdev_priv(dev);
3138
3139        if (netif_msg_ifdown(np))
3140                printk(KERN_DEBUG
3141                        "%s: Shutting down ethercard, status was %#04x.\n",
3142                        dev->name, (int)readl(ioaddr + ChipCmd));
3143        if (netif_msg_pktdata(np))
3144                printk(KERN_DEBUG
3145                        "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3146                        dev->name, np->cur_tx, np->dirty_tx,
3147                        np->cur_rx, np->dirty_rx);
3148
3149        napi_disable(&np->napi);
3150
3151        /*
3152         * FIXME: what if someone tries to close a device
3153         * that is suspended?
3154         * Should we reenable the nic to switch to
3155         * the final WOL settings?
3156         */
3157
3158        del_timer_sync(&np->timer);
3159        disable_irq(dev->irq);
3160        spin_lock_irq(&np->lock);
3161        natsemi_irq_disable(dev);
3162        np->hands_off = 1;
3163        spin_unlock_irq(&np->lock);
3164        enable_irq(dev->irq);
3165
3166        free_irq(dev->irq, dev);
3167
3168        /* Interrupt disabled, interrupt handler released,
3169         * queue stopped, timer deleted, rtnl_lock held
3170         * All async codepaths that access the driver are disabled.
3171         */
3172        spin_lock_irq(&np->lock);
3173        np->hands_off = 0;
3174        readl(ioaddr + IntrMask);
3175        readw(ioaddr + MIntrStatus);
3176
3177        /* Freeze Stats */
3178        writel(StatsFreeze, ioaddr + StatsCtrl);
3179
3180        /* Stop the chip's Tx and Rx processes. */
3181        natsemi_stop_rxtx(dev);
3182
3183        __get_stats(dev);
3184        spin_unlock_irq(&np->lock);
3185
3186        /* clear the carrier last - an interrupt could reenable it otherwise */
3187        netif_carrier_off(dev);
3188        netif_stop_queue(dev);
3189
3190        dump_ring(dev);
3191        drain_ring(dev);
3192        free_ring(dev);
3193
3194        {
3195                u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3196                if (wol) {
3197                        /* restart the NIC in WOL mode.
3198                         * The nic must be stopped for this.
3199                         */
3200                        enable_wol_mode(dev, 0);
3201                } else {
3202                        /* Restore PME enable bit unmolested */
3203                        writel(np->SavedClkRun, ioaddr + ClkRun);
3204                }
3205        }
3206        return 0;
3207}
3208
3209
3210static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3211{
3212        struct net_device *dev = pci_get_drvdata(pdev);
3213        void __iomem * ioaddr = ns_ioaddr(dev);
3214
3215        NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3216        unregister_netdev (dev);
3217        pci_release_regions (pdev);
3218        iounmap(ioaddr);
3219        free_netdev (dev);
3220        pci_set_drvdata(pdev, NULL);
3221}
3222
3223#ifdef CONFIG_PM
3224
3225/*
3226 * The ns83815 chip doesn't have explicit RxStop bits.
3227 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3228 * of the nic, thus this function must be very careful:
3229 *
3230 * suspend/resume synchronization:
3231 * entry points:
3232 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3233 *   start_tx, ns_tx_timeout
3234 *
3235 * No function accesses the hardware without checking np->hands_off.
3236 *      the check occurs under spin_lock_irq(&np->lock);
3237 * exceptions:
3238 *      * netdev_ioctl: noncritical access.
3239 *      * netdev_open: cannot happen due to the device_detach
3240 *      * netdev_close: doesn't hurt.
3241 *      * netdev_timer: timer stopped by natsemi_suspend.
3242 *      * intr_handler: doesn't acquire the spinlock. suspend calls
3243 *              disable_irq() to enforce synchronization.
3244 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3245 *              sets hands_off, disables interrupts and then waits with
3246 *              napi_disable().
3247 *
3248 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3249 */
3250
3251static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3252{
3253        struct net_device *dev = pci_get_drvdata (pdev);
3254        struct netdev_private *np = netdev_priv(dev);
3255        void __iomem * ioaddr = ns_ioaddr(dev);
3256
3257        rtnl_lock();
3258        if (netif_running (dev)) {
3259                del_timer_sync(&np->timer);
3260
3261                disable_irq(dev->irq);
3262                spin_lock_irq(&np->lock);
3263
3264                natsemi_irq_disable(dev);
3265                np->hands_off = 1;
3266                natsemi_stop_rxtx(dev);
3267                netif_stop_queue(dev);
3268
3269                spin_unlock_irq(&np->lock);
3270                enable_irq(dev->irq);
3271
3272                napi_disable(&np->napi);
3273
3274                /* Update the error counts. */
3275                __get_stats(dev);
3276
3277                /* pci_power_off(pdev, -1); */
3278                drain_ring(dev);
3279                {
3280                        u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3281                        /* Restore PME enable bit */
3282                        if (wol) {
3283                                /* restart the NIC in WOL mode.
3284                                 * The nic must be stopped for this.
3285                                 * FIXME: use the WOL interrupt
3286                                 */
3287                                enable_wol_mode(dev, 0);
3288                        } else {
3289                                /* Restore PME enable bit unmolested */
3290                                writel(np->SavedClkRun, ioaddr + ClkRun);
3291                        }
3292                }
3293        }
3294        netif_device_detach(dev);
3295        rtnl_unlock();
3296        return 0;
3297}
3298
3299
3300static int natsemi_resume (struct pci_dev *pdev)
3301{
3302        struct net_device *dev = pci_get_drvdata (pdev);
3303        struct netdev_private *np = netdev_priv(dev);
3304        int ret = 0;
3305
3306        rtnl_lock();
3307        if (netif_device_present(dev))
3308                goto out;
3309        if (netif_running(dev)) {
3310                BUG_ON(!np->hands_off);
3311                ret = pci_enable_device(pdev);
3312                if (ret < 0) {
3313                        dev_err(&pdev->dev,
3314                                "pci_enable_device() failed: %d\n", ret);
3315                        goto out;
3316                }
3317        /*      pci_power_on(pdev); */
3318
3319                napi_enable(&np->napi);
3320
3321                natsemi_reset(dev);
3322                init_ring(dev);
3323                disable_irq(dev->irq);
3324                spin_lock_irq(&np->lock);
3325                np->hands_off = 0;
3326                init_registers(dev);
3327                netif_device_attach(dev);
3328                spin_unlock_irq(&np->lock);
3329                enable_irq(dev->irq);
3330
3331                mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3332        }
3333        netif_device_attach(dev);
3334out:
3335        rtnl_unlock();
3336        return ret;
3337}
3338
3339#endif /* CONFIG_PM */
3340
3341static struct pci_driver natsemi_driver = {
3342        .name           = DRV_NAME,
3343        .id_table       = natsemi_pci_tbl,
3344        .probe          = natsemi_probe1,
3345        .remove         = __devexit_p(natsemi_remove1),
3346#ifdef CONFIG_PM
3347        .suspend        = natsemi_suspend,
3348        .resume         = natsemi_resume,
3349#endif
3350};
3351
3352static int __init natsemi_init_mod (void)
3353{
3354/* when a module, this is printed whether or not devices are found in probe */
3355#ifdef MODULE
3356        printk(version);
3357#endif
3358
3359        return pci_register_driver(&natsemi_driver);
3360}
3361
3362static void __exit natsemi_exit_mod (void)
3363{
3364        pci_unregister_driver (&natsemi_driver);
3365}
3366
3367module_init(natsemi_init_mod);
3368module_exit(natsemi_exit_mod);
3369
3370