linux/drivers/net/rrunner.c
<<
>>
Prefs
   1/*
   2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   3 *
   4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   5 *
   6 * Thanks to Essential Communication for providing us with hardware
   7 * and very comprehensive documentation without which I would not have
   8 * been able to write this driver. A special thank you to John Gibbon
   9 * for sorting out the legal issues, with the NDA, allowing the code to
  10 * be released under the GPL.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18 * stupid bugs in my code.
  19 *
  20 * Softnet support and various other patches from Val Henson of
  21 * ODS/Essential.
  22 *
  23 * PCI DMA mapping code partly based on work by Francois Romieu.
  24 */
  25
  26
  27#define DEBUG 1
  28#define RX_DMA_SKBUFF 1
  29#define PKT_COPY_THRESHOLD 512
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/ioport.h>
  35#include <linux/pci.h>
  36#include <linux/kernel.h>
  37#include <linux/netdevice.h>
  38#include <linux/hippidevice.h>
  39#include <linux/skbuff.h>
  40#include <linux/init.h>
  41#include <linux/delay.h>
  42#include <linux/mm.h>
  43#include <net/sock.h>
  44
  45#include <asm/system.h>
  46#include <asm/cache.h>
  47#include <asm/byteorder.h>
  48#include <asm/io.h>
  49#include <asm/irq.h>
  50#include <asm/uaccess.h>
  51
  52#define rr_if_busy(dev)     netif_queue_stopped(dev)
  53#define rr_if_running(dev)  netif_running(dev)
  54
  55#include "rrunner.h"
  56
  57#define RUN_AT(x) (jiffies + (x))
  58
  59
  60MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  61MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  62MODULE_LICENSE("GPL");
  63
  64static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  65
  66
  67static const struct net_device_ops rr_netdev_ops = {
  68        .ndo_open               = rr_open,
  69        .ndo_stop               = rr_close,
  70        .ndo_do_ioctl           = rr_ioctl,
  71        .ndo_start_xmit         = rr_start_xmit,
  72        .ndo_change_mtu         = hippi_change_mtu,
  73        .ndo_set_mac_address    = hippi_mac_addr,
  74};
  75
  76/*
  77 * Implementation notes:
  78 *
  79 * The DMA engine only allows for DMA within physical 64KB chunks of
  80 * memory. The current approach of the driver (and stack) is to use
  81 * linear blocks of memory for the skbuffs. However, as the data block
  82 * is always the first part of the skb and skbs are 2^n aligned so we
  83 * are guarantted to get the whole block within one 64KB align 64KB
  84 * chunk.
  85 *
  86 * On the long term, relying on being able to allocate 64KB linear
  87 * chunks of memory is not feasible and the skb handling code and the
  88 * stack will need to know about I/O vectors or something similar.
  89 */
  90
  91static int __devinit rr_init_one(struct pci_dev *pdev,
  92        const struct pci_device_id *ent)
  93{
  94        struct net_device *dev;
  95        static int version_disp;
  96        u8 pci_latency;
  97        struct rr_private *rrpriv;
  98        void *tmpptr;
  99        dma_addr_t ring_dma;
 100        int ret = -ENOMEM;
 101
 102        dev = alloc_hippi_dev(sizeof(struct rr_private));
 103        if (!dev)
 104                goto out3;
 105
 106        ret = pci_enable_device(pdev);
 107        if (ret) {
 108                ret = -ENODEV;
 109                goto out2;
 110        }
 111
 112        rrpriv = netdev_priv(dev);
 113
 114        SET_NETDEV_DEV(dev, &pdev->dev);
 115
 116        if (pci_request_regions(pdev, "rrunner")) {
 117                ret = -EIO;
 118                goto out;
 119        }
 120
 121        pci_set_drvdata(pdev, dev);
 122
 123        rrpriv->pci_dev = pdev;
 124
 125        spin_lock_init(&rrpriv->lock);
 126
 127        dev->irq = pdev->irq;
 128        dev->netdev_ops = &rr_netdev_ops;
 129
 130        dev->base_addr = pci_resource_start(pdev, 0);
 131
 132        /* display version info if adapter is found */
 133        if (!version_disp) {
 134                /* set display flag to TRUE so that */
 135                /* we only display this string ONCE */
 136                version_disp = 1;
 137                printk(version);
 138        }
 139
 140        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 141        if (pci_latency <= 0x58){
 142                pci_latency = 0x58;
 143                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 144        }
 145
 146        pci_set_master(pdev);
 147
 148        printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 149               "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
 150               dev->base_addr, dev->irq, pci_latency);
 151
 152        /*
 153         * Remap the regs into kernel space.
 154         */
 155
 156        rrpriv->regs = ioremap(dev->base_addr, 0x1000);
 157
 158        if (!rrpriv->regs){
 159                printk(KERN_ERR "%s:  Unable to map I/O register, "
 160                        "RoadRunner will be disabled.\n", dev->name);
 161                ret = -EIO;
 162                goto out;
 163        }
 164
 165        tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 166        rrpriv->tx_ring = tmpptr;
 167        rrpriv->tx_ring_dma = ring_dma;
 168
 169        if (!tmpptr) {
 170                ret = -ENOMEM;
 171                goto out;
 172        }
 173
 174        tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 175        rrpriv->rx_ring = tmpptr;
 176        rrpriv->rx_ring_dma = ring_dma;
 177
 178        if (!tmpptr) {
 179                ret = -ENOMEM;
 180                goto out;
 181        }
 182
 183        tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 184        rrpriv->evt_ring = tmpptr;
 185        rrpriv->evt_ring_dma = ring_dma;
 186
 187        if (!tmpptr) {
 188                ret = -ENOMEM;
 189                goto out;
 190        }
 191
 192        /*
 193         * Don't access any register before this point!
 194         */
 195#ifdef __BIG_ENDIAN
 196        writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 197                &rrpriv->regs->HostCtrl);
 198#endif
 199        /*
 200         * Need to add a case for little-endian 64-bit hosts here.
 201         */
 202
 203        rr_init(dev);
 204
 205        dev->base_addr = 0;
 206
 207        ret = register_netdev(dev);
 208        if (ret)
 209                goto out;
 210        return 0;
 211
 212 out:
 213        if (rrpriv->rx_ring)
 214                pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 215                                    rrpriv->rx_ring_dma);
 216        if (rrpriv->tx_ring)
 217                pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 218                                    rrpriv->tx_ring_dma);
 219        if (rrpriv->regs)
 220                iounmap(rrpriv->regs);
 221        if (pdev) {
 222                pci_release_regions(pdev);
 223                pci_set_drvdata(pdev, NULL);
 224        }
 225 out2:
 226        free_netdev(dev);
 227 out3:
 228        return ret;
 229}
 230
 231static void __devexit rr_remove_one (struct pci_dev *pdev)
 232{
 233        struct net_device *dev = pci_get_drvdata(pdev);
 234
 235        if (dev) {
 236                struct rr_private *rr = netdev_priv(dev);
 237
 238                if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
 239                        printk(KERN_ERR "%s: trying to unload running NIC\n",
 240                               dev->name);
 241                        writel(HALT_NIC, &rr->regs->HostCtrl);
 242                }
 243
 244                pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 245                                    rr->evt_ring_dma);
 246                pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 247                                    rr->rx_ring_dma);
 248                pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 249                                    rr->tx_ring_dma);
 250                unregister_netdev(dev);
 251                iounmap(rr->regs);
 252                free_netdev(dev);
 253                pci_release_regions(pdev);
 254                pci_disable_device(pdev);
 255                pci_set_drvdata(pdev, NULL);
 256        }
 257}
 258
 259
 260/*
 261 * Commands are considered to be slow, thus there is no reason to
 262 * inline this.
 263 */
 264static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 265{
 266        struct rr_regs __iomem *regs;
 267        u32 idx;
 268
 269        regs = rrpriv->regs;
 270        /*
 271         * This is temporary - it will go away in the final version.
 272         * We probably also want to make this function inline.
 273         */
 274        if (readl(&regs->HostCtrl) & NIC_HALTED){
 275                printk("issuing command for halted NIC, code 0x%x, "
 276                       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 277                if (readl(&regs->Mode) & FATAL_ERR)
 278                        printk("error codes Fail1 %02x, Fail2 %02x\n",
 279                               readl(&regs->Fail1), readl(&regs->Fail2));
 280        }
 281
 282        idx = rrpriv->info->cmd_ctrl.pi;
 283
 284        writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 285        wmb();
 286
 287        idx = (idx - 1) % CMD_RING_ENTRIES;
 288        rrpriv->info->cmd_ctrl.pi = idx;
 289        wmb();
 290
 291        if (readl(&regs->Mode) & FATAL_ERR)
 292                printk("error code %02x\n", readl(&regs->Fail1));
 293}
 294
 295
 296/*
 297 * Reset the board in a sensible manner. The NIC is already halted
 298 * when we get here and a spin-lock is held.
 299 */
 300static int rr_reset(struct net_device *dev)
 301{
 302        struct rr_private *rrpriv;
 303        struct rr_regs __iomem *regs;
 304        u32 start_pc;
 305        int i;
 306
 307        rrpriv = netdev_priv(dev);
 308        regs = rrpriv->regs;
 309
 310        rr_load_firmware(dev);
 311
 312        writel(0x01000000, &regs->TX_state);
 313        writel(0xff800000, &regs->RX_state);
 314        writel(0, &regs->AssistState);
 315        writel(CLEAR_INTA, &regs->LocalCtrl);
 316        writel(0x01, &regs->BrkPt);
 317        writel(0, &regs->Timer);
 318        writel(0, &regs->TimerRef);
 319        writel(RESET_DMA, &regs->DmaReadState);
 320        writel(RESET_DMA, &regs->DmaWriteState);
 321        writel(0, &regs->DmaWriteHostHi);
 322        writel(0, &regs->DmaWriteHostLo);
 323        writel(0, &regs->DmaReadHostHi);
 324        writel(0, &regs->DmaReadHostLo);
 325        writel(0, &regs->DmaReadLen);
 326        writel(0, &regs->DmaWriteLen);
 327        writel(0, &regs->DmaWriteLcl);
 328        writel(0, &regs->DmaWriteIPchecksum);
 329        writel(0, &regs->DmaReadLcl);
 330        writel(0, &regs->DmaReadIPchecksum);
 331        writel(0, &regs->PciState);
 332#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 333        writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 334#elif (BITS_PER_LONG == 64)
 335        writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 336#else
 337        writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 338#endif
 339
 340#if 0
 341        /*
 342         * Don't worry, this is just black magic.
 343         */
 344        writel(0xdf000, &regs->RxBase);
 345        writel(0xdf000, &regs->RxPrd);
 346        writel(0xdf000, &regs->RxCon);
 347        writel(0xce000, &regs->TxBase);
 348        writel(0xce000, &regs->TxPrd);
 349        writel(0xce000, &regs->TxCon);
 350        writel(0, &regs->RxIndPro);
 351        writel(0, &regs->RxIndCon);
 352        writel(0, &regs->RxIndRef);
 353        writel(0, &regs->TxIndPro);
 354        writel(0, &regs->TxIndCon);
 355        writel(0, &regs->TxIndRef);
 356        writel(0xcc000, &regs->pad10[0]);
 357        writel(0, &regs->DrCmndPro);
 358        writel(0, &regs->DrCmndCon);
 359        writel(0, &regs->DwCmndPro);
 360        writel(0, &regs->DwCmndCon);
 361        writel(0, &regs->DwCmndRef);
 362        writel(0, &regs->DrDataPro);
 363        writel(0, &regs->DrDataCon);
 364        writel(0, &regs->DrDataRef);
 365        writel(0, &regs->DwDataPro);
 366        writel(0, &regs->DwDataCon);
 367        writel(0, &regs->DwDataRef);
 368#endif
 369
 370        writel(0xffffffff, &regs->MbEvent);
 371        writel(0, &regs->Event);
 372
 373        writel(0, &regs->TxPi);
 374        writel(0, &regs->IpRxPi);
 375
 376        writel(0, &regs->EvtCon);
 377        writel(0, &regs->EvtPrd);
 378
 379        rrpriv->info->evt_ctrl.pi = 0;
 380
 381        for (i = 0; i < CMD_RING_ENTRIES; i++)
 382                writel(0, &regs->CmdRing[i]);
 383
 384/*
 385 * Why 32 ? is this not cache line size dependent?
 386 */
 387        writel(RBURST_64|WBURST_64, &regs->PciState);
 388        wmb();
 389
 390        start_pc = rr_read_eeprom_word(rrpriv,
 391                        offsetof(struct eeprom, rncd_info.FwStart));
 392
 393#if (DEBUG > 1)
 394        printk("%s: Executing firmware at address 0x%06x\n",
 395               dev->name, start_pc);
 396#endif
 397
 398        writel(start_pc + 0x800, &regs->Pc);
 399        wmb();
 400        udelay(5);
 401
 402        writel(start_pc, &regs->Pc);
 403        wmb();
 404
 405        return 0;
 406}
 407
 408
 409/*
 410 * Read a string from the EEPROM.
 411 */
 412static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 413                                unsigned long offset,
 414                                unsigned char *buf,
 415                                unsigned long length)
 416{
 417        struct rr_regs __iomem *regs = rrpriv->regs;
 418        u32 misc, io, host, i;
 419
 420        io = readl(&regs->ExtIo);
 421        writel(0, &regs->ExtIo);
 422        misc = readl(&regs->LocalCtrl);
 423        writel(0, &regs->LocalCtrl);
 424        host = readl(&regs->HostCtrl);
 425        writel(host | HALT_NIC, &regs->HostCtrl);
 426        mb();
 427
 428        for (i = 0; i < length; i++){
 429                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 430                mb();
 431                buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 432                mb();
 433        }
 434
 435        writel(host, &regs->HostCtrl);
 436        writel(misc, &regs->LocalCtrl);
 437        writel(io, &regs->ExtIo);
 438        mb();
 439        return i;
 440}
 441
 442
 443/*
 444 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 445 * it to our CPU byte-order.
 446 */
 447static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 448                            size_t offset)
 449{
 450        __be32 word;
 451
 452        if ((rr_read_eeprom(rrpriv, offset,
 453                            (unsigned char *)&word, 4) == 4))
 454                return be32_to_cpu(word);
 455        return 0;
 456}
 457
 458
 459/*
 460 * Write a string to the EEPROM.
 461 *
 462 * This is only called when the firmware is not running.
 463 */
 464static unsigned int write_eeprom(struct rr_private *rrpriv,
 465                                 unsigned long offset,
 466                                 unsigned char *buf,
 467                                 unsigned long length)
 468{
 469        struct rr_regs __iomem *regs = rrpriv->regs;
 470        u32 misc, io, data, i, j, ready, error = 0;
 471
 472        io = readl(&regs->ExtIo);
 473        writel(0, &regs->ExtIo);
 474        misc = readl(&regs->LocalCtrl);
 475        writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 476        mb();
 477
 478        for (i = 0; i < length; i++){
 479                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 480                mb();
 481                data = buf[i] << 24;
 482                /*
 483                 * Only try to write the data if it is not the same
 484                 * value already.
 485                 */
 486                if ((readl(&regs->WinData) & 0xff000000) != data){
 487                        writel(data, &regs->WinData);
 488                        ready = 0;
 489                        j = 0;
 490                        mb();
 491                        while(!ready){
 492                                udelay(20);
 493                                if ((readl(&regs->WinData) & 0xff000000) ==
 494                                    data)
 495                                        ready = 1;
 496                                mb();
 497                                if (j++ > 5000){
 498                                        printk("data mismatch: %08x, "
 499                                               "WinData %08x\n", data,
 500                                               readl(&regs->WinData));
 501                                        ready = 1;
 502                                        error = 1;
 503                                }
 504                        }
 505                }
 506        }
 507
 508        writel(misc, &regs->LocalCtrl);
 509        writel(io, &regs->ExtIo);
 510        mb();
 511
 512        return error;
 513}
 514
 515
 516static int __devinit rr_init(struct net_device *dev)
 517{
 518        struct rr_private *rrpriv;
 519        struct rr_regs __iomem *regs;
 520        u32 sram_size, rev;
 521
 522        rrpriv = netdev_priv(dev);
 523        regs = rrpriv->regs;
 524
 525        rev = readl(&regs->FwRev);
 526        rrpriv->fw_rev = rev;
 527        if (rev > 0x00020024)
 528                printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 529                       ((rev >> 8) & 0xff), (rev & 0xff));
 530        else if (rev >= 0x00020000) {
 531                printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 532                       "later is recommended)\n", (rev >> 16),
 533                       ((rev >> 8) & 0xff), (rev & 0xff));
 534        }else{
 535                printk("  Firmware revision too old: %i.%i.%i, please "
 536                       "upgrade to 2.0.37 or later.\n",
 537                       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 538        }
 539
 540#if (DEBUG > 2)
 541        printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 542#endif
 543
 544        /*
 545         * Read the hardware address from the eeprom.  The HW address
 546         * is not really necessary for HIPPI but awfully convenient.
 547         * The pointer arithmetic to put it in dev_addr is ugly, but
 548         * Donald Becker does it this way for the GigE version of this
 549         * card and it's shorter and more portable than any
 550         * other method I've seen.  -VAL
 551         */
 552
 553        *(__be16 *)(dev->dev_addr) =
 554          htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 555        *(__be32 *)(dev->dev_addr+2) =
 556          htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 557
 558        printk("  MAC: %pM\n", dev->dev_addr);
 559
 560        sram_size = rr_read_eeprom_word(rrpriv, 8);
 561        printk("  SRAM size 0x%06x\n", sram_size);
 562
 563        return 0;
 564}
 565
 566
 567static int rr_init1(struct net_device *dev)
 568{
 569        struct rr_private *rrpriv;
 570        struct rr_regs __iomem *regs;
 571        unsigned long myjif, flags;
 572        struct cmd cmd;
 573        u32 hostctrl;
 574        int ecode = 0;
 575        short i;
 576
 577        rrpriv = netdev_priv(dev);
 578        regs = rrpriv->regs;
 579
 580        spin_lock_irqsave(&rrpriv->lock, flags);
 581
 582        hostctrl = readl(&regs->HostCtrl);
 583        writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 584        wmb();
 585
 586        if (hostctrl & PARITY_ERR){
 587                printk("%s: Parity error halting NIC - this is serious!\n",
 588                       dev->name);
 589                spin_unlock_irqrestore(&rrpriv->lock, flags);
 590                ecode = -EFAULT;
 591                goto error;
 592        }
 593
 594        set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 595        set_infoaddr(regs, rrpriv->info_dma);
 596
 597        rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 598        rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 599        rrpriv->info->evt_ctrl.mode = 0;
 600        rrpriv->info->evt_ctrl.pi = 0;
 601        set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 602
 603        rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 604        rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 605        rrpriv->info->cmd_ctrl.mode = 0;
 606        rrpriv->info->cmd_ctrl.pi = 15;
 607
 608        for (i = 0; i < CMD_RING_ENTRIES; i++) {
 609                writel(0, &regs->CmdRing[i]);
 610        }
 611
 612        for (i = 0; i < TX_RING_ENTRIES; i++) {
 613                rrpriv->tx_ring[i].size = 0;
 614                set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 615                rrpriv->tx_skbuff[i] = NULL;
 616        }
 617        rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 618        rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 619        rrpriv->info->tx_ctrl.mode = 0;
 620        rrpriv->info->tx_ctrl.pi = 0;
 621        set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 622
 623        /*
 624         * Set dirty_tx before we start receiving interrupts, otherwise
 625         * the interrupt handler might think it is supposed to process
 626         * tx ints before we are up and running, which may cause a null
 627         * pointer access in the int handler.
 628         */
 629        rrpriv->tx_full = 0;
 630        rrpriv->cur_rx = 0;
 631        rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 632
 633        rr_reset(dev);
 634
 635        /* Tuning values */
 636        writel(0x5000, &regs->ConRetry);
 637        writel(0x100, &regs->ConRetryTmr);
 638        writel(0x500000, &regs->ConTmout);
 639        writel(0x60, &regs->IntrTmr);
 640        writel(0x500000, &regs->TxDataMvTimeout);
 641        writel(0x200000, &regs->RxDataMvTimeout);
 642        writel(0x80, &regs->WriteDmaThresh);
 643        writel(0x80, &regs->ReadDmaThresh);
 644
 645        rrpriv->fw_running = 0;
 646        wmb();
 647
 648        hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 649        writel(hostctrl, &regs->HostCtrl);
 650        wmb();
 651
 652        spin_unlock_irqrestore(&rrpriv->lock, flags);
 653
 654        for (i = 0; i < RX_RING_ENTRIES; i++) {
 655                struct sk_buff *skb;
 656                dma_addr_t addr;
 657
 658                rrpriv->rx_ring[i].mode = 0;
 659                skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 660                if (!skb) {
 661                        printk(KERN_WARNING "%s: Unable to allocate memory "
 662                               "for receive ring - halting NIC\n", dev->name);
 663                        ecode = -ENOMEM;
 664                        goto error;
 665                }
 666                rrpriv->rx_skbuff[i] = skb;
 667                addr = pci_map_single(rrpriv->pci_dev, skb->data,
 668                        dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 669                /*
 670                 * Sanity test to see if we conflict with the DMA
 671                 * limitations of the Roadrunner.
 672                 */
 673                if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 674                        printk("skb alloc error\n");
 675
 676                set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 677                rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 678        }
 679
 680        rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 681        rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 682        rrpriv->rx_ctrl[4].mode = 8;
 683        rrpriv->rx_ctrl[4].pi = 0;
 684        wmb();
 685        set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 686
 687        udelay(1000);
 688
 689        /*
 690         * Now start the FirmWare.
 691         */
 692        cmd.code = C_START_FW;
 693        cmd.ring = 0;
 694        cmd.index = 0;
 695
 696        rr_issue_cmd(rrpriv, &cmd);
 697
 698        /*
 699         * Give the FirmWare time to chew on the `get running' command.
 700         */
 701        myjif = jiffies + 5 * HZ;
 702        while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 703                cpu_relax();
 704
 705        netif_start_queue(dev);
 706
 707        return ecode;
 708
 709 error:
 710        /*
 711         * We might have gotten here because we are out of memory,
 712         * make sure we release everything we allocated before failing
 713         */
 714        for (i = 0; i < RX_RING_ENTRIES; i++) {
 715                struct sk_buff *skb = rrpriv->rx_skbuff[i];
 716
 717                if (skb) {
 718                        pci_unmap_single(rrpriv->pci_dev,
 719                                         rrpriv->rx_ring[i].addr.addrlo,
 720                                         dev->mtu + HIPPI_HLEN,
 721                                         PCI_DMA_FROMDEVICE);
 722                        rrpriv->rx_ring[i].size = 0;
 723                        set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 724                        dev_kfree_skb(skb);
 725                        rrpriv->rx_skbuff[i] = NULL;
 726                }
 727        }
 728        return ecode;
 729}
 730
 731
 732/*
 733 * All events are considered to be slow (RX/TX ints do not generate
 734 * events) and are handled here, outside the main interrupt handler,
 735 * to reduce the size of the handler.
 736 */
 737static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 738{
 739        struct rr_private *rrpriv;
 740        struct rr_regs __iomem *regs;
 741        u32 tmp;
 742
 743        rrpriv = netdev_priv(dev);
 744        regs = rrpriv->regs;
 745
 746        while (prodidx != eidx){
 747                switch (rrpriv->evt_ring[eidx].code){
 748                case E_NIC_UP:
 749                        tmp = readl(&regs->FwRev);
 750                        printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 751                               "up and running\n", dev->name,
 752                               (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 753                        rrpriv->fw_running = 1;
 754                        writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 755                        wmb();
 756                        break;
 757                case E_LINK_ON:
 758                        printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 759                        break;
 760                case E_LINK_OFF:
 761                        printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 762                        break;
 763                case E_RX_IDLE:
 764                        printk(KERN_WARNING "%s: RX data not moving\n",
 765                               dev->name);
 766                        goto drop;
 767                case E_WATCHDOG:
 768                        printk(KERN_INFO "%s: The watchdog is here to see "
 769                               "us\n", dev->name);
 770                        break;
 771                case E_INTERN_ERR:
 772                        printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 773                               dev->name);
 774                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 775                               &regs->HostCtrl);
 776                        wmb();
 777                        break;
 778                case E_HOST_ERR:
 779                        printk(KERN_ERR "%s: Host software error\n",
 780                               dev->name);
 781                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 782                               &regs->HostCtrl);
 783                        wmb();
 784                        break;
 785                /*
 786                 * TX events.
 787                 */
 788                case E_CON_REJ:
 789                        printk(KERN_WARNING "%s: Connection rejected\n",
 790                               dev->name);
 791                        dev->stats.tx_aborted_errors++;
 792                        break;
 793                case E_CON_TMOUT:
 794                        printk(KERN_WARNING "%s: Connection timeout\n",
 795                               dev->name);
 796                        break;
 797                case E_DISC_ERR:
 798                        printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 799                               dev->name);
 800                        dev->stats.tx_aborted_errors++;
 801                        break;
 802                case E_INT_PRTY:
 803                        printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 804                               dev->name);
 805                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 806                               &regs->HostCtrl);
 807                        wmb();
 808                        break;
 809                case E_TX_IDLE:
 810                        printk(KERN_WARNING "%s: Transmitter idle\n",
 811                               dev->name);
 812                        break;
 813                case E_TX_LINK_DROP:
 814                        printk(KERN_WARNING "%s: Link lost during transmit\n",
 815                               dev->name);
 816                        dev->stats.tx_aborted_errors++;
 817                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 818                               &regs->HostCtrl);
 819                        wmb();
 820                        break;
 821                case E_TX_INV_RNG:
 822                        printk(KERN_ERR "%s: Invalid send ring block\n",
 823                               dev->name);
 824                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 825                               &regs->HostCtrl);
 826                        wmb();
 827                        break;
 828                case E_TX_INV_BUF:
 829                        printk(KERN_ERR "%s: Invalid send buffer address\n",
 830                               dev->name);
 831                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 832                               &regs->HostCtrl);
 833                        wmb();
 834                        break;
 835                case E_TX_INV_DSC:
 836                        printk(KERN_ERR "%s: Invalid descriptor address\n",
 837                               dev->name);
 838                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 839                               &regs->HostCtrl);
 840                        wmb();
 841                        break;
 842                /*
 843                 * RX events.
 844                 */
 845                case E_RX_RNG_OUT:
 846                        printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 847                        break;
 848
 849                case E_RX_PAR_ERR:
 850                        printk(KERN_WARNING "%s: Receive parity error\n",
 851                               dev->name);
 852                        goto drop;
 853                case E_RX_LLRC_ERR:
 854                        printk(KERN_WARNING "%s: Receive LLRC error\n",
 855                               dev->name);
 856                        goto drop;
 857                case E_PKT_LN_ERR:
 858                        printk(KERN_WARNING "%s: Receive packet length "
 859                               "error\n", dev->name);
 860                        goto drop;
 861                case E_DTA_CKSM_ERR:
 862                        printk(KERN_WARNING "%s: Data checksum error\n",
 863                               dev->name);
 864                        goto drop;
 865                case E_SHT_BST:
 866                        printk(KERN_WARNING "%s: Unexpected short burst "
 867                               "error\n", dev->name);
 868                        goto drop;
 869                case E_STATE_ERR:
 870                        printk(KERN_WARNING "%s: Recv. state transition"
 871                               " error\n", dev->name);
 872                        goto drop;
 873                case E_UNEXP_DATA:
 874                        printk(KERN_WARNING "%s: Unexpected data error\n",
 875                               dev->name);
 876                        goto drop;
 877                case E_LST_LNK_ERR:
 878                        printk(KERN_WARNING "%s: Link lost error\n",
 879                               dev->name);
 880                        goto drop;
 881                case E_FRM_ERR:
 882                        printk(KERN_WARNING "%s: Framming Error\n",
 883                               dev->name);
 884                        goto drop;
 885                case E_FLG_SYN_ERR:
 886                        printk(KERN_WARNING "%s: Flag sync. lost during "
 887                               "packet\n", dev->name);
 888                        goto drop;
 889                case E_RX_INV_BUF:
 890                        printk(KERN_ERR "%s: Invalid receive buffer "
 891                               "address\n", dev->name);
 892                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 893                               &regs->HostCtrl);
 894                        wmb();
 895                        break;
 896                case E_RX_INV_DSC:
 897                        printk(KERN_ERR "%s: Invalid receive descriptor "
 898                               "address\n", dev->name);
 899                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 900                               &regs->HostCtrl);
 901                        wmb();
 902                        break;
 903                case E_RNG_BLK:
 904                        printk(KERN_ERR "%s: Invalid ring block\n",
 905                               dev->name);
 906                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 907                               &regs->HostCtrl);
 908                        wmb();
 909                        break;
 910                drop:
 911                        /* Label packet to be dropped.
 912                         * Actual dropping occurs in rx
 913                         * handling.
 914                         *
 915                         * The index of packet we get to drop is
 916                         * the index of the packet following
 917                         * the bad packet. -kbf
 918                         */
 919                        {
 920                                u16 index = rrpriv->evt_ring[eidx].index;
 921                                index = (index + (RX_RING_ENTRIES - 1)) %
 922                                        RX_RING_ENTRIES;
 923                                rrpriv->rx_ring[index].mode |=
 924                                        (PACKET_BAD | PACKET_END);
 925                        }
 926                        break;
 927                default:
 928                        printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 929                               dev->name, rrpriv->evt_ring[eidx].code);
 930                }
 931                eidx = (eidx + 1) % EVT_RING_ENTRIES;
 932        }
 933
 934        rrpriv->info->evt_ctrl.pi = eidx;
 935        wmb();
 936        return eidx;
 937}
 938
 939
 940static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 941{
 942        struct rr_private *rrpriv = netdev_priv(dev);
 943        struct rr_regs __iomem *regs = rrpriv->regs;
 944
 945        do {
 946                struct rx_desc *desc;
 947                u32 pkt_len;
 948
 949                desc = &(rrpriv->rx_ring[index]);
 950                pkt_len = desc->size;
 951#if (DEBUG > 2)
 952                printk("index %i, rxlimit %i\n", index, rxlimit);
 953                printk("len %x, mode %x\n", pkt_len, desc->mode);
 954#endif
 955                if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 956                        dev->stats.rx_dropped++;
 957                        goto defer;
 958                }
 959
 960                if (pkt_len > 0){
 961                        struct sk_buff *skb, *rx_skb;
 962
 963                        rx_skb = rrpriv->rx_skbuff[index];
 964
 965                        if (pkt_len < PKT_COPY_THRESHOLD) {
 966                                skb = alloc_skb(pkt_len, GFP_ATOMIC);
 967                                if (skb == NULL){
 968                                        printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 969                                        dev->stats.rx_dropped++;
 970                                        goto defer;
 971                                } else {
 972                                        pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 973                                                                    desc->addr.addrlo,
 974                                                                    pkt_len,
 975                                                                    PCI_DMA_FROMDEVICE);
 976
 977                                        memcpy(skb_put(skb, pkt_len),
 978                                               rx_skb->data, pkt_len);
 979
 980                                        pci_dma_sync_single_for_device(rrpriv->pci_dev,
 981                                                                       desc->addr.addrlo,
 982                                                                       pkt_len,
 983                                                                       PCI_DMA_FROMDEVICE);
 984                                }
 985                        }else{
 986                                struct sk_buff *newskb;
 987
 988                                newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 989                                        GFP_ATOMIC);
 990                                if (newskb){
 991                                        dma_addr_t addr;
 992
 993                                        pci_unmap_single(rrpriv->pci_dev,
 994                                                desc->addr.addrlo, dev->mtu +
 995                                                HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 996                                        skb = rx_skb;
 997                                        skb_put(skb, pkt_len);
 998                                        rrpriv->rx_skbuff[index] = newskb;
 999                                        addr = pci_map_single(rrpriv->pci_dev,
1000                                                newskb->data,
1001                                                dev->mtu + HIPPI_HLEN,
1002                                                PCI_DMA_FROMDEVICE);
1003                                        set_rraddr(&desc->addr, addr);
1004                                } else {
1005                                        printk("%s: Out of memory, deferring "
1006                                               "packet\n", dev->name);
1007                                        dev->stats.rx_dropped++;
1008                                        goto defer;
1009                                }
1010                        }
1011                        skb->protocol = hippi_type_trans(skb, dev);
1012
1013                        netif_rx(skb);          /* send it up */
1014
1015                        dev->stats.rx_packets++;
1016                        dev->stats.rx_bytes += pkt_len;
1017                }
1018        defer:
1019                desc->mode = 0;
1020                desc->size = dev->mtu + HIPPI_HLEN;
1021
1022                if ((index & 7) == 7)
1023                        writel(index, &regs->IpRxPi);
1024
1025                index = (index + 1) % RX_RING_ENTRIES;
1026        } while(index != rxlimit);
1027
1028        rrpriv->cur_rx = index;
1029        wmb();
1030}
1031
1032
1033static irqreturn_t rr_interrupt(int irq, void *dev_id)
1034{
1035        struct rr_private *rrpriv;
1036        struct rr_regs __iomem *regs;
1037        struct net_device *dev = (struct net_device *)dev_id;
1038        u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1039
1040        rrpriv = netdev_priv(dev);
1041        regs = rrpriv->regs;
1042
1043        if (!(readl(&regs->HostCtrl) & RR_INT))
1044                return IRQ_NONE;
1045
1046        spin_lock(&rrpriv->lock);
1047
1048        prodidx = readl(&regs->EvtPrd);
1049        txcsmr = (prodidx >> 8) & 0xff;
1050        rxlimit = (prodidx >> 16) & 0xff;
1051        prodidx &= 0xff;
1052
1053#if (DEBUG > 2)
1054        printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1055               prodidx, rrpriv->info->evt_ctrl.pi);
1056#endif
1057        /*
1058         * Order here is important.  We must handle events
1059         * before doing anything else in order to catch
1060         * such things as LLRC errors, etc -kbf
1061         */
1062
1063        eidx = rrpriv->info->evt_ctrl.pi;
1064        if (prodidx != eidx)
1065                eidx = rr_handle_event(dev, prodidx, eidx);
1066
1067        rxindex = rrpriv->cur_rx;
1068        if (rxindex != rxlimit)
1069                rx_int(dev, rxlimit, rxindex);
1070
1071        txcon = rrpriv->dirty_tx;
1072        if (txcsmr != txcon) {
1073                do {
1074                        /* Due to occational firmware TX producer/consumer out
1075                         * of sync. error need to check entry in ring -kbf
1076                         */
1077                        if(rrpriv->tx_skbuff[txcon]){
1078                                struct tx_desc *desc;
1079                                struct sk_buff *skb;
1080
1081                                desc = &(rrpriv->tx_ring[txcon]);
1082                                skb = rrpriv->tx_skbuff[txcon];
1083
1084                                dev->stats.tx_packets++;
1085                                dev->stats.tx_bytes += skb->len;
1086
1087                                pci_unmap_single(rrpriv->pci_dev,
1088                                                 desc->addr.addrlo, skb->len,
1089                                                 PCI_DMA_TODEVICE);
1090                                dev_kfree_skb_irq(skb);
1091
1092                                rrpriv->tx_skbuff[txcon] = NULL;
1093                                desc->size = 0;
1094                                set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1095                                desc->mode = 0;
1096                        }
1097                        txcon = (txcon + 1) % TX_RING_ENTRIES;
1098                } while (txcsmr != txcon);
1099                wmb();
1100
1101                rrpriv->dirty_tx = txcon;
1102                if (rrpriv->tx_full && rr_if_busy(dev) &&
1103                    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1104                     != rrpriv->dirty_tx)){
1105                        rrpriv->tx_full = 0;
1106                        netif_wake_queue(dev);
1107                }
1108        }
1109
1110        eidx |= ((txcsmr << 8) | (rxlimit << 16));
1111        writel(eidx, &regs->EvtCon);
1112        wmb();
1113
1114        spin_unlock(&rrpriv->lock);
1115        return IRQ_HANDLED;
1116}
1117
1118static inline void rr_raz_tx(struct rr_private *rrpriv,
1119                             struct net_device *dev)
1120{
1121        int i;
1122
1123        for (i = 0; i < TX_RING_ENTRIES; i++) {
1124                struct sk_buff *skb = rrpriv->tx_skbuff[i];
1125
1126                if (skb) {
1127                        struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1128
1129                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1130                                skb->len, PCI_DMA_TODEVICE);
1131                        desc->size = 0;
1132                        set_rraddr(&desc->addr, 0);
1133                        dev_kfree_skb(skb);
1134                        rrpriv->tx_skbuff[i] = NULL;
1135                }
1136        }
1137}
1138
1139
1140static inline void rr_raz_rx(struct rr_private *rrpriv,
1141                             struct net_device *dev)
1142{
1143        int i;
1144
1145        for (i = 0; i < RX_RING_ENTRIES; i++) {
1146                struct sk_buff *skb = rrpriv->rx_skbuff[i];
1147
1148                if (skb) {
1149                        struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1150
1151                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1152                                dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1153                        desc->size = 0;
1154                        set_rraddr(&desc->addr, 0);
1155                        dev_kfree_skb(skb);
1156                        rrpriv->rx_skbuff[i] = NULL;
1157                }
1158        }
1159}
1160
1161static void rr_timer(unsigned long data)
1162{
1163        struct net_device *dev = (struct net_device *)data;
1164        struct rr_private *rrpriv = netdev_priv(dev);
1165        struct rr_regs __iomem *regs = rrpriv->regs;
1166        unsigned long flags;
1167
1168        if (readl(&regs->HostCtrl) & NIC_HALTED){
1169                printk("%s: Restarting nic\n", dev->name);
1170                memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1171                memset(rrpriv->info, 0, sizeof(struct rr_info));
1172                wmb();
1173
1174                rr_raz_tx(rrpriv, dev);
1175                rr_raz_rx(rrpriv, dev);
1176
1177                if (rr_init1(dev)) {
1178                        spin_lock_irqsave(&rrpriv->lock, flags);
1179                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1180                               &regs->HostCtrl);
1181                        spin_unlock_irqrestore(&rrpriv->lock, flags);
1182                }
1183        }
1184        rrpriv->timer.expires = RUN_AT(5*HZ);
1185        add_timer(&rrpriv->timer);
1186}
1187
1188
1189static int rr_open(struct net_device *dev)
1190{
1191        struct rr_private *rrpriv = netdev_priv(dev);
1192        struct pci_dev *pdev = rrpriv->pci_dev;
1193        struct rr_regs __iomem *regs;
1194        int ecode = 0;
1195        unsigned long flags;
1196        dma_addr_t dma_addr;
1197
1198        regs = rrpriv->regs;
1199
1200        if (rrpriv->fw_rev < 0x00020000) {
1201                printk(KERN_WARNING "%s: trying to configure device with "
1202                       "obsolete firmware\n", dev->name);
1203                ecode = -EBUSY;
1204                goto error;
1205        }
1206
1207        rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1208                                               256 * sizeof(struct ring_ctrl),
1209                                               &dma_addr);
1210        if (!rrpriv->rx_ctrl) {
1211                ecode = -ENOMEM;
1212                goto error;
1213        }
1214        rrpriv->rx_ctrl_dma = dma_addr;
1215        memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1216
1217        rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1218                                            &dma_addr);
1219        if (!rrpriv->info) {
1220                ecode = -ENOMEM;
1221                goto error;
1222        }
1223        rrpriv->info_dma = dma_addr;
1224        memset(rrpriv->info, 0, sizeof(struct rr_info));
1225        wmb();
1226
1227        spin_lock_irqsave(&rrpriv->lock, flags);
1228        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1229        readl(&regs->HostCtrl);
1230        spin_unlock_irqrestore(&rrpriv->lock, flags);
1231
1232        if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1233                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1234                       dev->name, dev->irq);
1235                ecode = -EAGAIN;
1236                goto error;
1237        }
1238
1239        if ((ecode = rr_init1(dev)))
1240                goto error;
1241
1242        /* Set the timer to switch to check for link beat and perhaps switch
1243           to an alternate media type. */
1244        init_timer(&rrpriv->timer);
1245        rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1246        rrpriv->timer.data = (unsigned long)dev;
1247        rrpriv->timer.function = &rr_timer;               /* timer handler */
1248        add_timer(&rrpriv->timer);
1249
1250        netif_start_queue(dev);
1251
1252        return ecode;
1253
1254 error:
1255        spin_lock_irqsave(&rrpriv->lock, flags);
1256        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1257        spin_unlock_irqrestore(&rrpriv->lock, flags);
1258
1259        if (rrpriv->info) {
1260                pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1261                                    rrpriv->info_dma);
1262                rrpriv->info = NULL;
1263        }
1264        if (rrpriv->rx_ctrl) {
1265                pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1266                                    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1267                rrpriv->rx_ctrl = NULL;
1268        }
1269
1270        netif_stop_queue(dev);
1271
1272        return ecode;
1273}
1274
1275
1276static void rr_dump(struct net_device *dev)
1277{
1278        struct rr_private *rrpriv;
1279        struct rr_regs __iomem *regs;
1280        u32 index, cons;
1281        short i;
1282        int len;
1283
1284        rrpriv = netdev_priv(dev);
1285        regs = rrpriv->regs;
1286
1287        printk("%s: dumping NIC TX rings\n", dev->name);
1288
1289        printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1290               readl(&regs->RxPrd), readl(&regs->TxPrd),
1291               readl(&regs->EvtPrd), readl(&regs->TxPi),
1292               rrpriv->info->tx_ctrl.pi);
1293
1294        printk("Error code 0x%x\n", readl(&regs->Fail1));
1295
1296        index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1297        cons = rrpriv->dirty_tx;
1298        printk("TX ring index %i, TX consumer %i\n",
1299               index, cons);
1300
1301        if (rrpriv->tx_skbuff[index]){
1302                len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1303                printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1304                for (i = 0; i < len; i++){
1305                        if (!(i & 7))
1306                                printk("\n");
1307                        printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1308                }
1309                printk("\n");
1310        }
1311
1312        if (rrpriv->tx_skbuff[cons]){
1313                len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1314                printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1315                printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1316                       rrpriv->tx_ring[cons].mode,
1317                       rrpriv->tx_ring[cons].size,
1318                       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1319                       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1320                       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1321                for (i = 0; i < len; i++){
1322                        if (!(i & 7))
1323                                printk("\n");
1324                        printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1325                }
1326                printk("\n");
1327        }
1328
1329        printk("dumping TX ring info:\n");
1330        for (i = 0; i < TX_RING_ENTRIES; i++)
1331                printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1332                       rrpriv->tx_ring[i].mode,
1333                       rrpriv->tx_ring[i].size,
1334                       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1335
1336}
1337
1338
1339static int rr_close(struct net_device *dev)
1340{
1341        struct rr_private *rrpriv;
1342        struct rr_regs __iomem *regs;
1343        unsigned long flags;
1344        u32 tmp;
1345        short i;
1346
1347        netif_stop_queue(dev);
1348
1349        rrpriv = netdev_priv(dev);
1350        regs = rrpriv->regs;
1351
1352        /*
1353         * Lock to make sure we are not cleaning up while another CPU
1354         * is handling interrupts.
1355         */
1356        spin_lock_irqsave(&rrpriv->lock, flags);
1357
1358        tmp = readl(&regs->HostCtrl);
1359        if (tmp & NIC_HALTED){
1360                printk("%s: NIC already halted\n", dev->name);
1361                rr_dump(dev);
1362        }else{
1363                tmp |= HALT_NIC | RR_CLEAR_INT;
1364                writel(tmp, &regs->HostCtrl);
1365                readl(&regs->HostCtrl);
1366        }
1367
1368        rrpriv->fw_running = 0;
1369
1370        del_timer_sync(&rrpriv->timer);
1371
1372        writel(0, &regs->TxPi);
1373        writel(0, &regs->IpRxPi);
1374
1375        writel(0, &regs->EvtCon);
1376        writel(0, &regs->EvtPrd);
1377
1378        for (i = 0; i < CMD_RING_ENTRIES; i++)
1379                writel(0, &regs->CmdRing[i]);
1380
1381        rrpriv->info->tx_ctrl.entries = 0;
1382        rrpriv->info->cmd_ctrl.pi = 0;
1383        rrpriv->info->evt_ctrl.pi = 0;
1384        rrpriv->rx_ctrl[4].entries = 0;
1385
1386        rr_raz_tx(rrpriv, dev);
1387        rr_raz_rx(rrpriv, dev);
1388
1389        pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1390                            rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1391        rrpriv->rx_ctrl = NULL;
1392
1393        pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1394                            rrpriv->info, rrpriv->info_dma);
1395        rrpriv->info = NULL;
1396
1397        free_irq(dev->irq, dev);
1398        spin_unlock_irqrestore(&rrpriv->lock, flags);
1399
1400        return 0;
1401}
1402
1403
1404static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1405                                 struct net_device *dev)
1406{
1407        struct rr_private *rrpriv = netdev_priv(dev);
1408        struct rr_regs __iomem *regs = rrpriv->regs;
1409        struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1410        struct ring_ctrl *txctrl;
1411        unsigned long flags;
1412        u32 index, len = skb->len;
1413        u32 *ifield;
1414        struct sk_buff *new_skb;
1415
1416        if (readl(&regs->Mode) & FATAL_ERR)
1417                printk("error codes Fail1 %02x, Fail2 %02x\n",
1418                       readl(&regs->Fail1), readl(&regs->Fail2));
1419
1420        /*
1421         * We probably need to deal with tbusy here to prevent overruns.
1422         */
1423
1424        if (skb_headroom(skb) < 8){
1425                printk("incoming skb too small - reallocating\n");
1426                if (!(new_skb = dev_alloc_skb(len + 8))) {
1427                        dev_kfree_skb(skb);
1428                        netif_wake_queue(dev);
1429                        return NETDEV_TX_OK;
1430                }
1431                skb_reserve(new_skb, 8);
1432                skb_put(new_skb, len);
1433                skb_copy_from_linear_data(skb, new_skb->data, len);
1434                dev_kfree_skb(skb);
1435                skb = new_skb;
1436        }
1437
1438        ifield = (u32 *)skb_push(skb, 8);
1439
1440        ifield[0] = 0;
1441        ifield[1] = hcb->ifield;
1442
1443        /*
1444         * We don't need the lock before we are actually going to start
1445         * fiddling with the control blocks.
1446         */
1447        spin_lock_irqsave(&rrpriv->lock, flags);
1448
1449        txctrl = &rrpriv->info->tx_ctrl;
1450
1451        index = txctrl->pi;
1452
1453        rrpriv->tx_skbuff[index] = skb;
1454        set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1455                rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1456        rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1457        rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1458        txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1459        wmb();
1460        writel(txctrl->pi, &regs->TxPi);
1461
1462        if (txctrl->pi == rrpriv->dirty_tx){
1463                rrpriv->tx_full = 1;
1464                netif_stop_queue(dev);
1465        }
1466
1467        spin_unlock_irqrestore(&rrpriv->lock, flags);
1468
1469        dev->trans_start = jiffies;
1470        return NETDEV_TX_OK;
1471}
1472
1473
1474/*
1475 * Read the firmware out of the EEPROM and put it into the SRAM
1476 * (or from user space - later)
1477 *
1478 * This operation requires the NIC to be halted and is performed with
1479 * interrupts disabled and with the spinlock hold.
1480 */
1481static int rr_load_firmware(struct net_device *dev)
1482{
1483        struct rr_private *rrpriv;
1484        struct rr_regs __iomem *regs;
1485        size_t eptr, segptr;
1486        int i, j;
1487        u32 localctrl, sptr, len, tmp;
1488        u32 p2len, p2size, nr_seg, revision, io, sram_size;
1489
1490        rrpriv = netdev_priv(dev);
1491        regs = rrpriv->regs;
1492
1493        if (dev->flags & IFF_UP)
1494                return -EBUSY;
1495
1496        if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1497                printk("%s: Trying to load firmware to a running NIC.\n",
1498                       dev->name);
1499                return -EBUSY;
1500        }
1501
1502        localctrl = readl(&regs->LocalCtrl);
1503        writel(0, &regs->LocalCtrl);
1504
1505        writel(0, &regs->EvtPrd);
1506        writel(0, &regs->RxPrd);
1507        writel(0, &regs->TxPrd);
1508
1509        /*
1510         * First wipe the entire SRAM, otherwise we might run into all
1511         * kinds of trouble ... sigh, this took almost all afternoon
1512         * to track down ;-(
1513         */
1514        io = readl(&regs->ExtIo);
1515        writel(0, &regs->ExtIo);
1516        sram_size = rr_read_eeprom_word(rrpriv, 8);
1517
1518        for (i = 200; i < sram_size / 4; i++){
1519                writel(i * 4, &regs->WinBase);
1520                mb();
1521                writel(0, &regs->WinData);
1522                mb();
1523        }
1524        writel(io, &regs->ExtIo);
1525        mb();
1526
1527        eptr = rr_read_eeprom_word(rrpriv,
1528                       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1529        eptr = ((eptr & 0x1fffff) >> 3);
1530
1531        p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1532        p2len = (p2len << 2);
1533        p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1534        p2size = ((p2size & 0x1fffff) >> 3);
1535
1536        if ((eptr < p2size) || (eptr > (p2size + p2len))){
1537                printk("%s: eptr is invalid\n", dev->name);
1538                goto out;
1539        }
1540
1541        revision = rr_read_eeprom_word(rrpriv,
1542                        offsetof(struct eeprom, manf.HeaderFmt));
1543
1544        if (revision != 1){
1545                printk("%s: invalid firmware format (%i)\n",
1546                       dev->name, revision);
1547                goto out;
1548        }
1549
1550        nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1551        eptr +=4;
1552#if (DEBUG > 1)
1553        printk("%s: nr_seg %i\n", dev->name, nr_seg);
1554#endif
1555
1556        for (i = 0; i < nr_seg; i++){
1557                sptr = rr_read_eeprom_word(rrpriv, eptr);
1558                eptr += 4;
1559                len = rr_read_eeprom_word(rrpriv, eptr);
1560                eptr += 4;
1561                segptr = rr_read_eeprom_word(rrpriv, eptr);
1562                segptr = ((segptr & 0x1fffff) >> 3);
1563                eptr += 4;
1564#if (DEBUG > 1)
1565                printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1566                       dev->name, i, sptr, len, segptr);
1567#endif
1568                for (j = 0; j < len; j++){
1569                        tmp = rr_read_eeprom_word(rrpriv, segptr);
1570                        writel(sptr, &regs->WinBase);
1571                        mb();
1572                        writel(tmp, &regs->WinData);
1573                        mb();
1574                        segptr += 4;
1575                        sptr += 4;
1576                }
1577        }
1578
1579out:
1580        writel(localctrl, &regs->LocalCtrl);
1581        mb();
1582        return 0;
1583}
1584
1585
1586static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1587{
1588        struct rr_private *rrpriv;
1589        unsigned char *image, *oldimage;
1590        unsigned long flags;
1591        unsigned int i;
1592        int error = -EOPNOTSUPP;
1593
1594        rrpriv = netdev_priv(dev);
1595
1596        switch(cmd){
1597        case SIOCRRGFW:
1598                if (!capable(CAP_SYS_RAWIO)){
1599                        return -EPERM;
1600                }
1601
1602                image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1603                if (!image){
1604                        printk(KERN_ERR "%s: Unable to allocate memory "
1605                               "for EEPROM image\n", dev->name);
1606                        return -ENOMEM;
1607                }
1608
1609
1610                if (rrpriv->fw_running){
1611                        printk("%s: Firmware already running\n", dev->name);
1612                        error = -EPERM;
1613                        goto gf_out;
1614                }
1615
1616                spin_lock_irqsave(&rrpriv->lock, flags);
1617                i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1618                spin_unlock_irqrestore(&rrpriv->lock, flags);
1619                if (i != EEPROM_BYTES){
1620                        printk(KERN_ERR "%s: Error reading EEPROM\n",
1621                               dev->name);
1622                        error = -EFAULT;
1623                        goto gf_out;
1624                }
1625                error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1626                if (error)
1627                        error = -EFAULT;
1628        gf_out:
1629                kfree(image);
1630                return error;
1631
1632        case SIOCRRPFW:
1633                if (!capable(CAP_SYS_RAWIO)){
1634                        return -EPERM;
1635                }
1636
1637                image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1638                oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1639                if (!image || !oldimage) {
1640                        printk(KERN_ERR "%s: Unable to allocate memory "
1641                               "for EEPROM image\n", dev->name);
1642                        error = -ENOMEM;
1643                        goto wf_out;
1644                }
1645
1646                error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1647                if (error) {
1648                        error = -EFAULT;
1649                        goto wf_out;
1650                }
1651
1652                if (rrpriv->fw_running){
1653                        printk("%s: Firmware already running\n", dev->name);
1654                        error = -EPERM;
1655                        goto wf_out;
1656                }
1657
1658                printk("%s: Updating EEPROM firmware\n", dev->name);
1659
1660                spin_lock_irqsave(&rrpriv->lock, flags);
1661                error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1662                if (error)
1663                        printk(KERN_ERR "%s: Error writing EEPROM\n",
1664                               dev->name);
1665
1666                i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1667                spin_unlock_irqrestore(&rrpriv->lock, flags);
1668
1669                if (i != EEPROM_BYTES)
1670                        printk(KERN_ERR "%s: Error reading back EEPROM "
1671                               "image\n", dev->name);
1672
1673                error = memcmp(image, oldimage, EEPROM_BYTES);
1674                if (error){
1675                        printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1676                               dev->name);
1677                        error = -EFAULT;
1678                }
1679        wf_out:
1680                kfree(oldimage);
1681                kfree(image);
1682                return error;
1683
1684        case SIOCRRID:
1685                return put_user(0x52523032, (int __user *)rq->ifr_data);
1686        default:
1687                return error;
1688        }
1689}
1690
1691static struct pci_device_id rr_pci_tbl[] = {
1692        { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1693                PCI_ANY_ID, PCI_ANY_ID, },
1694        { 0,}
1695};
1696MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1697
1698static struct pci_driver rr_driver = {
1699        .name           = "rrunner",
1700        .id_table       = rr_pci_tbl,
1701        .probe          = rr_init_one,
1702        .remove         = __devexit_p(rr_remove_one),
1703};
1704
1705static int __init rr_init_module(void)
1706{
1707        return pci_register_driver(&rr_driver);
1708}
1709
1710static void __exit rr_cleanup_module(void)
1711{
1712        pci_unregister_driver(&rr_driver);
1713}
1714
1715module_init(rr_init_module);
1716module_exit(rr_cleanup_module);
1717