linux/drivers/net/sfc/falcon.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2008 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/pci.h>
  14#include <linux/module.h>
  15#include <linux/seq_file.h>
  16#include <linux/i2c.h>
  17#include <linux/i2c-algo-bit.h>
  18#include <linux/mii.h>
  19#include "net_driver.h"
  20#include "bitfield.h"
  21#include "efx.h"
  22#include "mac.h"
  23#include "spi.h"
  24#include "falcon.h"
  25#include "falcon_hwdefs.h"
  26#include "falcon_io.h"
  27#include "mdio_10g.h"
  28#include "phy.h"
  29#include "boards.h"
  30#include "workarounds.h"
  31
  32/* Falcon hardware control.
  33 * Falcon is the internal codename for the SFC4000 controller that is
  34 * present in SFE400X evaluation boards
  35 */
  36
  37/**
  38 * struct falcon_nic_data - Falcon NIC state
  39 * @next_buffer_table: First available buffer table id
  40 * @pci_dev2: The secondary PCI device if present
  41 * @i2c_data: Operations and state for I2C bit-bashing algorithm
  42 * @int_error_count: Number of internal errors seen recently
  43 * @int_error_expire: Time at which error count will be expired
  44 */
  45struct falcon_nic_data {
  46        unsigned next_buffer_table;
  47        struct pci_dev *pci_dev2;
  48        struct i2c_algo_bit_data i2c_data;
  49
  50        unsigned int_error_count;
  51        unsigned long int_error_expire;
  52};
  53
  54/**************************************************************************
  55 *
  56 * Configurable values
  57 *
  58 **************************************************************************
  59 */
  60
  61static int disable_dma_stats;
  62
  63/* This is set to 16 for a good reason.  In summary, if larger than
  64 * 16, the descriptor cache holds more than a default socket
  65 * buffer's worth of packets (for UDP we can only have at most one
  66 * socket buffer's worth outstanding).  This combined with the fact
  67 * that we only get 1 TX event per descriptor cache means the NIC
  68 * goes idle.
  69 */
  70#define TX_DC_ENTRIES 16
  71#define TX_DC_ENTRIES_ORDER 0
  72#define TX_DC_BASE 0x130000
  73
  74#define RX_DC_ENTRIES 64
  75#define RX_DC_ENTRIES_ORDER 2
  76#define RX_DC_BASE 0x100000
  77
  78static const unsigned int
  79/* "Large" EEPROM device: Atmel AT25640 or similar
  80 * 8 KB, 16-bit address, 32 B write block */
  81large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
  82                     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
  83                     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
  84/* Default flash device: Atmel AT25F1024
  85 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
  86default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
  87                      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
  88                      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
  89                      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
  90                      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
  91
  92/* RX FIFO XOFF watermark
  93 *
  94 * When the amount of the RX FIFO increases used increases past this
  95 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
  96 * This also has an effect on RX/TX arbitration
  97 */
  98static int rx_xoff_thresh_bytes = -1;
  99module_param(rx_xoff_thresh_bytes, int, 0644);
 100MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
 101
 102/* RX FIFO XON watermark
 103 *
 104 * When the amount of the RX FIFO used decreases below this
 105 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 106 * This also has an effect on RX/TX arbitration
 107 */
 108static int rx_xon_thresh_bytes = -1;
 109module_param(rx_xon_thresh_bytes, int, 0644);
 110MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
 111
 112/* TX descriptor ring size - min 512 max 4k */
 113#define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
 114#define FALCON_TXD_RING_SIZE 1024
 115#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
 116
 117/* RX descriptor ring size - min 512 max 4k */
 118#define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
 119#define FALCON_RXD_RING_SIZE 1024
 120#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
 121
 122/* Event queue size - max 32k */
 123#define FALCON_EVQ_ORDER EVQ_SIZE_4K
 124#define FALCON_EVQ_SIZE 4096
 125#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
 126
 127/* If FALCON_MAX_INT_ERRORS internal errors occur within
 128 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 129 * disable it.
 130 */
 131#define FALCON_INT_ERROR_EXPIRE 3600
 132#define FALCON_MAX_INT_ERRORS 5
 133
 134/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 135 */
 136#define FALCON_FLUSH_INTERVAL 10
 137#define FALCON_FLUSH_POLL_COUNT 100
 138
 139/**************************************************************************
 140 *
 141 * Falcon constants
 142 *
 143 **************************************************************************
 144 */
 145
 146/* DMA address mask */
 147#define FALCON_DMA_MASK DMA_BIT_MASK(46)
 148
 149/* TX DMA length mask (13-bit) */
 150#define FALCON_TX_DMA_MASK (4096 - 1)
 151
 152/* Size and alignment of special buffers (4KB) */
 153#define FALCON_BUF_SIZE 4096
 154
 155/* Dummy SRAM size code */
 156#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
 157
 158#define FALCON_IS_DUAL_FUNC(efx)                \
 159        (falcon_rev(efx) < FALCON_REV_B0)
 160
 161/**************************************************************************
 162 *
 163 * Falcon hardware access
 164 *
 165 **************************************************************************/
 166
 167/* Read the current event from the event queue */
 168static inline efx_qword_t *falcon_event(struct efx_channel *channel,
 169                                        unsigned int index)
 170{
 171        return (((efx_qword_t *) (channel->eventq.addr)) + index);
 172}
 173
 174/* See if an event is present
 175 *
 176 * We check both the high and low dword of the event for all ones.  We
 177 * wrote all ones when we cleared the event, and no valid event can
 178 * have all ones in either its high or low dwords.  This approach is
 179 * robust against reordering.
 180 *
 181 * Note that using a single 64-bit comparison is incorrect; even
 182 * though the CPU read will be atomic, the DMA write may not be.
 183 */
 184static inline int falcon_event_present(efx_qword_t *event)
 185{
 186        return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
 187                  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
 188}
 189
 190/**************************************************************************
 191 *
 192 * I2C bus - this is a bit-bashing interface using GPIO pins
 193 * Note that it uses the output enables to tristate the outputs
 194 * SDA is the data pin and SCL is the clock
 195 *
 196 **************************************************************************
 197 */
 198static void falcon_setsda(void *data, int state)
 199{
 200        struct efx_nic *efx = (struct efx_nic *)data;
 201        efx_oword_t reg;
 202
 203        falcon_read(efx, &reg, GPIO_CTL_REG_KER);
 204        EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
 205        falcon_write(efx, &reg, GPIO_CTL_REG_KER);
 206}
 207
 208static void falcon_setscl(void *data, int state)
 209{
 210        struct efx_nic *efx = (struct efx_nic *)data;
 211        efx_oword_t reg;
 212
 213        falcon_read(efx, &reg, GPIO_CTL_REG_KER);
 214        EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
 215        falcon_write(efx, &reg, GPIO_CTL_REG_KER);
 216}
 217
 218static int falcon_getsda(void *data)
 219{
 220        struct efx_nic *efx = (struct efx_nic *)data;
 221        efx_oword_t reg;
 222
 223        falcon_read(efx, &reg, GPIO_CTL_REG_KER);
 224        return EFX_OWORD_FIELD(reg, GPIO3_IN);
 225}
 226
 227static int falcon_getscl(void *data)
 228{
 229        struct efx_nic *efx = (struct efx_nic *)data;
 230        efx_oword_t reg;
 231
 232        falcon_read(efx, &reg, GPIO_CTL_REG_KER);
 233        return EFX_OWORD_FIELD(reg, GPIO0_IN);
 234}
 235
 236static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 237        .setsda         = falcon_setsda,
 238        .setscl         = falcon_setscl,
 239        .getsda         = falcon_getsda,
 240        .getscl         = falcon_getscl,
 241        .udelay         = 5,
 242        /* Wait up to 50 ms for slave to let us pull SCL high */
 243        .timeout        = DIV_ROUND_UP(HZ, 20),
 244};
 245
 246/**************************************************************************
 247 *
 248 * Falcon special buffer handling
 249 * Special buffers are used for event queues and the TX and RX
 250 * descriptor rings.
 251 *
 252 *************************************************************************/
 253
 254/*
 255 * Initialise a Falcon special buffer
 256 *
 257 * This will define a buffer (previously allocated via
 258 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 259 * it to be used for event queues, descriptor rings etc.
 260 */
 261static void
 262falcon_init_special_buffer(struct efx_nic *efx,
 263                           struct efx_special_buffer *buffer)
 264{
 265        efx_qword_t buf_desc;
 266        int index;
 267        dma_addr_t dma_addr;
 268        int i;
 269
 270        EFX_BUG_ON_PARANOID(!buffer->addr);
 271
 272        /* Write buffer descriptors to NIC */
 273        for (i = 0; i < buffer->entries; i++) {
 274                index = buffer->index + i;
 275                dma_addr = buffer->dma_addr + (i * 4096);
 276                EFX_LOG(efx, "mapping special buffer %d at %llx\n",
 277                        index, (unsigned long long)dma_addr);
 278                EFX_POPULATE_QWORD_4(buf_desc,
 279                                     IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
 280                                     BUF_ADR_REGION, 0,
 281                                     BUF_ADR_FBUF, (dma_addr >> 12),
 282                                     BUF_OWNER_ID_FBUF, 0);
 283                falcon_write_sram(efx, &buf_desc, index);
 284        }
 285}
 286
 287/* Unmaps a buffer from Falcon and clears the buffer table entries */
 288static void
 289falcon_fini_special_buffer(struct efx_nic *efx,
 290                           struct efx_special_buffer *buffer)
 291{
 292        efx_oword_t buf_tbl_upd;
 293        unsigned int start = buffer->index;
 294        unsigned int end = (buffer->index + buffer->entries - 1);
 295
 296        if (!buffer->entries)
 297                return;
 298
 299        EFX_LOG(efx, "unmapping special buffers %d-%d\n",
 300                buffer->index, buffer->index + buffer->entries - 1);
 301
 302        EFX_POPULATE_OWORD_4(buf_tbl_upd,
 303                             BUF_UPD_CMD, 0,
 304                             BUF_CLR_CMD, 1,
 305                             BUF_CLR_END_ID, end,
 306                             BUF_CLR_START_ID, start);
 307        falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
 308}
 309
 310/*
 311 * Allocate a new Falcon special buffer
 312 *
 313 * This allocates memory for a new buffer, clears it and allocates a
 314 * new buffer ID range.  It does not write into Falcon's buffer table.
 315 *
 316 * This call will allocate 4KB buffers, since Falcon can't use 8KB
 317 * buffers for event queues and descriptor rings.
 318 */
 319static int falcon_alloc_special_buffer(struct efx_nic *efx,
 320                                       struct efx_special_buffer *buffer,
 321                                       unsigned int len)
 322{
 323        struct falcon_nic_data *nic_data = efx->nic_data;
 324
 325        len = ALIGN(len, FALCON_BUF_SIZE);
 326
 327        buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
 328                                            &buffer->dma_addr);
 329        if (!buffer->addr)
 330                return -ENOMEM;
 331        buffer->len = len;
 332        buffer->entries = len / FALCON_BUF_SIZE;
 333        BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
 334
 335        /* All zeros is a potentially valid event so memset to 0xff */
 336        memset(buffer->addr, 0xff, len);
 337
 338        /* Select new buffer ID */
 339        buffer->index = nic_data->next_buffer_table;
 340        nic_data->next_buffer_table += buffer->entries;
 341
 342        EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
 343                "(virt %p phys %llx)\n", buffer->index,
 344                buffer->index + buffer->entries - 1,
 345                (u64)buffer->dma_addr, len,
 346                buffer->addr, (u64)virt_to_phys(buffer->addr));
 347
 348        return 0;
 349}
 350
 351static void falcon_free_special_buffer(struct efx_nic *efx,
 352                                       struct efx_special_buffer *buffer)
 353{
 354        if (!buffer->addr)
 355                return;
 356
 357        EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
 358                "(virt %p phys %llx)\n", buffer->index,
 359                buffer->index + buffer->entries - 1,
 360                (u64)buffer->dma_addr, buffer->len,
 361                buffer->addr, (u64)virt_to_phys(buffer->addr));
 362
 363        pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
 364                            buffer->dma_addr);
 365        buffer->addr = NULL;
 366        buffer->entries = 0;
 367}
 368
 369/**************************************************************************
 370 *
 371 * Falcon generic buffer handling
 372 * These buffers are used for interrupt status and MAC stats
 373 *
 374 **************************************************************************/
 375
 376static int falcon_alloc_buffer(struct efx_nic *efx,
 377                               struct efx_buffer *buffer, unsigned int len)
 378{
 379        buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
 380                                            &buffer->dma_addr);
 381        if (!buffer->addr)
 382                return -ENOMEM;
 383        buffer->len = len;
 384        memset(buffer->addr, 0, len);
 385        return 0;
 386}
 387
 388static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 389{
 390        if (buffer->addr) {
 391                pci_free_consistent(efx->pci_dev, buffer->len,
 392                                    buffer->addr, buffer->dma_addr);
 393                buffer->addr = NULL;
 394        }
 395}
 396
 397/**************************************************************************
 398 *
 399 * Falcon TX path
 400 *
 401 **************************************************************************/
 402
 403/* Returns a pointer to the specified transmit descriptor in the TX
 404 * descriptor queue belonging to the specified channel.
 405 */
 406static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
 407                                               unsigned int index)
 408{
 409        return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
 410}
 411
 412/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 413static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
 414{
 415        unsigned write_ptr;
 416        efx_dword_t reg;
 417
 418        write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
 419        EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
 420        falcon_writel_page(tx_queue->efx, &reg,
 421                           TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
 422}
 423
 424
 425/* For each entry inserted into the software descriptor ring, create a
 426 * descriptor in the hardware TX descriptor ring (in host memory), and
 427 * write a doorbell.
 428 */
 429void falcon_push_buffers(struct efx_tx_queue *tx_queue)
 430{
 431
 432        struct efx_tx_buffer *buffer;
 433        efx_qword_t *txd;
 434        unsigned write_ptr;
 435
 436        BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 437
 438        do {
 439                write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
 440                buffer = &tx_queue->buffer[write_ptr];
 441                txd = falcon_tx_desc(tx_queue, write_ptr);
 442                ++tx_queue->write_count;
 443
 444                /* Create TX descriptor ring entry */
 445                EFX_POPULATE_QWORD_5(*txd,
 446                                     TX_KER_PORT, 0,
 447                                     TX_KER_CONT, buffer->continuation,
 448                                     TX_KER_BYTE_CNT, buffer->len,
 449                                     TX_KER_BUF_REGION, 0,
 450                                     TX_KER_BUF_ADR, buffer->dma_addr);
 451        } while (tx_queue->write_count != tx_queue->insert_count);
 452
 453        wmb(); /* Ensure descriptors are written before they are fetched */
 454        falcon_notify_tx_desc(tx_queue);
 455}
 456
 457/* Allocate hardware resources for a TX queue */
 458int falcon_probe_tx(struct efx_tx_queue *tx_queue)
 459{
 460        struct efx_nic *efx = tx_queue->efx;
 461        return falcon_alloc_special_buffer(efx, &tx_queue->txd,
 462                                           FALCON_TXD_RING_SIZE *
 463                                           sizeof(efx_qword_t));
 464}
 465
 466void falcon_init_tx(struct efx_tx_queue *tx_queue)
 467{
 468        efx_oword_t tx_desc_ptr;
 469        struct efx_nic *efx = tx_queue->efx;
 470
 471        tx_queue->flushed = false;
 472
 473        /* Pin TX descriptor ring */
 474        falcon_init_special_buffer(efx, &tx_queue->txd);
 475
 476        /* Push TX descriptor ring to card */
 477        EFX_POPULATE_OWORD_10(tx_desc_ptr,
 478                              TX_DESCQ_EN, 1,
 479                              TX_ISCSI_DDIG_EN, 0,
 480                              TX_ISCSI_HDIG_EN, 0,
 481                              TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 482                              TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
 483                              TX_DESCQ_OWNER_ID, 0,
 484                              TX_DESCQ_LABEL, tx_queue->queue,
 485                              TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
 486                              TX_DESCQ_TYPE, 0,
 487                              TX_NON_IP_DROP_DIS_B0, 1);
 488
 489        if (falcon_rev(efx) >= FALCON_REV_B0) {
 490                int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
 491                EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
 492                EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
 493        }
 494
 495        falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 496                           tx_queue->queue);
 497
 498        if (falcon_rev(efx) < FALCON_REV_B0) {
 499                efx_oword_t reg;
 500
 501                /* Only 128 bits in this register */
 502                BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
 503
 504                falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
 505                if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
 506                        clear_bit_le(tx_queue->queue, (void *)&reg);
 507                else
 508                        set_bit_le(tx_queue->queue, (void *)&reg);
 509                falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
 510        }
 511}
 512
 513static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
 514{
 515        struct efx_nic *efx = tx_queue->efx;
 516        efx_oword_t tx_flush_descq;
 517
 518        /* Post a flush command */
 519        EFX_POPULATE_OWORD_2(tx_flush_descq,
 520                             TX_FLUSH_DESCQ_CMD, 1,
 521                             TX_FLUSH_DESCQ, tx_queue->queue);
 522        falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
 523}
 524
 525void falcon_fini_tx(struct efx_tx_queue *tx_queue)
 526{
 527        struct efx_nic *efx = tx_queue->efx;
 528        efx_oword_t tx_desc_ptr;
 529
 530        /* The queue should have been flushed */
 531        WARN_ON(!tx_queue->flushed);
 532
 533        /* Remove TX descriptor ring from card */
 534        EFX_ZERO_OWORD(tx_desc_ptr);
 535        falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 536                           tx_queue->queue);
 537
 538        /* Unpin TX descriptor ring */
 539        falcon_fini_special_buffer(efx, &tx_queue->txd);
 540}
 541
 542/* Free buffers backing TX queue */
 543void falcon_remove_tx(struct efx_tx_queue *tx_queue)
 544{
 545        falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 546}
 547
 548/**************************************************************************
 549 *
 550 * Falcon RX path
 551 *
 552 **************************************************************************/
 553
 554/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 555static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
 556                                               unsigned int index)
 557{
 558        return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
 559}
 560
 561/* This creates an entry in the RX descriptor queue */
 562static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
 563                                        unsigned index)
 564{
 565        struct efx_rx_buffer *rx_buf;
 566        efx_qword_t *rxd;
 567
 568        rxd = falcon_rx_desc(rx_queue, index);
 569        rx_buf = efx_rx_buffer(rx_queue, index);
 570        EFX_POPULATE_QWORD_3(*rxd,
 571                             RX_KER_BUF_SIZE,
 572                             rx_buf->len -
 573                             rx_queue->efx->type->rx_buffer_padding,
 574                             RX_KER_BUF_REGION, 0,
 575                             RX_KER_BUF_ADR, rx_buf->dma_addr);
 576}
 577
 578/* This writes to the RX_DESC_WPTR register for the specified receive
 579 * descriptor ring.
 580 */
 581void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
 582{
 583        efx_dword_t reg;
 584        unsigned write_ptr;
 585
 586        while (rx_queue->notified_count != rx_queue->added_count) {
 587                falcon_build_rx_desc(rx_queue,
 588                                     rx_queue->notified_count &
 589                                     FALCON_RXD_RING_MASK);
 590                ++rx_queue->notified_count;
 591        }
 592
 593        wmb();
 594        write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
 595        EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
 596        falcon_writel_page(rx_queue->efx, &reg,
 597                           RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
 598}
 599
 600int falcon_probe_rx(struct efx_rx_queue *rx_queue)
 601{
 602        struct efx_nic *efx = rx_queue->efx;
 603        return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
 604                                           FALCON_RXD_RING_SIZE *
 605                                           sizeof(efx_qword_t));
 606}
 607
 608void falcon_init_rx(struct efx_rx_queue *rx_queue)
 609{
 610        efx_oword_t rx_desc_ptr;
 611        struct efx_nic *efx = rx_queue->efx;
 612        bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
 613        bool iscsi_digest_en = is_b0;
 614
 615        EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
 616                rx_queue->queue, rx_queue->rxd.index,
 617                rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 618
 619        rx_queue->flushed = false;
 620
 621        /* Pin RX descriptor ring */
 622        falcon_init_special_buffer(efx, &rx_queue->rxd);
 623
 624        /* Push RX descriptor ring to card */
 625        EFX_POPULATE_OWORD_10(rx_desc_ptr,
 626                              RX_ISCSI_DDIG_EN, iscsi_digest_en,
 627                              RX_ISCSI_HDIG_EN, iscsi_digest_en,
 628                              RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 629                              RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
 630                              RX_DESCQ_OWNER_ID, 0,
 631                              RX_DESCQ_LABEL, rx_queue->queue,
 632                              RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
 633                              RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 634                              /* For >=B0 this is scatter so disable */
 635                              RX_DESCQ_JUMBO, !is_b0,
 636                              RX_DESCQ_EN, 1);
 637        falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 638                           rx_queue->queue);
 639}
 640
 641static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
 642{
 643        struct efx_nic *efx = rx_queue->efx;
 644        efx_oword_t rx_flush_descq;
 645
 646        /* Post a flush command */
 647        EFX_POPULATE_OWORD_2(rx_flush_descq,
 648                             RX_FLUSH_DESCQ_CMD, 1,
 649                             RX_FLUSH_DESCQ, rx_queue->queue);
 650        falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
 651}
 652
 653void falcon_fini_rx(struct efx_rx_queue *rx_queue)
 654{
 655        efx_oword_t rx_desc_ptr;
 656        struct efx_nic *efx = rx_queue->efx;
 657
 658        /* The queue should already have been flushed */
 659        WARN_ON(!rx_queue->flushed);
 660
 661        /* Remove RX descriptor ring from card */
 662        EFX_ZERO_OWORD(rx_desc_ptr);
 663        falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 664                           rx_queue->queue);
 665
 666        /* Unpin RX descriptor ring */
 667        falcon_fini_special_buffer(efx, &rx_queue->rxd);
 668}
 669
 670/* Free buffers backing RX queue */
 671void falcon_remove_rx(struct efx_rx_queue *rx_queue)
 672{
 673        falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 674}
 675
 676/**************************************************************************
 677 *
 678 * Falcon event queue processing
 679 * Event queues are processed by per-channel tasklets.
 680 *
 681 **************************************************************************/
 682
 683/* Update a channel's event queue's read pointer (RPTR) register
 684 *
 685 * This writes the EVQ_RPTR_REG register for the specified channel's
 686 * event queue.
 687 *
 688 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 689 * whereas channel->eventq_read_ptr contains the index of the "next to
 690 * read" event.
 691 */
 692void falcon_eventq_read_ack(struct efx_channel *channel)
 693{
 694        efx_dword_t reg;
 695        struct efx_nic *efx = channel->efx;
 696
 697        EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
 698        falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
 699                            channel->channel);
 700}
 701
 702/* Use HW to insert a SW defined event */
 703void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
 704{
 705        efx_oword_t drv_ev_reg;
 706
 707        EFX_POPULATE_OWORD_2(drv_ev_reg,
 708                             DRV_EV_QID, channel->channel,
 709                             DRV_EV_DATA,
 710                             EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
 711        falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
 712}
 713
 714/* Handle a transmit completion event
 715 *
 716 * Falcon batches TX completion events; the message we receive is of
 717 * the form "complete all TX events up to this index".
 718 */
 719static void falcon_handle_tx_event(struct efx_channel *channel,
 720                                   efx_qword_t *event)
 721{
 722        unsigned int tx_ev_desc_ptr;
 723        unsigned int tx_ev_q_label;
 724        struct efx_tx_queue *tx_queue;
 725        struct efx_nic *efx = channel->efx;
 726
 727        if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
 728                /* Transmit completion */
 729                tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
 730                tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
 731                tx_queue = &efx->tx_queue[tx_ev_q_label];
 732                channel->irq_mod_score +=
 733                        (tx_ev_desc_ptr - tx_queue->read_count) &
 734                        efx->type->txd_ring_mask;
 735                efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 736        } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
 737                /* Rewrite the FIFO write pointer */
 738                tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
 739                tx_queue = &efx->tx_queue[tx_ev_q_label];
 740
 741                if (efx_dev_registered(efx))
 742                        netif_tx_lock(efx->net_dev);
 743                falcon_notify_tx_desc(tx_queue);
 744                if (efx_dev_registered(efx))
 745                        netif_tx_unlock(efx->net_dev);
 746        } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
 747                   EFX_WORKAROUND_10727(efx)) {
 748                efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 749        } else {
 750                EFX_ERR(efx, "channel %d unexpected TX event "
 751                        EFX_QWORD_FMT"\n", channel->channel,
 752                        EFX_QWORD_VAL(*event));
 753        }
 754}
 755
 756/* Detect errors included in the rx_evt_pkt_ok bit. */
 757static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 758                                    const efx_qword_t *event,
 759                                    bool *rx_ev_pkt_ok,
 760                                    bool *discard)
 761{
 762        struct efx_nic *efx = rx_queue->efx;
 763        bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 764        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 765        bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 766        bool rx_ev_other_err, rx_ev_pause_frm;
 767        bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
 768        unsigned rx_ev_pkt_type;
 769
 770        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
 771        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
 772        rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
 773        rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
 774        rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 775                                                 RX_EV_BUF_OWNER_ID_ERR);
 776        rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
 777        rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 778                                                  RX_EV_IP_HDR_CHKSUM_ERR);
 779        rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 780                                                   RX_EV_TCP_UDP_CHKSUM_ERR);
 781        rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
 782        rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
 783        rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
 784                          0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
 785        rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
 786
 787        /* Every error apart from tobe_disc and pause_frm */
 788        rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 789                           rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 790                           rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 791
 792        /* Count errors that are not in MAC stats.  Ignore expected
 793         * checksum errors during self-test. */
 794        if (rx_ev_frm_trunc)
 795                ++rx_queue->channel->n_rx_frm_trunc;
 796        else if (rx_ev_tobe_disc)
 797                ++rx_queue->channel->n_rx_tobe_disc;
 798        else if (!efx->loopback_selftest) {
 799                if (rx_ev_ip_hdr_chksum_err)
 800                        ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
 801                else if (rx_ev_tcp_udp_chksum_err)
 802                        ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
 803        }
 804        if (rx_ev_ip_frag_err)
 805                ++rx_queue->channel->n_rx_ip_frag_err;
 806
 807        /* The frame must be discarded if any of these are true. */
 808        *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 809                    rx_ev_tobe_disc | rx_ev_pause_frm);
 810
 811        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 812         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 813         * to a FIFO overflow.
 814         */
 815#ifdef EFX_ENABLE_DEBUG
 816        if (rx_ev_other_err) {
 817                EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
 818                            EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 819                            rx_queue->queue, EFX_QWORD_VAL(*event),
 820                            rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 821                            rx_ev_ip_hdr_chksum_err ?
 822                            " [IP_HDR_CHKSUM_ERR]" : "",
 823                            rx_ev_tcp_udp_chksum_err ?
 824                            " [TCP_UDP_CHKSUM_ERR]" : "",
 825                            rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 826                            rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 827                            rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 828                            rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 829                            rx_ev_pause_frm ? " [PAUSE]" : "");
 830        }
 831#endif
 832}
 833
 834/* Handle receive events that are not in-order. */
 835static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
 836                                       unsigned index)
 837{
 838        struct efx_nic *efx = rx_queue->efx;
 839        unsigned expected, dropped;
 840
 841        expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
 842        dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
 843                   FALCON_RXD_RING_MASK);
 844        EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
 845                dropped, index, expected);
 846
 847        efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 848                           RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 849}
 850
 851/* Handle a packet received event
 852 *
 853 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 854 * wrong destination address
 855 * Also "is multicast" and "matches multicast filter" flags can be used to
 856 * discard non-matching multicast packets.
 857 */
 858static void falcon_handle_rx_event(struct efx_channel *channel,
 859                                   const efx_qword_t *event)
 860{
 861        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 862        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 863        unsigned expected_ptr;
 864        bool rx_ev_pkt_ok, discard = false, checksummed;
 865        struct efx_rx_queue *rx_queue;
 866        struct efx_nic *efx = channel->efx;
 867
 868        /* Basic packet information */
 869        rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
 870        rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
 871        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
 872        WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
 873        WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
 874        WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
 875
 876        rx_queue = &efx->rx_queue[channel->channel];
 877
 878        rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
 879        expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
 880        if (unlikely(rx_ev_desc_ptr != expected_ptr))
 881                falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
 882
 883        if (likely(rx_ev_pkt_ok)) {
 884                /* If packet is marked as OK and packet type is TCP/IPv4 or
 885                 * UDP/IPv4, then we can rely on the hardware checksum.
 886                 */
 887                checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
 888        } else {
 889                falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
 890                                        &discard);
 891                checksummed = false;
 892        }
 893
 894        /* Detect multicast packets that didn't match the filter */
 895        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
 896        if (rx_ev_mcast_pkt) {
 897                unsigned int rx_ev_mcast_hash_match =
 898                        EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
 899
 900                if (unlikely(!rx_ev_mcast_hash_match))
 901                        discard = true;
 902        }
 903
 904        channel->irq_mod_score += 2;
 905
 906        /* Handle received packet */
 907        efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
 908                      checksummed, discard);
 909}
 910
 911/* Global events are basically PHY events */
 912static void falcon_handle_global_event(struct efx_channel *channel,
 913                                       efx_qword_t *event)
 914{
 915        struct efx_nic *efx = channel->efx;
 916        bool handled = false;
 917
 918        if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
 919            EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
 920            EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
 921            EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
 922                efx->phy_op->clear_interrupt(efx);
 923                queue_work(efx->workqueue, &efx->phy_work);
 924                handled = true;
 925        }
 926
 927        if ((falcon_rev(efx) >= FALCON_REV_B0) &&
 928            EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
 929                queue_work(efx->workqueue, &efx->mac_work);
 930                handled = true;
 931        }
 932
 933        if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
 934                EFX_ERR(efx, "channel %d seen global RX_RESET "
 935                        "event. Resetting.\n", channel->channel);
 936
 937                atomic_inc(&efx->rx_reset);
 938                efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
 939                                   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 940                handled = true;
 941        }
 942
 943        if (!handled)
 944                EFX_ERR(efx, "channel %d unknown global event "
 945                        EFX_QWORD_FMT "\n", channel->channel,
 946                        EFX_QWORD_VAL(*event));
 947}
 948
 949static void falcon_handle_driver_event(struct efx_channel *channel,
 950                                       efx_qword_t *event)
 951{
 952        struct efx_nic *efx = channel->efx;
 953        unsigned int ev_sub_code;
 954        unsigned int ev_sub_data;
 955
 956        ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
 957        ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
 958
 959        switch (ev_sub_code) {
 960        case TX_DESCQ_FLS_DONE_EV_DECODE:
 961                EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
 962                          channel->channel, ev_sub_data);
 963                break;
 964        case RX_DESCQ_FLS_DONE_EV_DECODE:
 965                EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
 966                          channel->channel, ev_sub_data);
 967                break;
 968        case EVQ_INIT_DONE_EV_DECODE:
 969                EFX_LOG(efx, "channel %d EVQ %d initialised\n",
 970                        channel->channel, ev_sub_data);
 971                break;
 972        case SRM_UPD_DONE_EV_DECODE:
 973                EFX_TRACE(efx, "channel %d SRAM update done\n",
 974                          channel->channel);
 975                break;
 976        case WAKE_UP_EV_DECODE:
 977                EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
 978                          channel->channel, ev_sub_data);
 979                break;
 980        case TIMER_EV_DECODE:
 981                EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
 982                          channel->channel, ev_sub_data);
 983                break;
 984        case RX_RECOVERY_EV_DECODE:
 985                EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
 986                        "Resetting.\n", channel->channel);
 987                atomic_inc(&efx->rx_reset);
 988                efx_schedule_reset(efx,
 989                                   EFX_WORKAROUND_6555(efx) ?
 990                                   RESET_TYPE_RX_RECOVERY :
 991                                   RESET_TYPE_DISABLE);
 992                break;
 993        case RX_DSC_ERROR_EV_DECODE:
 994                EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
 995                        " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
 996                efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
 997                break;
 998        case TX_DSC_ERROR_EV_DECODE:
 999                EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1000                        " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1001                efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1002                break;
1003        default:
1004                EFX_TRACE(efx, "channel %d unknown driver event code %d "
1005                          "data %04x\n", channel->channel, ev_sub_code,
1006                          ev_sub_data);
1007                break;
1008        }
1009}
1010
1011int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1012{
1013        unsigned int read_ptr;
1014        efx_qword_t event, *p_event;
1015        int ev_code;
1016        int rx_packets = 0;
1017
1018        read_ptr = channel->eventq_read_ptr;
1019
1020        do {
1021                p_event = falcon_event(channel, read_ptr);
1022                event = *p_event;
1023
1024                if (!falcon_event_present(&event))
1025                        /* End of events */
1026                        break;
1027
1028                EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1029                          channel->channel, EFX_QWORD_VAL(event));
1030
1031                /* Clear this event by marking it all ones */
1032                EFX_SET_QWORD(*p_event);
1033
1034                ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1035
1036                switch (ev_code) {
1037                case RX_IP_EV_DECODE:
1038                        falcon_handle_rx_event(channel, &event);
1039                        ++rx_packets;
1040                        break;
1041                case TX_IP_EV_DECODE:
1042                        falcon_handle_tx_event(channel, &event);
1043                        break;
1044                case DRV_GEN_EV_DECODE:
1045                        channel->eventq_magic
1046                                = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1047                        EFX_LOG(channel->efx, "channel %d received generated "
1048                                "event "EFX_QWORD_FMT"\n", channel->channel,
1049                                EFX_QWORD_VAL(event));
1050                        break;
1051                case GLOBAL_EV_DECODE:
1052                        falcon_handle_global_event(channel, &event);
1053                        break;
1054                case DRIVER_EV_DECODE:
1055                        falcon_handle_driver_event(channel, &event);
1056                        break;
1057                default:
1058                        EFX_ERR(channel->efx, "channel %d unknown event type %d"
1059                                " (data " EFX_QWORD_FMT ")\n", channel->channel,
1060                                ev_code, EFX_QWORD_VAL(event));
1061                }
1062
1063                /* Increment read pointer */
1064                read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1065
1066        } while (rx_packets < rx_quota);
1067
1068        channel->eventq_read_ptr = read_ptr;
1069        return rx_packets;
1070}
1071
1072void falcon_set_int_moderation(struct efx_channel *channel)
1073{
1074        efx_dword_t timer_cmd;
1075        struct efx_nic *efx = channel->efx;
1076
1077        /* Set timer register */
1078        if (channel->irq_moderation) {
1079                /* Round to resolution supported by hardware.  The value we
1080                 * program is based at 0.  So actual interrupt moderation
1081                 * achieved is ((x + 1) * res).
1082                 */
1083                channel->irq_moderation -= (channel->irq_moderation %
1084                                            FALCON_IRQ_MOD_RESOLUTION);
1085                if (channel->irq_moderation < FALCON_IRQ_MOD_RESOLUTION)
1086                        channel->irq_moderation = FALCON_IRQ_MOD_RESOLUTION;
1087                EFX_POPULATE_DWORD_2(timer_cmd,
1088                                     TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1089                                     TIMER_VAL,
1090                                     channel->irq_moderation /
1091                                     FALCON_IRQ_MOD_RESOLUTION - 1);
1092        } else {
1093                EFX_POPULATE_DWORD_2(timer_cmd,
1094                                     TIMER_MODE, TIMER_MODE_DIS,
1095                                     TIMER_VAL, 0);
1096        }
1097        falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1098                                  channel->channel);
1099
1100}
1101
1102/* Allocate buffer table entries for event queue */
1103int falcon_probe_eventq(struct efx_channel *channel)
1104{
1105        struct efx_nic *efx = channel->efx;
1106        unsigned int evq_size;
1107
1108        evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1109        return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1110}
1111
1112void falcon_init_eventq(struct efx_channel *channel)
1113{
1114        efx_oword_t evq_ptr;
1115        struct efx_nic *efx = channel->efx;
1116
1117        EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1118                channel->channel, channel->eventq.index,
1119                channel->eventq.index + channel->eventq.entries - 1);
1120
1121        /* Pin event queue buffer */
1122        falcon_init_special_buffer(efx, &channel->eventq);
1123
1124        /* Fill event queue with all ones (i.e. empty events) */
1125        memset(channel->eventq.addr, 0xff, channel->eventq.len);
1126
1127        /* Push event queue to card */
1128        EFX_POPULATE_OWORD_3(evq_ptr,
1129                             EVQ_EN, 1,
1130                             EVQ_SIZE, FALCON_EVQ_ORDER,
1131                             EVQ_BUF_BASE_ID, channel->eventq.index);
1132        falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1133                           channel->channel);
1134
1135        falcon_set_int_moderation(channel);
1136}
1137
1138void falcon_fini_eventq(struct efx_channel *channel)
1139{
1140        efx_oword_t eventq_ptr;
1141        struct efx_nic *efx = channel->efx;
1142
1143        /* Remove event queue from card */
1144        EFX_ZERO_OWORD(eventq_ptr);
1145        falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1146                           channel->channel);
1147
1148        /* Unpin event queue */
1149        falcon_fini_special_buffer(efx, &channel->eventq);
1150}
1151
1152/* Free buffers backing event queue */
1153void falcon_remove_eventq(struct efx_channel *channel)
1154{
1155        falcon_free_special_buffer(channel->efx, &channel->eventq);
1156}
1157
1158
1159/* Generates a test event on the event queue.  A subsequent call to
1160 * process_eventq() should pick up the event and place the value of
1161 * "magic" into channel->eventq_magic;
1162 */
1163void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1164{
1165        efx_qword_t test_event;
1166
1167        EFX_POPULATE_QWORD_2(test_event,
1168                             EV_CODE, DRV_GEN_EV_DECODE,
1169                             EVQ_MAGIC, magic);
1170        falcon_generate_event(channel, &test_event);
1171}
1172
1173void falcon_sim_phy_event(struct efx_nic *efx)
1174{
1175        efx_qword_t phy_event;
1176
1177        EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
1178        if (EFX_IS10G(efx))
1179                EFX_SET_QWORD_FIELD(phy_event, XG_PHY_INTR, 1);
1180        else
1181                EFX_SET_QWORD_FIELD(phy_event, G_PHY0_INTR, 1);
1182
1183        falcon_generate_event(&efx->channel[0], &phy_event);
1184}
1185
1186/**************************************************************************
1187 *
1188 * Flush handling
1189 *
1190 **************************************************************************/
1191
1192
1193static void falcon_poll_flush_events(struct efx_nic *efx)
1194{
1195        struct efx_channel *channel = &efx->channel[0];
1196        struct efx_tx_queue *tx_queue;
1197        struct efx_rx_queue *rx_queue;
1198        unsigned int read_ptr = channel->eventq_read_ptr;
1199        unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
1200
1201        do {
1202                efx_qword_t *event = falcon_event(channel, read_ptr);
1203                int ev_code, ev_sub_code, ev_queue;
1204                bool ev_failed;
1205
1206                if (!falcon_event_present(event))
1207                        break;
1208
1209                ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1210                ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1211                if (ev_code == DRIVER_EV_DECODE &&
1212                    ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) {
1213                        ev_queue = EFX_QWORD_FIELD(*event,
1214                                                   DRIVER_EV_TX_DESCQ_ID);
1215                        if (ev_queue < EFX_TX_QUEUE_COUNT) {
1216                                tx_queue = efx->tx_queue + ev_queue;
1217                                tx_queue->flushed = true;
1218                        }
1219                } else if (ev_code == DRIVER_EV_DECODE &&
1220                           ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) {
1221                        ev_queue = EFX_QWORD_FIELD(*event,
1222                                                   DRIVER_EV_RX_DESCQ_ID);
1223                        ev_failed = EFX_QWORD_FIELD(*event,
1224                                                    DRIVER_EV_RX_FLUSH_FAIL);
1225                        if (ev_queue < efx->n_rx_queues) {
1226                                rx_queue = efx->rx_queue + ev_queue;
1227
1228                                /* retry the rx flush */
1229                                if (ev_failed)
1230                                        falcon_flush_rx_queue(rx_queue);
1231                                else
1232                                        rx_queue->flushed = true;
1233                        }
1234                }
1235
1236                read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1237        } while (read_ptr != end_ptr);
1238}
1239
1240/* Handle tx and rx flushes at the same time, since they run in
1241 * parallel in the hardware and there's no reason for us to
1242 * serialise them */
1243int falcon_flush_queues(struct efx_nic *efx)
1244{
1245        struct efx_rx_queue *rx_queue;
1246        struct efx_tx_queue *tx_queue;
1247        int i;
1248        bool outstanding;
1249
1250        /* Issue flush requests */
1251        efx_for_each_tx_queue(tx_queue, efx) {
1252                tx_queue->flushed = false;
1253                falcon_flush_tx_queue(tx_queue);
1254        }
1255        efx_for_each_rx_queue(rx_queue, efx) {
1256                rx_queue->flushed = false;
1257                falcon_flush_rx_queue(rx_queue);
1258        }
1259
1260        /* Poll the evq looking for flush completions. Since we're not pushing
1261         * any more rx or tx descriptors at this point, we're in no danger of
1262         * overflowing the evq whilst we wait */
1263        for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1264                msleep(FALCON_FLUSH_INTERVAL);
1265                falcon_poll_flush_events(efx);
1266
1267                /* Check if every queue has been succesfully flushed */
1268                outstanding = false;
1269                efx_for_each_tx_queue(tx_queue, efx)
1270                        outstanding |= !tx_queue->flushed;
1271                efx_for_each_rx_queue(rx_queue, efx)
1272                        outstanding |= !rx_queue->flushed;
1273                if (!outstanding)
1274                        return 0;
1275        }
1276
1277        /* Mark the queues as all flushed. We're going to return failure
1278         * leading to a reset, or fake up success anyway. "flushed" now
1279         * indicates that we tried to flush. */
1280        efx_for_each_tx_queue(tx_queue, efx) {
1281                if (!tx_queue->flushed)
1282                        EFX_ERR(efx, "tx queue %d flush command timed out\n",
1283                                tx_queue->queue);
1284                tx_queue->flushed = true;
1285        }
1286        efx_for_each_rx_queue(rx_queue, efx) {
1287                if (!rx_queue->flushed)
1288                        EFX_ERR(efx, "rx queue %d flush command timed out\n",
1289                                rx_queue->queue);
1290                rx_queue->flushed = true;
1291        }
1292
1293        if (EFX_WORKAROUND_7803(efx))
1294                return 0;
1295
1296        return -ETIMEDOUT;
1297}
1298
1299/**************************************************************************
1300 *
1301 * Falcon hardware interrupts
1302 * The hardware interrupt handler does very little work; all the event
1303 * queue processing is carried out by per-channel tasklets.
1304 *
1305 **************************************************************************/
1306
1307/* Enable/disable/generate Falcon interrupts */
1308static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1309                                     int force)
1310{
1311        efx_oword_t int_en_reg_ker;
1312
1313        EFX_POPULATE_OWORD_2(int_en_reg_ker,
1314                             KER_INT_KER, force,
1315                             DRV_INT_EN_KER, enabled);
1316        falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1317}
1318
1319void falcon_enable_interrupts(struct efx_nic *efx)
1320{
1321        efx_oword_t int_adr_reg_ker;
1322        struct efx_channel *channel;
1323
1324        EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1325        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1326
1327        /* Program address */
1328        EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1329                             NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1330                             INT_ADR_KER, efx->irq_status.dma_addr);
1331        falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1332
1333        /* Enable interrupts */
1334        falcon_interrupts(efx, 1, 0);
1335
1336        /* Force processing of all the channels to get the EVQ RPTRs up to
1337           date */
1338        efx_for_each_channel(channel, efx)
1339                efx_schedule_channel(channel);
1340}
1341
1342void falcon_disable_interrupts(struct efx_nic *efx)
1343{
1344        /* Disable interrupts */
1345        falcon_interrupts(efx, 0, 0);
1346}
1347
1348/* Generate a Falcon test interrupt
1349 * Interrupt must already have been enabled, otherwise nasty things
1350 * may happen.
1351 */
1352void falcon_generate_interrupt(struct efx_nic *efx)
1353{
1354        falcon_interrupts(efx, 1, 1);
1355}
1356
1357/* Acknowledge a legacy interrupt from Falcon
1358 *
1359 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1360 *
1361 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1362 * BIU. Interrupt acknowledge is read sensitive so must write instead
1363 * (then read to ensure the BIU collector is flushed)
1364 *
1365 * NB most hardware supports MSI interrupts
1366 */
1367static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1368{
1369        efx_dword_t reg;
1370
1371        EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1372        falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1373        falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1374}
1375
1376/* Process a fatal interrupt
1377 * Disable bus mastering ASAP and schedule a reset
1378 */
1379static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1380{
1381        struct falcon_nic_data *nic_data = efx->nic_data;
1382        efx_oword_t *int_ker = efx->irq_status.addr;
1383        efx_oword_t fatal_intr;
1384        int error, mem_perr;
1385
1386        falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1387        error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1388
1389        EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1390                EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1391                EFX_OWORD_VAL(fatal_intr),
1392                error ? "disabling bus mastering" : "no recognised error");
1393        if (error == 0)
1394                goto out;
1395
1396        /* If this is a memory parity error dump which blocks are offending */
1397        mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1398        if (mem_perr) {
1399                efx_oword_t reg;
1400                falcon_read(efx, &reg, MEM_STAT_REG_KER);
1401                EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1402                        EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1403        }
1404
1405        /* Disable both devices */
1406        pci_clear_master(efx->pci_dev);
1407        if (FALCON_IS_DUAL_FUNC(efx))
1408                pci_clear_master(nic_data->pci_dev2);
1409        falcon_disable_interrupts(efx);
1410
1411        /* Count errors and reset or disable the NIC accordingly */
1412        if (nic_data->int_error_count == 0 ||
1413            time_after(jiffies, nic_data->int_error_expire)) {
1414                nic_data->int_error_count = 0;
1415                nic_data->int_error_expire =
1416                        jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1417        }
1418        if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
1419                EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1420                efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1421        } else {
1422                EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1423                        "NIC will be disabled\n");
1424                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1425        }
1426out:
1427        return IRQ_HANDLED;
1428}
1429
1430/* Handle a legacy interrupt from Falcon
1431 * Acknowledges the interrupt and schedule event queue processing.
1432 */
1433static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1434{
1435        struct efx_nic *efx = dev_id;
1436        efx_oword_t *int_ker = efx->irq_status.addr;
1437        irqreturn_t result = IRQ_NONE;
1438        struct efx_channel *channel;
1439        efx_dword_t reg;
1440        u32 queues;
1441        int syserr;
1442
1443        /* Read the ISR which also ACKs the interrupts */
1444        falcon_readl(efx, &reg, INT_ISR0_B0);
1445        queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1446
1447        /* Check to see if we have a serious error condition */
1448        syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1449        if (unlikely(syserr))
1450                return falcon_fatal_interrupt(efx);
1451
1452        /* Schedule processing of any interrupting queues */
1453        efx_for_each_channel(channel, efx) {
1454                if ((queues & 1) ||
1455                    falcon_event_present(
1456                            falcon_event(channel, channel->eventq_read_ptr))) {
1457                        efx_schedule_channel(channel);
1458                        result = IRQ_HANDLED;
1459                }
1460                queues >>= 1;
1461        }
1462
1463        if (result == IRQ_HANDLED) {
1464                efx->last_irq_cpu = raw_smp_processor_id();
1465                EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1466                          irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1467        }
1468
1469        return result;
1470}
1471
1472
1473static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1474{
1475        struct efx_nic *efx = dev_id;
1476        efx_oword_t *int_ker = efx->irq_status.addr;
1477        struct efx_channel *channel;
1478        int syserr;
1479        int queues;
1480
1481        /* Check to see if this is our interrupt.  If it isn't, we
1482         * exit without having touched the hardware.
1483         */
1484        if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1485                EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1486                          raw_smp_processor_id());
1487                return IRQ_NONE;
1488        }
1489        efx->last_irq_cpu = raw_smp_processor_id();
1490        EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1491                  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1492
1493        /* Check to see if we have a serious error condition */
1494        syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1495        if (unlikely(syserr))
1496                return falcon_fatal_interrupt(efx);
1497
1498        /* Determine interrupting queues, clear interrupt status
1499         * register and acknowledge the device interrupt.
1500         */
1501        BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1502        queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1503        EFX_ZERO_OWORD(*int_ker);
1504        wmb(); /* Ensure the vector is cleared before interrupt ack */
1505        falcon_irq_ack_a1(efx);
1506
1507        /* Schedule processing of any interrupting queues */
1508        channel = &efx->channel[0];
1509        while (queues) {
1510                if (queues & 0x01)
1511                        efx_schedule_channel(channel);
1512                channel++;
1513                queues >>= 1;
1514        }
1515
1516        return IRQ_HANDLED;
1517}
1518
1519/* Handle an MSI interrupt from Falcon
1520 *
1521 * Handle an MSI hardware interrupt.  This routine schedules event
1522 * queue processing.  No interrupt acknowledgement cycle is necessary.
1523 * Also, we never need to check that the interrupt is for us, since
1524 * MSI interrupts cannot be shared.
1525 */
1526static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1527{
1528        struct efx_channel *channel = dev_id;
1529        struct efx_nic *efx = channel->efx;
1530        efx_oword_t *int_ker = efx->irq_status.addr;
1531        int syserr;
1532
1533        efx->last_irq_cpu = raw_smp_processor_id();
1534        EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1535                  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1536
1537        /* Check to see if we have a serious error condition */
1538        syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1539        if (unlikely(syserr))
1540                return falcon_fatal_interrupt(efx);
1541
1542        /* Schedule processing of the channel */
1543        efx_schedule_channel(channel);
1544
1545        return IRQ_HANDLED;
1546}
1547
1548
1549/* Setup RSS indirection table.
1550 * This maps from the hash value of the packet to RXQ
1551 */
1552static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1553{
1554        int i = 0;
1555        unsigned long offset;
1556        efx_dword_t dword;
1557
1558        if (falcon_rev(efx) < FALCON_REV_B0)
1559                return;
1560
1561        for (offset = RX_RSS_INDIR_TBL_B0;
1562             offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1563             offset += 0x10) {
1564                EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1565                                     i % efx->n_rx_queues);
1566                falcon_writel(efx, &dword, offset);
1567                i++;
1568        }
1569}
1570
1571/* Hook interrupt handler(s)
1572 * Try MSI and then legacy interrupts.
1573 */
1574int falcon_init_interrupt(struct efx_nic *efx)
1575{
1576        struct efx_channel *channel;
1577        int rc;
1578
1579        if (!EFX_INT_MODE_USE_MSI(efx)) {
1580                irq_handler_t handler;
1581                if (falcon_rev(efx) >= FALCON_REV_B0)
1582                        handler = falcon_legacy_interrupt_b0;
1583                else
1584                        handler = falcon_legacy_interrupt_a1;
1585
1586                rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1587                                 efx->name, efx);
1588                if (rc) {
1589                        EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1590                                efx->pci_dev->irq);
1591                        goto fail1;
1592                }
1593                return 0;
1594        }
1595
1596        /* Hook MSI or MSI-X interrupt */
1597        efx_for_each_channel(channel, efx) {
1598                rc = request_irq(channel->irq, falcon_msi_interrupt,
1599                                 IRQF_PROBE_SHARED, /* Not shared */
1600                                 channel->name, channel);
1601                if (rc) {
1602                        EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1603                        goto fail2;
1604                }
1605        }
1606
1607        return 0;
1608
1609 fail2:
1610        efx_for_each_channel(channel, efx)
1611                free_irq(channel->irq, channel);
1612 fail1:
1613        return rc;
1614}
1615
1616void falcon_fini_interrupt(struct efx_nic *efx)
1617{
1618        struct efx_channel *channel;
1619        efx_oword_t reg;
1620
1621        /* Disable MSI/MSI-X interrupts */
1622        efx_for_each_channel(channel, efx) {
1623                if (channel->irq)
1624                        free_irq(channel->irq, channel);
1625        }
1626
1627        /* ACK legacy interrupt */
1628        if (falcon_rev(efx) >= FALCON_REV_B0)
1629                falcon_read(efx, &reg, INT_ISR0_B0);
1630        else
1631                falcon_irq_ack_a1(efx);
1632
1633        /* Disable legacy interrupt */
1634        if (efx->legacy_irq)
1635                free_irq(efx->legacy_irq, efx);
1636}
1637
1638/**************************************************************************
1639 *
1640 * EEPROM/flash
1641 *
1642 **************************************************************************
1643 */
1644
1645#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1646
1647static int falcon_spi_poll(struct efx_nic *efx)
1648{
1649        efx_oword_t reg;
1650        falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1651        return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1652}
1653
1654/* Wait for SPI command completion */
1655static int falcon_spi_wait(struct efx_nic *efx)
1656{
1657        /* Most commands will finish quickly, so we start polling at
1658         * very short intervals.  Sometimes the command may have to
1659         * wait for VPD or expansion ROM access outside of our
1660         * control, so we allow up to 100 ms. */
1661        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1662        int i;
1663
1664        for (i = 0; i < 10; i++) {
1665                if (!falcon_spi_poll(efx))
1666                        return 0;
1667                udelay(10);
1668        }
1669
1670        for (;;) {
1671                if (!falcon_spi_poll(efx))
1672                        return 0;
1673                if (time_after_eq(jiffies, timeout)) {
1674                        EFX_ERR(efx, "timed out waiting for SPI\n");
1675                        return -ETIMEDOUT;
1676                }
1677                schedule_timeout_uninterruptible(1);
1678        }
1679}
1680
1681int falcon_spi_cmd(const struct efx_spi_device *spi,
1682                   unsigned int command, int address,
1683                   const void *in, void *out, size_t len)
1684{
1685        struct efx_nic *efx = spi->efx;
1686        bool addressed = (address >= 0);
1687        bool reading = (out != NULL);
1688        efx_oword_t reg;
1689        int rc;
1690
1691        /* Input validation */
1692        if (len > FALCON_SPI_MAX_LEN)
1693                return -EINVAL;
1694        BUG_ON(!mutex_is_locked(&efx->spi_lock));
1695
1696        /* Check that previous command is not still running */
1697        rc = falcon_spi_poll(efx);
1698        if (rc)
1699                return rc;
1700
1701        /* Program address register, if we have an address */
1702        if (addressed) {
1703                EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1704                falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1705        }
1706
1707        /* Program data register, if we have data */
1708        if (in != NULL) {
1709                memcpy(&reg, in, len);
1710                falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1711        }
1712
1713        /* Issue read/write command */
1714        EFX_POPULATE_OWORD_7(reg,
1715                             EE_SPI_HCMD_CMD_EN, 1,
1716                             EE_SPI_HCMD_SF_SEL, spi->device_id,
1717                             EE_SPI_HCMD_DABCNT, len,
1718                             EE_SPI_HCMD_READ, reading,
1719                             EE_SPI_HCMD_DUBCNT, 0,
1720                             EE_SPI_HCMD_ADBCNT,
1721                             (addressed ? spi->addr_len : 0),
1722                             EE_SPI_HCMD_ENC, command);
1723        falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1724
1725        /* Wait for read/write to complete */
1726        rc = falcon_spi_wait(efx);
1727        if (rc)
1728                return rc;
1729
1730        /* Read data */
1731        if (out != NULL) {
1732                falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1733                memcpy(out, &reg, len);
1734        }
1735
1736        return 0;
1737}
1738
1739static size_t
1740falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1741{
1742        return min(FALCON_SPI_MAX_LEN,
1743                   (spi->block_size - (start & (spi->block_size - 1))));
1744}
1745
1746static inline u8
1747efx_spi_munge_command(const struct efx_spi_device *spi,
1748                      const u8 command, const unsigned int address)
1749{
1750        return command | (((address >> 8) & spi->munge_address) << 3);
1751}
1752
1753/* Wait up to 10 ms for buffered write completion */
1754int falcon_spi_wait_write(const struct efx_spi_device *spi)
1755{
1756        struct efx_nic *efx = spi->efx;
1757        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1758        u8 status;
1759        int rc;
1760
1761        for (;;) {
1762                rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1763                                    &status, sizeof(status));
1764                if (rc)
1765                        return rc;
1766                if (!(status & SPI_STATUS_NRDY))
1767                        return 0;
1768                if (time_after_eq(jiffies, timeout)) {
1769                        EFX_ERR(efx, "SPI write timeout on device %d"
1770                                " last status=0x%02x\n",
1771                                spi->device_id, status);
1772                        return -ETIMEDOUT;
1773                }
1774                schedule_timeout_uninterruptible(1);
1775        }
1776}
1777
1778int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1779                    size_t len, size_t *retlen, u8 *buffer)
1780{
1781        size_t block_len, pos = 0;
1782        unsigned int command;
1783        int rc = 0;
1784
1785        while (pos < len) {
1786                block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1787
1788                command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1789                rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1790                                    buffer + pos, block_len);
1791                if (rc)
1792                        break;
1793                pos += block_len;
1794
1795                /* Avoid locking up the system */
1796                cond_resched();
1797                if (signal_pending(current)) {
1798                        rc = -EINTR;
1799                        break;
1800                }
1801        }
1802
1803        if (retlen)
1804                *retlen = pos;
1805        return rc;
1806}
1807
1808int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1809                     size_t len, size_t *retlen, const u8 *buffer)
1810{
1811        u8 verify_buffer[FALCON_SPI_MAX_LEN];
1812        size_t block_len, pos = 0;
1813        unsigned int command;
1814        int rc = 0;
1815
1816        while (pos < len) {
1817                rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1818                if (rc)
1819                        break;
1820
1821                block_len = min(len - pos,
1822                                falcon_spi_write_limit(spi, start + pos));
1823                command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1824                rc = falcon_spi_cmd(spi, command, start + pos,
1825                                    buffer + pos, NULL, block_len);
1826                if (rc)
1827                        break;
1828
1829                rc = falcon_spi_wait_write(spi);
1830                if (rc)
1831                        break;
1832
1833                command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1834                rc = falcon_spi_cmd(spi, command, start + pos,
1835                                    NULL, verify_buffer, block_len);
1836                if (memcmp(verify_buffer, buffer + pos, block_len)) {
1837                        rc = -EIO;
1838                        break;
1839                }
1840
1841                pos += block_len;
1842
1843                /* Avoid locking up the system */
1844                cond_resched();
1845                if (signal_pending(current)) {
1846                        rc = -EINTR;
1847                        break;
1848                }
1849        }
1850
1851        if (retlen)
1852                *retlen = pos;
1853        return rc;
1854}
1855
1856/**************************************************************************
1857 *
1858 * MAC wrapper
1859 *
1860 **************************************************************************
1861 */
1862
1863static int falcon_reset_macs(struct efx_nic *efx)
1864{
1865        efx_oword_t reg;
1866        int count;
1867
1868        if (falcon_rev(efx) < FALCON_REV_B0) {
1869                /* It's not safe to use GLB_CTL_REG to reset the
1870                 * macs, so instead use the internal MAC resets
1871                 */
1872                if (!EFX_IS10G(efx)) {
1873                        EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
1874                        falcon_write(efx, &reg, GM_CFG1_REG);
1875                        udelay(1000);
1876
1877                        EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
1878                        falcon_write(efx, &reg, GM_CFG1_REG);
1879                        udelay(1000);
1880                        return 0;
1881                } else {
1882                        EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
1883                        falcon_write(efx, &reg, XM_GLB_CFG_REG);
1884
1885                        for (count = 0; count < 10000; count++) {
1886                                falcon_read(efx, &reg, XM_GLB_CFG_REG);
1887                                if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
1888                                        return 0;
1889                                udelay(10);
1890                        }
1891
1892                        EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1893                        return -ETIMEDOUT;
1894                }
1895        }
1896
1897        /* MAC stats will fail whilst the TX fifo is draining. Serialise
1898         * the drain sequence with the statistics fetch */
1899        efx_stats_disable(efx);
1900
1901        falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1902        EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
1903        falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1904
1905        falcon_read(efx, &reg, GLB_CTL_REG_KER);
1906        EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
1907        EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
1908        EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
1909        falcon_write(efx, &reg, GLB_CTL_REG_KER);
1910
1911        count = 0;
1912        while (1) {
1913                falcon_read(efx, &reg, GLB_CTL_REG_KER);
1914                if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
1915                    !EFX_OWORD_FIELD(reg, RST_XGRX) &&
1916                    !EFX_OWORD_FIELD(reg, RST_EM)) {
1917                        EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1918                                count);
1919                        break;
1920                }
1921                if (count > 20) {
1922                        EFX_ERR(efx, "MAC reset failed\n");
1923                        break;
1924                }
1925                count++;
1926                udelay(10);
1927        }
1928
1929        efx_stats_enable(efx);
1930
1931        /* If we've reset the EM block and the link is up, then
1932         * we'll have to kick the XAUI link so the PHY can recover */
1933        if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1934                falcon_reset_xaui(efx);
1935
1936        return 0;
1937}
1938
1939void falcon_drain_tx_fifo(struct efx_nic *efx)
1940{
1941        efx_oword_t reg;
1942
1943        if ((falcon_rev(efx) < FALCON_REV_B0) ||
1944            (efx->loopback_mode != LOOPBACK_NONE))
1945                return;
1946
1947        falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1948        /* There is no point in draining more than once */
1949        if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
1950                return;
1951
1952        falcon_reset_macs(efx);
1953}
1954
1955void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1956{
1957        efx_oword_t reg;
1958
1959        if (falcon_rev(efx) < FALCON_REV_B0)
1960                return;
1961
1962        /* Isolate the MAC -> RX */
1963        falcon_read(efx, &reg, RX_CFG_REG_KER);
1964        EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
1965        falcon_write(efx, &reg, RX_CFG_REG_KER);
1966
1967        if (!efx->link_up)
1968                falcon_drain_tx_fifo(efx);
1969}
1970
1971void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1972{
1973        efx_oword_t reg;
1974        int link_speed;
1975        bool tx_fc;
1976
1977        switch (efx->link_speed) {
1978        case 10000: link_speed = 3; break;
1979        case 1000:  link_speed = 2; break;
1980        case 100:   link_speed = 1; break;
1981        default:    link_speed = 0; break;
1982        }
1983        /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1984         * as advertised.  Disable to ensure packets are not
1985         * indefinitely held and TX queue can be flushed at any point
1986         * while the link is down. */
1987        EFX_POPULATE_OWORD_5(reg,
1988                             MAC_XOFF_VAL, 0xffff /* max pause time */,
1989                             MAC_BCAD_ACPT, 1,
1990                             MAC_UC_PROM, efx->promiscuous,
1991                             MAC_LINK_STATUS, 1, /* always set */
1992                             MAC_SPEED, link_speed);
1993        /* On B0, MAC backpressure can be disabled and packets get
1994         * discarded. */
1995        if (falcon_rev(efx) >= FALCON_REV_B0) {
1996                EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1997                                    !efx->link_up);
1998        }
1999
2000        falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
2001
2002        /* Restore the multicast hash registers. */
2003        falcon_set_multicast_hash(efx);
2004
2005        /* Transmission of pause frames when RX crosses the threshold is
2006         * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2007         * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2008        tx_fc = !!(efx->link_fc & EFX_FC_TX);
2009        falcon_read(efx, &reg, RX_CFG_REG_KER);
2010        EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
2011
2012        /* Unisolate the MAC -> RX */
2013        if (falcon_rev(efx) >= FALCON_REV_B0)
2014                EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
2015        falcon_write(efx, &reg, RX_CFG_REG_KER);
2016}
2017
2018int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2019{
2020        efx_oword_t reg;
2021        u32 *dma_done;
2022        int i;
2023
2024        if (disable_dma_stats)
2025                return 0;
2026
2027        /* Statistics fetch will fail if the MAC is in TX drain */
2028        if (falcon_rev(efx) >= FALCON_REV_B0) {
2029                efx_oword_t temp;
2030                falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
2031                if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
2032                        return 0;
2033        }
2034
2035        dma_done = (efx->stats_buffer.addr + done_offset);
2036        *dma_done = FALCON_STATS_NOT_DONE;
2037        wmb(); /* ensure done flag is clear */
2038
2039        /* Initiate DMA transfer of stats */
2040        EFX_POPULATE_OWORD_2(reg,
2041                             MAC_STAT_DMA_CMD, 1,
2042                             MAC_STAT_DMA_ADR,
2043                             efx->stats_buffer.dma_addr);
2044        falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
2045
2046        /* Wait for transfer to complete */
2047        for (i = 0; i < 400; i++) {
2048                if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2049                        rmb(); /* Ensure the stats are valid. */
2050                        return 0;
2051                }
2052                udelay(10);
2053        }
2054
2055        EFX_ERR(efx, "timed out waiting for statistics\n");
2056        return -ETIMEDOUT;
2057}
2058
2059/**************************************************************************
2060 *
2061 * PHY access via GMII
2062 *
2063 **************************************************************************
2064 */
2065
2066/* Wait for GMII access to complete */
2067static int falcon_gmii_wait(struct efx_nic *efx)
2068{
2069        efx_dword_t md_stat;
2070        int count;
2071
2072        /* wait upto 50ms - taken max from datasheet */
2073        for (count = 0; count < 5000; count++) {
2074                falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2075                if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2076                        if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2077                            EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2078                                EFX_ERR(efx, "error from GMII access "
2079                                        EFX_DWORD_FMT"\n",
2080                                        EFX_DWORD_VAL(md_stat));
2081                                return -EIO;
2082                        }
2083                        return 0;
2084                }
2085                udelay(10);
2086        }
2087        EFX_ERR(efx, "timed out waiting for GMII\n");
2088        return -ETIMEDOUT;
2089}
2090
2091/* Write an MDIO register of a PHY connected to Falcon. */
2092static int falcon_mdio_write(struct net_device *net_dev,
2093                             int prtad, int devad, u16 addr, u16 value)
2094{
2095        struct efx_nic *efx = netdev_priv(net_dev);
2096        efx_oword_t reg;
2097        int rc;
2098
2099        EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2100                    prtad, devad, addr, value);
2101
2102        spin_lock_bh(&efx->phy_lock);
2103
2104        /* Check MDIO not currently being accessed */
2105        rc = falcon_gmii_wait(efx);
2106        if (rc)
2107                goto out;
2108
2109        /* Write the address/ID register */
2110        EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2111        falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2112
2113        EFX_POPULATE_OWORD_2(reg, MD_PRT_ADR, prtad, MD_DEV_ADR, devad);
2114        falcon_write(efx, &reg, MD_ID_REG_KER);
2115
2116        /* Write data */
2117        EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2118        falcon_write(efx, &reg, MD_TXD_REG_KER);
2119
2120        EFX_POPULATE_OWORD_2(reg,
2121                             MD_WRC, 1,
2122                             MD_GC, 0);
2123        falcon_write(efx, &reg, MD_CS_REG_KER);
2124
2125        /* Wait for data to be written */
2126        rc = falcon_gmii_wait(efx);
2127        if (rc) {
2128                /* Abort the write operation */
2129                EFX_POPULATE_OWORD_2(reg,
2130                                     MD_WRC, 0,
2131                                     MD_GC, 1);
2132                falcon_write(efx, &reg, MD_CS_REG_KER);
2133                udelay(10);
2134        }
2135
2136 out:
2137        spin_unlock_bh(&efx->phy_lock);
2138        return rc;
2139}
2140
2141/* Read an MDIO register of a PHY connected to Falcon. */
2142static int falcon_mdio_read(struct net_device *net_dev,
2143                            int prtad, int devad, u16 addr)
2144{
2145        struct efx_nic *efx = netdev_priv(net_dev);
2146        efx_oword_t reg;
2147        int rc;
2148
2149        spin_lock_bh(&efx->phy_lock);
2150
2151        /* Check MDIO not currently being accessed */
2152        rc = falcon_gmii_wait(efx);
2153        if (rc)
2154                goto out;
2155
2156        EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2157        falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2158
2159        EFX_POPULATE_OWORD_2(reg, MD_PRT_ADR, prtad, MD_DEV_ADR, devad);
2160        falcon_write(efx, &reg, MD_ID_REG_KER);
2161
2162        /* Request data to be read */
2163        EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2164        falcon_write(efx, &reg, MD_CS_REG_KER);
2165
2166        /* Wait for data to become available */
2167        rc = falcon_gmii_wait(efx);
2168        if (rc == 0) {
2169                falcon_read(efx, &reg, MD_RXD_REG_KER);
2170                rc = EFX_OWORD_FIELD(reg, MD_RXD);
2171                EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2172                            prtad, devad, addr, rc);
2173        } else {
2174                /* Abort the read operation */
2175                EFX_POPULATE_OWORD_2(reg,
2176                                     MD_RIC, 0,
2177                                     MD_GC, 1);
2178                falcon_write(efx, &reg, MD_CS_REG_KER);
2179
2180                EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2181                        prtad, devad, addr, rc);
2182        }
2183
2184 out:
2185        spin_unlock_bh(&efx->phy_lock);
2186        return rc;
2187}
2188
2189static int falcon_probe_phy(struct efx_nic *efx)
2190{
2191        switch (efx->phy_type) {
2192        case PHY_TYPE_SFX7101:
2193                efx->phy_op = &falcon_sfx7101_phy_ops;
2194                break;
2195        case PHY_TYPE_SFT9001A:
2196        case PHY_TYPE_SFT9001B:
2197                efx->phy_op = &falcon_sft9001_phy_ops;
2198                break;
2199        case PHY_TYPE_QT2022C2:
2200        case PHY_TYPE_QT2025C:
2201                efx->phy_op = &falcon_xfp_phy_ops;
2202                break;
2203        default:
2204                EFX_ERR(efx, "Unknown PHY type %d\n",
2205                        efx->phy_type);
2206                return -1;
2207        }
2208
2209        if (efx->phy_op->macs & EFX_XMAC)
2210                efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2211                                        (1 << LOOPBACK_XGXS) |
2212                                        (1 << LOOPBACK_XAUI));
2213        if (efx->phy_op->macs & EFX_GMAC)
2214                efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2215        efx->loopback_modes |= efx->phy_op->loopbacks;
2216
2217        return 0;
2218}
2219
2220int falcon_switch_mac(struct efx_nic *efx)
2221{
2222        struct efx_mac_operations *old_mac_op = efx->mac_op;
2223        efx_oword_t nic_stat;
2224        unsigned strap_val;
2225        int rc = 0;
2226
2227        /* Don't try to fetch MAC stats while we're switching MACs */
2228        efx_stats_disable(efx);
2229
2230        /* Internal loopbacks override the phy speed setting */
2231        if (efx->loopback_mode == LOOPBACK_GMAC) {
2232                efx->link_speed = 1000;
2233                efx->link_fd = true;
2234        } else if (LOOPBACK_INTERNAL(efx)) {
2235                efx->link_speed = 10000;
2236                efx->link_fd = true;
2237        }
2238
2239        WARN_ON(!mutex_is_locked(&efx->mac_lock));
2240        efx->mac_op = (EFX_IS10G(efx) ?
2241                       &falcon_xmac_operations : &falcon_gmac_operations);
2242
2243        /* Always push the NIC_STAT_REG setting even if the mac hasn't
2244         * changed, because this function is run post online reset */
2245        falcon_read(efx, &nic_stat, NIC_STAT_REG);
2246        strap_val = EFX_IS10G(efx) ? 5 : 3;
2247        if (falcon_rev(efx) >= FALCON_REV_B0) {
2248                EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
2249                EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
2250                falcon_write(efx, &nic_stat, NIC_STAT_REG);
2251        } else {
2252                /* Falcon A1 does not support 1G/10G speed switching
2253                 * and must not be used with a PHY that does. */
2254                BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
2255        }
2256
2257        if (old_mac_op == efx->mac_op)
2258                goto out;
2259
2260        EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2261        /* Not all macs support a mac-level link state */
2262        efx->mac_up = true;
2263
2264        rc = falcon_reset_macs(efx);
2265out:
2266        efx_stats_enable(efx);
2267        return rc;
2268}
2269
2270/* This call is responsible for hooking in the MAC and PHY operations */
2271int falcon_probe_port(struct efx_nic *efx)
2272{
2273        int rc;
2274
2275        /* Hook in PHY operations table */
2276        rc = falcon_probe_phy(efx);
2277        if (rc)
2278                return rc;
2279
2280        /* Set up MDIO structure for PHY */
2281        efx->mdio.mmds = efx->phy_op->mmds;
2282        efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2283        efx->mdio.mdio_read = falcon_mdio_read;
2284        efx->mdio.mdio_write = falcon_mdio_write;
2285
2286        /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2287        if (falcon_rev(efx) >= FALCON_REV_B0)
2288                efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2289        else
2290                efx->wanted_fc = EFX_FC_RX;
2291
2292        /* Allocate buffer for stats */
2293        rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2294                                 FALCON_MAC_STATS_SIZE);
2295        if (rc)
2296                return rc;
2297        EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2298                (u64)efx->stats_buffer.dma_addr,
2299                efx->stats_buffer.addr,
2300                (u64)virt_to_phys(efx->stats_buffer.addr));
2301
2302        return 0;
2303}
2304
2305void falcon_remove_port(struct efx_nic *efx)
2306{
2307        falcon_free_buffer(efx, &efx->stats_buffer);
2308}
2309
2310/**************************************************************************
2311 *
2312 * Multicast filtering
2313 *
2314 **************************************************************************
2315 */
2316
2317void falcon_set_multicast_hash(struct efx_nic *efx)
2318{
2319        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2320
2321        /* Broadcast packets go through the multicast hash filter.
2322         * ether_crc_le() of the broadcast address is 0xbe2612ff
2323         * so we always add bit 0xff to the mask.
2324         */
2325        set_bit_le(0xff, mc_hash->byte);
2326
2327        falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2328        falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2329}
2330
2331
2332/**************************************************************************
2333 *
2334 * Falcon test code
2335 *
2336 **************************************************************************/
2337
2338int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2339{
2340        struct falcon_nvconfig *nvconfig;
2341        struct efx_spi_device *spi;
2342        void *region;
2343        int rc, magic_num, struct_ver;
2344        __le16 *word, *limit;
2345        u32 csum;
2346
2347        spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2348        if (!spi)
2349                return -EINVAL;
2350
2351        region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2352        if (!region)
2353                return -ENOMEM;
2354        nvconfig = region + NVCONFIG_OFFSET;
2355
2356        mutex_lock(&efx->spi_lock);
2357        rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2358        mutex_unlock(&efx->spi_lock);
2359        if (rc) {
2360                EFX_ERR(efx, "Failed to read %s\n",
2361                        efx->spi_flash ? "flash" : "EEPROM");
2362                rc = -EIO;
2363                goto out;
2364        }
2365
2366        magic_num = le16_to_cpu(nvconfig->board_magic_num);
2367        struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2368
2369        rc = -EINVAL;
2370        if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2371                EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2372                goto out;
2373        }
2374        if (struct_ver < 2) {
2375                EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2376                goto out;
2377        } else if (struct_ver < 4) {
2378                word = &nvconfig->board_magic_num;
2379                limit = (__le16 *) (nvconfig + 1);
2380        } else {
2381                word = region;
2382                limit = region + FALCON_NVCONFIG_END;
2383        }
2384        for (csum = 0; word < limit; ++word)
2385                csum += le16_to_cpu(*word);
2386
2387        if (~csum & 0xffff) {
2388                EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2389                goto out;
2390        }
2391
2392        rc = 0;
2393        if (nvconfig_out)
2394                memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2395
2396 out:
2397        kfree(region);
2398        return rc;
2399}
2400
2401/* Registers tested in the falcon register test */
2402static struct {
2403        unsigned address;
2404        efx_oword_t mask;
2405} efx_test_registers[] = {
2406        { ADR_REGION_REG_KER,
2407          EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2408        { RX_CFG_REG_KER,
2409          EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2410        { TX_CFG_REG_KER,
2411          EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2412        { TX_CFG2_REG_KER,
2413          EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2414        { MAC0_CTRL_REG_KER,
2415          EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2416        { SRM_TX_DC_CFG_REG_KER,
2417          EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2418        { RX_DC_CFG_REG_KER,
2419          EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2420        { RX_DC_PF_WM_REG_KER,
2421          EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2422        { DP_CTRL_REG,
2423          EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2424        { GM_CFG2_REG,
2425          EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2426        { GMF_CFG0_REG,
2427          EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2428        { XM_GLB_CFG_REG,
2429          EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2430        { XM_TX_CFG_REG,
2431          EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2432        { XM_RX_CFG_REG,
2433          EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2434        { XM_RX_PARAM_REG,
2435          EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2436        { XM_FC_REG,
2437          EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2438        { XM_ADR_LO_REG,
2439          EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2440        { XX_SD_CTL_REG,
2441          EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2442};
2443
2444static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2445                                     const efx_oword_t *mask)
2446{
2447        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2448                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2449}
2450
2451int falcon_test_registers(struct efx_nic *efx)
2452{
2453        unsigned address = 0, i, j;
2454        efx_oword_t mask, imask, original, reg, buf;
2455
2456        /* Falcon should be in loopback to isolate the XMAC from the PHY */
2457        WARN_ON(!LOOPBACK_INTERNAL(efx));
2458
2459        for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2460                address = efx_test_registers[i].address;
2461                mask = imask = efx_test_registers[i].mask;
2462                EFX_INVERT_OWORD(imask);
2463
2464                falcon_read(efx, &original, address);
2465
2466                /* bit sweep on and off */
2467                for (j = 0; j < 128; j++) {
2468                        if (!EFX_EXTRACT_OWORD32(mask, j, j))
2469                                continue;
2470
2471                        /* Test this testable bit can be set in isolation */
2472                        EFX_AND_OWORD(reg, original, mask);
2473                        EFX_SET_OWORD32(reg, j, j, 1);
2474
2475                        falcon_write(efx, &reg, address);
2476                        falcon_read(efx, &buf, address);
2477
2478                        if (efx_masked_compare_oword(&reg, &buf, &mask))
2479                                goto fail;
2480
2481                        /* Test this testable bit can be cleared in isolation */
2482                        EFX_OR_OWORD(reg, original, mask);
2483                        EFX_SET_OWORD32(reg, j, j, 0);
2484
2485                        falcon_write(efx, &reg, address);
2486                        falcon_read(efx, &buf, address);
2487
2488                        if (efx_masked_compare_oword(&reg, &buf, &mask))
2489                                goto fail;
2490                }
2491
2492                falcon_write(efx, &original, address);
2493        }
2494
2495        return 0;
2496
2497fail:
2498        EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2499                " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2500                EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2501        return -EIO;
2502}
2503
2504/**************************************************************************
2505 *
2506 * Device reset
2507 *
2508 **************************************************************************
2509 */
2510
2511/* Resets NIC to known state.  This routine must be called in process
2512 * context and is allowed to sleep. */
2513int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2514{
2515        struct falcon_nic_data *nic_data = efx->nic_data;
2516        efx_oword_t glb_ctl_reg_ker;
2517        int rc;
2518
2519        EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2520
2521        /* Initiate device reset */
2522        if (method == RESET_TYPE_WORLD) {
2523                rc = pci_save_state(efx->pci_dev);
2524                if (rc) {
2525                        EFX_ERR(efx, "failed to backup PCI state of primary "
2526                                "function prior to hardware reset\n");
2527                        goto fail1;
2528                }
2529                if (FALCON_IS_DUAL_FUNC(efx)) {
2530                        rc = pci_save_state(nic_data->pci_dev2);
2531                        if (rc) {
2532                                EFX_ERR(efx, "failed to backup PCI state of "
2533                                        "secondary function prior to "
2534                                        "hardware reset\n");
2535                                goto fail2;
2536                        }
2537                }
2538
2539                EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2540                                     EXT_PHY_RST_DUR, 0x7,
2541                                     SWRST, 1);
2542        } else {
2543                int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2544                                 EXCLUDE_FROM_RESET : 0);
2545
2546                EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2547                                     EXT_PHY_RST_CTL, reset_phy,
2548                                     PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2549                                     PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2550                                     PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2551                                     EE_RST_CTL, EXCLUDE_FROM_RESET,
2552                                     EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2553                                     SWRST, 1);
2554        }
2555        falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2556
2557        EFX_LOG(efx, "waiting for hardware reset\n");
2558        schedule_timeout_uninterruptible(HZ / 20);
2559
2560        /* Restore PCI configuration if needed */
2561        if (method == RESET_TYPE_WORLD) {
2562                if (FALCON_IS_DUAL_FUNC(efx)) {
2563                        rc = pci_restore_state(nic_data->pci_dev2);
2564                        if (rc) {
2565                                EFX_ERR(efx, "failed to restore PCI config for "
2566                                        "the secondary function\n");
2567                                goto fail3;
2568                        }
2569                }
2570                rc = pci_restore_state(efx->pci_dev);
2571                if (rc) {
2572                        EFX_ERR(efx, "failed to restore PCI config for the "
2573                                "primary function\n");
2574                        goto fail4;
2575                }
2576                EFX_LOG(efx, "successfully restored PCI config\n");
2577        }
2578
2579        /* Assert that reset complete */
2580        falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2581        if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2582                rc = -ETIMEDOUT;
2583                EFX_ERR(efx, "timed out waiting for hardware reset\n");
2584                goto fail5;
2585        }
2586        EFX_LOG(efx, "hardware reset complete\n");
2587
2588        return 0;
2589
2590        /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2591fail2:
2592fail3:
2593        pci_restore_state(efx->pci_dev);
2594fail1:
2595fail4:
2596fail5:
2597        return rc;
2598}
2599
2600/* Zeroes out the SRAM contents.  This routine must be called in
2601 * process context and is allowed to sleep.
2602 */
2603static int falcon_reset_sram(struct efx_nic *efx)
2604{
2605        efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2606        int count;
2607
2608        /* Set the SRAM wake/sleep GPIO appropriately. */
2609        falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2610        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2611        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2612        falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2613
2614        /* Initiate SRAM reset */
2615        EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2616                             SRAM_OOB_BT_INIT_EN, 1,
2617                             SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2618        falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2619
2620        /* Wait for SRAM reset to complete */
2621        count = 0;
2622        do {
2623                EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2624
2625                /* SRAM reset is slow; expect around 16ms */
2626                schedule_timeout_uninterruptible(HZ / 50);
2627
2628                /* Check for reset complete */
2629                falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2630                if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2631                        EFX_LOG(efx, "SRAM reset complete\n");
2632
2633                        return 0;
2634                }
2635        } while (++count < 20); /* wait upto 0.4 sec */
2636
2637        EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2638        return -ETIMEDOUT;
2639}
2640
2641static int falcon_spi_device_init(struct efx_nic *efx,
2642                                  struct efx_spi_device **spi_device_ret,
2643                                  unsigned int device_id, u32 device_type)
2644{
2645        struct efx_spi_device *spi_device;
2646
2647        if (device_type != 0) {
2648                spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2649                if (!spi_device)
2650                        return -ENOMEM;
2651                spi_device->device_id = device_id;
2652                spi_device->size =
2653                        1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2654                spi_device->addr_len =
2655                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2656                spi_device->munge_address = (spi_device->size == 1 << 9 &&
2657                                             spi_device->addr_len == 1);
2658                spi_device->erase_command =
2659                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2660                spi_device->erase_size =
2661                        1 << SPI_DEV_TYPE_FIELD(device_type,
2662                                                SPI_DEV_TYPE_ERASE_SIZE);
2663                spi_device->block_size =
2664                        1 << SPI_DEV_TYPE_FIELD(device_type,
2665                                                SPI_DEV_TYPE_BLOCK_SIZE);
2666
2667                spi_device->efx = efx;
2668        } else {
2669                spi_device = NULL;
2670        }
2671
2672        kfree(*spi_device_ret);
2673        *spi_device_ret = spi_device;
2674        return 0;
2675}
2676
2677
2678static void falcon_remove_spi_devices(struct efx_nic *efx)
2679{
2680        kfree(efx->spi_eeprom);
2681        efx->spi_eeprom = NULL;
2682        kfree(efx->spi_flash);
2683        efx->spi_flash = NULL;
2684}
2685
2686/* Extract non-volatile configuration */
2687static int falcon_probe_nvconfig(struct efx_nic *efx)
2688{
2689        struct falcon_nvconfig *nvconfig;
2690        int board_rev;
2691        int rc;
2692
2693        nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2694        if (!nvconfig)
2695                return -ENOMEM;
2696
2697        rc = falcon_read_nvram(efx, nvconfig);
2698        if (rc == -EINVAL) {
2699                EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2700                efx->phy_type = PHY_TYPE_NONE;
2701                efx->mdio.prtad = MDIO_PRTAD_NONE;
2702                board_rev = 0;
2703                rc = 0;
2704        } else if (rc) {
2705                goto fail1;
2706        } else {
2707                struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2708                struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2709
2710                efx->phy_type = v2->port0_phy_type;
2711                efx->mdio.prtad = v2->port0_phy_addr;
2712                board_rev = le16_to_cpu(v2->board_revision);
2713
2714                if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2715                        __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2716                        __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2717                        rc = falcon_spi_device_init(efx, &efx->spi_flash,
2718                                                    EE_SPI_FLASH,
2719                                                    le32_to_cpu(fl));
2720                        if (rc)
2721                                goto fail2;
2722                        rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2723                                                    EE_SPI_EEPROM,
2724                                                    le32_to_cpu(ee));
2725                        if (rc)
2726                                goto fail2;
2727                }
2728        }
2729
2730        /* Read the MAC addresses */
2731        memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2732
2733        EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2734
2735        efx_set_board_info(efx, board_rev);
2736
2737        kfree(nvconfig);
2738        return 0;
2739
2740 fail2:
2741        falcon_remove_spi_devices(efx);
2742 fail1:
2743        kfree(nvconfig);
2744        return rc;
2745}
2746
2747/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2748 * count, port speed).  Set workaround and feature flags accordingly.
2749 */
2750static int falcon_probe_nic_variant(struct efx_nic *efx)
2751{
2752        efx_oword_t altera_build;
2753        efx_oword_t nic_stat;
2754
2755        falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2756        if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2757                EFX_ERR(efx, "Falcon FPGA not supported\n");
2758                return -ENODEV;
2759        }
2760
2761        falcon_read(efx, &nic_stat, NIC_STAT_REG);
2762
2763        switch (falcon_rev(efx)) {
2764        case FALCON_REV_A0:
2765        case 0xff:
2766                EFX_ERR(efx, "Falcon rev A0 not supported\n");
2767                return -ENODEV;
2768
2769        case FALCON_REV_A1:
2770                if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2771                        EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2772                        return -ENODEV;
2773                }
2774                break;
2775
2776        case FALCON_REV_B0:
2777                break;
2778
2779        default:
2780                EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2781                return -ENODEV;
2782        }
2783
2784        /* Initial assumed speed */
2785        efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
2786
2787        return 0;
2788}
2789
2790/* Probe all SPI devices on the NIC */
2791static void falcon_probe_spi_devices(struct efx_nic *efx)
2792{
2793        efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2794        int boot_dev;
2795
2796        falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2797        falcon_read(efx, &nic_stat, NIC_STAT_REG);
2798        falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2799
2800        if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2801                boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2802                            EE_SPI_FLASH : EE_SPI_EEPROM);
2803                EFX_LOG(efx, "Booted from %s\n",
2804                        boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2805        } else {
2806                /* Disable VPD and set clock dividers to safe
2807                 * values for initial programming. */
2808                boot_dev = -1;
2809                EFX_LOG(efx, "Booted from internal ASIC settings;"
2810                        " setting SPI config\n");
2811                EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2812                                     /* 125 MHz / 7 ~= 20 MHz */
2813                                     EE_SF_CLOCK_DIV, 7,
2814                                     /* 125 MHz / 63 ~= 2 MHz */
2815                                     EE_EE_CLOCK_DIV, 63);
2816                falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2817        }
2818
2819        if (boot_dev == EE_SPI_FLASH)
2820                falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2821                                       default_flash_type);
2822        if (boot_dev == EE_SPI_EEPROM)
2823                falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2824                                       large_eeprom_type);
2825}
2826
2827int falcon_probe_nic(struct efx_nic *efx)
2828{
2829        struct falcon_nic_data *nic_data;
2830        int rc;
2831
2832        /* Allocate storage for hardware specific data */
2833        nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2834        if (!nic_data)
2835                return -ENOMEM;
2836        efx->nic_data = nic_data;
2837
2838        /* Determine number of ports etc. */
2839        rc = falcon_probe_nic_variant(efx);
2840        if (rc)
2841                goto fail1;
2842
2843        /* Probe secondary function if expected */
2844        if (FALCON_IS_DUAL_FUNC(efx)) {
2845                struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2846
2847                while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2848                                             dev))) {
2849                        if (dev->bus == efx->pci_dev->bus &&
2850                            dev->devfn == efx->pci_dev->devfn + 1) {
2851                                nic_data->pci_dev2 = dev;
2852                                break;
2853                        }
2854                }
2855                if (!nic_data->pci_dev2) {
2856                        EFX_ERR(efx, "failed to find secondary function\n");
2857                        rc = -ENODEV;
2858                        goto fail2;
2859                }
2860        }
2861
2862        /* Now we can reset the NIC */
2863        rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2864        if (rc) {
2865                EFX_ERR(efx, "failed to reset NIC\n");
2866                goto fail3;
2867        }
2868
2869        /* Allocate memory for INT_KER */
2870        rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2871        if (rc)
2872                goto fail4;
2873        BUG_ON(efx->irq_status.dma_addr & 0x0f);
2874
2875        EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2876                (u64)efx->irq_status.dma_addr,
2877                efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2878
2879        falcon_probe_spi_devices(efx);
2880
2881        /* Read in the non-volatile configuration */
2882        rc = falcon_probe_nvconfig(efx);
2883        if (rc)
2884                goto fail5;
2885
2886        /* Initialise I2C adapter */
2887        efx->i2c_adap.owner = THIS_MODULE;
2888        nic_data->i2c_data = falcon_i2c_bit_operations;
2889        nic_data->i2c_data.data = efx;
2890        efx->i2c_adap.algo_data = &nic_data->i2c_data;
2891        efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2892        strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2893        rc = i2c_bit_add_bus(&efx->i2c_adap);
2894        if (rc)
2895                goto fail5;
2896
2897        return 0;
2898
2899 fail5:
2900        falcon_remove_spi_devices(efx);
2901        falcon_free_buffer(efx, &efx->irq_status);
2902 fail4:
2903 fail3:
2904        if (nic_data->pci_dev2) {
2905                pci_dev_put(nic_data->pci_dev2);
2906                nic_data->pci_dev2 = NULL;
2907        }
2908 fail2:
2909 fail1:
2910        kfree(efx->nic_data);
2911        return rc;
2912}
2913
2914/* This call performs hardware-specific global initialisation, such as
2915 * defining the descriptor cache sizes and number of RSS channels.
2916 * It does not set up any buffers, descriptor rings or event queues.
2917 */
2918int falcon_init_nic(struct efx_nic *efx)
2919{
2920        efx_oword_t temp;
2921        unsigned thresh;
2922        int rc;
2923
2924        /* Use on-chip SRAM */
2925        falcon_read(efx, &temp, NIC_STAT_REG);
2926        EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2927        falcon_write(efx, &temp, NIC_STAT_REG);
2928
2929        /* Set the source of the GMAC clock */
2930        if (falcon_rev(efx) == FALCON_REV_B0) {
2931                falcon_read(efx, &temp, GPIO_CTL_REG_KER);
2932                EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
2933                falcon_write(efx, &temp, GPIO_CTL_REG_KER);
2934        }
2935
2936        /* Set buffer table mode */
2937        EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2938        falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2939
2940        rc = falcon_reset_sram(efx);
2941        if (rc)
2942                return rc;
2943
2944        /* Set positions of descriptor caches in SRAM. */
2945        EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2946        falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2947        EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2948        falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2949
2950        /* Set TX descriptor cache size. */
2951        BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2952        EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2953        falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2954
2955        /* Set RX descriptor cache size.  Set low watermark to size-8, as
2956         * this allows most efficient prefetching.
2957         */
2958        BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2959        EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2960        falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2961        EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2962        falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2963
2964        /* Clear the parity enables on the TX data fifos as
2965         * they produce false parity errors because of timing issues
2966         */
2967        if (EFX_WORKAROUND_5129(efx)) {
2968                falcon_read(efx, &temp, SPARE_REG_KER);
2969                EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2970                falcon_write(efx, &temp, SPARE_REG_KER);
2971        }
2972
2973        /* Enable all the genuinely fatal interrupts.  (They are still
2974         * masked by the overall interrupt mask, controlled by
2975         * falcon_interrupts()).
2976         *
2977         * Note: All other fatal interrupts are enabled
2978         */
2979        EFX_POPULATE_OWORD_3(temp,
2980                             ILL_ADR_INT_KER_EN, 1,
2981                             RBUF_OWN_INT_KER_EN, 1,
2982                             TBUF_OWN_INT_KER_EN, 1);
2983        EFX_INVERT_OWORD(temp);
2984        falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2985
2986        if (EFX_WORKAROUND_7244(efx)) {
2987                falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2988                EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2989                EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2990                EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2991                EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2992                falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2993        }
2994
2995        falcon_setup_rss_indir_table(efx);
2996
2997        /* Setup RX.  Wait for descriptor is broken and must
2998         * be disabled.  RXDP recovery shouldn't be needed, but is.
2999         */
3000        falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
3001        EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
3002        EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
3003        if (EFX_WORKAROUND_5583(efx))
3004                EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
3005        falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
3006
3007        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3008         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3009         */
3010        falcon_read(efx, &temp, TX_CFG2_REG_KER);
3011        EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
3012        EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
3013        EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
3014        EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
3015        EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
3016        /* Enable SW_EV to inherit in char driver - assume harmless here */
3017        EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
3018        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3019        EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
3020        /* Squash TX of packets of 16 bytes or less */
3021        if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3022                EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
3023        falcon_write(efx, &temp, TX_CFG2_REG_KER);
3024
3025        /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3026         * descriptors (which is bad).
3027         */
3028        falcon_read(efx, &temp, TX_CFG_REG_KER);
3029        EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
3030        falcon_write(efx, &temp, TX_CFG_REG_KER);
3031
3032        /* RX config */
3033        falcon_read(efx, &temp, RX_CFG_REG_KER);
3034        EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
3035        if (EFX_WORKAROUND_7575(efx))
3036                EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
3037                                        (3 * 4096) / 32);
3038        if (falcon_rev(efx) >= FALCON_REV_B0)
3039                EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
3040
3041        /* RX FIFO flow control thresholds */
3042        thresh = ((rx_xon_thresh_bytes >= 0) ?
3043                  rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3044        EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3045        thresh = ((rx_xoff_thresh_bytes >= 0) ?
3046                  rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3047        EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3048        /* RX control FIFO thresholds [32 entries] */
3049        EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3050        EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3051        falcon_write(efx, &temp, RX_CFG_REG_KER);
3052
3053        /* Set destination of both TX and RX Flush events */
3054        if (falcon_rev(efx) >= FALCON_REV_B0) {
3055                EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3056                falcon_write(efx, &temp, DP_CTRL_REG);
3057        }
3058
3059        return 0;
3060}
3061
3062void falcon_remove_nic(struct efx_nic *efx)
3063{
3064        struct falcon_nic_data *nic_data = efx->nic_data;
3065        int rc;
3066
3067        /* Remove I2C adapter and clear it in preparation for a retry */
3068        rc = i2c_del_adapter(&efx->i2c_adap);
3069        BUG_ON(rc);
3070        memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3071
3072        falcon_remove_spi_devices(efx);
3073        falcon_free_buffer(efx, &efx->irq_status);
3074
3075        falcon_reset_hw(efx, RESET_TYPE_ALL);
3076
3077        /* Release the second function after the reset */
3078        if (nic_data->pci_dev2) {
3079                pci_dev_put(nic_data->pci_dev2);
3080                nic_data->pci_dev2 = NULL;
3081        }
3082
3083        /* Tear down the private nic state */
3084        kfree(efx->nic_data);
3085        efx->nic_data = NULL;
3086}
3087
3088void falcon_update_nic_stats(struct efx_nic *efx)
3089{
3090        efx_oword_t cnt;
3091
3092        falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3093        efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3094}
3095
3096/**************************************************************************
3097 *
3098 * Revision-dependent attributes used by efx.c
3099 *
3100 **************************************************************************
3101 */
3102
3103struct efx_nic_type falcon_a_nic_type = {
3104        .mem_bar = 2,
3105        .mem_map_size = 0x20000,
3106        .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3107        .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3108        .buf_tbl_base = BUF_TBL_KER_A1,
3109        .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3110        .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3111        .txd_ring_mask = FALCON_TXD_RING_MASK,
3112        .rxd_ring_mask = FALCON_RXD_RING_MASK,
3113        .evq_size = FALCON_EVQ_SIZE,
3114        .max_dma_mask = FALCON_DMA_MASK,
3115        .tx_dma_mask = FALCON_TX_DMA_MASK,
3116        .bug5391_mask = 0xf,
3117        .rx_xoff_thresh = 2048,
3118        .rx_xon_thresh = 512,
3119        .rx_buffer_padding = 0x24,
3120        .max_interrupt_mode = EFX_INT_MODE_MSI,
3121        .phys_addr_channels = 4,
3122};
3123
3124struct efx_nic_type falcon_b_nic_type = {
3125        .mem_bar = 2,
3126        /* Map everything up to and including the RSS indirection
3127         * table.  Don't map MSI-X table, MSI-X PBA since Linux
3128         * requires that they not be mapped.  */
3129        .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3130        .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3131        .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3132        .buf_tbl_base = BUF_TBL_KER_B0,
3133        .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3134        .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3135        .txd_ring_mask = FALCON_TXD_RING_MASK,
3136        .rxd_ring_mask = FALCON_RXD_RING_MASK,
3137        .evq_size = FALCON_EVQ_SIZE,
3138        .max_dma_mask = FALCON_DMA_MASK,
3139        .tx_dma_mask = FALCON_TX_DMA_MASK,
3140        .bug5391_mask = 0,
3141        .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3142        .rx_xon_thresh = 27648,  /* ~3*max MTU */
3143        .rx_buffer_padding = 0,
3144        .max_interrupt_mode = EFX_INT_MODE_MSIX,
3145        .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3146                                   * interrupt handler only supports 32
3147                                   * channels */
3148};
3149
3150