linux/drivers/net/skfp/skfddi.c
<<
>>
Prefs
   1/*
   2 * File Name:
   3 *   skfddi.c
   4 *
   5 * Copyright Information:
   6 *   Copyright SysKonnect 1998,1999.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * The information in this file is provided "AS IS" without warranty.
  14 *
  15 * Abstract:
  16 *   A Linux device driver supporting the SysKonnect FDDI PCI controller
  17 *   familie.
  18 *
  19 * Maintainers:
  20 *   CG    Christoph Goos (cgoos@syskonnect.de)
  21 *
  22 * Contributors:
  23 *   DM    David S. Miller
  24 *
  25 * Address all question to:
  26 *   linux@syskonnect.de
  27 *
  28 * The technical manual for the adapters is available from SysKonnect's
  29 * web pages: www.syskonnect.com
  30 * Goto "Support" and search Knowledge Base for "manual".
  31 *
  32 * Driver Architecture:
  33 *   The driver architecture is based on the DEC FDDI driver by
  34 *   Lawrence V. Stefani and several ethernet drivers.
  35 *   I also used an existing Windows NT miniport driver.
  36 *   All hardware dependent fuctions are handled by the SysKonnect
  37 *   Hardware Module.
  38 *   The only headerfiles that are directly related to this source
  39 *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
  40 *   The others belong to the SysKonnect FDDI Hardware Module and
  41 *   should better not be changed.
  42 *
  43 * Modification History:
  44 *              Date            Name    Description
  45 *              02-Mar-98       CG      Created.
  46 *
  47 *              10-Mar-99       CG      Support for 2.2.x added.
  48 *              25-Mar-99       CG      Corrected IRQ routing for SMP (APIC)
  49 *              26-Oct-99       CG      Fixed compilation error on 2.2.13
  50 *              12-Nov-99       CG      Source code release
  51 *              22-Nov-99       CG      Included in kernel source.
  52 *              07-May-00       DM      64 bit fixes, new dma interface
  53 *              31-Jul-03       DB      Audit copy_*_user in skfp_ioctl
  54 *                                        Daniele Bellucci <bellucda@tiscali.it>
  55 *              03-Dec-03       SH      Convert to PCI device model
  56 *
  57 * Compilation options (-Dxxx):
  58 *              DRIVERDEBUG     print lots of messages to log file
  59 *              DUMPPACKETS     print received/transmitted packets to logfile
  60 * 
  61 * Tested cpu architectures:
  62 *      - i386
  63 *      - sparc64
  64 */
  65
  66/* Version information string - should be updated prior to */
  67/* each new release!!! */
  68#define VERSION         "2.07"
  69
  70static const char * const boot_msg = 
  71        "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
  72        "  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
  73
  74/* Include files */
  75
  76#include <linux/capability.h>
  77#include <linux/module.h>
  78#include <linux/kernel.h>
  79#include <linux/errno.h>
  80#include <linux/ioport.h>
  81#include <linux/slab.h>
  82#include <linux/interrupt.h>
  83#include <linux/pci.h>
  84#include <linux/netdevice.h>
  85#include <linux/fddidevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/bitops.h>
  88
  89#include <asm/byteorder.h>
  90#include <asm/io.h>
  91#include <asm/uaccess.h>
  92
  93#include        "h/types.h"
  94#undef ADDR                     // undo Linux definition
  95#include        "h/skfbi.h"
  96#include        "h/fddi.h"
  97#include        "h/smc.h"
  98#include        "h/smtstate.h"
  99
 100
 101// Define module-wide (static) routines
 102static int skfp_driver_init(struct net_device *dev);
 103static int skfp_open(struct net_device *dev);
 104static int skfp_close(struct net_device *dev);
 105static irqreturn_t skfp_interrupt(int irq, void *dev_id);
 106static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
 107static void skfp_ctl_set_multicast_list(struct net_device *dev);
 108static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
 109static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
 110static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 111static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
 112                                       struct net_device *dev);
 113static void send_queued_packets(struct s_smc *smc);
 114static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
 115static void ResetAdapter(struct s_smc *smc);
 116
 117
 118// Functions needed by the hardware module
 119void *mac_drv_get_space(struct s_smc *smc, u_int size);
 120void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
 121unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
 122unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
 123void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
 124                  int flag);
 125void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
 126void llc_restart_tx(struct s_smc *smc);
 127void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 128                         int frag_count, int len);
 129void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 130                         int frag_count);
 131void mac_drv_fill_rxd(struct s_smc *smc);
 132void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 133                       int frag_count);
 134int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
 135                    int la_len);
 136void dump_data(unsigned char *Data, int length);
 137
 138// External functions from the hardware module
 139extern u_int mac_drv_check_space(void);
 140extern int mac_drv_init(struct s_smc *smc);
 141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
 142                        int len, int frame_status);
 143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
 144                       int frame_len, int frame_status);
 145extern void fddi_isr(struct s_smc *smc);
 146extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
 147                        int len, int frame_status);
 148extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
 149extern void mac_drv_clear_rx_queue(struct s_smc *smc);
 150extern void enable_tx_irq(struct s_smc *smc, u_short queue);
 151
 152static struct pci_device_id skfddi_pci_tbl[] = {
 153        { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
 154        { }                     /* Terminating entry */
 155};
 156MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
 157MODULE_LICENSE("GPL");
 158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
 159
 160// Define module-wide (static) variables
 161
 162static int num_boards;  /* total number of adapters configured */
 163
 164static const struct net_device_ops skfp_netdev_ops = {
 165        .ndo_open               = skfp_open,
 166        .ndo_stop               = skfp_close,
 167        .ndo_start_xmit         = skfp_send_pkt,
 168        .ndo_get_stats          = skfp_ctl_get_stats,
 169        .ndo_change_mtu         = fddi_change_mtu,
 170        .ndo_set_multicast_list = skfp_ctl_set_multicast_list,
 171        .ndo_set_mac_address    = skfp_ctl_set_mac_address,
 172        .ndo_do_ioctl           = skfp_ioctl,
 173};
 174
 175/*
 176 * =================
 177 * = skfp_init_one =
 178 * =================
 179 *   
 180 * Overview:
 181 *   Probes for supported FDDI PCI controllers
 182 *  
 183 * Returns:
 184 *   Condition code
 185 *       
 186 * Arguments:
 187 *   pdev - pointer to PCI device information
 188 *
 189 * Functional Description:
 190 *   This is now called by PCI driver registration process
 191 *   for each board found.
 192 *   
 193 * Return Codes:
 194 *   0           - This device (fddi0, fddi1, etc) configured successfully
 195 *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 196 *                         present for this device name
 197 *
 198 *
 199 * Side Effects:
 200 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 201 *   initialized and the board resources are read and stored in
 202 *   the device structure.
 203 */
 204static int skfp_init_one(struct pci_dev *pdev,
 205                                const struct pci_device_id *ent)
 206{
 207        struct net_device *dev;
 208        struct s_smc *smc;      /* board pointer */
 209        void __iomem *mem;
 210        int err;
 211
 212        pr_debug(KERN_INFO "entering skfp_init_one\n");
 213
 214        if (num_boards == 0) 
 215                printk("%s\n", boot_msg);
 216
 217        err = pci_enable_device(pdev);
 218        if (err)
 219                return err;
 220
 221        err = pci_request_regions(pdev, "skfddi");
 222        if (err)
 223                goto err_out1;
 224
 225        pci_set_master(pdev);
 226
 227#ifdef MEM_MAPPED_IO
 228        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 229                printk(KERN_ERR "skfp: region is not an MMIO resource\n");
 230                err = -EIO;
 231                goto err_out2;
 232        }
 233
 234        mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
 235#else
 236        if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
 237                printk(KERN_ERR "skfp: region is not PIO resource\n");
 238                err = -EIO;
 239                goto err_out2;
 240        }
 241
 242        mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
 243#endif
 244        if (!mem) {
 245                printk(KERN_ERR "skfp:  Unable to map register, "
 246                                "FDDI adapter will be disabled.\n");
 247                err = -EIO;
 248                goto err_out2;
 249        }
 250
 251        dev = alloc_fddidev(sizeof(struct s_smc));
 252        if (!dev) {
 253                printk(KERN_ERR "skfp: Unable to allocate fddi device, "
 254                                "FDDI adapter will be disabled.\n");
 255                err = -ENOMEM;
 256                goto err_out3;
 257        }
 258
 259        dev->irq = pdev->irq;
 260        dev->netdev_ops = &skfp_netdev_ops;
 261
 262        SET_NETDEV_DEV(dev, &pdev->dev);
 263
 264        /* Initialize board structure with bus-specific info */
 265        smc = netdev_priv(dev);
 266        smc->os.dev = dev;
 267        smc->os.bus_type = SK_BUS_TYPE_PCI;
 268        smc->os.pdev = *pdev;
 269        smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
 270        smc->os.MaxFrameSize = MAX_FRAME_SIZE;
 271        smc->os.dev = dev;
 272        smc->hw.slot = -1;
 273        smc->hw.iop = mem;
 274        smc->os.ResetRequested = FALSE;
 275        skb_queue_head_init(&smc->os.SendSkbQueue);
 276
 277        dev->base_addr = (unsigned long)mem;
 278
 279        err = skfp_driver_init(dev);
 280        if (err)
 281                goto err_out4;
 282
 283        err = register_netdev(dev);
 284        if (err)
 285                goto err_out5;
 286
 287        ++num_boards;
 288        pci_set_drvdata(pdev, dev);
 289
 290        if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
 291            (pdev->subsystem_device & 0xff00) == 0x5800) 
 292                printk("%s: SysKonnect FDDI PCI adapter"
 293                       " found (SK-%04X)\n", dev->name, 
 294                       pdev->subsystem_device);
 295        else
 296                printk("%s: FDDI PCI adapter found\n", dev->name);
 297
 298        return 0;
 299err_out5:
 300        if (smc->os.SharedMemAddr) 
 301                pci_free_consistent(pdev, smc->os.SharedMemSize,
 302                                    smc->os.SharedMemAddr, 
 303                                    smc->os.SharedMemDMA);
 304        pci_free_consistent(pdev, MAX_FRAME_SIZE,
 305                            smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
 306err_out4:
 307        free_netdev(dev);
 308err_out3:
 309#ifdef MEM_MAPPED_IO
 310        iounmap(mem);
 311#else
 312        ioport_unmap(mem);
 313#endif
 314err_out2:
 315        pci_release_regions(pdev);
 316err_out1:
 317        pci_disable_device(pdev);
 318        return err;
 319}
 320
 321/*
 322 * Called for each adapter board from pci_unregister_driver
 323 */
 324static void __devexit skfp_remove_one(struct pci_dev *pdev)
 325{
 326        struct net_device *p = pci_get_drvdata(pdev);
 327        struct s_smc *lp = netdev_priv(p);
 328
 329        unregister_netdev(p);
 330
 331        if (lp->os.SharedMemAddr) {
 332                pci_free_consistent(&lp->os.pdev,
 333                                    lp->os.SharedMemSize,
 334                                    lp->os.SharedMemAddr,
 335                                    lp->os.SharedMemDMA);
 336                lp->os.SharedMemAddr = NULL;
 337        }
 338        if (lp->os.LocalRxBuffer) {
 339                pci_free_consistent(&lp->os.pdev,
 340                                    MAX_FRAME_SIZE,
 341                                    lp->os.LocalRxBuffer,
 342                                    lp->os.LocalRxBufferDMA);
 343                lp->os.LocalRxBuffer = NULL;
 344        }
 345#ifdef MEM_MAPPED_IO
 346        iounmap(lp->hw.iop);
 347#else
 348        ioport_unmap(lp->hw.iop);
 349#endif
 350        pci_release_regions(pdev);
 351        free_netdev(p);
 352
 353        pci_disable_device(pdev);
 354        pci_set_drvdata(pdev, NULL);
 355}
 356
 357/*
 358 * ====================
 359 * = skfp_driver_init =
 360 * ====================
 361 *   
 362 * Overview:
 363 *   Initializes remaining adapter board structure information
 364 *   and makes sure adapter is in a safe state prior to skfp_open().
 365 *  
 366 * Returns:
 367 *   Condition code
 368 *       
 369 * Arguments:
 370 *   dev - pointer to device information
 371 *
 372 * Functional Description:
 373 *   This function allocates additional resources such as the host memory
 374 *   blocks needed by the adapter.
 375 *   The adapter is also reset. The OS must call skfp_open() to open 
 376 *   the adapter and bring it on-line.
 377 *
 378 * Return Codes:
 379 *    0 - initialization succeeded
 380 *   -1 - initialization failed
 381 */
 382static  int skfp_driver_init(struct net_device *dev)
 383{
 384        struct s_smc *smc = netdev_priv(dev);
 385        skfddi_priv *bp = &smc->os;
 386        int err = -EIO;
 387
 388        pr_debug(KERN_INFO "entering skfp_driver_init\n");
 389
 390        // set the io address in private structures
 391        bp->base_addr = dev->base_addr;
 392
 393        // Get the interrupt level from the PCI Configuration Table
 394        smc->hw.irq = dev->irq;
 395
 396        spin_lock_init(&bp->DriverLock);
 397        
 398        // Allocate invalid frame
 399        bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
 400        if (!bp->LocalRxBuffer) {
 401                printk("could not allocate mem for ");
 402                printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
 403                goto fail;
 404        }
 405
 406        // Determine the required size of the 'shared' memory area.
 407        bp->SharedMemSize = mac_drv_check_space();
 408        pr_debug(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
 409        if (bp->SharedMemSize > 0) {
 410                bp->SharedMemSize += 16;        // for descriptor alignment
 411
 412                bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
 413                                                         bp->SharedMemSize,
 414                                                         &bp->SharedMemDMA);
 415                if (!bp->SharedMemSize) {
 416                        printk("could not allocate mem for ");
 417                        printk("hardware module: %ld byte\n",
 418                               bp->SharedMemSize);
 419                        goto fail;
 420                }
 421                bp->SharedMemHeap = 0;  // Nothing used yet.
 422
 423        } else {
 424                bp->SharedMemAddr = NULL;
 425                bp->SharedMemHeap = 0;
 426        }                       // SharedMemSize > 0
 427
 428        memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
 429
 430        card_stop(smc);         // Reset adapter.
 431
 432        pr_debug(KERN_INFO "mac_drv_init()..\n");
 433        if (mac_drv_init(smc) != 0) {
 434                pr_debug(KERN_INFO "mac_drv_init() failed.\n");
 435                goto fail;
 436        }
 437        read_address(smc, NULL);
 438        pr_debug(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
 439               smc->hw.fddi_canon_addr.a[0],
 440               smc->hw.fddi_canon_addr.a[1],
 441               smc->hw.fddi_canon_addr.a[2],
 442               smc->hw.fddi_canon_addr.a[3],
 443               smc->hw.fddi_canon_addr.a[4],
 444               smc->hw.fddi_canon_addr.a[5]);
 445        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
 446
 447        smt_reset_defaults(smc, 0);
 448
 449        return (0);
 450
 451fail:
 452        if (bp->SharedMemAddr) {
 453                pci_free_consistent(&bp->pdev,
 454                                    bp->SharedMemSize,
 455                                    bp->SharedMemAddr,
 456                                    bp->SharedMemDMA);
 457                bp->SharedMemAddr = NULL;
 458        }
 459        if (bp->LocalRxBuffer) {
 460                pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
 461                                    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
 462                bp->LocalRxBuffer = NULL;
 463        }
 464        return err;
 465}                               // skfp_driver_init
 466
 467
 468/*
 469 * =============
 470 * = skfp_open =
 471 * =============
 472 *   
 473 * Overview:
 474 *   Opens the adapter
 475 *  
 476 * Returns:
 477 *   Condition code
 478 *       
 479 * Arguments:
 480 *   dev - pointer to device information
 481 *
 482 * Functional Description:
 483 *   This function brings the adapter to an operational state.
 484 *
 485 * Return Codes:
 486 *   0           - Adapter was successfully opened
 487 *   -EAGAIN - Could not register IRQ
 488 */
 489static int skfp_open(struct net_device *dev)
 490{
 491        struct s_smc *smc = netdev_priv(dev);
 492        int err;
 493
 494        pr_debug(KERN_INFO "entering skfp_open\n");
 495        /* Register IRQ - support shared interrupts by passing device ptr */
 496        err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
 497                          dev->name, dev);
 498        if (err)
 499                return err;
 500
 501        /*
 502         * Set current address to factory MAC address
 503         *
 504         * Note: We've already done this step in skfp_driver_init.
 505         *       However, it's possible that a user has set a node
 506         *               address override, then closed and reopened the
 507         *               adapter.  Unless we reset the device address field
 508         *               now, we'll continue to use the existing modified
 509         *               address.
 510         */
 511        read_address(smc, NULL);
 512        memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
 513
 514        init_smt(smc, NULL);
 515        smt_online(smc, 1);
 516        STI_FBI();
 517
 518        /* Clear local multicast address tables */
 519        mac_clear_multicast(smc);
 520
 521        /* Disable promiscuous filter settings */
 522        mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 523
 524        netif_start_queue(dev);
 525        return (0);
 526}                               // skfp_open
 527
 528
 529/*
 530 * ==============
 531 * = skfp_close =
 532 * ==============
 533 *   
 534 * Overview:
 535 *   Closes the device/module.
 536 *  
 537 * Returns:
 538 *   Condition code
 539 *       
 540 * Arguments:
 541 *   dev - pointer to device information
 542 *
 543 * Functional Description:
 544 *   This routine closes the adapter and brings it to a safe state.
 545 *   The interrupt service routine is deregistered with the OS.
 546 *   The adapter can be opened again with another call to skfp_open().
 547 *
 548 * Return Codes:
 549 *   Always return 0.
 550 *
 551 * Assumptions:
 552 *   No further requests for this adapter are made after this routine is
 553 *   called.  skfp_open() can be called to reset and reinitialize the
 554 *   adapter.
 555 */
 556static int skfp_close(struct net_device *dev)
 557{
 558        struct s_smc *smc = netdev_priv(dev);
 559        skfddi_priv *bp = &smc->os;
 560
 561        CLI_FBI();
 562        smt_reset_defaults(smc, 1);
 563        card_stop(smc);
 564        mac_drv_clear_tx_queue(smc);
 565        mac_drv_clear_rx_queue(smc);
 566
 567        netif_stop_queue(dev);
 568        /* Deregister (free) IRQ */
 569        free_irq(dev->irq, dev);
 570
 571        skb_queue_purge(&bp->SendSkbQueue);
 572        bp->QueueSkb = MAX_TX_QUEUE_LEN;
 573
 574        return (0);
 575}                               // skfp_close
 576
 577
 578/*
 579 * ==================
 580 * = skfp_interrupt =
 581 * ==================
 582 *   
 583 * Overview:
 584 *   Interrupt processing routine
 585 *  
 586 * Returns:
 587 *   None
 588 *       
 589 * Arguments:
 590 *   irq        - interrupt vector
 591 *   dev_id     - pointer to device information
 592 *
 593 * Functional Description:
 594 *   This routine calls the interrupt processing routine for this adapter.  It
 595 *   disables and reenables adapter interrupts, as appropriate.  We can support
 596 *   shared interrupts since the incoming dev_id pointer provides our device
 597 *   structure context. All the real work is done in the hardware module.
 598 *
 599 * Return Codes:
 600 *   None
 601 *
 602 * Assumptions:
 603 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 604 *   on Intel-based systems) is done by the operating system outside this
 605 *   routine.
 606 *
 607 *       System interrupts are enabled through this call.
 608 *
 609 * Side Effects:
 610 *   Interrupts are disabled, then reenabled at the adapter.
 611 */
 612
 613static irqreturn_t skfp_interrupt(int irq, void *dev_id)
 614{
 615        struct net_device *dev = dev_id;
 616        struct s_smc *smc;      /* private board structure pointer */
 617        skfddi_priv *bp;
 618
 619        smc = netdev_priv(dev);
 620        bp = &smc->os;
 621
 622        // IRQs enabled or disabled ?
 623        if (inpd(ADDR(B0_IMSK)) == 0) {
 624                // IRQs are disabled: must be shared interrupt
 625                return IRQ_NONE;
 626        }
 627        // Note: At this point, IRQs are enabled.
 628        if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {    // IRQ?
 629                // Adapter did not issue an IRQ: must be shared interrupt
 630                return IRQ_NONE;
 631        }
 632        CLI_FBI();              // Disable IRQs from our adapter.
 633        spin_lock(&bp->DriverLock);
 634
 635        // Call interrupt handler in hardware module (HWM).
 636        fddi_isr(smc);
 637
 638        if (smc->os.ResetRequested) {
 639                ResetAdapter(smc);
 640                smc->os.ResetRequested = FALSE;
 641        }
 642        spin_unlock(&bp->DriverLock);
 643        STI_FBI();              // Enable IRQs from our adapter.
 644
 645        return IRQ_HANDLED;
 646}                               // skfp_interrupt
 647
 648
 649/*
 650 * ======================
 651 * = skfp_ctl_get_stats =
 652 * ======================
 653 *   
 654 * Overview:
 655 *   Get statistics for FDDI adapter
 656 *  
 657 * Returns:
 658 *   Pointer to FDDI statistics structure
 659 *       
 660 * Arguments:
 661 *   dev - pointer to device information
 662 *
 663 * Functional Description:
 664 *   Gets current MIB objects from adapter, then
 665 *   returns FDDI statistics structure as defined
 666 *   in if_fddi.h.
 667 *
 668 *   Note: Since the FDDI statistics structure is
 669 *   still new and the device structure doesn't
 670 *   have an FDDI-specific get statistics handler,
 671 *   we'll return the FDDI statistics structure as
 672 *   a pointer to an Ethernet statistics structure.
 673 *   That way, at least the first part of the statistics
 674 *   structure can be decoded properly.
 675 *   We'll have to pay attention to this routine as the
 676 *   device structure becomes more mature and LAN media
 677 *   independent.
 678 *
 679 */
 680static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
 681{
 682        struct s_smc *bp = netdev_priv(dev);
 683
 684        /* Fill the bp->stats structure with driver-maintained counters */
 685
 686        bp->os.MacStat.port_bs_flag[0] = 0x1234;
 687        bp->os.MacStat.port_bs_flag[1] = 0x5678;
 688// goos: need to fill out fddi statistic
 689#if 0
 690        /* Get FDDI SMT MIB objects */
 691
 692/* Fill the bp->stats structure with the SMT MIB object values */
 693
 694        memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
 695        bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
 696        bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
 697        bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
 698        memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
 699        bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
 700        bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
 701        bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
 702        bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
 703        bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
 704        bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
 705        bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
 706        bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
 707        bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
 708        bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
 709        bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
 710        bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
 711        bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
 712        bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
 713        bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
 714        bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
 715        bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
 716        bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
 717        bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
 718        bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
 719        bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
 720        bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
 721        bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
 722        bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
 723        memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
 724        memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
 725        memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
 726        memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
 727        bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
 728        bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
 729        bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
 730        memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
 731        bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
 732        bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
 733        bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
 734        bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
 735        bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
 736        bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
 737        bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
 738        bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
 739        bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
 740        bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
 741        bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
 742        bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
 743        bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
 744        bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
 745        bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
 746        bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
 747        memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
 748        bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
 749        bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
 750        bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
 751        bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
 752        bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
 753        bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
 754        bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
 755        bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
 756        bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
 757        bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
 758        memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
 759        memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
 760        bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
 761        bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
 762        bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
 763        bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
 764        bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
 765        bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
 766        bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
 767        bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
 768        bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
 769        bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
 770        bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
 771        bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
 772        bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
 773        bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
 774        bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
 775        bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
 776        bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
 777        bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
 778        bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
 779        bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
 780        bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
 781        bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
 782        bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
 783        bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
 784        bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
 785        bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
 786
 787
 788        /* Fill the bp->stats structure with the FDDI counter values */
 789
 790        bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
 791        bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
 792        bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
 793        bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
 794        bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
 795        bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
 796        bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
 797        bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
 798        bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
 799        bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
 800        bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
 801
 802#endif
 803        return ((struct net_device_stats *) &bp->os.MacStat);
 804}                               // ctl_get_stat
 805
 806
 807/*
 808 * ==============================
 809 * = skfp_ctl_set_multicast_list =
 810 * ==============================
 811 *   
 812 * Overview:
 813 *   Enable/Disable LLC frame promiscuous mode reception
 814 *   on the adapter and/or update multicast address table.
 815 *  
 816 * Returns:
 817 *   None
 818 *       
 819 * Arguments:
 820 *   dev - pointer to device information
 821 *
 822 * Functional Description:
 823 *   This function acquires the driver lock and only calls
 824 *   skfp_ctl_set_multicast_list_wo_lock then.
 825 *   This routine follows a fairly simple algorithm for setting the
 826 *   adapter filters and CAM:
 827 *
 828 *      if IFF_PROMISC flag is set
 829 *              enable promiscuous mode
 830 *      else
 831 *              disable promiscuous mode
 832 *              if number of multicast addresses <= max. multicast number
 833 *                      add mc addresses to adapter table
 834 *              else
 835 *                      enable promiscuous mode
 836 *              update adapter filters
 837 *
 838 * Assumptions:
 839 *   Multicast addresses are presented in canonical (LSB) format.
 840 *
 841 * Side Effects:
 842 *   On-board adapter filters are updated.
 843 */
 844static void skfp_ctl_set_multicast_list(struct net_device *dev)
 845{
 846        struct s_smc *smc = netdev_priv(dev);
 847        skfddi_priv *bp = &smc->os;
 848        unsigned long Flags;
 849
 850        spin_lock_irqsave(&bp->DriverLock, Flags);
 851        skfp_ctl_set_multicast_list_wo_lock(dev);
 852        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 853        return;
 854}                               // skfp_ctl_set_multicast_list
 855
 856
 857
 858static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
 859{
 860        struct s_smc *smc = netdev_priv(dev);
 861        struct dev_mc_list *dmi;        /* ptr to multicast addr entry */
 862        int i;
 863
 864        /* Enable promiscuous mode, if necessary */
 865        if (dev->flags & IFF_PROMISC) {
 866                mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
 867                pr_debug(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
 868        }
 869        /* Else, update multicast address table */
 870        else {
 871                mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 872                pr_debug(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
 873
 874                // Reset all MC addresses
 875                mac_clear_multicast(smc);
 876                mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
 877
 878                if (dev->flags & IFF_ALLMULTI) {
 879                        mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 880                        pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
 881                } else if (dev->mc_count > 0) {
 882                        if (dev->mc_count <= FPMAX_MULTICAST) {
 883                                /* use exact filtering */
 884
 885                                // point to first multicast addr
 886                                dmi = dev->mc_list;
 887
 888                                for (i = 0; i < dev->mc_count; i++) {
 889                                        mac_add_multicast(smc, 
 890                                                          (struct fddi_addr *)dmi->dmi_addr, 
 891                                                          1);
 892
 893                                        pr_debug(KERN_INFO "ENABLE MC ADDRESS:");
 894                                        pr_debug(" %02x %02x %02x ",
 895                                               dmi->dmi_addr[0],
 896                                               dmi->dmi_addr[1],
 897                                               dmi->dmi_addr[2]);
 898                                        pr_debug("%02x %02x %02x\n",
 899                                               dmi->dmi_addr[3],
 900                                               dmi->dmi_addr[4],
 901                                               dmi->dmi_addr[5]);
 902                                        dmi = dmi->next;
 903                                }       // for
 904
 905                        } else {        // more MC addresses than HW supports
 906
 907                                mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 908                                pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
 909                        }
 910                } else {        // no MC addresses
 911
 912                        pr_debug(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
 913                }
 914
 915                /* Update adapter filters */
 916                mac_update_multicast(smc);
 917        }
 918        return;
 919}                               // skfp_ctl_set_multicast_list_wo_lock
 920
 921
 922/*
 923 * ===========================
 924 * = skfp_ctl_set_mac_address =
 925 * ===========================
 926 *   
 927 * Overview:
 928 *   set new mac address on adapter and update dev_addr field in device table.
 929 *  
 930 * Returns:
 931 *   None
 932 *       
 933 * Arguments:
 934 *   dev  - pointer to device information
 935 *   addr - pointer to sockaddr structure containing unicast address to set
 936 *
 937 * Assumptions:
 938 *   The address pointed to by addr->sa_data is a valid unicast
 939 *   address and is presented in canonical (LSB) format.
 940 */
 941static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
 942{
 943        struct s_smc *smc = netdev_priv(dev);
 944        struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
 945        skfddi_priv *bp = &smc->os;
 946        unsigned long Flags;
 947
 948
 949        memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
 950        spin_lock_irqsave(&bp->DriverLock, Flags);
 951        ResetAdapter(smc);
 952        spin_unlock_irqrestore(&bp->DriverLock, Flags);
 953
 954        return (0);             /* always return zero */
 955}                               // skfp_ctl_set_mac_address
 956
 957
 958/*
 959 * ==============
 960 * = skfp_ioctl =
 961 * ==============
 962 *   
 963 * Overview:
 964 *
 965 * Perform IOCTL call functions here. Some are privileged operations and the
 966 * effective uid is checked in those cases.
 967 *  
 968 * Returns:
 969 *   status value
 970 *   0 - success
 971 *   other - failure
 972 *       
 973 * Arguments:
 974 *   dev  - pointer to device information
 975 *   rq - pointer to ioctl request structure
 976 *   cmd - ?
 977 *
 978 */
 979
 980
 981static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 982{
 983        struct s_smc *smc = netdev_priv(dev);
 984        skfddi_priv *lp = &smc->os;
 985        struct s_skfp_ioctl ioc;
 986        int status = 0;
 987
 988        if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
 989                return -EFAULT;
 990
 991        switch (ioc.cmd) {
 992        case SKFP_GET_STATS:    /* Get the driver statistics */
 993                ioc.len = sizeof(lp->MacStat);
 994                status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
 995                                ? -EFAULT : 0;
 996                break;
 997        case SKFP_CLR_STATS:    /* Zero out the driver statistics */
 998                if (!capable(CAP_NET_ADMIN)) {
 999                        status = -EPERM;
1000                } else {
1001                        memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1002                }
1003                break;
1004        default:
1005                printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1006                status = -EOPNOTSUPP;
1007
1008        }                       // switch
1009
1010        return status;
1011}                               // skfp_ioctl
1012
1013
1014/*
1015 * =====================
1016 * = skfp_send_pkt     =
1017 * =====================
1018 *   
1019 * Overview:
1020 *   Queues a packet for transmission and try to transmit it.
1021 *  
1022 * Returns:
1023 *   Condition code
1024 *       
1025 * Arguments:
1026 *   skb - pointer to sk_buff to queue for transmission
1027 *   dev - pointer to device information
1028 *
1029 * Functional Description:
1030 *   Here we assume that an incoming skb transmit request
1031 *   is contained in a single physically contiguous buffer
1032 *   in which the virtual address of the start of packet
1033 *   (skb->data) can be converted to a physical address
1034 *   by using pci_map_single().
1035 *
1036 *   We have an internal queue for packets we can not send 
1037 *   immediately. Packets in this queue can be given to the 
1038 *   adapter if transmit buffers are freed.
1039 *
1040 *   We can't free the skb until after it's been DMA'd
1041 *   out by the adapter, so we'll keep it in the driver and
1042 *   return it in mac_drv_tx_complete.
1043 *
1044 * Return Codes:
1045 *   0 - driver has queued and/or sent packet
1046 *       1 - caller should requeue the sk_buff for later transmission
1047 *
1048 * Assumptions:
1049 *   The entire packet is stored in one physically
1050 *   contiguous buffer which is not cached and whose
1051 *   32-bit physical address can be determined.
1052 *
1053 *   It's vital that this routine is NOT reentered for the
1054 *   same board and that the OS is not in another section of
1055 *   code (eg. skfp_interrupt) for the same board on a
1056 *   different thread.
1057 *
1058 * Side Effects:
1059 *   None
1060 */
1061static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1062                                       struct net_device *dev)
1063{
1064        struct s_smc *smc = netdev_priv(dev);
1065        skfddi_priv *bp = &smc->os;
1066
1067        pr_debug(KERN_INFO "skfp_send_pkt\n");
1068
1069        /*
1070         * Verify that incoming transmit request is OK
1071         *
1072         * Note: The packet size check is consistent with other
1073         *               Linux device drivers, although the correct packet
1074         *               size should be verified before calling the
1075         *               transmit routine.
1076         */
1077
1078        if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1079                bp->MacStat.gen.tx_errors++;    /* bump error counter */
1080                // dequeue packets from xmt queue and send them
1081                netif_start_queue(dev);
1082                dev_kfree_skb(skb);
1083                return NETDEV_TX_OK;    /* return "success" */
1084        }
1085        if (bp->QueueSkb == 0) {        // return with tbusy set: queue full
1086
1087                netif_stop_queue(dev);
1088                return NETDEV_TX_BUSY;
1089        }
1090        bp->QueueSkb--;
1091        skb_queue_tail(&bp->SendSkbQueue, skb);
1092        send_queued_packets(netdev_priv(dev));
1093        if (bp->QueueSkb == 0) {
1094                netif_stop_queue(dev);
1095        }
1096        dev->trans_start = jiffies;
1097        return NETDEV_TX_OK;
1098
1099}                               // skfp_send_pkt
1100
1101
1102/*
1103 * =======================
1104 * = send_queued_packets =
1105 * =======================
1106 *   
1107 * Overview:
1108 *   Send packets from the driver queue as long as there are some and
1109 *   transmit resources are available.
1110 *  
1111 * Returns:
1112 *   None
1113 *       
1114 * Arguments:
1115 *   smc - pointer to smc (adapter) structure
1116 *
1117 * Functional Description:
1118 *   Take a packet from queue if there is any. If not, then we are done.
1119 *   Check if there are resources to send the packet. If not, requeue it
1120 *   and exit. 
1121 *   Set packet descriptor flags and give packet to adapter.
1122 *   Check if any send resources can be freed (we do not use the
1123 *   transmit complete interrupt).
1124 */
1125static void send_queued_packets(struct s_smc *smc)
1126{
1127        skfddi_priv *bp = &smc->os;
1128        struct sk_buff *skb;
1129        unsigned char fc;
1130        int queue;
1131        struct s_smt_fp_txd *txd;       // Current TxD.
1132        dma_addr_t dma_address;
1133        unsigned long Flags;
1134
1135        int frame_status;       // HWM tx frame status.
1136
1137        pr_debug(KERN_INFO "send queued packets\n");
1138        for (;;) {
1139                // send first buffer from queue
1140                skb = skb_dequeue(&bp->SendSkbQueue);
1141
1142                if (!skb) {
1143                        pr_debug(KERN_INFO "queue empty\n");
1144                        return;
1145                }               // queue empty !
1146
1147                spin_lock_irqsave(&bp->DriverLock, Flags);
1148                fc = skb->data[0];
1149                queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1150#ifdef ESS
1151                // Check if the frame may/must be sent as a synchronous frame.
1152
1153                if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1154                        // It's an LLC frame.
1155                        if (!smc->ess.sync_bw_available)
1156                                fc &= ~FC_SYNC_BIT; // No bandwidth available.
1157
1158                        else {  // Bandwidth is available.
1159
1160                                if (smc->mib.fddiESSSynchTxMode) {
1161                                        // Send as sync. frame.
1162                                        fc |= FC_SYNC_BIT;
1163                                }
1164                        }
1165                }
1166#endif                          // ESS
1167                frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1168
1169                if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1170                        // Unable to send the frame.
1171
1172                        if ((frame_status & RING_DOWN) != 0) {
1173                                // Ring is down.
1174                                pr_debug("Tx attempt while ring down.\n");
1175                        } else if ((frame_status & OUT_OF_TXD) != 0) {
1176                                pr_debug("%s: out of TXDs.\n", bp->dev->name);
1177                        } else {
1178                                pr_debug("%s: out of transmit resources",
1179                                        bp->dev->name);
1180                        }
1181
1182                        // Note: We will retry the operation as soon as
1183                        // transmit resources become available.
1184                        skb_queue_head(&bp->SendSkbQueue, skb);
1185                        spin_unlock_irqrestore(&bp->DriverLock, Flags);
1186                        return; // Packet has been queued.
1187
1188                }               // if (unable to send frame)
1189
1190                bp->QueueSkb++; // one packet less in local queue
1191
1192                // source address in packet ?
1193                CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1194
1195                txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1196
1197                dma_address = pci_map_single(&bp->pdev, skb->data,
1198                                             skb->len, PCI_DMA_TODEVICE);
1199                if (frame_status & LAN_TX) {
1200                        txd->txd_os.skb = skb;                  // save skb
1201                        txd->txd_os.dma_addr = dma_address;     // save dma mapping
1202                }
1203                hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1204                      frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1205
1206                if (!(frame_status & LAN_TX)) {         // local only frame
1207                        pci_unmap_single(&bp->pdev, dma_address,
1208                                         skb->len, PCI_DMA_TODEVICE);
1209                        dev_kfree_skb_irq(skb);
1210                }
1211                spin_unlock_irqrestore(&bp->DriverLock, Flags);
1212        }                       // for
1213
1214        return;                 // never reached
1215
1216}                               // send_queued_packets
1217
1218
1219/************************
1220 * 
1221 * CheckSourceAddress
1222 *
1223 * Verify if the source address is set. Insert it if necessary.
1224 *
1225 ************************/
1226static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1227{
1228        unsigned char SRBit;
1229
1230        if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1231
1232                return;
1233        if ((unsigned short) frame[1 + 10] != 0)
1234                return;
1235        SRBit = frame[1 + 6] & 0x01;
1236        memcpy(&frame[1 + 6], hw_addr, 6);
1237        frame[8] |= SRBit;
1238}                               // CheckSourceAddress
1239
1240
1241/************************
1242 *
1243 *      ResetAdapter
1244 *
1245 *      Reset the adapter and bring it back to operational mode.
1246 * Args
1247 *      smc - A pointer to the SMT context struct.
1248 * Out
1249 *      Nothing.
1250 *
1251 ************************/
1252static void ResetAdapter(struct s_smc *smc)
1253{
1254
1255        pr_debug(KERN_INFO "[fddi: ResetAdapter]\n");
1256
1257        // Stop the adapter.
1258
1259        card_stop(smc);         // Stop all activity.
1260
1261        // Clear the transmit and receive descriptor queues.
1262        mac_drv_clear_tx_queue(smc);
1263        mac_drv_clear_rx_queue(smc);
1264
1265        // Restart the adapter.
1266
1267        smt_reset_defaults(smc, 1);     // Initialize the SMT module.
1268
1269        init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1270
1271        smt_online(smc, 1);     // Insert into the ring again.
1272        STI_FBI();
1273
1274        // Restore original receive mode (multicasts, promiscuous, etc.).
1275        skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1276}                               // ResetAdapter
1277
1278
1279//--------------- functions called by hardware module ----------------
1280
1281/************************
1282 *
1283 *      llc_restart_tx
1284 *
1285 *      The hardware driver calls this routine when the transmit complete
1286 *      interrupt bits (end of frame) for the synchronous or asynchronous
1287 *      queue is set.
1288 *
1289 * NOTE The hardware driver calls this function also if no packets are queued.
1290 *      The routine must be able to handle this case.
1291 * Args
1292 *      smc - A pointer to the SMT context struct.
1293 * Out
1294 *      Nothing.
1295 *
1296 ************************/
1297void llc_restart_tx(struct s_smc *smc)
1298{
1299        skfddi_priv *bp = &smc->os;
1300
1301        pr_debug(KERN_INFO "[llc_restart_tx]\n");
1302
1303        // Try to send queued packets
1304        spin_unlock(&bp->DriverLock);
1305        send_queued_packets(smc);
1306        spin_lock(&bp->DriverLock);
1307        netif_start_queue(bp->dev);// system may send again if it was blocked
1308
1309}                               // llc_restart_tx
1310
1311
1312/************************
1313 *
1314 *      mac_drv_get_space
1315 *
1316 *      The hardware module calls this function to allocate the memory
1317 *      for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1318 * Args
1319 *      smc - A pointer to the SMT context struct.
1320 *
1321 *      size - Size of memory in bytes to allocate.
1322 * Out
1323 *      != 0    A pointer to the virtual address of the allocated memory.
1324 *      == 0    Allocation error.
1325 *
1326 ************************/
1327void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1328{
1329        void *virt;
1330
1331        pr_debug(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1332        virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1333
1334        if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1335                printk("Unexpected SMT memory size requested: %d\n", size);
1336                return (NULL);
1337        }
1338        smc->os.SharedMemHeap += size;  // Move heap pointer.
1339
1340        pr_debug(KERN_INFO "mac_drv_get_space end\n");
1341        pr_debug(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1342        pr_debug(KERN_INFO "bus  addr: %lx\n", (ulong)
1343               (smc->os.SharedMemDMA +
1344                ((char *) virt - (char *)smc->os.SharedMemAddr)));
1345        return (virt);
1346}                               // mac_drv_get_space
1347
1348
1349/************************
1350 *
1351 *      mac_drv_get_desc_mem
1352 *
1353 *      This function is called by the hardware dependent module.
1354 *      It allocates the memory for the RxD and TxD descriptors.
1355 *
1356 *      This memory must be non-cached, non-movable and non-swappable.
1357 *      This memory should start at a physical page boundary.
1358 * Args
1359 *      smc - A pointer to the SMT context struct.
1360 *
1361 *      size - Size of memory in bytes to allocate.
1362 * Out
1363 *      != 0    A pointer to the virtual address of the allocated memory.
1364 *      == 0    Allocation error.
1365 *
1366 ************************/
1367void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1368{
1369
1370        char *virt;
1371
1372        pr_debug(KERN_INFO "mac_drv_get_desc_mem\n");
1373
1374        // Descriptor memory must be aligned on 16-byte boundary.
1375
1376        virt = mac_drv_get_space(smc, size);
1377
1378        size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1379        size = size % 16;
1380
1381        pr_debug("Allocate %u bytes alignment gap ", size);
1382        pr_debug("for descriptor memory.\n");
1383
1384        if (!mac_drv_get_space(smc, size)) {
1385                printk("fddi: Unable to align descriptor memory.\n");
1386                return (NULL);
1387        }
1388        return (virt + size);
1389}                               // mac_drv_get_desc_mem
1390
1391
1392/************************
1393 *
1394 *      mac_drv_virt2phys
1395 *
1396 *      Get the physical address of a given virtual address.
1397 * Args
1398 *      smc - A pointer to the SMT context struct.
1399 *
1400 *      virt - A (virtual) pointer into our 'shared' memory area.
1401 * Out
1402 *      Physical address of the given virtual address.
1403 *
1404 ************************/
1405unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1406{
1407        return (smc->os.SharedMemDMA +
1408                ((char *) virt - (char *)smc->os.SharedMemAddr));
1409}                               // mac_drv_virt2phys
1410
1411
1412/************************
1413 *
1414 *      dma_master
1415 *
1416 *      The HWM calls this function, when the driver leads through a DMA
1417 *      transfer. If the OS-specific module must prepare the system hardware
1418 *      for the DMA transfer, it should do it in this function.
1419 *
1420 *      The hardware module calls this dma_master if it wants to send an SMT
1421 *      frame.  This means that the virt address passed in here is part of
1422 *      the 'shared' memory area.
1423 * Args
1424 *      smc - A pointer to the SMT context struct.
1425 *
1426 *      virt - The virtual address of the data.
1427 *
1428 *      len - The length in bytes of the data.
1429 *
1430 *      flag - Indicates the transmit direction and the buffer type:
1431 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1432 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1433 *              SMT_BUF (0x80)  SMT buffer
1434 *
1435 *      >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1436 * Out
1437 *      Returns the pyhsical address for the DMA transfer.
1438 *
1439 ************************/
1440u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1441{
1442        return (smc->os.SharedMemDMA +
1443                ((char *) virt - (char *)smc->os.SharedMemAddr));
1444}                               // dma_master
1445
1446
1447/************************
1448 *
1449 *      dma_complete
1450 *
1451 *      The hardware module calls this routine when it has completed a DMA
1452 *      transfer. If the operating system dependent module has set up the DMA
1453 *      channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1454 *      the DMA channel.
1455 * Args
1456 *      smc - A pointer to the SMT context struct.
1457 *
1458 *      descr - A pointer to a TxD or RxD, respectively.
1459 *
1460 *      flag - Indicates the DMA transfer direction / SMT buffer:
1461 *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1462 *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1463 *              SMT_BUF (0x80)  SMT buffer (managed by HWM)
1464 * Out
1465 *      Nothing.
1466 *
1467 ************************/
1468void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1469{
1470        /* For TX buffers, there are two cases.  If it is an SMT transmit
1471         * buffer, there is nothing to do since we use consistent memory
1472         * for the 'shared' memory area.  The other case is for normal
1473         * transmit packets given to us by the networking stack, and in
1474         * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1475         * below.
1476         *
1477         * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1478         * because the hardware module is about to potentially look at
1479         * the contents of the buffer.  If we did not call the PCI DMA
1480         * unmap first, the hardware module could read inconsistent data.
1481         */
1482        if (flag & DMA_WR) {
1483                skfddi_priv *bp = &smc->os;
1484                volatile struct s_smt_fp_rxd *r = &descr->r;
1485
1486                /* If SKB is NULL, we used the local buffer. */
1487                if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1488                        int MaxFrameSize = bp->MaxFrameSize;
1489
1490                        pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1491                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1492                        r->rxd_os.dma_addr = 0;
1493                }
1494        }
1495}                               // dma_complete
1496
1497
1498/************************
1499 *
1500 *      mac_drv_tx_complete
1501 *
1502 *      Transmit of a packet is complete. Release the tx staging buffer.
1503 *
1504 * Args
1505 *      smc - A pointer to the SMT context struct.
1506 *
1507 *      txd - A pointer to the last TxD which is used by the frame.
1508 * Out
1509 *      Returns nothing.
1510 *
1511 ************************/
1512void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1513{
1514        struct sk_buff *skb;
1515
1516        pr_debug(KERN_INFO "entering mac_drv_tx_complete\n");
1517        // Check if this TxD points to a skb
1518
1519        if (!(skb = txd->txd_os.skb)) {
1520                pr_debug("TXD with no skb assigned.\n");
1521                return;
1522        }
1523        txd->txd_os.skb = NULL;
1524
1525        // release the DMA mapping
1526        pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1527                         skb->len, PCI_DMA_TODEVICE);
1528        txd->txd_os.dma_addr = 0;
1529
1530        smc->os.MacStat.gen.tx_packets++;       // Count transmitted packets.
1531        smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1532
1533        // free the skb
1534        dev_kfree_skb_irq(skb);
1535
1536        pr_debug(KERN_INFO "leaving mac_drv_tx_complete\n");
1537}                               // mac_drv_tx_complete
1538
1539
1540/************************
1541 *
1542 * dump packets to logfile
1543 *
1544 ************************/
1545#ifdef DUMPPACKETS
1546void dump_data(unsigned char *Data, int length)
1547{
1548        int i, j;
1549        unsigned char s[255], sh[10];
1550        if (length > 64) {
1551                length = 64;
1552        }
1553        printk(KERN_INFO "---Packet start---\n");
1554        for (i = 0, j = 0; i < length / 8; i++, j += 8)
1555                printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1556                       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1557                       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1558        strcpy(s, "");
1559        for (i = 0; i < length % 8; i++) {
1560                sprintf(sh, "%02x ", Data[j + i]);
1561                strcat(s, sh);
1562        }
1563        printk(KERN_INFO "%s\n", s);
1564        printk(KERN_INFO "------------------\n");
1565}                               // dump_data
1566#else
1567#define dump_data(data,len)
1568#endif                          // DUMPPACKETS
1569
1570/************************
1571 *
1572 *      mac_drv_rx_complete
1573 *
1574 *      The hardware module calls this function if an LLC frame is received
1575 *      in a receive buffer. Also the SMT, NSA, and directed beacon frames
1576 *      from the network will be passed to the LLC layer by this function
1577 *      if passing is enabled.
1578 *
1579 *      mac_drv_rx_complete forwards the frame to the LLC layer if it should
1580 *      be received. It also fills the RxD ring with new receive buffers if
1581 *      some can be queued.
1582 * Args
1583 *      smc - A pointer to the SMT context struct.
1584 *
1585 *      rxd - A pointer to the first RxD which is used by the receive frame.
1586 *
1587 *      frag_count - Count of RxDs used by the received frame.
1588 *
1589 *      len - Frame length.
1590 * Out
1591 *      Nothing.
1592 *
1593 ************************/
1594void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1595                         int frag_count, int len)
1596{
1597        skfddi_priv *bp = &smc->os;
1598        struct sk_buff *skb;
1599        unsigned char *virt, *cp;
1600        unsigned short ri;
1601        u_int RifLength;
1602
1603        pr_debug(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1604        if (frag_count != 1) {  // This is not allowed to happen.
1605
1606                printk("fddi: Multi-fragment receive!\n");
1607                goto RequeueRxd;        // Re-use the given RXD(s).
1608
1609        }
1610        skb = rxd->rxd_os.skb;
1611        if (!skb) {
1612                pr_debug(KERN_INFO "No skb in rxd\n");
1613                smc->os.MacStat.gen.rx_errors++;
1614                goto RequeueRxd;
1615        }
1616        virt = skb->data;
1617
1618        // The DMA mapping was released in dma_complete above.
1619
1620        dump_data(skb->data, len);
1621
1622        /*
1623         * FDDI Frame format:
1624         * +-------+-------+-------+------------+--------+------------+
1625         * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1626         * +-------+-------+-------+------------+--------+------------+
1627         *
1628         * FC = Frame Control
1629         * DA = Destination Address
1630         * SA = Source Address
1631         * RIF = Routing Information Field
1632         * LLC = Logical Link Control
1633         */
1634
1635        // Remove Routing Information Field (RIF), if present.
1636
1637        if ((virt[1 + 6] & FDDI_RII) == 0)
1638                RifLength = 0;
1639        else {
1640                int n;
1641// goos: RIF removal has still to be tested
1642                pr_debug(KERN_INFO "RIF found\n");
1643                // Get RIF length from Routing Control (RC) field.
1644                cp = virt + FDDI_MAC_HDR_LEN;   // Point behind MAC header.
1645
1646                ri = ntohs(*((__be16 *) cp));
1647                RifLength = ri & FDDI_RCF_LEN_MASK;
1648                if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1649                        printk("fddi: Invalid RIF.\n");
1650                        goto RequeueRxd;        // Discard the frame.
1651
1652                }
1653                virt[1 + 6] &= ~FDDI_RII;       // Clear RII bit.
1654                // regions overlap
1655
1656                virt = cp + RifLength;
1657                for (n = FDDI_MAC_HDR_LEN; n; n--)
1658                        *--virt = *--cp;
1659                // adjust sbd->data pointer
1660                skb_pull(skb, RifLength);
1661                len -= RifLength;
1662                RifLength = 0;
1663        }
1664
1665        // Count statistics.
1666        smc->os.MacStat.gen.rx_packets++;       // Count indicated receive
1667                                                // packets.
1668        smc->os.MacStat.gen.rx_bytes+=len;      // Count bytes.
1669
1670        // virt points to header again
1671        if (virt[1] & 0x01) {   // Check group (multicast) bit.
1672
1673                smc->os.MacStat.gen.multicast++;
1674        }
1675
1676        // deliver frame to system
1677        rxd->rxd_os.skb = NULL;
1678        skb_trim(skb, len);
1679        skb->protocol = fddi_type_trans(skb, bp->dev);
1680
1681        netif_rx(skb);
1682
1683        HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1684        return;
1685
1686      RequeueRxd:
1687        pr_debug(KERN_INFO "Rx: re-queue RXD.\n");
1688        mac_drv_requeue_rxd(smc, rxd, frag_count);
1689        smc->os.MacStat.gen.rx_errors++;        // Count receive packets
1690                                                // not indicated.
1691
1692}                               // mac_drv_rx_complete
1693
1694
1695/************************
1696 *
1697 *      mac_drv_requeue_rxd
1698 *
1699 *      The hardware module calls this function to request the OS-specific
1700 *      module to queue the receive buffer(s) represented by the pointer
1701 *      to the RxD and the frag_count into the receive queue again. This
1702 *      buffer was filled with an invalid frame or an SMT frame.
1703 * Args
1704 *      smc - A pointer to the SMT context struct.
1705 *
1706 *      rxd - A pointer to the first RxD which is used by the receive frame.
1707 *
1708 *      frag_count - Count of RxDs used by the received frame.
1709 * Out
1710 *      Nothing.
1711 *
1712 ************************/
1713void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1714                         int frag_count)
1715{
1716        volatile struct s_smt_fp_rxd *next_rxd;
1717        volatile struct s_smt_fp_rxd *src_rxd;
1718        struct sk_buff *skb;
1719        int MaxFrameSize;
1720        unsigned char *v_addr;
1721        dma_addr_t b_addr;
1722
1723        if (frag_count != 1)    // This is not allowed to happen.
1724
1725                printk("fddi: Multi-fragment requeue!\n");
1726
1727        MaxFrameSize = smc->os.MaxFrameSize;
1728        src_rxd = rxd;
1729        for (; frag_count > 0; frag_count--) {
1730                next_rxd = src_rxd->rxd_next;
1731                rxd = HWM_GET_CURR_RXD(smc);
1732
1733                skb = src_rxd->rxd_os.skb;
1734                if (skb == NULL) {      // this should not happen
1735
1736                        pr_debug("Requeue with no skb in rxd!\n");
1737                        skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1738                        if (skb) {
1739                                // we got a skb
1740                                rxd->rxd_os.skb = skb;
1741                                skb_reserve(skb, 3);
1742                                skb_put(skb, MaxFrameSize);
1743                                v_addr = skb->data;
1744                                b_addr = pci_map_single(&smc->os.pdev,
1745                                                        v_addr,
1746                                                        MaxFrameSize,
1747                                                        PCI_DMA_FROMDEVICE);
1748                                rxd->rxd_os.dma_addr = b_addr;
1749                        } else {
1750                                // no skb available, use local buffer
1751                                pr_debug("Queueing invalid buffer!\n");
1752                                rxd->rxd_os.skb = NULL;
1753                                v_addr = smc->os.LocalRxBuffer;
1754                                b_addr = smc->os.LocalRxBufferDMA;
1755                        }
1756                } else {
1757                        // we use skb from old rxd
1758                        rxd->rxd_os.skb = skb;
1759                        v_addr = skb->data;
1760                        b_addr = pci_map_single(&smc->os.pdev,
1761                                                v_addr,
1762                                                MaxFrameSize,
1763                                                PCI_DMA_FROMDEVICE);
1764                        rxd->rxd_os.dma_addr = b_addr;
1765                }
1766                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1767                            FIRST_FRAG | LAST_FRAG);
1768
1769                src_rxd = next_rxd;
1770        }
1771}                               // mac_drv_requeue_rxd
1772
1773
1774/************************
1775 *
1776 *      mac_drv_fill_rxd
1777 *
1778 *      The hardware module calls this function at initialization time
1779 *      to fill the RxD ring with receive buffers. It is also called by
1780 *      mac_drv_rx_complete if rx_free is large enough to queue some new
1781 *      receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1782 *      receive buffers as long as enough RxDs and receive buffers are
1783 *      available.
1784 * Args
1785 *      smc - A pointer to the SMT context struct.
1786 * Out
1787 *      Nothing.
1788 *
1789 ************************/
1790void mac_drv_fill_rxd(struct s_smc *smc)
1791{
1792        int MaxFrameSize;
1793        unsigned char *v_addr;
1794        unsigned long b_addr;
1795        struct sk_buff *skb;
1796        volatile struct s_smt_fp_rxd *rxd;
1797
1798        pr_debug(KERN_INFO "entering mac_drv_fill_rxd\n");
1799
1800        // Walk through the list of free receive buffers, passing receive
1801        // buffers to the HWM as long as RXDs are available.
1802
1803        MaxFrameSize = smc->os.MaxFrameSize;
1804        // Check if there is any RXD left.
1805        while (HWM_GET_RX_FREE(smc) > 0) {
1806                pr_debug(KERN_INFO ".\n");
1807
1808                rxd = HWM_GET_CURR_RXD(smc);
1809                skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1810                if (skb) {
1811                        // we got a skb
1812                        skb_reserve(skb, 3);
1813                        skb_put(skb, MaxFrameSize);
1814                        v_addr = skb->data;
1815                        b_addr = pci_map_single(&smc->os.pdev,
1816                                                v_addr,
1817                                                MaxFrameSize,
1818                                                PCI_DMA_FROMDEVICE);
1819                        rxd->rxd_os.dma_addr = b_addr;
1820                } else {
1821                        // no skb available, use local buffer
1822                        // System has run out of buffer memory, but we want to
1823                        // keep the receiver running in hope of better times.
1824                        // Multiple descriptors may point to this local buffer,
1825                        // so data in it must be considered invalid.
1826                        pr_debug("Queueing invalid buffer!\n");
1827                        v_addr = smc->os.LocalRxBuffer;
1828                        b_addr = smc->os.LocalRxBufferDMA;
1829                }
1830
1831                rxd->rxd_os.skb = skb;
1832
1833                // Pass receive buffer to HWM.
1834                hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1835                            FIRST_FRAG | LAST_FRAG);
1836        }
1837        pr_debug(KERN_INFO "leaving mac_drv_fill_rxd\n");
1838}                               // mac_drv_fill_rxd
1839
1840
1841/************************
1842 *
1843 *      mac_drv_clear_rxd
1844 *
1845 *      The hardware module calls this function to release unused
1846 *      receive buffers.
1847 * Args
1848 *      smc - A pointer to the SMT context struct.
1849 *
1850 *      rxd - A pointer to the first RxD which is used by the receive buffer.
1851 *
1852 *      frag_count - Count of RxDs used by the receive buffer.
1853 * Out
1854 *      Nothing.
1855 *
1856 ************************/
1857void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1858                       int frag_count)
1859{
1860
1861        struct sk_buff *skb;
1862
1863        pr_debug("entering mac_drv_clear_rxd\n");
1864
1865        if (frag_count != 1)    // This is not allowed to happen.
1866
1867                printk("fddi: Multi-fragment clear!\n");
1868
1869        for (; frag_count > 0; frag_count--) {
1870                skb = rxd->rxd_os.skb;
1871                if (skb != NULL) {
1872                        skfddi_priv *bp = &smc->os;
1873                        int MaxFrameSize = bp->MaxFrameSize;
1874
1875                        pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1876                                         MaxFrameSize, PCI_DMA_FROMDEVICE);
1877
1878                        dev_kfree_skb(skb);
1879                        rxd->rxd_os.skb = NULL;
1880                }
1881                rxd = rxd->rxd_next;    // Next RXD.
1882
1883        }
1884}                               // mac_drv_clear_rxd
1885
1886
1887/************************
1888 *
1889 *      mac_drv_rx_init
1890 *
1891 *      The hardware module calls this routine when an SMT or NSA frame of the
1892 *      local SMT should be delivered to the LLC layer.
1893 *
1894 *      It is necessary to have this function, because there is no other way to
1895 *      copy the contents of SMT MBufs into receive buffers.
1896 *
1897 *      mac_drv_rx_init allocates the required target memory for this frame,
1898 *      and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1899 * Args
1900 *      smc - A pointer to the SMT context struct.
1901 *
1902 *      len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1903 *
1904 *      fc - The Frame Control field of the received frame.
1905 *
1906 *      look_ahead - A pointer to the lookahead data buffer (may be NULL).
1907 *
1908 *      la_len - The length of the lookahead data stored in the lookahead
1909 *      buffer (may be zero).
1910 * Out
1911 *      Always returns zero (0).
1912 *
1913 ************************/
1914int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1915                    char *look_ahead, int la_len)
1916{
1917        struct sk_buff *skb;
1918
1919        pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1920
1921        // "Received" a SMT or NSA frame of the local SMT.
1922
1923        if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1924                pr_debug("fddi: Discard invalid local SMT frame\n");
1925                pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1926                       len, la_len, (unsigned long) look_ahead);
1927                return (0);
1928        }
1929        skb = alloc_skb(len + 3, GFP_ATOMIC);
1930        if (!skb) {
1931                pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1932                return (0);
1933        }
1934        skb_reserve(skb, 3);
1935        skb_put(skb, len);
1936        skb_copy_to_linear_data(skb, look_ahead, len);
1937
1938        // deliver frame to system
1939        skb->protocol = fddi_type_trans(skb, smc->os.dev);
1940        netif_rx(skb);
1941
1942        return (0);
1943}                               // mac_drv_rx_init
1944
1945
1946/************************
1947 *
1948 *      smt_timer_poll
1949 *
1950 *      This routine is called periodically by the SMT module to clean up the
1951 *      driver.
1952 *
1953 *      Return any queued frames back to the upper protocol layers if the ring
1954 *      is down.
1955 * Args
1956 *      smc - A pointer to the SMT context struct.
1957 * Out
1958 *      Nothing.
1959 *
1960 ************************/
1961void smt_timer_poll(struct s_smc *smc)
1962{
1963}                               // smt_timer_poll
1964
1965
1966/************************
1967 *
1968 *      ring_status_indication
1969 *
1970 *      This function indicates a change of the ring state.
1971 * Args
1972 *      smc - A pointer to the SMT context struct.
1973 *
1974 *      status - The current ring status.
1975 * Out
1976 *      Nothing.
1977 *
1978 ************************/
1979void ring_status_indication(struct s_smc *smc, u_long status)
1980{
1981        pr_debug("ring_status_indication( ");
1982        if (status & RS_RES15)
1983                pr_debug("RS_RES15 ");
1984        if (status & RS_HARDERROR)
1985                pr_debug("RS_HARDERROR ");
1986        if (status & RS_SOFTERROR)
1987                pr_debug("RS_SOFTERROR ");
1988        if (status & RS_BEACON)
1989                pr_debug("RS_BEACON ");
1990        if (status & RS_PATHTEST)
1991                pr_debug("RS_PATHTEST ");
1992        if (status & RS_SELFTEST)
1993                pr_debug("RS_SELFTEST ");
1994        if (status & RS_RES9)
1995                pr_debug("RS_RES9 ");
1996        if (status & RS_DISCONNECT)
1997                pr_debug("RS_DISCONNECT ");
1998        if (status & RS_RES7)
1999                pr_debug("RS_RES7 ");
2000        if (status & RS_DUPADDR)
2001                pr_debug("RS_DUPADDR ");
2002        if (status & RS_NORINGOP)
2003                pr_debug("RS_NORINGOP ");
2004        if (status & RS_VERSION)
2005                pr_debug("RS_VERSION ");
2006        if (status & RS_STUCKBYPASSS)
2007                pr_debug("RS_STUCKBYPASSS ");
2008        if (status & RS_EVENT)
2009                pr_debug("RS_EVENT ");
2010        if (status & RS_RINGOPCHANGE)
2011                pr_debug("RS_RINGOPCHANGE ");
2012        if (status & RS_RES0)
2013                pr_debug("RS_RES0 ");
2014        pr_debug("]\n");
2015}                               // ring_status_indication
2016
2017
2018/************************
2019 *
2020 *      smt_get_time
2021 *
2022 *      Gets the current time from the system.
2023 * Args
2024 *      None.
2025 * Out
2026 *      The current time in TICKS_PER_SECOND.
2027 *
2028 *      TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2029 *      defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2030 *      to the time returned by smt_get_time().
2031 *
2032 ************************/
2033unsigned long smt_get_time(void)
2034{
2035        return jiffies;
2036}                               // smt_get_time
2037
2038
2039/************************
2040 *
2041 *      smt_stat_counter
2042 *
2043 *      Status counter update (ring_op, fifo full).
2044 * Args
2045 *      smc - A pointer to the SMT context struct.
2046 *
2047 *      stat -  = 0: A ring operational change occurred.
2048 *              = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2049 * Out
2050 *      Nothing.
2051 *
2052 ************************/
2053void smt_stat_counter(struct s_smc *smc, int stat)
2054{
2055//      BOOLEAN RingIsUp ;
2056
2057        pr_debug(KERN_INFO "smt_stat_counter\n");
2058        switch (stat) {
2059        case 0:
2060                pr_debug(KERN_INFO "Ring operational change.\n");
2061                break;
2062        case 1:
2063                pr_debug(KERN_INFO "Receive fifo overflow.\n");
2064                smc->os.MacStat.gen.rx_errors++;
2065                break;
2066        default:
2067                pr_debug(KERN_INFO "Unknown status (%d).\n", stat);
2068                break;
2069        }
2070}                               // smt_stat_counter
2071
2072
2073/************************
2074 *
2075 *      cfm_state_change
2076 *
2077 *      Sets CFM state in custom statistics.
2078 * Args
2079 *      smc - A pointer to the SMT context struct.
2080 *
2081 *      c_state - Possible values are:
2082 *
2083 *              EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2084 *              EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2085 * Out
2086 *      Nothing.
2087 *
2088 ************************/
2089void cfm_state_change(struct s_smc *smc, int c_state)
2090{
2091#ifdef DRIVERDEBUG
2092        char *s;
2093
2094        switch (c_state) {
2095        case SC0_ISOLATED:
2096                s = "SC0_ISOLATED";
2097                break;
2098        case SC1_WRAP_A:
2099                s = "SC1_WRAP_A";
2100                break;
2101        case SC2_WRAP_B:
2102                s = "SC2_WRAP_B";
2103                break;
2104        case SC4_THRU_A:
2105                s = "SC4_THRU_A";
2106                break;
2107        case SC5_THRU_B:
2108                s = "SC5_THRU_B";
2109                break;
2110        case SC7_WRAP_S:
2111                s = "SC7_WRAP_S";
2112                break;
2113        case SC9_C_WRAP_A:
2114                s = "SC9_C_WRAP_A";
2115                break;
2116        case SC10_C_WRAP_B:
2117                s = "SC10_C_WRAP_B";
2118                break;
2119        case SC11_C_WRAP_S:
2120                s = "SC11_C_WRAP_S";
2121                break;
2122        default:
2123                pr_debug(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2124                return;
2125        }
2126        pr_debug(KERN_INFO "cfm_state_change: %s\n", s);
2127#endif                          // DRIVERDEBUG
2128}                               // cfm_state_change
2129
2130
2131/************************
2132 *
2133 *      ecm_state_change
2134 *
2135 *      Sets ECM state in custom statistics.
2136 * Args
2137 *      smc - A pointer to the SMT context struct.
2138 *
2139 *      e_state - Possible values are:
2140 *
2141 *              SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2142 *              SC5_THRU_B (7), SC7_WRAP_S (8)
2143 * Out
2144 *      Nothing.
2145 *
2146 ************************/
2147void ecm_state_change(struct s_smc *smc, int e_state)
2148{
2149#ifdef DRIVERDEBUG
2150        char *s;
2151
2152        switch (e_state) {
2153        case EC0_OUT:
2154                s = "EC0_OUT";
2155                break;
2156        case EC1_IN:
2157                s = "EC1_IN";
2158                break;
2159        case EC2_TRACE:
2160                s = "EC2_TRACE";
2161                break;
2162        case EC3_LEAVE:
2163                s = "EC3_LEAVE";
2164                break;
2165        case EC4_PATH_TEST:
2166                s = "EC4_PATH_TEST";
2167                break;
2168        case EC5_INSERT:
2169                s = "EC5_INSERT";
2170                break;
2171        case EC6_CHECK:
2172                s = "EC6_CHECK";
2173                break;
2174        case EC7_DEINSERT:
2175                s = "EC7_DEINSERT";
2176                break;
2177        default:
2178                s = "unknown";
2179                break;
2180        }
2181        pr_debug(KERN_INFO "ecm_state_change: %s\n", s);
2182#endif                          //DRIVERDEBUG
2183}                               // ecm_state_change
2184
2185
2186/************************
2187 *
2188 *      rmt_state_change
2189 *
2190 *      Sets RMT state in custom statistics.
2191 * Args
2192 *      smc - A pointer to the SMT context struct.
2193 *
2194 *      r_state - Possible values are:
2195 *
2196 *              RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2197 *              RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2198 * Out
2199 *      Nothing.
2200 *
2201 ************************/
2202void rmt_state_change(struct s_smc *smc, int r_state)
2203{
2204#ifdef DRIVERDEBUG
2205        char *s;
2206
2207        switch (r_state) {
2208        case RM0_ISOLATED:
2209                s = "RM0_ISOLATED";
2210                break;
2211        case RM1_NON_OP:
2212                s = "RM1_NON_OP - not operational";
2213                break;
2214        case RM2_RING_OP:
2215                s = "RM2_RING_OP - ring operational";
2216                break;
2217        case RM3_DETECT:
2218                s = "RM3_DETECT - detect dupl addresses";
2219                break;
2220        case RM4_NON_OP_DUP:
2221                s = "RM4_NON_OP_DUP - dupl. addr detected";
2222                break;
2223        case RM5_RING_OP_DUP:
2224                s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2225                break;
2226        case RM6_DIRECTED:
2227                s = "RM6_DIRECTED - sending directed beacons";
2228                break;
2229        case RM7_TRACE:
2230                s = "RM7_TRACE - trace initiated";
2231                break;
2232        default:
2233                s = "unknown";
2234                break;
2235        }
2236        pr_debug(KERN_INFO "[rmt_state_change: %s]\n", s);
2237#endif                          // DRIVERDEBUG
2238}                               // rmt_state_change
2239
2240
2241/************************
2242 *
2243 *      drv_reset_indication
2244 *
2245 *      This function is called by the SMT when it has detected a severe
2246 *      hardware problem. The driver should perform a reset on the adapter
2247 *      as soon as possible, but not from within this function.
2248 * Args
2249 *      smc - A pointer to the SMT context struct.
2250 * Out
2251 *      Nothing.
2252 *
2253 ************************/
2254void drv_reset_indication(struct s_smc *smc)
2255{
2256        pr_debug(KERN_INFO "entering drv_reset_indication\n");
2257
2258        smc->os.ResetRequested = TRUE;  // Set flag.
2259
2260}                               // drv_reset_indication
2261
2262static struct pci_driver skfddi_pci_driver = {
2263        .name           = "skfddi",
2264        .id_table       = skfddi_pci_tbl,
2265        .probe          = skfp_init_one,
2266        .remove         = __devexit_p(skfp_remove_one),
2267};
2268
2269static int __init skfd_init(void)
2270{
2271        return pci_register_driver(&skfddi_pci_driver);
2272}
2273
2274static void __exit skfd_exit(void)
2275{
2276        pci_unregister_driver(&skfddi_pci_driver);
2277}
2278
2279module_init(skfd_init);
2280module_exit(skfd_exit);
2281