linux/drivers/net/smc91x.c
<<
>>
Prefs
   1/*
   2 * smc91x.c
   3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
   4 *
   5 * Copyright (C) 1996 by Erik Stahlman
   6 * Copyright (C) 2001 Standard Microsystems Corporation
   7 *      Developed by Simple Network Magic Corporation
   8 * Copyright (C) 2003 Monta Vista Software, Inc.
   9 *      Unified SMC91x driver by Nicolas Pitre
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  24 *
  25 * Arguments:
  26 *      io      = for the base address
  27 *      irq     = for the IRQ
  28 *      nowait  = 0 for normal wait states, 1 eliminates additional wait states
  29 *
  30 * original author:
  31 *      Erik Stahlman <erik@vt.edu>
  32 *
  33 * hardware multicast code:
  34 *    Peter Cammaert <pc@denkart.be>
  35 *
  36 * contributors:
  37 *      Daris A Nevil <dnevil@snmc.com>
  38 *      Nicolas Pitre <nico@fluxnic.net>
  39 *      Russell King <rmk@arm.linux.org.uk>
  40 *
  41 * History:
  42 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
  43 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
  44 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
  45 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
  46 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
  47 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
  48 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
  49 *                                more bus abstraction, big cleanup, etc.
  50 *   29/09/03  Russell King       - add driver model support
  51 *                                - ethtool support
  52 *                                - convert to use generic MII interface
  53 *                                - add link up/down notification
  54 *                                - don't try to handle full negotiation in
  55 *                                  smc_phy_configure
  56 *                                - clean up (and fix stack overrun) in PHY
  57 *                                  MII read/write functions
  58 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
  59 */
  60static const char version[] =
  61        "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
  62
  63/* Debugging level */
  64#ifndef SMC_DEBUG
  65#define SMC_DEBUG               0
  66#endif
  67
  68
  69#include <linux/init.h>
  70#include <linux/module.h>
  71#include <linux/kernel.h>
  72#include <linux/sched.h>
  73#include <linux/slab.h>
  74#include <linux/delay.h>
  75#include <linux/interrupt.h>
  76#include <linux/errno.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/platform_device.h>
  80#include <linux/spinlock.h>
  81#include <linux/ethtool.h>
  82#include <linux/mii.h>
  83#include <linux/workqueue.h>
  84
  85#include <linux/netdevice.h>
  86#include <linux/etherdevice.h>
  87#include <linux/skbuff.h>
  88
  89#include <asm/io.h>
  90
  91#include "smc91x.h"
  92
  93#ifndef SMC_NOWAIT
  94# define SMC_NOWAIT             0
  95#endif
  96static int nowait = SMC_NOWAIT;
  97module_param(nowait, int, 0400);
  98MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
  99
 100/*
 101 * Transmit timeout, default 5 seconds.
 102 */
 103static int watchdog = 1000;
 104module_param(watchdog, int, 0400);
 105MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 106
 107MODULE_LICENSE("GPL");
 108MODULE_ALIAS("platform:smc91x");
 109
 110/*
 111 * The internal workings of the driver.  If you are changing anything
 112 * here with the SMC stuff, you should have the datasheet and know
 113 * what you are doing.
 114 */
 115#define CARDNAME "smc91x"
 116
 117/*
 118 * Use power-down feature of the chip
 119 */
 120#define POWER_DOWN              1
 121
 122/*
 123 * Wait time for memory to be free.  This probably shouldn't be
 124 * tuned that much, as waiting for this means nothing else happens
 125 * in the system
 126 */
 127#define MEMORY_WAIT_TIME        16
 128
 129/*
 130 * The maximum number of processing loops allowed for each call to the
 131 * IRQ handler.
 132 */
 133#define MAX_IRQ_LOOPS           8
 134
 135/*
 136 * This selects whether TX packets are sent one by one to the SMC91x internal
 137 * memory and throttled until transmission completes.  This may prevent
 138 * RX overruns a litle by keeping much of the memory free for RX packets
 139 * but to the expense of reduced TX throughput and increased IRQ overhead.
 140 * Note this is not a cure for a too slow data bus or too high IRQ latency.
 141 */
 142#define THROTTLE_TX_PKTS        0
 143
 144/*
 145 * The MII clock high/low times.  2x this number gives the MII clock period
 146 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
 147 */
 148#define MII_DELAY               1
 149
 150#if SMC_DEBUG > 0
 151#define DBG(n, args...)                                 \
 152        do {                                            \
 153                if (SMC_DEBUG >= (n))                   \
 154                        printk(args);   \
 155        } while (0)
 156
 157#define PRINTK(args...)   printk(args)
 158#else
 159#define DBG(n, args...)   do { } while(0)
 160#define PRINTK(args...)   printk(KERN_DEBUG args)
 161#endif
 162
 163#if SMC_DEBUG > 3
 164static void PRINT_PKT(u_char *buf, int length)
 165{
 166        int i;
 167        int remainder;
 168        int lines;
 169
 170        lines = length / 16;
 171        remainder = length % 16;
 172
 173        for (i = 0; i < lines ; i ++) {
 174                int cur;
 175                for (cur = 0; cur < 8; cur++) {
 176                        u_char a, b;
 177                        a = *buf++;
 178                        b = *buf++;
 179                        printk("%02x%02x ", a, b);
 180                }
 181                printk("\n");
 182        }
 183        for (i = 0; i < remainder/2 ; i++) {
 184                u_char a, b;
 185                a = *buf++;
 186                b = *buf++;
 187                printk("%02x%02x ", a, b);
 188        }
 189        printk("\n");
 190}
 191#else
 192#define PRINT_PKT(x...)  do { } while(0)
 193#endif
 194
 195
 196/* this enables an interrupt in the interrupt mask register */
 197#define SMC_ENABLE_INT(lp, x) do {                                      \
 198        unsigned char mask;                                             \
 199        unsigned long smc_enable_flags;                                 \
 200        spin_lock_irqsave(&lp->lock, smc_enable_flags);                 \
 201        mask = SMC_GET_INT_MASK(lp);                                    \
 202        mask |= (x);                                                    \
 203        SMC_SET_INT_MASK(lp, mask);                                     \
 204        spin_unlock_irqrestore(&lp->lock, smc_enable_flags);            \
 205} while (0)
 206
 207/* this disables an interrupt from the interrupt mask register */
 208#define SMC_DISABLE_INT(lp, x) do {                                     \
 209        unsigned char mask;                                             \
 210        unsigned long smc_disable_flags;                                \
 211        spin_lock_irqsave(&lp->lock, smc_disable_flags);                \
 212        mask = SMC_GET_INT_MASK(lp);                                    \
 213        mask &= ~(x);                                                   \
 214        SMC_SET_INT_MASK(lp, mask);                                     \
 215        spin_unlock_irqrestore(&lp->lock, smc_disable_flags);           \
 216} while (0)
 217
 218/*
 219 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
 220 * if at all, but let's avoid deadlocking the system if the hardware
 221 * decides to go south.
 222 */
 223#define SMC_WAIT_MMU_BUSY(lp) do {                                      \
 224        if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {          \
 225                unsigned long timeout = jiffies + 2;                    \
 226                while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {         \
 227                        if (time_after(jiffies, timeout)) {             \
 228                                printk("%s: timeout %s line %d\n",      \
 229                                        dev->name, __FILE__, __LINE__); \
 230                                break;                                  \
 231                        }                                               \
 232                        cpu_relax();                                    \
 233                }                                                       \
 234        }                                                               \
 235} while (0)
 236
 237
 238/*
 239 * this does a soft reset on the device
 240 */
 241static void smc_reset(struct net_device *dev)
 242{
 243        struct smc_local *lp = netdev_priv(dev);
 244        void __iomem *ioaddr = lp->base;
 245        unsigned int ctl, cfg;
 246        struct sk_buff *pending_skb;
 247
 248        DBG(2, "%s: %s\n", dev->name, __func__);
 249
 250        /* Disable all interrupts, block TX tasklet */
 251        spin_lock_irq(&lp->lock);
 252        SMC_SELECT_BANK(lp, 2);
 253        SMC_SET_INT_MASK(lp, 0);
 254        pending_skb = lp->pending_tx_skb;
 255        lp->pending_tx_skb = NULL;
 256        spin_unlock_irq(&lp->lock);
 257
 258        /* free any pending tx skb */
 259        if (pending_skb) {
 260                dev_kfree_skb(pending_skb);
 261                dev->stats.tx_errors++;
 262                dev->stats.tx_aborted_errors++;
 263        }
 264
 265        /*
 266         * This resets the registers mostly to defaults, but doesn't
 267         * affect EEPROM.  That seems unnecessary
 268         */
 269        SMC_SELECT_BANK(lp, 0);
 270        SMC_SET_RCR(lp, RCR_SOFTRST);
 271
 272        /*
 273         * Setup the Configuration Register
 274         * This is necessary because the CONFIG_REG is not affected
 275         * by a soft reset
 276         */
 277        SMC_SELECT_BANK(lp, 1);
 278
 279        cfg = CONFIG_DEFAULT;
 280
 281        /*
 282         * Setup for fast accesses if requested.  If the card/system
 283         * can't handle it then there will be no recovery except for
 284         * a hard reset or power cycle
 285         */
 286        if (lp->cfg.flags & SMC91X_NOWAIT)
 287                cfg |= CONFIG_NO_WAIT;
 288
 289        /*
 290         * Release from possible power-down state
 291         * Configuration register is not affected by Soft Reset
 292         */
 293        cfg |= CONFIG_EPH_POWER_EN;
 294
 295        SMC_SET_CONFIG(lp, cfg);
 296
 297        /* this should pause enough for the chip to be happy */
 298        /*
 299         * elaborate?  What does the chip _need_? --jgarzik
 300         *
 301         * This seems to be undocumented, but something the original
 302         * driver(s) have always done.  Suspect undocumented timing
 303         * info/determined empirically. --rmk
 304         */
 305        udelay(1);
 306
 307        /* Disable transmit and receive functionality */
 308        SMC_SELECT_BANK(lp, 0);
 309        SMC_SET_RCR(lp, RCR_CLEAR);
 310        SMC_SET_TCR(lp, TCR_CLEAR);
 311
 312        SMC_SELECT_BANK(lp, 1);
 313        ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
 314
 315        /*
 316         * Set the control register to automatically release successfully
 317         * transmitted packets, to make the best use out of our limited
 318         * memory
 319         */
 320        if(!THROTTLE_TX_PKTS)
 321                ctl |= CTL_AUTO_RELEASE;
 322        else
 323                ctl &= ~CTL_AUTO_RELEASE;
 324        SMC_SET_CTL(lp, ctl);
 325
 326        /* Reset the MMU */
 327        SMC_SELECT_BANK(lp, 2);
 328        SMC_SET_MMU_CMD(lp, MC_RESET);
 329        SMC_WAIT_MMU_BUSY(lp);
 330}
 331
 332/*
 333 * Enable Interrupts, Receive, and Transmit
 334 */
 335static void smc_enable(struct net_device *dev)
 336{
 337        struct smc_local *lp = netdev_priv(dev);
 338        void __iomem *ioaddr = lp->base;
 339        int mask;
 340
 341        DBG(2, "%s: %s\n", dev->name, __func__);
 342
 343        /* see the header file for options in TCR/RCR DEFAULT */
 344        SMC_SELECT_BANK(lp, 0);
 345        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 346        SMC_SET_RCR(lp, lp->rcr_cur_mode);
 347
 348        SMC_SELECT_BANK(lp, 1);
 349        SMC_SET_MAC_ADDR(lp, dev->dev_addr);
 350
 351        /* now, enable interrupts */
 352        mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
 353        if (lp->version >= (CHIP_91100 << 4))
 354                mask |= IM_MDINT;
 355        SMC_SELECT_BANK(lp, 2);
 356        SMC_SET_INT_MASK(lp, mask);
 357
 358        /*
 359         * From this point the register bank must _NOT_ be switched away
 360         * to something else than bank 2 without proper locking against
 361         * races with any tasklet or interrupt handlers until smc_shutdown()
 362         * or smc_reset() is called.
 363         */
 364}
 365
 366/*
 367 * this puts the device in an inactive state
 368 */
 369static void smc_shutdown(struct net_device *dev)
 370{
 371        struct smc_local *lp = netdev_priv(dev);
 372        void __iomem *ioaddr = lp->base;
 373        struct sk_buff *pending_skb;
 374
 375        DBG(2, "%s: %s\n", CARDNAME, __func__);
 376
 377        /* no more interrupts for me */
 378        spin_lock_irq(&lp->lock);
 379        SMC_SELECT_BANK(lp, 2);
 380        SMC_SET_INT_MASK(lp, 0);
 381        pending_skb = lp->pending_tx_skb;
 382        lp->pending_tx_skb = NULL;
 383        spin_unlock_irq(&lp->lock);
 384        if (pending_skb)
 385                dev_kfree_skb(pending_skb);
 386
 387        /* and tell the card to stay away from that nasty outside world */
 388        SMC_SELECT_BANK(lp, 0);
 389        SMC_SET_RCR(lp, RCR_CLEAR);
 390        SMC_SET_TCR(lp, TCR_CLEAR);
 391
 392#ifdef POWER_DOWN
 393        /* finally, shut the chip down */
 394        SMC_SELECT_BANK(lp, 1);
 395        SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
 396#endif
 397}
 398
 399/*
 400 * This is the procedure to handle the receipt of a packet.
 401 */
 402static inline void  smc_rcv(struct net_device *dev)
 403{
 404        struct smc_local *lp = netdev_priv(dev);
 405        void __iomem *ioaddr = lp->base;
 406        unsigned int packet_number, status, packet_len;
 407
 408        DBG(3, "%s: %s\n", dev->name, __func__);
 409
 410        packet_number = SMC_GET_RXFIFO(lp);
 411        if (unlikely(packet_number & RXFIFO_REMPTY)) {
 412                PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
 413                return;
 414        }
 415
 416        /* read from start of packet */
 417        SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
 418
 419        /* First two words are status and packet length */
 420        SMC_GET_PKT_HDR(lp, status, packet_len);
 421        packet_len &= 0x07ff;  /* mask off top bits */
 422        DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
 423                dev->name, packet_number, status,
 424                packet_len, packet_len);
 425
 426        back:
 427        if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
 428                if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
 429                        /* accept VLAN packets */
 430                        status &= ~RS_TOOLONG;
 431                        goto back;
 432                }
 433                if (packet_len < 6) {
 434                        /* bloody hardware */
 435                        printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
 436                                        dev->name, packet_len, status);
 437                        status |= RS_TOOSHORT;
 438                }
 439                SMC_WAIT_MMU_BUSY(lp);
 440                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 441                dev->stats.rx_errors++;
 442                if (status & RS_ALGNERR)
 443                        dev->stats.rx_frame_errors++;
 444                if (status & (RS_TOOSHORT | RS_TOOLONG))
 445                        dev->stats.rx_length_errors++;
 446                if (status & RS_BADCRC)
 447                        dev->stats.rx_crc_errors++;
 448        } else {
 449                struct sk_buff *skb;
 450                unsigned char *data;
 451                unsigned int data_len;
 452
 453                /* set multicast stats */
 454                if (status & RS_MULTICAST)
 455                        dev->stats.multicast++;
 456
 457                /*
 458                 * Actual payload is packet_len - 6 (or 5 if odd byte).
 459                 * We want skb_reserve(2) and the final ctrl word
 460                 * (2 bytes, possibly containing the payload odd byte).
 461                 * Furthermore, we add 2 bytes to allow rounding up to
 462                 * multiple of 4 bytes on 32 bit buses.
 463                 * Hence packet_len - 6 + 2 + 2 + 2.
 464                 */
 465                skb = dev_alloc_skb(packet_len);
 466                if (unlikely(skb == NULL)) {
 467                        printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
 468                                dev->name);
 469                        SMC_WAIT_MMU_BUSY(lp);
 470                        SMC_SET_MMU_CMD(lp, MC_RELEASE);
 471                        dev->stats.rx_dropped++;
 472                        return;
 473                }
 474
 475                /* Align IP header to 32 bits */
 476                skb_reserve(skb, 2);
 477
 478                /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
 479                if (lp->version == 0x90)
 480                        status |= RS_ODDFRAME;
 481
 482                /*
 483                 * If odd length: packet_len - 5,
 484                 * otherwise packet_len - 6.
 485                 * With the trailing ctrl byte it's packet_len - 4.
 486                 */
 487                data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
 488                data = skb_put(skb, data_len);
 489                SMC_PULL_DATA(lp, data, packet_len - 4);
 490
 491                SMC_WAIT_MMU_BUSY(lp);
 492                SMC_SET_MMU_CMD(lp, MC_RELEASE);
 493
 494                PRINT_PKT(data, packet_len - 4);
 495
 496                skb->protocol = eth_type_trans(skb, dev);
 497                netif_rx(skb);
 498                dev->stats.rx_packets++;
 499                dev->stats.rx_bytes += data_len;
 500        }
 501}
 502
 503#ifdef CONFIG_SMP
 504/*
 505 * On SMP we have the following problem:
 506 *
 507 *      A = smc_hardware_send_pkt()
 508 *      B = smc_hard_start_xmit()
 509 *      C = smc_interrupt()
 510 *
 511 * A and B can never be executed simultaneously.  However, at least on UP,
 512 * it is possible (and even desirable) for C to interrupt execution of
 513 * A or B in order to have better RX reliability and avoid overruns.
 514 * C, just like A and B, must have exclusive access to the chip and
 515 * each of them must lock against any other concurrent access.
 516 * Unfortunately this is not possible to have C suspend execution of A or
 517 * B taking place on another CPU. On UP this is no an issue since A and B
 518 * are run from softirq context and C from hard IRQ context, and there is
 519 * no other CPU where concurrent access can happen.
 520 * If ever there is a way to force at least B and C to always be executed
 521 * on the same CPU then we could use read/write locks to protect against
 522 * any other concurrent access and C would always interrupt B. But life
 523 * isn't that easy in a SMP world...
 524 */
 525#define smc_special_trylock(lock, flags)                                \
 526({                                                                      \
 527        int __ret;                                                      \
 528        local_irq_save(flags);                                          \
 529        __ret = spin_trylock(lock);                                     \
 530        if (!__ret)                                                     \
 531                local_irq_restore(flags);                               \
 532        __ret;                                                          \
 533})
 534#define smc_special_lock(lock, flags)           spin_lock_irqsave(lock, flags)
 535#define smc_special_unlock(lock, flags)         spin_unlock_irqrestore(lock, flags)
 536#else
 537#define smc_special_trylock(lock, flags)        (1)
 538#define smc_special_lock(lock, flags)           do { } while (0)
 539#define smc_special_unlock(lock, flags) do { } while (0)
 540#endif
 541
 542/*
 543 * This is called to actually send a packet to the chip.
 544 */
 545static void smc_hardware_send_pkt(unsigned long data)
 546{
 547        struct net_device *dev = (struct net_device *)data;
 548        struct smc_local *lp = netdev_priv(dev);
 549        void __iomem *ioaddr = lp->base;
 550        struct sk_buff *skb;
 551        unsigned int packet_no, len;
 552        unsigned char *buf;
 553        unsigned long flags;
 554
 555        DBG(3, "%s: %s\n", dev->name, __func__);
 556
 557        if (!smc_special_trylock(&lp->lock, flags)) {
 558                netif_stop_queue(dev);
 559                tasklet_schedule(&lp->tx_task);
 560                return;
 561        }
 562
 563        skb = lp->pending_tx_skb;
 564        if (unlikely(!skb)) {
 565                smc_special_unlock(&lp->lock, flags);
 566                return;
 567        }
 568        lp->pending_tx_skb = NULL;
 569
 570        packet_no = SMC_GET_AR(lp);
 571        if (unlikely(packet_no & AR_FAILED)) {
 572                printk("%s: Memory allocation failed.\n", dev->name);
 573                dev->stats.tx_errors++;
 574                dev->stats.tx_fifo_errors++;
 575                smc_special_unlock(&lp->lock, flags);
 576                goto done;
 577        }
 578
 579        /* point to the beginning of the packet */
 580        SMC_SET_PN(lp, packet_no);
 581        SMC_SET_PTR(lp, PTR_AUTOINC);
 582
 583        buf = skb->data;
 584        len = skb->len;
 585        DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
 586                dev->name, packet_no, len, len, buf);
 587        PRINT_PKT(buf, len);
 588
 589        /*
 590         * Send the packet length (+6 for status words, length, and ctl.
 591         * The card will pad to 64 bytes with zeroes if packet is too small.
 592         */
 593        SMC_PUT_PKT_HDR(lp, 0, len + 6);
 594
 595        /* send the actual data */
 596        SMC_PUSH_DATA(lp, buf, len & ~1);
 597
 598        /* Send final ctl word with the last byte if there is one */
 599        SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
 600
 601        /*
 602         * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
 603         * have the effect of having at most one packet queued for TX
 604         * in the chip's memory at all time.
 605         *
 606         * If THROTTLE_TX_PKTS is not set then the queue is stopped only
 607         * when memory allocation (MC_ALLOC) does not succeed right away.
 608         */
 609        if (THROTTLE_TX_PKTS)
 610                netif_stop_queue(dev);
 611
 612        /* queue the packet for TX */
 613        SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
 614        smc_special_unlock(&lp->lock, flags);
 615
 616        dev->trans_start = jiffies;
 617        dev->stats.tx_packets++;
 618        dev->stats.tx_bytes += len;
 619
 620        SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
 621
 622done:   if (!THROTTLE_TX_PKTS)
 623                netif_wake_queue(dev);
 624
 625        dev_kfree_skb(skb);
 626}
 627
 628/*
 629 * Since I am not sure if I will have enough room in the chip's ram
 630 * to store the packet, I call this routine which either sends it
 631 * now, or set the card to generates an interrupt when ready
 632 * for the packet.
 633 */
 634static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
 635{
 636        struct smc_local *lp = netdev_priv(dev);
 637        void __iomem *ioaddr = lp->base;
 638        unsigned int numPages, poll_count, status;
 639        unsigned long flags;
 640
 641        DBG(3, "%s: %s\n", dev->name, __func__);
 642
 643        BUG_ON(lp->pending_tx_skb != NULL);
 644
 645        /*
 646         * The MMU wants the number of pages to be the number of 256 bytes
 647         * 'pages', minus 1 (since a packet can't ever have 0 pages :))
 648         *
 649         * The 91C111 ignores the size bits, but earlier models don't.
 650         *
 651         * Pkt size for allocating is data length +6 (for additional status
 652         * words, length and ctl)
 653         *
 654         * If odd size then last byte is included in ctl word.
 655         */
 656        numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
 657        if (unlikely(numPages > 7)) {
 658                printk("%s: Far too big packet error.\n", dev->name);
 659                dev->stats.tx_errors++;
 660                dev->stats.tx_dropped++;
 661                dev_kfree_skb(skb);
 662                return NETDEV_TX_OK;
 663        }
 664
 665        smc_special_lock(&lp->lock, flags);
 666
 667        /* now, try to allocate the memory */
 668        SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
 669
 670        /*
 671         * Poll the chip for a short amount of time in case the
 672         * allocation succeeds quickly.
 673         */
 674        poll_count = MEMORY_WAIT_TIME;
 675        do {
 676                status = SMC_GET_INT(lp);
 677                if (status & IM_ALLOC_INT) {
 678                        SMC_ACK_INT(lp, IM_ALLOC_INT);
 679                        break;
 680                }
 681        } while (--poll_count);
 682
 683        smc_special_unlock(&lp->lock, flags);
 684
 685        lp->pending_tx_skb = skb;
 686        if (!poll_count) {
 687                /* oh well, wait until the chip finds memory later */
 688                netif_stop_queue(dev);
 689                DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
 690                SMC_ENABLE_INT(lp, IM_ALLOC_INT);
 691        } else {
 692                /*
 693                 * Allocation succeeded: push packet to the chip's own memory
 694                 * immediately.
 695                 */
 696                smc_hardware_send_pkt((unsigned long)dev);
 697        }
 698
 699        return NETDEV_TX_OK;
 700}
 701
 702/*
 703 * This handles a TX interrupt, which is only called when:
 704 * - a TX error occurred, or
 705 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
 706 */
 707static void smc_tx(struct net_device *dev)
 708{
 709        struct smc_local *lp = netdev_priv(dev);
 710        void __iomem *ioaddr = lp->base;
 711        unsigned int saved_packet, packet_no, tx_status, pkt_len;
 712
 713        DBG(3, "%s: %s\n", dev->name, __func__);
 714
 715        /* If the TX FIFO is empty then nothing to do */
 716        packet_no = SMC_GET_TXFIFO(lp);
 717        if (unlikely(packet_no & TXFIFO_TEMPTY)) {
 718                PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
 719                return;
 720        }
 721
 722        /* select packet to read from */
 723        saved_packet = SMC_GET_PN(lp);
 724        SMC_SET_PN(lp, packet_no);
 725
 726        /* read the first word (status word) from this packet */
 727        SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
 728        SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
 729        DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
 730                dev->name, tx_status, packet_no);
 731
 732        if (!(tx_status & ES_TX_SUC))
 733                dev->stats.tx_errors++;
 734
 735        if (tx_status & ES_LOSTCARR)
 736                dev->stats.tx_carrier_errors++;
 737
 738        if (tx_status & (ES_LATCOL | ES_16COL)) {
 739                PRINTK("%s: %s occurred on last xmit\n", dev->name,
 740                       (tx_status & ES_LATCOL) ?
 741                        "late collision" : "too many collisions");
 742                dev->stats.tx_window_errors++;
 743                if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
 744                        printk(KERN_INFO "%s: unexpectedly large number of "
 745                               "bad collisions. Please check duplex "
 746                               "setting.\n", dev->name);
 747                }
 748        }
 749
 750        /* kill the packet */
 751        SMC_WAIT_MMU_BUSY(lp);
 752        SMC_SET_MMU_CMD(lp, MC_FREEPKT);
 753
 754        /* Don't restore Packet Number Reg until busy bit is cleared */
 755        SMC_WAIT_MMU_BUSY(lp);
 756        SMC_SET_PN(lp, saved_packet);
 757
 758        /* re-enable transmit */
 759        SMC_SELECT_BANK(lp, 0);
 760        SMC_SET_TCR(lp, lp->tcr_cur_mode);
 761        SMC_SELECT_BANK(lp, 2);
 762}
 763
 764
 765/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
 766
 767static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
 768{
 769        struct smc_local *lp = netdev_priv(dev);
 770        void __iomem *ioaddr = lp->base;
 771        unsigned int mii_reg, mask;
 772
 773        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 774        mii_reg |= MII_MDOE;
 775
 776        for (mask = 1 << (bits - 1); mask; mask >>= 1) {
 777                if (val & mask)
 778                        mii_reg |= MII_MDO;
 779                else
 780                        mii_reg &= ~MII_MDO;
 781
 782                SMC_SET_MII(lp, mii_reg);
 783                udelay(MII_DELAY);
 784                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 785                udelay(MII_DELAY);
 786        }
 787}
 788
 789static unsigned int smc_mii_in(struct net_device *dev, int bits)
 790{
 791        struct smc_local *lp = netdev_priv(dev);
 792        void __iomem *ioaddr = lp->base;
 793        unsigned int mii_reg, mask, val;
 794
 795        mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 796        SMC_SET_MII(lp, mii_reg);
 797
 798        for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
 799                if (SMC_GET_MII(lp) & MII_MDI)
 800                        val |= mask;
 801
 802                SMC_SET_MII(lp, mii_reg);
 803                udelay(MII_DELAY);
 804                SMC_SET_MII(lp, mii_reg | MII_MCLK);
 805                udelay(MII_DELAY);
 806        }
 807
 808        return val;
 809}
 810
 811/*
 812 * Reads a register from the MII Management serial interface
 813 */
 814static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
 815{
 816        struct smc_local *lp = netdev_priv(dev);
 817        void __iomem *ioaddr = lp->base;
 818        unsigned int phydata;
 819
 820        SMC_SELECT_BANK(lp, 3);
 821
 822        /* Idle - 32 ones */
 823        smc_mii_out(dev, 0xffffffff, 32);
 824
 825        /* Start code (01) + read (10) + phyaddr + phyreg */
 826        smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
 827
 828        /* Turnaround (2bits) + phydata */
 829        phydata = smc_mii_in(dev, 18);
 830
 831        /* Return to idle state */
 832        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 833
 834        DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 835                __func__, phyaddr, phyreg, phydata);
 836
 837        SMC_SELECT_BANK(lp, 2);
 838        return phydata;
 839}
 840
 841/*
 842 * Writes a register to the MII Management serial interface
 843 */
 844static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
 845                          int phydata)
 846{
 847        struct smc_local *lp = netdev_priv(dev);
 848        void __iomem *ioaddr = lp->base;
 849
 850        SMC_SELECT_BANK(lp, 3);
 851
 852        /* Idle - 32 ones */
 853        smc_mii_out(dev, 0xffffffff, 32);
 854
 855        /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
 856        smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
 857
 858        /* Return to idle state */
 859        SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 860
 861        DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 862                __func__, phyaddr, phyreg, phydata);
 863
 864        SMC_SELECT_BANK(lp, 2);
 865}
 866
 867/*
 868 * Finds and reports the PHY address
 869 */
 870static void smc_phy_detect(struct net_device *dev)
 871{
 872        struct smc_local *lp = netdev_priv(dev);
 873        int phyaddr;
 874
 875        DBG(2, "%s: %s\n", dev->name, __func__);
 876
 877        lp->phy_type = 0;
 878
 879        /*
 880         * Scan all 32 PHY addresses if necessary, starting at
 881         * PHY#1 to PHY#31, and then PHY#0 last.
 882         */
 883        for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
 884                unsigned int id1, id2;
 885
 886                /* Read the PHY identifiers */
 887                id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
 888                id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
 889
 890                DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
 891                        dev->name, id1, id2);
 892
 893                /* Make sure it is a valid identifier */
 894                if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
 895                    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
 896                        /* Save the PHY's address */
 897                        lp->mii.phy_id = phyaddr & 31;
 898                        lp->phy_type = id1 << 16 | id2;
 899                        break;
 900                }
 901        }
 902}
 903
 904/*
 905 * Sets the PHY to a configuration as determined by the user
 906 */
 907static int smc_phy_fixed(struct net_device *dev)
 908{
 909        struct smc_local *lp = netdev_priv(dev);
 910        void __iomem *ioaddr = lp->base;
 911        int phyaddr = lp->mii.phy_id;
 912        int bmcr, cfg1;
 913
 914        DBG(3, "%s: %s\n", dev->name, __func__);
 915
 916        /* Enter Link Disable state */
 917        cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
 918        cfg1 |= PHY_CFG1_LNKDIS;
 919        smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
 920
 921        /*
 922         * Set our fixed capabilities
 923         * Disable auto-negotiation
 924         */
 925        bmcr = 0;
 926
 927        if (lp->ctl_rfduplx)
 928                bmcr |= BMCR_FULLDPLX;
 929
 930        if (lp->ctl_rspeed == 100)
 931                bmcr |= BMCR_SPEED100;
 932
 933        /* Write our capabilities to the phy control register */
 934        smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
 935
 936        /* Re-Configure the Receive/Phy Control register */
 937        SMC_SELECT_BANK(lp, 0);
 938        SMC_SET_RPC(lp, lp->rpc_cur_mode);
 939        SMC_SELECT_BANK(lp, 2);
 940
 941        return 1;
 942}
 943
 944/*
 945 * smc_phy_reset - reset the phy
 946 * @dev: net device
 947 * @phy: phy address
 948 *
 949 * Issue a software reset for the specified PHY and
 950 * wait up to 100ms for the reset to complete.  We should
 951 * not access the PHY for 50ms after issuing the reset.
 952 *
 953 * The time to wait appears to be dependent on the PHY.
 954 *
 955 * Must be called with lp->lock locked.
 956 */
 957static int smc_phy_reset(struct net_device *dev, int phy)
 958{
 959        struct smc_local *lp = netdev_priv(dev);
 960        unsigned int bmcr;
 961        int timeout;
 962
 963        smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
 964
 965        for (timeout = 2; timeout; timeout--) {
 966                spin_unlock_irq(&lp->lock);
 967                msleep(50);
 968                spin_lock_irq(&lp->lock);
 969
 970                bmcr = smc_phy_read(dev, phy, MII_BMCR);
 971                if (!(bmcr & BMCR_RESET))
 972                        break;
 973        }
 974
 975        return bmcr & BMCR_RESET;
 976}
 977
 978/*
 979 * smc_phy_powerdown - powerdown phy
 980 * @dev: net device
 981 *
 982 * Power down the specified PHY
 983 */
 984static void smc_phy_powerdown(struct net_device *dev)
 985{
 986        struct smc_local *lp = netdev_priv(dev);
 987        unsigned int bmcr;
 988        int phy = lp->mii.phy_id;
 989
 990        if (lp->phy_type == 0)
 991                return;
 992
 993        /* We need to ensure that no calls to smc_phy_configure are
 994           pending.
 995        */
 996        cancel_work_sync(&lp->phy_configure);
 997
 998        bmcr = smc_phy_read(dev, phy, MII_BMCR);
 999        smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1000}
1001
1002/*
1003 * smc_phy_check_media - check the media status and adjust TCR
1004 * @dev: net device
1005 * @init: set true for initialisation
1006 *
1007 * Select duplex mode depending on negotiation state.  This
1008 * also updates our carrier state.
1009 */
1010static void smc_phy_check_media(struct net_device *dev, int init)
1011{
1012        struct smc_local *lp = netdev_priv(dev);
1013        void __iomem *ioaddr = lp->base;
1014
1015        if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1016                /* duplex state has changed */
1017                if (lp->mii.full_duplex) {
1018                        lp->tcr_cur_mode |= TCR_SWFDUP;
1019                } else {
1020                        lp->tcr_cur_mode &= ~TCR_SWFDUP;
1021                }
1022
1023                SMC_SELECT_BANK(lp, 0);
1024                SMC_SET_TCR(lp, lp->tcr_cur_mode);
1025        }
1026}
1027
1028/*
1029 * Configures the specified PHY through the MII management interface
1030 * using Autonegotiation.
1031 * Calls smc_phy_fixed() if the user has requested a certain config.
1032 * If RPC ANEG bit is set, the media selection is dependent purely on
1033 * the selection by the MII (either in the MII BMCR reg or the result
1034 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1035 * is controlled by the RPC SPEED and RPC DPLX bits.
1036 */
1037static void smc_phy_configure(struct work_struct *work)
1038{
1039        struct smc_local *lp =
1040                container_of(work, struct smc_local, phy_configure);
1041        struct net_device *dev = lp->dev;
1042        void __iomem *ioaddr = lp->base;
1043        int phyaddr = lp->mii.phy_id;
1044        int my_phy_caps; /* My PHY capabilities */
1045        int my_ad_caps; /* My Advertised capabilities */
1046        int status;
1047
1048        DBG(3, "%s:smc_program_phy()\n", dev->name);
1049
1050        spin_lock_irq(&lp->lock);
1051
1052        /*
1053         * We should not be called if phy_type is zero.
1054         */
1055        if (lp->phy_type == 0)
1056                goto smc_phy_configure_exit;
1057
1058        if (smc_phy_reset(dev, phyaddr)) {
1059                printk("%s: PHY reset timed out\n", dev->name);
1060                goto smc_phy_configure_exit;
1061        }
1062
1063        /*
1064         * Enable PHY Interrupts (for register 18)
1065         * Interrupts listed here are disabled
1066         */
1067        smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1068                PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1069                PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1070                PHY_INT_SPDDET | PHY_INT_DPLXDET);
1071
1072        /* Configure the Receive/Phy Control register */
1073        SMC_SELECT_BANK(lp, 0);
1074        SMC_SET_RPC(lp, lp->rpc_cur_mode);
1075
1076        /* If the user requested no auto neg, then go set his request */
1077        if (lp->mii.force_media) {
1078                smc_phy_fixed(dev);
1079                goto smc_phy_configure_exit;
1080        }
1081
1082        /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1083        my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1084
1085        if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1086                printk(KERN_INFO "Auto negotiation NOT supported\n");
1087                smc_phy_fixed(dev);
1088                goto smc_phy_configure_exit;
1089        }
1090
1091        my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1092
1093        if (my_phy_caps & BMSR_100BASE4)
1094                my_ad_caps |= ADVERTISE_100BASE4;
1095        if (my_phy_caps & BMSR_100FULL)
1096                my_ad_caps |= ADVERTISE_100FULL;
1097        if (my_phy_caps & BMSR_100HALF)
1098                my_ad_caps |= ADVERTISE_100HALF;
1099        if (my_phy_caps & BMSR_10FULL)
1100                my_ad_caps |= ADVERTISE_10FULL;
1101        if (my_phy_caps & BMSR_10HALF)
1102                my_ad_caps |= ADVERTISE_10HALF;
1103
1104        /* Disable capabilities not selected by our user */
1105        if (lp->ctl_rspeed != 100)
1106                my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1107
1108        if (!lp->ctl_rfduplx)
1109                my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1110
1111        /* Update our Auto-Neg Advertisement Register */
1112        smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1113        lp->mii.advertising = my_ad_caps;
1114
1115        /*
1116         * Read the register back.  Without this, it appears that when
1117         * auto-negotiation is restarted, sometimes it isn't ready and
1118         * the link does not come up.
1119         */
1120        status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1121
1122        DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1123        DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1124
1125        /* Restart auto-negotiation process in order to advertise my caps */
1126        smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1127
1128        smc_phy_check_media(dev, 1);
1129
1130smc_phy_configure_exit:
1131        SMC_SELECT_BANK(lp, 2);
1132        spin_unlock_irq(&lp->lock);
1133}
1134
1135/*
1136 * smc_phy_interrupt
1137 *
1138 * Purpose:  Handle interrupts relating to PHY register 18. This is
1139 *  called from the "hard" interrupt handler under our private spinlock.
1140 */
1141static void smc_phy_interrupt(struct net_device *dev)
1142{
1143        struct smc_local *lp = netdev_priv(dev);
1144        int phyaddr = lp->mii.phy_id;
1145        int phy18;
1146
1147        DBG(2, "%s: %s\n", dev->name, __func__);
1148
1149        if (lp->phy_type == 0)
1150                return;
1151
1152        for(;;) {
1153                smc_phy_check_media(dev, 0);
1154
1155                /* Read PHY Register 18, Status Output */
1156                phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1157                if ((phy18 & PHY_INT_INT) == 0)
1158                        break;
1159        }
1160}
1161
1162/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1163
1164static void smc_10bt_check_media(struct net_device *dev, int init)
1165{
1166        struct smc_local *lp = netdev_priv(dev);
1167        void __iomem *ioaddr = lp->base;
1168        unsigned int old_carrier, new_carrier;
1169
1170        old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1171
1172        SMC_SELECT_BANK(lp, 0);
1173        new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1174        SMC_SELECT_BANK(lp, 2);
1175
1176        if (init || (old_carrier != new_carrier)) {
1177                if (!new_carrier) {
1178                        netif_carrier_off(dev);
1179                } else {
1180                        netif_carrier_on(dev);
1181                }
1182                if (netif_msg_link(lp))
1183                        printk(KERN_INFO "%s: link %s\n", dev->name,
1184                               new_carrier ? "up" : "down");
1185        }
1186}
1187
1188static void smc_eph_interrupt(struct net_device *dev)
1189{
1190        struct smc_local *lp = netdev_priv(dev);
1191        void __iomem *ioaddr = lp->base;
1192        unsigned int ctl;
1193
1194        smc_10bt_check_media(dev, 0);
1195
1196        SMC_SELECT_BANK(lp, 1);
1197        ctl = SMC_GET_CTL(lp);
1198        SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1199        SMC_SET_CTL(lp, ctl);
1200        SMC_SELECT_BANK(lp, 2);
1201}
1202
1203/*
1204 * This is the main routine of the driver, to handle the device when
1205 * it needs some attention.
1206 */
1207static irqreturn_t smc_interrupt(int irq, void *dev_id)
1208{
1209        struct net_device *dev = dev_id;
1210        struct smc_local *lp = netdev_priv(dev);
1211        void __iomem *ioaddr = lp->base;
1212        int status, mask, timeout, card_stats;
1213        int saved_pointer;
1214
1215        DBG(3, "%s: %s\n", dev->name, __func__);
1216
1217        spin_lock(&lp->lock);
1218
1219        /* A preamble may be used when there is a potential race
1220         * between the interruptible transmit functions and this
1221         * ISR. */
1222        SMC_INTERRUPT_PREAMBLE;
1223
1224        saved_pointer = SMC_GET_PTR(lp);
1225        mask = SMC_GET_INT_MASK(lp);
1226        SMC_SET_INT_MASK(lp, 0);
1227
1228        /* set a timeout value, so I don't stay here forever */
1229        timeout = MAX_IRQ_LOOPS;
1230
1231        do {
1232                status = SMC_GET_INT(lp);
1233
1234                DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1235                        dev->name, status, mask,
1236                        ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1237                           meminfo = SMC_GET_MIR(lp);
1238                           SMC_SELECT_BANK(lp, 2); meminfo; }),
1239                        SMC_GET_FIFO(lp));
1240
1241                status &= mask;
1242                if (!status)
1243                        break;
1244
1245                if (status & IM_TX_INT) {
1246                        /* do this before RX as it will free memory quickly */
1247                        DBG(3, "%s: TX int\n", dev->name);
1248                        smc_tx(dev);
1249                        SMC_ACK_INT(lp, IM_TX_INT);
1250                        if (THROTTLE_TX_PKTS)
1251                                netif_wake_queue(dev);
1252                } else if (status & IM_RCV_INT) {
1253                        DBG(3, "%s: RX irq\n", dev->name);
1254                        smc_rcv(dev);
1255                } else if (status & IM_ALLOC_INT) {
1256                        DBG(3, "%s: Allocation irq\n", dev->name);
1257                        tasklet_hi_schedule(&lp->tx_task);
1258                        mask &= ~IM_ALLOC_INT;
1259                } else if (status & IM_TX_EMPTY_INT) {
1260                        DBG(3, "%s: TX empty\n", dev->name);
1261                        mask &= ~IM_TX_EMPTY_INT;
1262
1263                        /* update stats */
1264                        SMC_SELECT_BANK(lp, 0);
1265                        card_stats = SMC_GET_COUNTER(lp);
1266                        SMC_SELECT_BANK(lp, 2);
1267
1268                        /* single collisions */
1269                        dev->stats.collisions += card_stats & 0xF;
1270                        card_stats >>= 4;
1271
1272                        /* multiple collisions */
1273                        dev->stats.collisions += card_stats & 0xF;
1274                } else if (status & IM_RX_OVRN_INT) {
1275                        DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1276                               ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1277                                  eph_st = SMC_GET_EPH_STATUS(lp);
1278                                  SMC_SELECT_BANK(lp, 2); eph_st; }));
1279                        SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1280                        dev->stats.rx_errors++;
1281                        dev->stats.rx_fifo_errors++;
1282                } else if (status & IM_EPH_INT) {
1283                        smc_eph_interrupt(dev);
1284                } else if (status & IM_MDINT) {
1285                        SMC_ACK_INT(lp, IM_MDINT);
1286                        smc_phy_interrupt(dev);
1287                } else if (status & IM_ERCV_INT) {
1288                        SMC_ACK_INT(lp, IM_ERCV_INT);
1289                        PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1290                }
1291        } while (--timeout);
1292
1293        /* restore register states */
1294        SMC_SET_PTR(lp, saved_pointer);
1295        SMC_SET_INT_MASK(lp, mask);
1296        spin_unlock(&lp->lock);
1297
1298#ifndef CONFIG_NET_POLL_CONTROLLER
1299        if (timeout == MAX_IRQ_LOOPS)
1300                PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1301                       dev->name, mask);
1302#endif
1303        DBG(3, "%s: Interrupt done (%d loops)\n",
1304               dev->name, MAX_IRQ_LOOPS - timeout);
1305
1306        /*
1307         * We return IRQ_HANDLED unconditionally here even if there was
1308         * nothing to do.  There is a possibility that a packet might
1309         * get enqueued into the chip right after TX_EMPTY_INT is raised
1310         * but just before the CPU acknowledges the IRQ.
1311         * Better take an unneeded IRQ in some occasions than complexifying
1312         * the code for all cases.
1313         */
1314        return IRQ_HANDLED;
1315}
1316
1317#ifdef CONFIG_NET_POLL_CONTROLLER
1318/*
1319 * Polling receive - used by netconsole and other diagnostic tools
1320 * to allow network i/o with interrupts disabled.
1321 */
1322static void smc_poll_controller(struct net_device *dev)
1323{
1324        disable_irq(dev->irq);
1325        smc_interrupt(dev->irq, dev);
1326        enable_irq(dev->irq);
1327}
1328#endif
1329
1330/* Our watchdog timed out. Called by the networking layer */
1331static void smc_timeout(struct net_device *dev)
1332{
1333        struct smc_local *lp = netdev_priv(dev);
1334        void __iomem *ioaddr = lp->base;
1335        int status, mask, eph_st, meminfo, fifo;
1336
1337        DBG(2, "%s: %s\n", dev->name, __func__);
1338
1339        spin_lock_irq(&lp->lock);
1340        status = SMC_GET_INT(lp);
1341        mask = SMC_GET_INT_MASK(lp);
1342        fifo = SMC_GET_FIFO(lp);
1343        SMC_SELECT_BANK(lp, 0);
1344        eph_st = SMC_GET_EPH_STATUS(lp);
1345        meminfo = SMC_GET_MIR(lp);
1346        SMC_SELECT_BANK(lp, 2);
1347        spin_unlock_irq(&lp->lock);
1348        PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1349                "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1350                dev->name, status, mask, meminfo, fifo, eph_st );
1351
1352        smc_reset(dev);
1353        smc_enable(dev);
1354
1355        /*
1356         * Reconfiguring the PHY doesn't seem like a bad idea here, but
1357         * smc_phy_configure() calls msleep() which calls schedule_timeout()
1358         * which calls schedule().  Hence we use a work queue.
1359         */
1360        if (lp->phy_type != 0)
1361                schedule_work(&lp->phy_configure);
1362
1363        /* We can accept TX packets again */
1364        dev->trans_start = jiffies;
1365        netif_wake_queue(dev);
1366}
1367
1368/*
1369 * This routine will, depending on the values passed to it,
1370 * either make it accept multicast packets, go into
1371 * promiscuous mode (for TCPDUMP and cousins) or accept
1372 * a select set of multicast packets
1373 */
1374static void smc_set_multicast_list(struct net_device *dev)
1375{
1376        struct smc_local *lp = netdev_priv(dev);
1377        void __iomem *ioaddr = lp->base;
1378        unsigned char multicast_table[8];
1379        int update_multicast = 0;
1380
1381        DBG(2, "%s: %s\n", dev->name, __func__);
1382
1383        if (dev->flags & IFF_PROMISC) {
1384                DBG(2, "%s: RCR_PRMS\n", dev->name);
1385                lp->rcr_cur_mode |= RCR_PRMS;
1386        }
1387
1388/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1389   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1390   when promiscuous mode is turned on.
1391*/
1392
1393        /*
1394         * Here, I am setting this to accept all multicast packets.
1395         * I don't need to zero the multicast table, because the flag is
1396         * checked before the table is
1397         */
1398        else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1399                DBG(2, "%s: RCR_ALMUL\n", dev->name);
1400                lp->rcr_cur_mode |= RCR_ALMUL;
1401        }
1402
1403        /*
1404         * This sets the internal hardware table to filter out unwanted
1405         * multicast packets before they take up memory.
1406         *
1407         * The SMC chip uses a hash table where the high 6 bits of the CRC of
1408         * address are the offset into the table.  If that bit is 1, then the
1409         * multicast packet is accepted.  Otherwise, it's dropped silently.
1410         *
1411         * To use the 6 bits as an offset into the table, the high 3 bits are
1412         * the number of the 8 bit register, while the low 3 bits are the bit
1413         * within that register.
1414         */
1415        else if (dev->mc_count)  {
1416                int i;
1417                struct dev_mc_list *cur_addr;
1418
1419                /* table for flipping the order of 3 bits */
1420                static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1421
1422                /* start with a table of all zeros: reject all */
1423                memset(multicast_table, 0, sizeof(multicast_table));
1424
1425                cur_addr = dev->mc_list;
1426                for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1427                        int position;
1428
1429                        /* do we have a pointer here? */
1430                        if (!cur_addr)
1431                                break;
1432                        /* make sure this is a multicast address -
1433                           shouldn't this be a given if we have it here ? */
1434                        if (!(*cur_addr->dmi_addr & 1))
1435                                continue;
1436
1437                        /* only use the low order bits */
1438                        position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1439
1440                        /* do some messy swapping to put the bit in the right spot */
1441                        multicast_table[invert3[position&7]] |=
1442                                (1<<invert3[(position>>3)&7]);
1443                }
1444
1445                /* be sure I get rid of flags I might have set */
1446                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1447
1448                /* now, the table can be loaded into the chipset */
1449                update_multicast = 1;
1450        } else  {
1451                DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1452                lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1453
1454                /*
1455                 * since I'm disabling all multicast entirely, I need to
1456                 * clear the multicast list
1457                 */
1458                memset(multicast_table, 0, sizeof(multicast_table));
1459                update_multicast = 1;
1460        }
1461
1462        spin_lock_irq(&lp->lock);
1463        SMC_SELECT_BANK(lp, 0);
1464        SMC_SET_RCR(lp, lp->rcr_cur_mode);
1465        if (update_multicast) {
1466                SMC_SELECT_BANK(lp, 3);
1467                SMC_SET_MCAST(lp, multicast_table);
1468        }
1469        SMC_SELECT_BANK(lp, 2);
1470        spin_unlock_irq(&lp->lock);
1471}
1472
1473
1474/*
1475 * Open and Initialize the board
1476 *
1477 * Set up everything, reset the card, etc..
1478 */
1479static int
1480smc_open(struct net_device *dev)
1481{
1482        struct smc_local *lp = netdev_priv(dev);
1483
1484        DBG(2, "%s: %s\n", dev->name, __func__);
1485
1486        /*
1487         * Check that the address is valid.  If its not, refuse
1488         * to bring the device up.  The user must specify an
1489         * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1490         */
1491        if (!is_valid_ether_addr(dev->dev_addr)) {
1492                PRINTK("%s: no valid ethernet hw addr\n", __func__);
1493                return -EINVAL;
1494        }
1495
1496        /* Setup the default Register Modes */
1497        lp->tcr_cur_mode = TCR_DEFAULT;
1498        lp->rcr_cur_mode = RCR_DEFAULT;
1499        lp->rpc_cur_mode = RPC_DEFAULT |
1500                                lp->cfg.leda << RPC_LSXA_SHFT |
1501                                lp->cfg.ledb << RPC_LSXB_SHFT;
1502
1503        /*
1504         * If we are not using a MII interface, we need to
1505         * monitor our own carrier signal to detect faults.
1506         */
1507        if (lp->phy_type == 0)
1508                lp->tcr_cur_mode |= TCR_MON_CSN;
1509
1510        /* reset the hardware */
1511        smc_reset(dev);
1512        smc_enable(dev);
1513
1514        /* Configure the PHY, initialize the link state */
1515        if (lp->phy_type != 0)
1516                smc_phy_configure(&lp->phy_configure);
1517        else {
1518                spin_lock_irq(&lp->lock);
1519                smc_10bt_check_media(dev, 1);
1520                spin_unlock_irq(&lp->lock);
1521        }
1522
1523        netif_start_queue(dev);
1524        return 0;
1525}
1526
1527/*
1528 * smc_close
1529 *
1530 * this makes the board clean up everything that it can
1531 * and not talk to the outside world.   Caused by
1532 * an 'ifconfig ethX down'
1533 */
1534static int smc_close(struct net_device *dev)
1535{
1536        struct smc_local *lp = netdev_priv(dev);
1537
1538        DBG(2, "%s: %s\n", dev->name, __func__);
1539
1540        netif_stop_queue(dev);
1541        netif_carrier_off(dev);
1542
1543        /* clear everything */
1544        smc_shutdown(dev);
1545        tasklet_kill(&lp->tx_task);
1546        smc_phy_powerdown(dev);
1547        return 0;
1548}
1549
1550/*
1551 * Ethtool support
1552 */
1553static int
1554smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1555{
1556        struct smc_local *lp = netdev_priv(dev);
1557        int ret;
1558
1559        cmd->maxtxpkt = 1;
1560        cmd->maxrxpkt = 1;
1561
1562        if (lp->phy_type != 0) {
1563                spin_lock_irq(&lp->lock);
1564                ret = mii_ethtool_gset(&lp->mii, cmd);
1565                spin_unlock_irq(&lp->lock);
1566        } else {
1567                cmd->supported = SUPPORTED_10baseT_Half |
1568                                 SUPPORTED_10baseT_Full |
1569                                 SUPPORTED_TP | SUPPORTED_AUI;
1570
1571                if (lp->ctl_rspeed == 10)
1572                        cmd->speed = SPEED_10;
1573                else if (lp->ctl_rspeed == 100)
1574                        cmd->speed = SPEED_100;
1575
1576                cmd->autoneg = AUTONEG_DISABLE;
1577                cmd->transceiver = XCVR_INTERNAL;
1578                cmd->port = 0;
1579                cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1580
1581                ret = 0;
1582        }
1583
1584        return ret;
1585}
1586
1587static int
1588smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1589{
1590        struct smc_local *lp = netdev_priv(dev);
1591        int ret;
1592
1593        if (lp->phy_type != 0) {
1594                spin_lock_irq(&lp->lock);
1595                ret = mii_ethtool_sset(&lp->mii, cmd);
1596                spin_unlock_irq(&lp->lock);
1597        } else {
1598                if (cmd->autoneg != AUTONEG_DISABLE ||
1599                    cmd->speed != SPEED_10 ||
1600                    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1601                    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1602                        return -EINVAL;
1603
1604//              lp->port = cmd->port;
1605                lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1606
1607//              if (netif_running(dev))
1608//                      smc_set_port(dev);
1609
1610                ret = 0;
1611        }
1612
1613        return ret;
1614}
1615
1616static void
1617smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1618{
1619        strncpy(info->driver, CARDNAME, sizeof(info->driver));
1620        strncpy(info->version, version, sizeof(info->version));
1621        strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1622}
1623
1624static int smc_ethtool_nwayreset(struct net_device *dev)
1625{
1626        struct smc_local *lp = netdev_priv(dev);
1627        int ret = -EINVAL;
1628
1629        if (lp->phy_type != 0) {
1630                spin_lock_irq(&lp->lock);
1631                ret = mii_nway_restart(&lp->mii);
1632                spin_unlock_irq(&lp->lock);
1633        }
1634
1635        return ret;
1636}
1637
1638static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1639{
1640        struct smc_local *lp = netdev_priv(dev);
1641        return lp->msg_enable;
1642}
1643
1644static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1645{
1646        struct smc_local *lp = netdev_priv(dev);
1647        lp->msg_enable = level;
1648}
1649
1650static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1651{
1652        u16 ctl;
1653        struct smc_local *lp = netdev_priv(dev);
1654        void __iomem *ioaddr = lp->base;
1655
1656        spin_lock_irq(&lp->lock);
1657        /* load word into GP register */
1658        SMC_SELECT_BANK(lp, 1);
1659        SMC_SET_GP(lp, word);
1660        /* set the address to put the data in EEPROM */
1661        SMC_SELECT_BANK(lp, 2);
1662        SMC_SET_PTR(lp, addr);
1663        /* tell it to write */
1664        SMC_SELECT_BANK(lp, 1);
1665        ctl = SMC_GET_CTL(lp);
1666        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1667        /* wait for it to finish */
1668        do {
1669                udelay(1);
1670        } while (SMC_GET_CTL(lp) & CTL_STORE);
1671        /* clean up */
1672        SMC_SET_CTL(lp, ctl);
1673        SMC_SELECT_BANK(lp, 2);
1674        spin_unlock_irq(&lp->lock);
1675        return 0;
1676}
1677
1678static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1679{
1680        u16 ctl;
1681        struct smc_local *lp = netdev_priv(dev);
1682        void __iomem *ioaddr = lp->base;
1683
1684        spin_lock_irq(&lp->lock);
1685        /* set the EEPROM address to get the data from */
1686        SMC_SELECT_BANK(lp, 2);
1687        SMC_SET_PTR(lp, addr | PTR_READ);
1688        /* tell it to load */
1689        SMC_SELECT_BANK(lp, 1);
1690        SMC_SET_GP(lp, 0xffff); /* init to known */
1691        ctl = SMC_GET_CTL(lp);
1692        SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1693        /* wait for it to finish */
1694        do {
1695                udelay(1);
1696        } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1697        /* read word from GP register */
1698        *word = SMC_GET_GP(lp);
1699        /* clean up */
1700        SMC_SET_CTL(lp, ctl);
1701        SMC_SELECT_BANK(lp, 2);
1702        spin_unlock_irq(&lp->lock);
1703        return 0;
1704}
1705
1706static int smc_ethtool_geteeprom_len(struct net_device *dev)
1707{
1708        return 0x23 * 2;
1709}
1710
1711static int smc_ethtool_geteeprom(struct net_device *dev,
1712                struct ethtool_eeprom *eeprom, u8 *data)
1713{
1714        int i;
1715        int imax;
1716
1717        DBG(1, "Reading %d bytes at %d(0x%x)\n",
1718                eeprom->len, eeprom->offset, eeprom->offset);
1719        imax = smc_ethtool_geteeprom_len(dev);
1720        for (i = 0; i < eeprom->len; i += 2) {
1721                int ret;
1722                u16 wbuf;
1723                int offset = i + eeprom->offset;
1724                if (offset > imax)
1725                        break;
1726                ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1727                if (ret != 0)
1728                        return ret;
1729                DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1730                data[i] = (wbuf >> 8) & 0xff;
1731                data[i+1] = wbuf & 0xff;
1732        }
1733        return 0;
1734}
1735
1736static int smc_ethtool_seteeprom(struct net_device *dev,
1737                struct ethtool_eeprom *eeprom, u8 *data)
1738{
1739        int i;
1740        int imax;
1741
1742        DBG(1, "Writing %d bytes to %d(0x%x)\n",
1743                        eeprom->len, eeprom->offset, eeprom->offset);
1744        imax = smc_ethtool_geteeprom_len(dev);
1745        for (i = 0; i < eeprom->len; i += 2) {
1746                int ret;
1747                u16 wbuf;
1748                int offset = i + eeprom->offset;
1749                if (offset > imax)
1750                        break;
1751                wbuf = (data[i] << 8) | data[i + 1];
1752                DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1753                ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1754                if (ret != 0)
1755                        return ret;
1756        }
1757        return 0;
1758}
1759
1760
1761static const struct ethtool_ops smc_ethtool_ops = {
1762        .get_settings   = smc_ethtool_getsettings,
1763        .set_settings   = smc_ethtool_setsettings,
1764        .get_drvinfo    = smc_ethtool_getdrvinfo,
1765
1766        .get_msglevel   = smc_ethtool_getmsglevel,
1767        .set_msglevel   = smc_ethtool_setmsglevel,
1768        .nway_reset     = smc_ethtool_nwayreset,
1769        .get_link       = ethtool_op_get_link,
1770        .get_eeprom_len = smc_ethtool_geteeprom_len,
1771        .get_eeprom     = smc_ethtool_geteeprom,
1772        .set_eeprom     = smc_ethtool_seteeprom,
1773};
1774
1775static const struct net_device_ops smc_netdev_ops = {
1776        .ndo_open               = smc_open,
1777        .ndo_stop               = smc_close,
1778        .ndo_start_xmit         = smc_hard_start_xmit,
1779        .ndo_tx_timeout         = smc_timeout,
1780        .ndo_set_multicast_list = smc_set_multicast_list,
1781        .ndo_change_mtu         = eth_change_mtu,
1782        .ndo_validate_addr      = eth_validate_addr,
1783        .ndo_set_mac_address    = eth_mac_addr,
1784#ifdef CONFIG_NET_POLL_CONTROLLER
1785        .ndo_poll_controller    = smc_poll_controller,
1786#endif
1787};
1788
1789/*
1790 * smc_findirq
1791 *
1792 * This routine has a simple purpose -- make the SMC chip generate an
1793 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1794 */
1795/*
1796 * does this still work?
1797 *
1798 * I just deleted auto_irq.c, since it was never built...
1799 *   --jgarzik
1800 */
1801static int __devinit smc_findirq(struct smc_local *lp)
1802{
1803        void __iomem *ioaddr = lp->base;
1804        int timeout = 20;
1805        unsigned long cookie;
1806
1807        DBG(2, "%s: %s\n", CARDNAME, __func__);
1808
1809        cookie = probe_irq_on();
1810
1811        /*
1812         * What I try to do here is trigger an ALLOC_INT. This is done
1813         * by allocating a small chunk of memory, which will give an interrupt
1814         * when done.
1815         */
1816        /* enable ALLOCation interrupts ONLY */
1817        SMC_SELECT_BANK(lp, 2);
1818        SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1819
1820        /*
1821         * Allocate 512 bytes of memory.  Note that the chip was just
1822         * reset so all the memory is available
1823         */
1824        SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1825
1826        /*
1827         * Wait until positive that the interrupt has been generated
1828         */
1829        do {
1830                int int_status;
1831                udelay(10);
1832                int_status = SMC_GET_INT(lp);
1833                if (int_status & IM_ALLOC_INT)
1834                        break;          /* got the interrupt */
1835        } while (--timeout);
1836
1837        /*
1838         * there is really nothing that I can do here if timeout fails,
1839         * as autoirq_report will return a 0 anyway, which is what I
1840         * want in this case.   Plus, the clean up is needed in both
1841         * cases.
1842         */
1843
1844        /* and disable all interrupts again */
1845        SMC_SET_INT_MASK(lp, 0);
1846
1847        /* and return what I found */
1848        return probe_irq_off(cookie);
1849}
1850
1851/*
1852 * Function: smc_probe(unsigned long ioaddr)
1853 *
1854 * Purpose:
1855 *      Tests to see if a given ioaddr points to an SMC91x chip.
1856 *      Returns a 0 on success
1857 *
1858 * Algorithm:
1859 *      (1) see if the high byte of BANK_SELECT is 0x33
1860 *      (2) compare the ioaddr with the base register's address
1861 *      (3) see if I recognize the chip ID in the appropriate register
1862 *
1863 * Here I do typical initialization tasks.
1864 *
1865 * o  Initialize the structure if needed
1866 * o  print out my vanity message if not done so already
1867 * o  print out what type of hardware is detected
1868 * o  print out the ethernet address
1869 * o  find the IRQ
1870 * o  set up my private data
1871 * o  configure the dev structure with my subroutines
1872 * o  actually GRAB the irq.
1873 * o  GRAB the region
1874 */
1875static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
1876                            unsigned long irq_flags)
1877{
1878        struct smc_local *lp = netdev_priv(dev);
1879        static int version_printed = 0;
1880        int retval;
1881        unsigned int val, revision_register;
1882        const char *version_string;
1883
1884        DBG(2, "%s: %s\n", CARDNAME, __func__);
1885
1886        /* First, see if the high byte is 0x33 */
1887        val = SMC_CURRENT_BANK(lp);
1888        DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1889        if ((val & 0xFF00) != 0x3300) {
1890                if ((val & 0xFF) == 0x33) {
1891                        printk(KERN_WARNING
1892                                "%s: Detected possible byte-swapped interface"
1893                                " at IOADDR %p\n", CARDNAME, ioaddr);
1894                }
1895                retval = -ENODEV;
1896                goto err_out;
1897        }
1898
1899        /*
1900         * The above MIGHT indicate a device, but I need to write to
1901         * further test this.
1902         */
1903        SMC_SELECT_BANK(lp, 0);
1904        val = SMC_CURRENT_BANK(lp);
1905        if ((val & 0xFF00) != 0x3300) {
1906                retval = -ENODEV;
1907                goto err_out;
1908        }
1909
1910        /*
1911         * well, we've already written once, so hopefully another
1912         * time won't hurt.  This time, I need to switch the bank
1913         * register to bank 1, so I can access the base address
1914         * register
1915         */
1916        SMC_SELECT_BANK(lp, 1);
1917        val = SMC_GET_BASE(lp);
1918        val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1919        if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1920                printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1921                        CARDNAME, ioaddr, val);
1922        }
1923
1924        /*
1925         * check if the revision register is something that I
1926         * recognize.  These might need to be added to later,
1927         * as future revisions could be added.
1928         */
1929        SMC_SELECT_BANK(lp, 3);
1930        revision_register = SMC_GET_REV(lp);
1931        DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1932        version_string = chip_ids[ (revision_register >> 4) & 0xF];
1933        if (!version_string || (revision_register & 0xff00) != 0x3300) {
1934                /* I don't recognize this chip, so... */
1935                printk("%s: IO %p: Unrecognized revision register 0x%04x"
1936                        ", Contact author.\n", CARDNAME,
1937                        ioaddr, revision_register);
1938
1939                retval = -ENODEV;
1940                goto err_out;
1941        }
1942
1943        /* At this point I'll assume that the chip is an SMC91x. */
1944        if (version_printed++ == 0)
1945                printk("%s", version);
1946
1947        /* fill in some of the fields */
1948        dev->base_addr = (unsigned long)ioaddr;
1949        lp->base = ioaddr;
1950        lp->version = revision_register & 0xff;
1951        spin_lock_init(&lp->lock);
1952
1953        /* Get the MAC address */
1954        SMC_SELECT_BANK(lp, 1);
1955        SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1956
1957        /* now, reset the chip, and put it into a known state */
1958        smc_reset(dev);
1959
1960        /*
1961         * If dev->irq is 0, then the device has to be banged on to see
1962         * what the IRQ is.
1963         *
1964         * This banging doesn't always detect the IRQ, for unknown reasons.
1965         * a workaround is to reset the chip and try again.
1966         *
1967         * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1968         * be what is requested on the command line.   I don't do that, mostly
1969         * because the card that I have uses a non-standard method of accessing
1970         * the IRQs, and because this _should_ work in most configurations.
1971         *
1972         * Specifying an IRQ is done with the assumption that the user knows
1973         * what (s)he is doing.  No checking is done!!!!
1974         */
1975        if (dev->irq < 1) {
1976                int trials;
1977
1978                trials = 3;
1979                while (trials--) {
1980                        dev->irq = smc_findirq(lp);
1981                        if (dev->irq)
1982                                break;
1983                        /* kick the card and try again */
1984                        smc_reset(dev);
1985                }
1986        }
1987        if (dev->irq == 0) {
1988                printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1989                        dev->name);
1990                retval = -ENODEV;
1991                goto err_out;
1992        }
1993        dev->irq = irq_canonicalize(dev->irq);
1994
1995        /* Fill in the fields of the device structure with ethernet values. */
1996        ether_setup(dev);
1997
1998        dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1999        dev->netdev_ops = &smc_netdev_ops;
2000        dev->ethtool_ops = &smc_ethtool_ops;
2001
2002        tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
2003        INIT_WORK(&lp->phy_configure, smc_phy_configure);
2004        lp->dev = dev;
2005        lp->mii.phy_id_mask = 0x1f;
2006        lp->mii.reg_num_mask = 0x1f;
2007        lp->mii.force_media = 0;
2008        lp->mii.full_duplex = 0;
2009        lp->mii.dev = dev;
2010        lp->mii.mdio_read = smc_phy_read;
2011        lp->mii.mdio_write = smc_phy_write;
2012
2013        /*
2014         * Locate the phy, if any.
2015         */
2016        if (lp->version >= (CHIP_91100 << 4))
2017                smc_phy_detect(dev);
2018
2019        /* then shut everything down to save power */
2020        smc_shutdown(dev);
2021        smc_phy_powerdown(dev);
2022
2023        /* Set default parameters */
2024        lp->msg_enable = NETIF_MSG_LINK;
2025        lp->ctl_rfduplx = 0;
2026        lp->ctl_rspeed = 10;
2027
2028        if (lp->version >= (CHIP_91100 << 4)) {
2029                lp->ctl_rfduplx = 1;
2030                lp->ctl_rspeed = 100;
2031        }
2032
2033        /* Grab the IRQ */
2034        retval = request_irq(dev->irq, &smc_interrupt, irq_flags, dev->name, dev);
2035        if (retval)
2036                goto err_out;
2037
2038#ifdef CONFIG_ARCH_PXA
2039#  ifdef SMC_USE_PXA_DMA
2040        lp->cfg.flags |= SMC91X_USE_DMA;
2041#  endif
2042        if (lp->cfg.flags & SMC91X_USE_DMA) {
2043                int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2044                                          smc_pxa_dma_irq, NULL);
2045                if (dma >= 0)
2046                        dev->dma = dma;
2047        }
2048#endif
2049
2050        retval = register_netdev(dev);
2051        if (retval == 0) {
2052                /* now, print out the card info, in a short format.. */
2053                printk("%s: %s (rev %d) at %p IRQ %d",
2054                        dev->name, version_string, revision_register & 0x0f,
2055                        lp->base, dev->irq);
2056
2057                if (dev->dma != (unsigned char)-1)
2058                        printk(" DMA %d", dev->dma);
2059
2060                printk("%s%s\n",
2061                        lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2062                        THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2063
2064                if (!is_valid_ether_addr(dev->dev_addr)) {
2065                        printk("%s: Invalid ethernet MAC address.  Please "
2066                               "set using ifconfig\n", dev->name);
2067                } else {
2068                        /* Print the Ethernet address */
2069                        printk("%s: Ethernet addr: %pM\n",
2070                               dev->name, dev->dev_addr);
2071                }
2072
2073                if (lp->phy_type == 0) {
2074                        PRINTK("%s: No PHY found\n", dev->name);
2075                } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2076                        PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2077                } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2078                        PRINTK("%s: PHY LAN83C180\n", dev->name);
2079                }
2080        }
2081
2082err_out:
2083#ifdef CONFIG_ARCH_PXA
2084        if (retval && dev->dma != (unsigned char)-1)
2085                pxa_free_dma(dev->dma);
2086#endif
2087        return retval;
2088}
2089
2090static int smc_enable_device(struct platform_device *pdev)
2091{
2092        struct net_device *ndev = platform_get_drvdata(pdev);
2093        struct smc_local *lp = netdev_priv(ndev);
2094        unsigned long flags;
2095        unsigned char ecor, ecsr;
2096        void __iomem *addr;
2097        struct resource * res;
2098
2099        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2100        if (!res)
2101                return 0;
2102
2103        /*
2104         * Map the attribute space.  This is overkill, but clean.
2105         */
2106        addr = ioremap(res->start, ATTRIB_SIZE);
2107        if (!addr)
2108                return -ENOMEM;
2109
2110        /*
2111         * Reset the device.  We must disable IRQs around this
2112         * since a reset causes the IRQ line become active.
2113         */
2114        local_irq_save(flags);
2115        ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2116        writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2117        readb(addr + (ECOR << SMC_IO_SHIFT));
2118
2119        /*
2120         * Wait 100us for the chip to reset.
2121         */
2122        udelay(100);
2123
2124        /*
2125         * The device will ignore all writes to the enable bit while
2126         * reset is asserted, even if the reset bit is cleared in the
2127         * same write.  Must clear reset first, then enable the device.
2128         */
2129        writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2130        writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2131
2132        /*
2133         * Set the appropriate byte/word mode.
2134         */
2135        ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2136        if (!SMC_16BIT(lp))
2137                ecsr |= ECSR_IOIS8;
2138        writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2139        local_irq_restore(flags);
2140
2141        iounmap(addr);
2142
2143        /*
2144         * Wait for the chip to wake up.  We could poll the control
2145         * register in the main register space, but that isn't mapped
2146         * yet.  We know this is going to take 750us.
2147         */
2148        msleep(1);
2149
2150        return 0;
2151}
2152
2153static int smc_request_attrib(struct platform_device *pdev,
2154                              struct net_device *ndev)
2155{
2156        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2157        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2158
2159        if (!res)
2160                return 0;
2161
2162        if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2163                return -EBUSY;
2164
2165        return 0;
2166}
2167
2168static void smc_release_attrib(struct platform_device *pdev,
2169                               struct net_device *ndev)
2170{
2171        struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2172        struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2173
2174        if (res)
2175                release_mem_region(res->start, ATTRIB_SIZE);
2176}
2177
2178static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2179{
2180        if (SMC_CAN_USE_DATACS) {
2181                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2182                struct smc_local *lp = netdev_priv(ndev);
2183
2184                if (!res)
2185                        return;
2186
2187                if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2188                        printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2189                        return;
2190                }
2191
2192                lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2193        }
2194}
2195
2196static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2197{
2198        if (SMC_CAN_USE_DATACS) {
2199                struct smc_local *lp = netdev_priv(ndev);
2200                struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2201
2202                if (lp->datacs)
2203                        iounmap(lp->datacs);
2204
2205                lp->datacs = NULL;
2206
2207                if (res)
2208                        release_mem_region(res->start, SMC_DATA_EXTENT);
2209        }
2210}
2211
2212/*
2213 * smc_init(void)
2214 *   Input parameters:
2215 *      dev->base_addr == 0, try to find all possible locations
2216 *      dev->base_addr > 0x1ff, this is the address to check
2217 *      dev->base_addr == <anything else>, return failure code
2218 *
2219 *   Output:
2220 *      0 --> there is a device
2221 *      anything else, error
2222 */
2223static int __devinit smc_drv_probe(struct platform_device *pdev)
2224{
2225        struct smc91x_platdata *pd = pdev->dev.platform_data;
2226        struct smc_local *lp;
2227        struct net_device *ndev;
2228        struct resource *res, *ires;
2229        unsigned int __iomem *addr;
2230        unsigned long irq_flags = SMC_IRQ_FLAGS;
2231        int ret;
2232
2233        ndev = alloc_etherdev(sizeof(struct smc_local));
2234        if (!ndev) {
2235                printk("%s: could not allocate device.\n", CARDNAME);
2236                ret = -ENOMEM;
2237                goto out;
2238        }
2239        SET_NETDEV_DEV(ndev, &pdev->dev);
2240
2241        /* get configuration from platform data, only allow use of
2242         * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2243         */
2244
2245        lp = netdev_priv(ndev);
2246
2247        if (pd) {
2248                memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2249                lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2250        } else {
2251                lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2252                lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2253                lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2254                lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2255        }
2256
2257        if (!lp->cfg.leda && !lp->cfg.ledb) {
2258                lp->cfg.leda = RPC_LSA_DEFAULT;
2259                lp->cfg.ledb = RPC_LSB_DEFAULT;
2260        }
2261
2262        ndev->dma = (unsigned char)-1;
2263
2264        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2265        if (!res)
2266                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2267        if (!res) {
2268                ret = -ENODEV;
2269                goto out_free_netdev;
2270        }
2271
2272
2273        if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2274                ret = -EBUSY;
2275                goto out_free_netdev;
2276        }
2277
2278        ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2279        if (!ires) {
2280                ret = -ENODEV;
2281                goto out_release_io;
2282        }
2283
2284        ndev->irq = ires->start;
2285
2286        if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2287                irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2288
2289        ret = smc_request_attrib(pdev, ndev);
2290        if (ret)
2291                goto out_release_io;
2292#if defined(CONFIG_SA1100_ASSABET)
2293        NCR_0 |= NCR_ENET_OSC_EN;
2294#endif
2295        platform_set_drvdata(pdev, ndev);
2296        ret = smc_enable_device(pdev);
2297        if (ret)
2298                goto out_release_attrib;
2299
2300        addr = ioremap(res->start, SMC_IO_EXTENT);
2301        if (!addr) {
2302                ret = -ENOMEM;
2303                goto out_release_attrib;
2304        }
2305
2306#ifdef CONFIG_ARCH_PXA
2307        {
2308                struct smc_local *lp = netdev_priv(ndev);
2309                lp->device = &pdev->dev;
2310                lp->physaddr = res->start;
2311        }
2312#endif
2313
2314        ret = smc_probe(ndev, addr, irq_flags);
2315        if (ret != 0)
2316                goto out_iounmap;
2317
2318        smc_request_datacs(pdev, ndev);
2319
2320        return 0;
2321
2322 out_iounmap:
2323        platform_set_drvdata(pdev, NULL);
2324        iounmap(addr);
2325 out_release_attrib:
2326        smc_release_attrib(pdev, ndev);
2327 out_release_io:
2328        release_mem_region(res->start, SMC_IO_EXTENT);
2329 out_free_netdev:
2330        free_netdev(ndev);
2331 out:
2332        printk("%s: not found (%d).\n", CARDNAME, ret);
2333
2334        return ret;
2335}
2336
2337static int __devexit smc_drv_remove(struct platform_device *pdev)
2338{
2339        struct net_device *ndev = platform_get_drvdata(pdev);
2340        struct smc_local *lp = netdev_priv(ndev);
2341        struct resource *res;
2342
2343        platform_set_drvdata(pdev, NULL);
2344
2345        unregister_netdev(ndev);
2346
2347        free_irq(ndev->irq, ndev);
2348
2349#ifdef CONFIG_ARCH_PXA
2350        if (ndev->dma != (unsigned char)-1)
2351                pxa_free_dma(ndev->dma);
2352#endif
2353        iounmap(lp->base);
2354
2355        smc_release_datacs(pdev,ndev);
2356        smc_release_attrib(pdev,ndev);
2357
2358        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2359        if (!res)
2360                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2361        release_mem_region(res->start, SMC_IO_EXTENT);
2362
2363        free_netdev(ndev);
2364
2365        return 0;
2366}
2367
2368static int smc_drv_suspend(struct platform_device *dev, pm_message_t state)
2369{
2370        struct net_device *ndev = platform_get_drvdata(dev);
2371
2372        if (ndev) {
2373                if (netif_running(ndev)) {
2374                        netif_device_detach(ndev);
2375                        smc_shutdown(ndev);
2376                        smc_phy_powerdown(ndev);
2377                }
2378        }
2379        return 0;
2380}
2381
2382static int smc_drv_resume(struct platform_device *dev)
2383{
2384        struct net_device *ndev = platform_get_drvdata(dev);
2385
2386        if (ndev) {
2387                struct smc_local *lp = netdev_priv(ndev);
2388                smc_enable_device(dev);
2389                if (netif_running(ndev)) {
2390                        smc_reset(ndev);
2391                        smc_enable(ndev);
2392                        if (lp->phy_type != 0)
2393                                smc_phy_configure(&lp->phy_configure);
2394                        netif_device_attach(ndev);
2395                }
2396        }
2397        return 0;
2398}
2399
2400static struct platform_driver smc_driver = {
2401        .probe          = smc_drv_probe,
2402        .remove         = __devexit_p(smc_drv_remove),
2403        .suspend        = smc_drv_suspend,
2404        .resume         = smc_drv_resume,
2405        .driver         = {
2406                .name   = CARDNAME,
2407                .owner  = THIS_MODULE,
2408        },
2409};
2410
2411static int __init smc_init(void)
2412{
2413        return platform_driver_register(&smc_driver);
2414}
2415
2416static void __exit smc_cleanup(void)
2417{
2418        platform_driver_unregister(&smc_driver);
2419}
2420
2421module_init(smc_init);
2422module_exit(smc_cleanup);
2423