linux/drivers/net/tehuti.c
<<
>>
Prefs
   1/*
   2 * Tehuti Networks(R) Network Driver
   3 * ethtool interface implementation
   4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * RX HW/SW interaction overview
  14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  15 * There are 2 types of RX communication channels betwean driver and NIC.
  16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  18 * info about buffer's location, size and ID. An ID field is used to identify a
  19 * buffer when it's returned with data via RXD Fifo (see below)
  20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  25 *
  26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  29 * filled with data, HW builds new RXD descriptor for it and push it into single
  30 * RXD Fifo.
  31 *
  32 * RX SW Data Structures
  33 * ~~~~~~~~~~~~~~~~~~~~~
  34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  35 * For RX case, ownership lasts from allocating new empty skb for RXF until
  36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  37 * skb db. Implemented as array with bitmask.
  38 * fifo - keeps info about fifo's size and location, relevant HW registers,
  39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  40 * Implemented as simple struct.
  41 *
  42 * RX SW Execution Flow
  43 * ~~~~~~~~~~~~~~~~~~~~
  44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  45 * relevant registers. At the end of init phase, driver enables interrupts.
  46 * NIC sees that there is no RXF buffers and raises
  47 * RD_INTR interrupt, isr fills skbs and Rx begins.
  48 * Driver has two receive operation modes:
  49 *    NAPI - interrupt-driven mixed with polling
  50 *    interrupt-driven only
  51 *
  52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  53 * interrupt and isr is called. isr collects all available packets
  54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  55
  56 * Rx buffer allocation note
  57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  58 * Driver cares to feed such amount of RxF descriptors that respective amount of
  59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  60 * overflow check in Bordeaux for RxD fifo free/used size.
  61 * FIXME: this is NOT fully implemented, more work should be done
  62 *
  63 */
  64
  65#include "tehuti.h"
  66
  67static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
  68        {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  69        {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  70        {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  71        {0}
  72};
  73
  74MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  75
  76/* Definitions needed by ISR or NAPI functions */
  77static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  78static void bdx_tx_cleanup(struct bdx_priv *priv);
  79static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  80
  81/* Definitions needed by FW loading */
  82static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  83
  84/* Definitions needed by hw_start */
  85static int bdx_tx_init(struct bdx_priv *priv);
  86static int bdx_rx_init(struct bdx_priv *priv);
  87
  88/* Definitions needed by bdx_close */
  89static void bdx_rx_free(struct bdx_priv *priv);
  90static void bdx_tx_free(struct bdx_priv *priv);
  91
  92/* Definitions needed by bdx_probe */
  93static void bdx_ethtool_ops(struct net_device *netdev);
  94
  95/*************************************************************************
  96 *    Print Info                                                         *
  97 *************************************************************************/
  98
  99static void print_hw_id(struct pci_dev *pdev)
 100{
 101        struct pci_nic *nic = pci_get_drvdata(pdev);
 102        u16 pci_link_status = 0;
 103        u16 pci_ctrl = 0;
 104
 105        pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 106        pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 107
 108        printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
 109               nic->port_num == 1 ? "" : ", 2-Port");
 110        printk(KERN_INFO
 111               "tehuti: srom 0x%x fpga %d build %u lane# %d"
 112               " max_pl 0x%x mrrs 0x%x\n",
 113               readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 114               readl(nic->regs + FPGA_SEED),
 115               GET_LINK_STATUS_LANES(pci_link_status),
 116               GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 117}
 118
 119static void print_fw_id(struct pci_nic *nic)
 120{
 121        printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
 122}
 123
 124static void print_eth_id(struct net_device *ndev)
 125{
 126        printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
 127               (ndev->if_port == 0) ? 'A' : 'B');
 128
 129}
 130
 131/*************************************************************************
 132 *    Code                                                               *
 133 *************************************************************************/
 134
 135#define bdx_enable_interrupts(priv)     \
 136        do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 137#define bdx_disable_interrupts(priv)    \
 138        do { WRITE_REG(priv, regIMR, 0); } while (0)
 139
 140/* bdx_fifo_init
 141 * create TX/RX descriptor fifo for host-NIC communication.
 142 * 1K extra space is allocated at the end of the fifo to simplify
 143 * processing of descriptors that wraps around fifo's end
 144 * @priv - NIC private structure
 145 * @f - fifo to initialize
 146 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 147 * @reg_XXX - offsets of registers relative to base address
 148 *
 149 * Returns 0 on success, negative value on failure
 150 *
 151 */
 152static int
 153bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 154              u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 155{
 156        u16 memsz = FIFO_SIZE * (1 << fsz_type);
 157
 158        memset(f, 0, sizeof(struct fifo));
 159        /* pci_alloc_consistent gives us 4k-aligned memory */
 160        f->va = pci_alloc_consistent(priv->pdev,
 161                                     memsz + FIFO_EXTRA_SPACE, &f->da);
 162        if (!f->va) {
 163                ERR("pci_alloc_consistent failed\n");
 164                RET(-ENOMEM);
 165        }
 166        f->reg_CFG0 = reg_CFG0;
 167        f->reg_CFG1 = reg_CFG1;
 168        f->reg_RPTR = reg_RPTR;
 169        f->reg_WPTR = reg_WPTR;
 170        f->rptr = 0;
 171        f->wptr = 0;
 172        f->memsz = memsz;
 173        f->size_mask = memsz - 1;
 174        WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 175        WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 176
 177        RET(0);
 178}
 179
 180/* bdx_fifo_free - free all resources used by fifo
 181 * @priv - NIC private structure
 182 * @f - fifo to release
 183 */
 184static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 185{
 186        ENTER;
 187        if (f->va) {
 188                pci_free_consistent(priv->pdev,
 189                                    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 190                f->va = NULL;
 191        }
 192        RET();
 193}
 194
 195/*
 196 * bdx_link_changed - notifies OS about hw link state.
 197 * @bdx_priv - hw adapter structure
 198 */
 199static void bdx_link_changed(struct bdx_priv *priv)
 200{
 201        u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 202
 203        if (!link) {
 204                if (netif_carrier_ok(priv->ndev)) {
 205                        netif_stop_queue(priv->ndev);
 206                        netif_carrier_off(priv->ndev);
 207                        ERR("%s: Link Down\n", priv->ndev->name);
 208                }
 209        } else {
 210                if (!netif_carrier_ok(priv->ndev)) {
 211                        netif_wake_queue(priv->ndev);
 212                        netif_carrier_on(priv->ndev);
 213                        ERR("%s: Link Up\n", priv->ndev->name);
 214                }
 215        }
 216}
 217
 218static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 219{
 220        if (isr & IR_RX_FREE_0) {
 221                bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 222                DBG("RX_FREE_0\n");
 223        }
 224
 225        if (isr & IR_LNKCHG0)
 226                bdx_link_changed(priv);
 227
 228        if (isr & IR_PCIE_LINK)
 229                ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
 230
 231        if (isr & IR_PCIE_TOUT)
 232                ERR("%s: PCI-E Time Out\n", priv->ndev->name);
 233
 234}
 235
 236/* bdx_isr - Interrupt Service Routine for Bordeaux NIC
 237 * @irq - interrupt number
 238 * @ndev - network device
 239 * @regs - CPU registers
 240 *
 241 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 242 *
 243 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 244 * Reasons of interest are:
 245 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 246 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 247 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 248 */
 249
 250static irqreturn_t bdx_isr_napi(int irq, void *dev)
 251{
 252        struct net_device *ndev = dev;
 253        struct bdx_priv *priv = netdev_priv(ndev);
 254        u32 isr;
 255
 256        ENTER;
 257        isr = (READ_REG(priv, regISR) & IR_RUN);
 258        if (unlikely(!isr)) {
 259                bdx_enable_interrupts(priv);
 260                return IRQ_NONE;        /* Not our interrupt */
 261        }
 262
 263        if (isr & IR_EXTRA)
 264                bdx_isr_extra(priv, isr);
 265
 266        if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 267                if (likely(napi_schedule_prep(&priv->napi))) {
 268                        __napi_schedule(&priv->napi);
 269                        RET(IRQ_HANDLED);
 270                } else {
 271                        /* NOTE: we get here if intr has slipped into window
 272                         * between these lines in bdx_poll:
 273                         *    bdx_enable_interrupts(priv);
 274                         *    return 0;
 275                         * currently intrs are disabled (since we read ISR),
 276                         * and we have failed to register next poll.
 277                         * so we read the regs to trigger chip
 278                         * and allow further interupts. */
 279                        READ_REG(priv, regTXF_WPTR_0);
 280                        READ_REG(priv, regRXD_WPTR_0);
 281                }
 282        }
 283
 284        bdx_enable_interrupts(priv);
 285        RET(IRQ_HANDLED);
 286}
 287
 288static int bdx_poll(struct napi_struct *napi, int budget)
 289{
 290        struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 291        int work_done;
 292
 293        ENTER;
 294        bdx_tx_cleanup(priv);
 295        work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 296        if ((work_done < budget) ||
 297            (priv->napi_stop++ >= 30)) {
 298                DBG("rx poll is done. backing to isr-driven\n");
 299
 300                /* from time to time we exit to let NAPI layer release
 301                 * device lock and allow waiting tasks (eg rmmod) to advance) */
 302                priv->napi_stop = 0;
 303
 304                napi_complete(napi);
 305                bdx_enable_interrupts(priv);
 306        }
 307        return work_done;
 308}
 309
 310/* bdx_fw_load - loads firmware to NIC
 311 * @priv - NIC private structure
 312 * Firmware is loaded via TXD fifo, so it must be initialized first.
 313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 314 * can have few of them). So all drivers use semaphore register to choose one
 315 * that will actually load FW to NIC.
 316 */
 317
 318static int bdx_fw_load(struct bdx_priv *priv)
 319{
 320        const struct firmware *fw = NULL;
 321        int master, i;
 322        int rc;
 323
 324        ENTER;
 325        master = READ_REG(priv, regINIT_SEMAPHORE);
 326        if (!READ_REG(priv, regINIT_STATUS) && master) {
 327                rc = request_firmware(&fw, "tehuti/firmware.bin", &priv->pdev->dev);
 328                if (rc)
 329                        goto out;
 330                bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 331                mdelay(100);
 332        }
 333        for (i = 0; i < 200; i++) {
 334                if (READ_REG(priv, regINIT_STATUS)) {
 335                        rc = 0;
 336                        goto out;
 337                }
 338                mdelay(2);
 339        }
 340        rc = -EIO;
 341out:
 342        if (master)
 343                WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 344        if (fw)
 345                release_firmware(fw);
 346
 347        if (rc) {
 348                ERR("%s: firmware loading failed\n", priv->ndev->name);
 349                if (rc == -EIO)
 350                        DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 351                            READ_REG(priv, regVPC),
 352                            READ_REG(priv, regVIC),
 353                            READ_REG(priv, regINIT_STATUS), i);
 354                RET(rc);
 355        } else {
 356                DBG("%s: firmware loading success\n", priv->ndev->name);
 357                RET(0);
 358        }
 359}
 360
 361static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 362{
 363        u32 val;
 364
 365        ENTER;
 366        DBG("mac0=%x mac1=%x mac2=%x\n",
 367            READ_REG(priv, regUNC_MAC0_A),
 368            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 369
 370        val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 371        WRITE_REG(priv, regUNC_MAC2_A, val);
 372        val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 373        WRITE_REG(priv, regUNC_MAC1_A, val);
 374        val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 375        WRITE_REG(priv, regUNC_MAC0_A, val);
 376
 377        DBG("mac0=%x mac1=%x mac2=%x\n",
 378            READ_REG(priv, regUNC_MAC0_A),
 379            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 380        RET();
 381}
 382
 383/* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 384 * @priv - NIC private structure
 385 */
 386static int bdx_hw_start(struct bdx_priv *priv)
 387{
 388        int rc = -EIO;
 389        struct net_device *ndev = priv->ndev;
 390
 391        ENTER;
 392        bdx_link_changed(priv);
 393
 394        /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 395        WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 396        WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 397        WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 398        WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 399        WRITE_REG(priv, regRX_FULLNESS, 0);
 400        WRITE_REG(priv, regTX_FULLNESS, 0);
 401        WRITE_REG(priv, regCTRLST,
 402                  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 403
 404        WRITE_REG(priv, regVGLB, 0);
 405        WRITE_REG(priv, regMAX_FRAME_A,
 406                  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 407
 408        DBG("RDINTCM=%08x\n", priv->rdintcm);   /*NOTE: test script uses this */
 409        WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 410        WRITE_REG(priv, regRDINTCM2, 0);        /*cpu_to_le32(rcm.val)); */
 411
 412        DBG("TDINTCM=%08x\n", priv->tdintcm);   /*NOTE: test script uses this */
 413        WRITE_REG(priv, regTDINTCM0, priv->tdintcm);    /* old val = 0x300064 */
 414
 415        /* Enable timer interrupt once in 2 secs. */
 416        /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 417        bdx_restore_mac(priv->ndev, priv);
 418
 419        WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 420                  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 421
 422#define BDX_IRQ_TYPE    ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
 423        if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
 424                         ndev->name, ndev)))
 425                goto err_irq;
 426        bdx_enable_interrupts(priv);
 427
 428        RET(0);
 429
 430err_irq:
 431        RET(rc);
 432}
 433
 434static void bdx_hw_stop(struct bdx_priv *priv)
 435{
 436        ENTER;
 437        bdx_disable_interrupts(priv);
 438        free_irq(priv->pdev->irq, priv->ndev);
 439
 440        netif_carrier_off(priv->ndev);
 441        netif_stop_queue(priv->ndev);
 442
 443        RET();
 444}
 445
 446static int bdx_hw_reset_direct(void __iomem *regs)
 447{
 448        u32 val, i;
 449        ENTER;
 450
 451        /* reset sequences: read, write 1, read, write 0 */
 452        val = readl(regs + regCLKPLL);
 453        writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 454        udelay(50);
 455        val = readl(regs + regCLKPLL);
 456        writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 457
 458        /* check that the PLLs are locked and reset ended */
 459        for (i = 0; i < 70; i++, mdelay(10))
 460                if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 461                        /* do any PCI-E read transaction */
 462                        readl(regs + regRXD_CFG0_0);
 463                        return 0;
 464                }
 465        ERR("tehuti: HW reset failed\n");
 466        return 1;               /* failure */
 467}
 468
 469static int bdx_hw_reset(struct bdx_priv *priv)
 470{
 471        u32 val, i;
 472        ENTER;
 473
 474        if (priv->port == 0) {
 475                /* reset sequences: read, write 1, read, write 0 */
 476                val = READ_REG(priv, regCLKPLL);
 477                WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 478                udelay(50);
 479                val = READ_REG(priv, regCLKPLL);
 480                WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 481        }
 482        /* check that the PLLs are locked and reset ended */
 483        for (i = 0; i < 70; i++, mdelay(10))
 484                if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 485                        /* do any PCI-E read transaction */
 486                        READ_REG(priv, regRXD_CFG0_0);
 487                        return 0;
 488                }
 489        ERR("tehuti: HW reset failed\n");
 490        return 1;               /* failure */
 491}
 492
 493static int bdx_sw_reset(struct bdx_priv *priv)
 494{
 495        int i;
 496
 497        ENTER;
 498        /* 1. load MAC (obsolete) */
 499        /* 2. disable Rx (and Tx) */
 500        WRITE_REG(priv, regGMAC_RXF_A, 0);
 501        mdelay(100);
 502        /* 3. disable port */
 503        WRITE_REG(priv, regDIS_PORT, 1);
 504        /* 4. disable queue */
 505        WRITE_REG(priv, regDIS_QU, 1);
 506        /* 5. wait until hw is disabled */
 507        for (i = 0; i < 50; i++) {
 508                if (READ_REG(priv, regRST_PORT) & 1)
 509                        break;
 510                mdelay(10);
 511        }
 512        if (i == 50)
 513                ERR("%s: SW reset timeout. continuing anyway\n",
 514                    priv->ndev->name);
 515
 516        /* 6. disable intrs */
 517        WRITE_REG(priv, regRDINTCM0, 0);
 518        WRITE_REG(priv, regTDINTCM0, 0);
 519        WRITE_REG(priv, regIMR, 0);
 520        READ_REG(priv, regISR);
 521
 522        /* 7. reset queue */
 523        WRITE_REG(priv, regRST_QU, 1);
 524        /* 8. reset port */
 525        WRITE_REG(priv, regRST_PORT, 1);
 526        /* 9. zero all read and write pointers */
 527        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 528                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 529        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 530                WRITE_REG(priv, i, 0);
 531        /* 10. unseet port disable */
 532        WRITE_REG(priv, regDIS_PORT, 0);
 533        /* 11. unset queue disable */
 534        WRITE_REG(priv, regDIS_QU, 0);
 535        /* 12. unset queue reset */
 536        WRITE_REG(priv, regRST_QU, 0);
 537        /* 13. unset port reset */
 538        WRITE_REG(priv, regRST_PORT, 0);
 539        /* 14. enable Rx */
 540        /* skiped. will be done later */
 541        /* 15. save MAC (obsolete) */
 542        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 543                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 544
 545        RET(0);
 546}
 547
 548/* bdx_reset - performs right type of reset depending on hw type */
 549static int bdx_reset(struct bdx_priv *priv)
 550{
 551        ENTER;
 552        RET((priv->pdev->device == 0x3009)
 553            ? bdx_hw_reset(priv)
 554            : bdx_sw_reset(priv));
 555}
 556
 557/**
 558 * bdx_close - Disables a network interface
 559 * @netdev: network interface device structure
 560 *
 561 * Returns 0, this is not allowed to fail
 562 *
 563 * The close entry point is called when an interface is de-activated
 564 * by the OS.  The hardware is still under the drivers control, but
 565 * needs to be disabled.  A global MAC reset is issued to stop the
 566 * hardware, and all transmit and receive resources are freed.
 567 **/
 568static int bdx_close(struct net_device *ndev)
 569{
 570        struct bdx_priv *priv = NULL;
 571
 572        ENTER;
 573        priv = netdev_priv(ndev);
 574
 575        napi_disable(&priv->napi);
 576
 577        bdx_reset(priv);
 578        bdx_hw_stop(priv);
 579        bdx_rx_free(priv);
 580        bdx_tx_free(priv);
 581        RET(0);
 582}
 583
 584/**
 585 * bdx_open - Called when a network interface is made active
 586 * @netdev: network interface device structure
 587 *
 588 * Returns 0 on success, negative value on failure
 589 *
 590 * The open entry point is called when a network interface is made
 591 * active by the system (IFF_UP).  At this point all resources needed
 592 * for transmit and receive operations are allocated, the interrupt
 593 * handler is registered with the OS, the watchdog timer is started,
 594 * and the stack is notified that the interface is ready.
 595 **/
 596static int bdx_open(struct net_device *ndev)
 597{
 598        struct bdx_priv *priv;
 599        int rc;
 600
 601        ENTER;
 602        priv = netdev_priv(ndev);
 603        bdx_reset(priv);
 604        if (netif_running(ndev))
 605                netif_stop_queue(priv->ndev);
 606
 607        if ((rc = bdx_tx_init(priv)))
 608                goto err;
 609
 610        if ((rc = bdx_rx_init(priv)))
 611                goto err;
 612
 613        if ((rc = bdx_fw_load(priv)))
 614                goto err;
 615
 616        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 617
 618        if ((rc = bdx_hw_start(priv)))
 619                goto err;
 620
 621        napi_enable(&priv->napi);
 622
 623        print_fw_id(priv->nic);
 624
 625        RET(0);
 626
 627err:
 628        bdx_close(ndev);
 629        RET(rc);
 630}
 631
 632static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 633{
 634        return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 635                -EINVAL : 0;
 636}
 637
 638static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 639{
 640        struct bdx_priv *priv = netdev_priv(ndev);
 641        u32 data[3];
 642        int error;
 643
 644        ENTER;
 645
 646        DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 647        if (cmd != SIOCDEVPRIVATE) {
 648                error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 649                if (error) {
 650                        ERR("cant copy from user\n");
 651                        RET(error);
 652                }
 653                DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 654        }
 655
 656        if (!capable(CAP_SYS_RAWIO))
 657                return -EPERM;
 658
 659        switch (data[0]) {
 660
 661        case BDX_OP_READ:
 662                error = bdx_range_check(priv, data[1]);
 663                if (error < 0)
 664                        return error;
 665                data[2] = READ_REG(priv, data[1]);
 666                DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 667                    data[2]);
 668                error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 669                if (error)
 670                        RET(error);
 671                break;
 672
 673        case BDX_OP_WRITE:
 674                error = bdx_range_check(priv, data[1]);
 675                if (error < 0)
 676                        return error;
 677                WRITE_REG(priv, data[1], data[2]);
 678                DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 679                break;
 680
 681        default:
 682                RET(-EOPNOTSUPP);
 683        }
 684        return 0;
 685}
 686
 687static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 688{
 689        ENTER;
 690        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 691                RET(bdx_ioctl_priv(ndev, ifr, cmd));
 692        else
 693                RET(-EOPNOTSUPP);
 694}
 695
 696/*
 697 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 698 *                     by passing VLAN filter table to hardware
 699 * @ndev network device
 700 * @vid  VLAN vid
 701 * @op   add or kill operation
 702 */
 703static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 704{
 705        struct bdx_priv *priv = netdev_priv(ndev);
 706        u32 reg, bit, val;
 707
 708        ENTER;
 709        DBG2("vid=%d value=%d\n", (int)vid, enable);
 710        if (unlikely(vid >= 4096)) {
 711                ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
 712                RET();
 713        }
 714        reg = regVLAN_0 + (vid / 32) * 4;
 715        bit = 1 << vid % 32;
 716        val = READ_REG(priv, reg);
 717        DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 718        if (enable)
 719                val |= bit;
 720        else
 721                val &= ~bit;
 722        DBG2("new val %x\n", val);
 723        WRITE_REG(priv, reg, val);
 724        RET();
 725}
 726
 727/*
 728 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 729 * @ndev network device
 730 * @vid  VLAN vid to add
 731 */
 732static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
 733{
 734        __bdx_vlan_rx_vid(ndev, vid, 1);
 735}
 736
 737/*
 738 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 739 * @ndev network device
 740 * @vid  VLAN vid to kill
 741 */
 742static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
 743{
 744        __bdx_vlan_rx_vid(ndev, vid, 0);
 745}
 746
 747/*
 748 * bdx_vlan_rx_register - kernel hook for adding VLAN group
 749 * @ndev network device
 750 * @grp  VLAN group
 751 */
 752static void
 753bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
 754{
 755        struct bdx_priv *priv = netdev_priv(ndev);
 756
 757        ENTER;
 758        DBG("device='%s', group='%p'\n", ndev->name, grp);
 759        priv->vlgrp = grp;
 760        RET();
 761}
 762
 763/**
 764 * bdx_change_mtu - Change the Maximum Transfer Unit
 765 * @netdev: network interface device structure
 766 * @new_mtu: new value for maximum frame size
 767 *
 768 * Returns 0 on success, negative on failure
 769 */
 770static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 771{
 772        ENTER;
 773
 774        if (new_mtu == ndev->mtu)
 775                RET(0);
 776
 777        /* enforce minimum frame size */
 778        if (new_mtu < ETH_ZLEN) {
 779                ERR("%s: %s mtu %d is less then minimal %d\n",
 780                    BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
 781                RET(-EINVAL);
 782        }
 783
 784        ndev->mtu = new_mtu;
 785        if (netif_running(ndev)) {
 786                bdx_close(ndev);
 787                bdx_open(ndev);
 788        }
 789        RET(0);
 790}
 791
 792static void bdx_setmulti(struct net_device *ndev)
 793{
 794        struct bdx_priv *priv = netdev_priv(ndev);
 795
 796        u32 rxf_val =
 797            GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 798        int i;
 799
 800        ENTER;
 801        /* IMF - imperfect (hash) rx multicat filter */
 802        /* PMF - perfect rx multicat filter */
 803
 804        /* FIXME: RXE(OFF) */
 805        if (ndev->flags & IFF_PROMISC) {
 806                rxf_val |= GMAC_RX_FILTER_PRM;
 807        } else if (ndev->flags & IFF_ALLMULTI) {
 808                /* set IMF to accept all multicast frmaes */
 809                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 810                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 811        } else if (ndev->mc_count) {
 812                u8 hash;
 813                struct dev_mc_list *mclist;
 814                u32 reg, val;
 815
 816                /* set IMF to deny all multicast frames */
 817                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 818                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 819                /* set PMF to deny all multicast frames */
 820                for (i = 0; i < MAC_MCST_NUM; i++) {
 821                        WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 822                        WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 823                }
 824
 825                /* use PMF to accept first MAC_MCST_NUM (15) addresses */
 826                /* TBD: sort addreses and write them in ascending order
 827                 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 828                 * multicast frames throu IMF */
 829                mclist = ndev->mc_list;
 830
 831                /* accept the rest of addresses throu IMF */
 832                for (; mclist; mclist = mclist->next) {
 833                        hash = 0;
 834                        for (i = 0; i < ETH_ALEN; i++)
 835                                hash ^= mclist->dmi_addr[i];
 836                        reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 837                        val = READ_REG(priv, reg);
 838                        val |= (1 << (hash % 32));
 839                        WRITE_REG(priv, reg, val);
 840                }
 841
 842        } else {
 843                DBG("only own mac %d\n", ndev->mc_count);
 844                rxf_val |= GMAC_RX_FILTER_AB;
 845        }
 846        WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 847        /* enable RX */
 848        /* FIXME: RXE(ON) */
 849        RET();
 850}
 851
 852static int bdx_set_mac(struct net_device *ndev, void *p)
 853{
 854        struct bdx_priv *priv = netdev_priv(ndev);
 855        struct sockaddr *addr = p;
 856
 857        ENTER;
 858        /*
 859           if (netif_running(dev))
 860           return -EBUSY
 861         */
 862        memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 863        bdx_restore_mac(ndev, priv);
 864        RET(0);
 865}
 866
 867static int bdx_read_mac(struct bdx_priv *priv)
 868{
 869        u16 macAddress[3], i;
 870        ENTER;
 871
 872        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 873        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 874        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 875        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 876        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 877        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 878        for (i = 0; i < 3; i++) {
 879                priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 880                priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 881        }
 882        RET(0);
 883}
 884
 885static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 886{
 887        u64 val;
 888
 889        val = READ_REG(priv, reg);
 890        val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 891        return val;
 892}
 893
 894/*Do the statistics-update work*/
 895static void bdx_update_stats(struct bdx_priv *priv)
 896{
 897        struct bdx_stats *stats = &priv->hw_stats;
 898        u64 *stats_vector = (u64 *) stats;
 899        int i;
 900        int addr;
 901
 902        /*Fill HW structure */
 903        addr = 0x7200;
 904        /*First 12 statistics - 0x7200 - 0x72B0 */
 905        for (i = 0; i < 12; i++) {
 906                stats_vector[i] = bdx_read_l2stat(priv, addr);
 907                addr += 0x10;
 908        }
 909        BDX_ASSERT(addr != 0x72C0);
 910        /* 0x72C0-0x72E0 RSRV */
 911        addr = 0x72F0;
 912        for (; i < 16; i++) {
 913                stats_vector[i] = bdx_read_l2stat(priv, addr);
 914                addr += 0x10;
 915        }
 916        BDX_ASSERT(addr != 0x7330);
 917        /* 0x7330-0x7360 RSRV */
 918        addr = 0x7370;
 919        for (; i < 19; i++) {
 920                stats_vector[i] = bdx_read_l2stat(priv, addr);
 921                addr += 0x10;
 922        }
 923        BDX_ASSERT(addr != 0x73A0);
 924        /* 0x73A0-0x73B0 RSRV */
 925        addr = 0x73C0;
 926        for (; i < 23; i++) {
 927                stats_vector[i] = bdx_read_l2stat(priv, addr);
 928                addr += 0x10;
 929        }
 930        BDX_ASSERT(addr != 0x7400);
 931        BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 932}
 933
 934static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
 935{
 936        struct bdx_priv *priv = netdev_priv(ndev);
 937        struct net_device_stats *net_stat = &priv->net_stats;
 938        return net_stat;
 939}
 940
 941static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 942                       u16 rxd_vlan);
 943static void print_rxfd(struct rxf_desc *rxfd);
 944
 945/*************************************************************************
 946 *     Rx DB                                                             *
 947 *************************************************************************/
 948
 949static void bdx_rxdb_destroy(struct rxdb *db)
 950{
 951        vfree(db);
 952}
 953
 954static struct rxdb *bdx_rxdb_create(int nelem)
 955{
 956        struct rxdb *db;
 957        int i;
 958
 959        db = vmalloc(sizeof(struct rxdb)
 960                     + (nelem * sizeof(int))
 961                     + (nelem * sizeof(struct rx_map)));
 962        if (likely(db != NULL)) {
 963                db->stack = (int *)(db + 1);
 964                db->elems = (void *)(db->stack + nelem);
 965                db->nelem = nelem;
 966                db->top = nelem;
 967                for (i = 0; i < nelem; i++)
 968                        db->stack[i] = nelem - i - 1;   /* to make first allocs
 969                                                           close to db struct*/
 970        }
 971
 972        return db;
 973}
 974
 975static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 976{
 977        BDX_ASSERT(db->top <= 0);
 978        return db->stack[--(db->top)];
 979}
 980
 981static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 982{
 983        BDX_ASSERT((n < 0) || (n >= db->nelem));
 984        return db->elems + n;
 985}
 986
 987static inline int bdx_rxdb_available(struct rxdb *db)
 988{
 989        return db->top;
 990}
 991
 992static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 993{
 994        BDX_ASSERT((n >= db->nelem) || (n < 0));
 995        db->stack[(db->top)++] = n;
 996}
 997
 998/*************************************************************************
 999 *     Rx Init                                                           *
1000 *************************************************************************/
1001
1002/* bdx_rx_init - initialize RX all related HW and SW resources
1003 * @priv - NIC private structure
1004 *
1005 * Returns 0 on success, negative value on failure
1006 *
1007 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
1008 * skb for rx. It assumes that Rx is desabled in HW
1009 * funcs are grouped for better cache usage
1010 *
1011 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
1012 * filled and packets will be dropped by nic without getting into host or
1013 * cousing interrupt. Anyway, in that condition, host has no chance to proccess
1014 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
1015 */
1016
1017/* TBD: ensure proper packet size */
1018
1019static int bdx_rx_init(struct bdx_priv *priv)
1020{
1021        ENTER;
1022
1023        if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
1024                          regRXD_CFG0_0, regRXD_CFG1_0,
1025                          regRXD_RPTR_0, regRXD_WPTR_0))
1026                goto err_mem;
1027        if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1028                          regRXF_CFG0_0, regRXF_CFG1_0,
1029                          regRXF_RPTR_0, regRXF_WPTR_0))
1030                goto err_mem;
1031        if (!
1032            (priv->rxdb =
1033             bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1034                             sizeof(struct rxf_desc))))
1035                goto err_mem;
1036
1037        priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1038        return 0;
1039
1040err_mem:
1041        ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
1042        return -ENOMEM;
1043}
1044
1045/* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1046 * @priv - NIC private structure
1047 * @f - RXF fifo
1048 */
1049static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1050{
1051        struct rx_map *dm;
1052        struct rxdb *db = priv->rxdb;
1053        u16 i;
1054
1055        ENTER;
1056        DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1057            db->nelem - bdx_rxdb_available(db));
1058        while (bdx_rxdb_available(db) > 0) {
1059                i = bdx_rxdb_alloc_elem(db);
1060                dm = bdx_rxdb_addr_elem(db, i);
1061                dm->dma = 0;
1062        }
1063        for (i = 0; i < db->nelem; i++) {
1064                dm = bdx_rxdb_addr_elem(db, i);
1065                if (dm->dma) {
1066                        pci_unmap_single(priv->pdev,
1067                                         dm->dma, f->m.pktsz,
1068                                         PCI_DMA_FROMDEVICE);
1069                        dev_kfree_skb(dm->skb);
1070                }
1071        }
1072}
1073
1074/* bdx_rx_free - release all Rx resources
1075 * @priv - NIC private structure
1076 * It assumes that Rx is desabled in HW
1077 */
1078static void bdx_rx_free(struct bdx_priv *priv)
1079{
1080        ENTER;
1081        if (priv->rxdb) {
1082                bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1083                bdx_rxdb_destroy(priv->rxdb);
1084                priv->rxdb = NULL;
1085        }
1086        bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1087        bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1088
1089        RET();
1090}
1091
1092/*************************************************************************
1093 *     Rx Engine                                                         *
1094 *************************************************************************/
1095
1096/* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1097 * @priv - nic's private structure
1098 * @f - RXF fifo that needs skbs
1099 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1100 * skb's virtual and physical addresses are stored in skb db.
1101 * To calculate free space, func uses cached values of RPTR and WPTR
1102 * When needed, it also updates RPTR and WPTR.
1103 */
1104
1105/* TBD: do not update WPTR if no desc were written */
1106
1107static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1108{
1109        struct sk_buff *skb;
1110        struct rxf_desc *rxfd;
1111        struct rx_map *dm;
1112        int dno, delta, idx;
1113        struct rxdb *db = priv->rxdb;
1114
1115        ENTER;
1116        dno = bdx_rxdb_available(db) - 1;
1117        while (dno > 0) {
1118                if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
1119                        ERR("NO MEM: dev_alloc_skb failed\n");
1120                        break;
1121                }
1122                skb->dev = priv->ndev;
1123                skb_reserve(skb, NET_IP_ALIGN);
1124
1125                idx = bdx_rxdb_alloc_elem(db);
1126                dm = bdx_rxdb_addr_elem(db, idx);
1127                dm->dma = pci_map_single(priv->pdev,
1128                                         skb->data, f->m.pktsz,
1129                                         PCI_DMA_FROMDEVICE);
1130                dm->skb = skb;
1131                rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1132                rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1133                rxfd->va_lo = idx;
1134                rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1135                rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1136                rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1137                print_rxfd(rxfd);
1138
1139                f->m.wptr += sizeof(struct rxf_desc);
1140                delta = f->m.wptr - f->m.memsz;
1141                if (unlikely(delta >= 0)) {
1142                        f->m.wptr = delta;
1143                        if (delta > 0) {
1144                                memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1145                                DBG("wrapped descriptor\n");
1146                        }
1147                }
1148                dno--;
1149        }
1150        /*TBD: to do - delayed rxf wptr like in txd */
1151        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1152        RET();
1153}
1154
1155static inline void
1156NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1157             struct sk_buff *skb)
1158{
1159        ENTER;
1160        DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
1161            priv->vlgrp);
1162        if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
1163                DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
1164                    priv->ndev->name,
1165                    GET_RXD_VLAN_ID(rxd_vlan),
1166                    GET_RXD_VTAG(rxd_val1),
1167                    vlan_group_get_device(priv->vlgrp,
1168                                          GET_RXD_VLAN_ID(rxd_vlan))->name);
1169                /* NAPI variant of receive functions */
1170                vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1171                                         GET_RXD_VLAN_TCI(rxd_vlan));
1172        } else {
1173                netif_receive_skb(skb);
1174        }
1175}
1176
1177static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1178{
1179        struct rxf_desc *rxfd;
1180        struct rx_map *dm;
1181        struct rxf_fifo *f;
1182        struct rxdb *db;
1183        struct sk_buff *skb;
1184        int delta;
1185
1186        ENTER;
1187        DBG("priv=%p rxdd=%p\n", priv, rxdd);
1188        f = &priv->rxf_fifo0;
1189        db = priv->rxdb;
1190        DBG("db=%p f=%p\n", db, f);
1191        dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1192        DBG("dm=%p\n", dm);
1193        skb = dm->skb;
1194        rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1195        rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1196        rxfd->va_lo = rxdd->va_lo;
1197        rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1198        rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1199        rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1200        print_rxfd(rxfd);
1201
1202        f->m.wptr += sizeof(struct rxf_desc);
1203        delta = f->m.wptr - f->m.memsz;
1204        if (unlikely(delta >= 0)) {
1205                f->m.wptr = delta;
1206                if (delta > 0) {
1207                        memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1208                        DBG("wrapped descriptor\n");
1209                }
1210        }
1211        RET();
1212}
1213
1214/* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
1215 * NOTE: a special treatment is given to non-continous descriptors
1216 * that start near the end, wraps around and continue at the beginning. a second
1217 * part is copied right after the first, and then descriptor is interpreted as
1218 * normal. fifo has an extra space to allow such operations
1219 * @priv - nic's private structure
1220 * @f - RXF fifo that needs skbs
1221 */
1222
1223/* TBD: replace memcpy func call by explicite inline asm */
1224
1225static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1226{
1227        struct sk_buff *skb, *skb2;
1228        struct rxd_desc *rxdd;
1229        struct rx_map *dm;
1230        struct rxf_fifo *rxf_fifo;
1231        int tmp_len, size;
1232        int done = 0;
1233        int max_done = BDX_MAX_RX_DONE;
1234        struct rxdb *db = NULL;
1235        /* Unmarshalled descriptor - copy of descriptor in host order */
1236        u32 rxd_val1;
1237        u16 len;
1238        u16 rxd_vlan;
1239
1240        ENTER;
1241        max_done = budget;
1242
1243        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1244
1245        size = f->m.wptr - f->m.rptr;
1246        if (size < 0)
1247                size = f->m.memsz + size;       /* size is negative :-) */
1248
1249        while (size > 0) {
1250
1251                rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1252                rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1253
1254                len = CPU_CHIP_SWAP16(rxdd->len);
1255
1256                rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1257
1258                print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1259
1260                tmp_len = GET_RXD_BC(rxd_val1) << 3;
1261                BDX_ASSERT(tmp_len <= 0);
1262                size -= tmp_len;
1263                if (size < 0)   /* test for partially arrived descriptor */
1264                        break;
1265
1266                f->m.rptr += tmp_len;
1267
1268                tmp_len = f->m.rptr - f->m.memsz;
1269                if (unlikely(tmp_len >= 0)) {
1270                        f->m.rptr = tmp_len;
1271                        if (tmp_len > 0) {
1272                                DBG("wrapped desc rptr=%d tmp_len=%d\n",
1273                                    f->m.rptr, tmp_len);
1274                                memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1275                        }
1276                }
1277
1278                if (unlikely(GET_RXD_ERR(rxd_val1))) {
1279                        DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1280                        priv->net_stats.rx_errors++;
1281                        bdx_recycle_skb(priv, rxdd);
1282                        continue;
1283                }
1284
1285                rxf_fifo = &priv->rxf_fifo0;
1286                db = priv->rxdb;
1287                dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1288                skb = dm->skb;
1289
1290                if (len < BDX_COPYBREAK &&
1291                    (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
1292                        skb_reserve(skb2, NET_IP_ALIGN);
1293                        /*skb_put(skb2, len); */
1294                        pci_dma_sync_single_for_cpu(priv->pdev,
1295                                                    dm->dma, rxf_fifo->m.pktsz,
1296                                                    PCI_DMA_FROMDEVICE);
1297                        memcpy(skb2->data, skb->data, len);
1298                        bdx_recycle_skb(priv, rxdd);
1299                        skb = skb2;
1300                } else {
1301                        pci_unmap_single(priv->pdev,
1302                                         dm->dma, rxf_fifo->m.pktsz,
1303                                         PCI_DMA_FROMDEVICE);
1304                        bdx_rxdb_free_elem(db, rxdd->va_lo);
1305                }
1306
1307                priv->net_stats.rx_bytes += len;
1308
1309                skb_put(skb, len);
1310                skb->dev = priv->ndev;
1311                skb->ip_summed = CHECKSUM_UNNECESSARY;
1312                skb->protocol = eth_type_trans(skb, priv->ndev);
1313
1314                /* Non-IP packets aren't checksum-offloaded */
1315                if (GET_RXD_PKT_ID(rxd_val1) == 0)
1316                        skb->ip_summed = CHECKSUM_NONE;
1317
1318                NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1319
1320                if (++done >= max_done)
1321                        break;
1322        }
1323
1324        priv->net_stats.rx_packets += done;
1325
1326        /* FIXME: do smth to minimize pci accesses    */
1327        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1328
1329        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1330
1331        RET(done);
1332}
1333
1334/*************************************************************************
1335 * Debug / Temprorary Code                                               *
1336 *************************************************************************/
1337static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1338                       u16 rxd_vlan)
1339{
1340        DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
1341            "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
1342            "va_lo %d va_hi %d\n",
1343            GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1344            GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1345            GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1346            GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1347            GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1348            rxdd->va_hi);
1349}
1350
1351static void print_rxfd(struct rxf_desc *rxfd)
1352{
1353        DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1354            "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1355            rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1356}
1357
1358/*
1359 * TX HW/SW interaction overview
1360 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1361 * There are 2 types of TX communication channels betwean driver and NIC.
1362 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1363 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1364 *
1365 * Currently NIC supports TSO, checksuming and gather DMA
1366 * UFO and IP fragmentation is on the way
1367 *
1368 * RX SW Data Structures
1369 * ~~~~~~~~~~~~~~~~~~~~~
1370 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1371 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1372 * acknowledges sent by TXF descriptors.
1373 * Implemented as cyclic buffer.
1374 * fifo - keeps info about fifo's size and location, relevant HW registers,
1375 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1376 * Implemented as simple struct.
1377 *
1378 * TX SW Execution Flow
1379 * ~~~~~~~~~~~~~~~~~~~~
1380 * OS calls driver's hard_xmit method with packet to sent.
1381 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1382 * by updating TXD WPTR.
1383 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1384 * To prevent TXD fifo overflow without reading HW registers every time,
1385 * SW deploys "tx level" technique.
1386 * Upon strart up, tx level is initialized to TXD fifo length.
1387 * For every sent packet, SW gets its TXD descriptor sizei
1388 * (from precalculated array) and substructs it from tx level.
1389 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1390 * original TXD descriptor from txdb and adds it to tx level.
1391 * When Tx level drops under some predefined treshhold, the driver
1392 * stops the TX queue. When TX level rises above that level,
1393 * the tx queue is enabled again.
1394 *
1395 * This technique avoids eccessive reading of RPTR and WPTR registers.
1396 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1397 */
1398
1399/*************************************************************************
1400 *     Tx DB                                                             *
1401 *************************************************************************/
1402static inline int bdx_tx_db_size(struct txdb *db)
1403{
1404        int taken = db->wptr - db->rptr;
1405        if (taken < 0)
1406                taken = db->size + 1 + taken;   /* (size + 1) equals memsz */
1407
1408        return db->size - taken;
1409}
1410
1411/* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1412 * @d   - tx data base
1413 * @ptr - read or write pointer
1414 */
1415static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1416{
1417        BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1418
1419        BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1420                   *pptr != db->wptr);  /* or write pointer */
1421
1422        BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1423                   *pptr >= db->end);   /* in range */
1424
1425        ++*pptr;
1426        if (unlikely(*pptr == db->end))
1427                *pptr = db->start;
1428}
1429
1430/* bdx_tx_db_inc_rptr - increment read pointer
1431 * @d   - tx data base
1432 */
1433static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1434{
1435        BDX_ASSERT(db->rptr == db->wptr);       /* can't read from empty db */
1436        __bdx_tx_db_ptr_next(db, &db->rptr);
1437}
1438
1439/* bdx_tx_db_inc_rptr - increment write pointer
1440 * @d   - tx data base
1441 */
1442static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1443{
1444        __bdx_tx_db_ptr_next(db, &db->wptr);
1445        BDX_ASSERT(db->rptr == db->wptr);       /* we can not get empty db as
1446                                                   a result of write */
1447}
1448
1449/* bdx_tx_db_init - creates and initializes tx db
1450 * @d       - tx data base
1451 * @sz_type - size of tx fifo
1452 * Returns 0 on success, error code otherwise
1453 */
1454static int bdx_tx_db_init(struct txdb *d, int sz_type)
1455{
1456        int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1457
1458        d->start = vmalloc(memsz);
1459        if (!d->start)
1460                return -ENOMEM;
1461
1462        /*
1463         * In order to differentiate between db is empty and db is full
1464         * states at least one element should always be empty in order to
1465         * avoid rptr == wptr which means db is empty
1466         */
1467        d->size = memsz / sizeof(struct tx_map) - 1;
1468        d->end = d->start + d->size + 1;        /* just after last element */
1469
1470        /* all dbs are created equally empty */
1471        d->rptr = d->start;
1472        d->wptr = d->start;
1473
1474        return 0;
1475}
1476
1477/* bdx_tx_db_close - closes tx db and frees all memory
1478 * @d - tx data base
1479 */
1480static void bdx_tx_db_close(struct txdb *d)
1481{
1482        BDX_ASSERT(d == NULL);
1483
1484        vfree(d->start);
1485        d->start = NULL;
1486}
1487
1488/*************************************************************************
1489 *     Tx Engine                                                         *
1490 *************************************************************************/
1491
1492/* sizes of tx desc (including padding if needed) as function
1493 * of skb's frag number */
1494static struct {
1495        u16 bytes;
1496        u16 qwords;             /* qword = 64 bit */
1497} txd_sizes[MAX_SKB_FRAGS + 1];
1498
1499/* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1500 * @priv - NIC private structure
1501 * @skb  - socket buffer to map
1502 *
1503 * It makes dma mappings for skb's data blocks and writes them to PBL of
1504 * new tx descriptor. It also stores them in the tx db, so they could be
1505 * unmaped after data was sent. It is reponsibility of a caller to make
1506 * sure that there is enough space in the tx db. Last element holds pointer
1507 * to skb itself and marked with zero length
1508 */
1509static inline void
1510bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1511               struct txd_desc *txdd)
1512{
1513        struct txdb *db = &priv->txdb;
1514        struct pbl *pbl = &txdd->pbl[0];
1515        int nr_frags = skb_shinfo(skb)->nr_frags;
1516        int i;
1517
1518        db->wptr->len = skb->len - skb->data_len;
1519        db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1520                                            db->wptr->len, PCI_DMA_TODEVICE);
1521        pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1522        pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1523        pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1524        DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1525        DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1526        DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1527        bdx_tx_db_inc_wptr(db);
1528
1529        for (i = 0; i < nr_frags; i++) {
1530                struct skb_frag_struct *frag;
1531
1532                frag = &skb_shinfo(skb)->frags[i];
1533                db->wptr->len = frag->size;
1534                db->wptr->addr.dma =
1535                    pci_map_page(priv->pdev, frag->page, frag->page_offset,
1536                                 frag->size, PCI_DMA_TODEVICE);
1537
1538                pbl++;
1539                pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1540                pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1541                pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1542                bdx_tx_db_inc_wptr(db);
1543        }
1544
1545        /* add skb clean up info. */
1546        db->wptr->len = -txd_sizes[nr_frags].bytes;
1547        db->wptr->addr.skb = skb;
1548        bdx_tx_db_inc_wptr(db);
1549}
1550
1551/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1552 * number of frags is used as index to fetch correct descriptors size,
1553 * instead of calculating it each time */
1554static void __init init_txd_sizes(void)
1555{
1556        int i, lwords;
1557
1558        /* 7 - is number of lwords in txd with one phys buffer
1559         * 3 - is number of lwords used for every additional phys buffer */
1560        for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1561                lwords = 7 + (i * 3);
1562                if (lwords & 1)
1563                        lwords++;       /* pad it with 1 lword */
1564                txd_sizes[i].qwords = lwords >> 1;
1565                txd_sizes[i].bytes = lwords << 2;
1566        }
1567}
1568
1569/* bdx_tx_init - initialize all Tx related stuff.
1570 * Namely, TXD and TXF fifos, database etc */
1571static int bdx_tx_init(struct bdx_priv *priv)
1572{
1573        if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1574                          regTXD_CFG0_0,
1575                          regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1576                goto err_mem;
1577        if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1578                          regTXF_CFG0_0,
1579                          regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1580                goto err_mem;
1581
1582        /* The TX db has to keep mappings for all packets sent (on TxD)
1583         * and not yet reclaimed (on TxF) */
1584        if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1585                goto err_mem;
1586
1587        priv->tx_level = BDX_MAX_TX_LEVEL;
1588#ifdef BDX_DELAY_WPTR
1589        priv->tx_update_mark = priv->tx_level - 1024;
1590#endif
1591        return 0;
1592
1593err_mem:
1594        ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
1595        return -ENOMEM;
1596}
1597
1598/*
1599 * bdx_tx_space - calculates avalable space in TX fifo
1600 * @priv - NIC private structure
1601 * Returns avaliable space in TX fifo in bytes
1602 */
1603static inline int bdx_tx_space(struct bdx_priv *priv)
1604{
1605        struct txd_fifo *f = &priv->txd_fifo0;
1606        int fsize;
1607
1608        f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1609        fsize = f->m.rptr - f->m.wptr;
1610        if (fsize <= 0)
1611                fsize = f->m.memsz + fsize;
1612        return (fsize);
1613}
1614
1615/* bdx_tx_transmit - send packet to NIC
1616 * @skb - packet to send
1617 * ndev - network device assigned to NIC
1618 * Return codes:
1619 * o NETDEV_TX_OK everything ok.
1620 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1621 *   Usually a bug, means queue start/stop flow control is broken in
1622 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1623 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1624 */
1625static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1626                                   struct net_device *ndev)
1627{
1628        struct bdx_priv *priv = netdev_priv(ndev);
1629        struct txd_fifo *f = &priv->txd_fifo0;
1630        int txd_checksum = 7;   /* full checksum */
1631        int txd_lgsnd = 0;
1632        int txd_vlan_id = 0;
1633        int txd_vtag = 0;
1634        int txd_mss = 0;
1635
1636        int nr_frags = skb_shinfo(skb)->nr_frags;
1637        struct txd_desc *txdd;
1638        int len;
1639        unsigned long flags;
1640
1641        ENTER;
1642        local_irq_save(flags);
1643        if (!spin_trylock(&priv->tx_lock)) {
1644                local_irq_restore(flags);
1645                DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1646                    BDX_DRV_NAME, ndev->name);
1647                return NETDEV_TX_LOCKED;
1648        }
1649
1650        /* build tx descriptor */
1651        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* started with valid wptr */
1652        txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1653        if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1654                txd_checksum = 0;
1655
1656        if (skb_shinfo(skb)->gso_size) {
1657                txd_mss = skb_shinfo(skb)->gso_size;
1658                txd_lgsnd = 1;
1659                DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1660                    txd_mss);
1661        }
1662
1663        if (vlan_tx_tag_present(skb)) {
1664                /*Cut VLAN ID to 12 bits */
1665                txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1666                txd_vtag = 1;
1667        }
1668
1669        txdd->length = CPU_CHIP_SWAP16(skb->len);
1670        txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1671        txdd->txd_val1 =
1672            CPU_CHIP_SWAP32(TXD_W1_VAL
1673                            (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1674                             txd_lgsnd, txd_vlan_id));
1675        DBG("=== TxD desc =====================\n");
1676        DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1677        DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1678
1679        bdx_tx_map_skb(priv, skb, txdd);
1680
1681        /* increment TXD write pointer. In case of
1682           fifo wrapping copy reminder of the descriptor
1683           to the beginning */
1684        f->m.wptr += txd_sizes[nr_frags].bytes;
1685        len = f->m.wptr - f->m.memsz;
1686        if (unlikely(len >= 0)) {
1687                f->m.wptr = len;
1688                if (len > 0) {
1689                        BDX_ASSERT(len > f->m.memsz);
1690                        memcpy(f->m.va, f->m.va + f->m.memsz, len);
1691                }
1692        }
1693        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* finished with valid wptr */
1694
1695        priv->tx_level -= txd_sizes[nr_frags].bytes;
1696        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1697#ifdef BDX_DELAY_WPTR
1698        if (priv->tx_level > priv->tx_update_mark) {
1699                /* Force memory writes to complete before letting h/w
1700                   know there are new descriptors to fetch.
1701                   (might be needed on platforms like IA64)
1702                   wmb(); */
1703                WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1704        } else {
1705                if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1706                        priv->tx_noupd = 0;
1707                        WRITE_REG(priv, f->m.reg_WPTR,
1708                                  f->m.wptr & TXF_WPTR_WR_PTR);
1709                }
1710        }
1711#else
1712        /* Force memory writes to complete before letting h/w
1713           know there are new descriptors to fetch.
1714           (might be needed on platforms like IA64)
1715           wmb(); */
1716        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1717
1718#endif
1719#ifdef BDX_LLTX
1720        ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1721#endif
1722        priv->net_stats.tx_packets++;
1723        priv->net_stats.tx_bytes += skb->len;
1724
1725        if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1726                DBG("%s: %s: TX Q STOP level %d\n",
1727                    BDX_DRV_NAME, ndev->name, priv->tx_level);
1728                netif_stop_queue(ndev);
1729        }
1730
1731        spin_unlock_irqrestore(&priv->tx_lock, flags);
1732        return NETDEV_TX_OK;
1733}
1734
1735/* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1736 * @priv - bdx adapter
1737 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1738 * that those packets were sent
1739 */
1740static void bdx_tx_cleanup(struct bdx_priv *priv)
1741{
1742        struct txf_fifo *f = &priv->txf_fifo0;
1743        struct txdb *db = &priv->txdb;
1744        int tx_level = 0;
1745
1746        ENTER;
1747        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1748        BDX_ASSERT(f->m.rptr >= f->m.memsz);    /* started with valid rptr */
1749
1750        while (f->m.wptr != f->m.rptr) {
1751                f->m.rptr += BDX_TXF_DESC_SZ;
1752                f->m.rptr &= f->m.size_mask;
1753
1754                /* unmap all the fragments */
1755                /* first has to come tx_maps containing dma */
1756                BDX_ASSERT(db->rptr->len == 0);
1757                do {
1758                        BDX_ASSERT(db->rptr->addr.dma == 0);
1759                        pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1760                                       db->rptr->len, PCI_DMA_TODEVICE);
1761                        bdx_tx_db_inc_rptr(db);
1762                } while (db->rptr->len > 0);
1763                tx_level -= db->rptr->len;      /* '-' koz len is negative */
1764
1765                /* now should come skb pointer - free it */
1766                dev_kfree_skb_irq(db->rptr->addr.skb);
1767                bdx_tx_db_inc_rptr(db);
1768        }
1769
1770        /* let h/w know which TXF descriptors were cleaned */
1771        BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1772        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1773
1774        /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1775         * we resume the transmition and use tx_lock to synchronize with xmit.*/
1776        spin_lock(&priv->tx_lock);
1777        priv->tx_level += tx_level;
1778        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1779#ifdef BDX_DELAY_WPTR
1780        if (priv->tx_noupd) {
1781                priv->tx_noupd = 0;
1782                WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1783                          priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1784        }
1785#endif
1786
1787        if (unlikely(netif_queue_stopped(priv->ndev)
1788                     && netif_carrier_ok(priv->ndev)
1789                     && (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1790                DBG("%s: %s: TX Q WAKE level %d\n",
1791                    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1792                netif_wake_queue(priv->ndev);
1793        }
1794        spin_unlock(&priv->tx_lock);
1795}
1796
1797/* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1798 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1799 */
1800static void bdx_tx_free_skbs(struct bdx_priv *priv)
1801{
1802        struct txdb *db = &priv->txdb;
1803
1804        ENTER;
1805        while (db->rptr != db->wptr) {
1806                if (likely(db->rptr->len))
1807                        pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1808                                       db->rptr->len, PCI_DMA_TODEVICE);
1809                else
1810                        dev_kfree_skb(db->rptr->addr.skb);
1811                bdx_tx_db_inc_rptr(db);
1812        }
1813        RET();
1814}
1815
1816/* bdx_tx_free - frees all Tx resources */
1817static void bdx_tx_free(struct bdx_priv *priv)
1818{
1819        ENTER;
1820        bdx_tx_free_skbs(priv);
1821        bdx_fifo_free(priv, &priv->txd_fifo0.m);
1822        bdx_fifo_free(priv, &priv->txf_fifo0.m);
1823        bdx_tx_db_close(&priv->txdb);
1824}
1825
1826/* bdx_tx_push_desc - push descriptor to TxD fifo
1827 * @priv - NIC private structure
1828 * @data - desc's data
1829 * @size - desc's size
1830 *
1831 * Pushes desc to TxD fifo and overlaps it if needed.
1832 * NOTE: this func does not check for available space. this is responsibility
1833 *    of the caller. Neither does it check that data size is smaller than
1834 *    fifo size.
1835 */
1836static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1837{
1838        struct txd_fifo *f = &priv->txd_fifo0;
1839        int i = f->m.memsz - f->m.wptr;
1840
1841        if (size == 0)
1842                return;
1843
1844        if (i > size) {
1845                memcpy(f->m.va + f->m.wptr, data, size);
1846                f->m.wptr += size;
1847        } else {
1848                memcpy(f->m.va + f->m.wptr, data, i);
1849                f->m.wptr = size - i;
1850                memcpy(f->m.va, data + i, f->m.wptr);
1851        }
1852        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1853}
1854
1855/* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1856 * @priv - NIC private structure
1857 * @data - desc's data
1858 * @size - desc's size
1859 *
1860 * NOTE: this func does check for available space and, if neccessary, waits for
1861 *   NIC to read existing data before writing new one.
1862 */
1863static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1864{
1865        int timer = 0;
1866        ENTER;
1867
1868        while (size > 0) {
1869                /* we substruct 8 because when fifo is full rptr == wptr
1870                   which also means that fifo is empty, we can understand
1871                   the difference, but could hw do the same ??? :) */
1872                int avail = bdx_tx_space(priv) - 8;
1873                if (avail <= 0) {
1874                        if (timer++ > 300) {    /* prevent endless loop */
1875                                DBG("timeout while writing desc to TxD fifo\n");
1876                                break;
1877                        }
1878                        udelay(50);     /* give hw a chance to clean fifo */
1879                        continue;
1880                }
1881                avail = MIN(avail, size);
1882                DBG("about to push  %d bytes starting %p size %d\n", avail,
1883                    data, size);
1884                bdx_tx_push_desc(priv, data, avail);
1885                size -= avail;
1886                data += avail;
1887        }
1888        RET();
1889}
1890
1891static const struct net_device_ops bdx_netdev_ops = {
1892        .ndo_open               = bdx_open,
1893        .ndo_stop               = bdx_close,
1894        .ndo_start_xmit         = bdx_tx_transmit,
1895        .ndo_validate_addr      = eth_validate_addr,
1896        .ndo_do_ioctl           = bdx_ioctl,
1897        .ndo_set_multicast_list = bdx_setmulti,
1898        .ndo_get_stats          = bdx_get_stats,
1899        .ndo_change_mtu         = bdx_change_mtu,
1900        .ndo_set_mac_address    = bdx_set_mac,
1901        .ndo_vlan_rx_register   = bdx_vlan_rx_register,
1902        .ndo_vlan_rx_add_vid    = bdx_vlan_rx_add_vid,
1903        .ndo_vlan_rx_kill_vid   = bdx_vlan_rx_kill_vid,
1904};
1905
1906/**
1907 * bdx_probe - Device Initialization Routine
1908 * @pdev: PCI device information struct
1909 * @ent: entry in bdx_pci_tbl
1910 *
1911 * Returns 0 on success, negative on failure
1912 *
1913 * bdx_probe initializes an adapter identified by a pci_dev structure.
1914 * The OS initialization, configuring of the adapter private structure,
1915 * and a hardware reset occur.
1916 *
1917 * functions and their order used as explained in
1918 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1919 *
1920 */
1921
1922/* TBD: netif_msg should be checked and implemented. I disable it for now */
1923static int __devinit
1924bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1925{
1926        struct net_device *ndev;
1927        struct bdx_priv *priv;
1928        int err, pci_using_dac, port;
1929        unsigned long pciaddr;
1930        u32 regionSize;
1931        struct pci_nic *nic;
1932
1933        ENTER;
1934
1935        nic = vmalloc(sizeof(*nic));
1936        if (!nic)
1937                RET(-ENOMEM);
1938
1939    /************** pci *****************/
1940        if ((err = pci_enable_device(pdev)))    /* it trigers interrupt, dunno why. */
1941                goto err_pci;                   /* it's not a problem though */
1942
1943        if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1944            !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1945                pci_using_dac = 1;
1946        } else {
1947                if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1948                    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1949                        printk(KERN_ERR "tehuti: No usable DMA configuration"
1950                                        ", aborting\n");
1951                        goto err_dma;
1952                }
1953                pci_using_dac = 0;
1954        }
1955
1956        if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
1957                goto err_dma;
1958
1959        pci_set_master(pdev);
1960
1961        pciaddr = pci_resource_start(pdev, 0);
1962        if (!pciaddr) {
1963                err = -EIO;
1964                ERR("tehuti: no MMIO resource\n");
1965                goto err_out_res;
1966        }
1967        if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
1968                err = -EIO;
1969                ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
1970                goto err_out_res;
1971        }
1972
1973        nic->regs = ioremap(pciaddr, regionSize);
1974        if (!nic->regs) {
1975                err = -EIO;
1976                ERR("tehuti: ioremap failed\n");
1977                goto err_out_res;
1978        }
1979
1980        if (pdev->irq < 2) {
1981                err = -EIO;
1982                ERR("tehuti: invalid irq (%d)\n", pdev->irq);
1983                goto err_out_iomap;
1984        }
1985        pci_set_drvdata(pdev, nic);
1986
1987        if (pdev->device == 0x3014)
1988                nic->port_num = 2;
1989        else
1990                nic->port_num = 1;
1991
1992        print_hw_id(pdev);
1993
1994        bdx_hw_reset_direct(nic->regs);
1995
1996        nic->irq_type = IRQ_INTX;
1997#ifdef BDX_MSI
1998        if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1999                if ((err = pci_enable_msi(pdev)))
2000                        ERR("Tehuti: Can't eneble msi. error is %d\n", err);
2001                else
2002                        nic->irq_type = IRQ_MSI;
2003        } else
2004                DBG("HW does not support MSI\n");
2005#endif
2006
2007    /************** netdev **************/
2008        for (port = 0; port < nic->port_num; port++) {
2009                if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
2010                        err = -ENOMEM;
2011                        printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
2012                        goto err_out_iomap;
2013                }
2014
2015                ndev->netdev_ops = &bdx_netdev_ops;
2016                ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
2017
2018                bdx_ethtool_ops(ndev);  /* ethtool interface */
2019
2020                /* these fields are used for info purposes only
2021                 * so we can have them same for all ports of the board */
2022                ndev->if_port = port;
2023                ndev->base_addr = pciaddr;
2024                ndev->mem_start = pciaddr;
2025                ndev->mem_end = pciaddr + regionSize;
2026                ndev->irq = pdev->irq;
2027                ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2028                    | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2029                    NETIF_F_HW_VLAN_FILTER
2030                    /*| NETIF_F_FRAGLIST */
2031                    ;
2032
2033                if (pci_using_dac)
2034                        ndev->features |= NETIF_F_HIGHDMA;
2035
2036        /************** priv ****************/
2037                priv = nic->priv[port] = netdev_priv(ndev);
2038
2039                memset(priv, 0, sizeof(struct bdx_priv));
2040                priv->pBdxRegs = nic->regs + port * 0x8000;
2041                priv->port = port;
2042                priv->pdev = pdev;
2043                priv->ndev = ndev;
2044                priv->nic = nic;
2045                priv->msg_enable = BDX_DEF_MSG_ENABLE;
2046
2047                netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2048
2049                if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2050                        DBG("HW statistics not supported\n");
2051                        priv->stats_flag = 0;
2052                } else {
2053                        priv->stats_flag = 1;
2054                }
2055
2056                /* Initialize fifo sizes. */
2057                priv->txd_size = 2;
2058                priv->txf_size = 2;
2059                priv->rxd_size = 2;
2060                priv->rxf_size = 3;
2061
2062                /* Initialize the initial coalescing registers. */
2063                priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2064                priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2065
2066                /* ndev->xmit_lock spinlock is not used.
2067                 * Private priv->tx_lock is used for synchronization
2068                 * between transmit and TX irq cleanup.  In addition
2069                 * set multicast list callback has to use priv->tx_lock.
2070                 */
2071#ifdef BDX_LLTX
2072                ndev->features |= NETIF_F_LLTX;
2073#endif
2074                spin_lock_init(&priv->tx_lock);
2075
2076                /*bdx_hw_reset(priv); */
2077                if (bdx_read_mac(priv)) {
2078                        printk(KERN_ERR "tehuti: load MAC address failed\n");
2079                        goto err_out_iomap;
2080                }
2081                SET_NETDEV_DEV(ndev, &pdev->dev);
2082                if ((err = register_netdev(ndev))) {
2083                        printk(KERN_ERR "tehuti: register_netdev failed\n");
2084                        goto err_out_free;
2085                }
2086                netif_carrier_off(ndev);
2087                netif_stop_queue(ndev);
2088
2089                print_eth_id(ndev);
2090        }
2091        RET(0);
2092
2093err_out_free:
2094        free_netdev(ndev);
2095err_out_iomap:
2096        iounmap(nic->regs);
2097err_out_res:
2098        pci_release_regions(pdev);
2099err_dma:
2100        pci_disable_device(pdev);
2101err_pci:
2102        vfree(nic);
2103
2104        RET(err);
2105}
2106
2107/****************** Ethtool interface *********************/
2108/* get strings for tests */
2109static const char
2110 bdx_test_names[][ETH_GSTRING_LEN] = {
2111        "No tests defined"
2112};
2113
2114/* get strings for statistics counters */
2115static const char
2116 bdx_stat_names[][ETH_GSTRING_LEN] = {
2117        "InUCast",              /* 0x7200 */
2118        "InMCast",              /* 0x7210 */
2119        "InBCast",              /* 0x7220 */
2120        "InPkts",               /* 0x7230 */
2121        "InErrors",             /* 0x7240 */
2122        "InDropped",            /* 0x7250 */
2123        "FrameTooLong",         /* 0x7260 */
2124        "FrameSequenceErrors",  /* 0x7270 */
2125        "InVLAN",               /* 0x7280 */
2126        "InDroppedDFE",         /* 0x7290 */
2127        "InDroppedIntFull",     /* 0x72A0 */
2128        "InFrameAlignErrors",   /* 0x72B0 */
2129
2130        /* 0x72C0-0x72E0 RSRV */
2131
2132        "OutUCast",             /* 0x72F0 */
2133        "OutMCast",             /* 0x7300 */
2134        "OutBCast",             /* 0x7310 */
2135        "OutPkts",              /* 0x7320 */
2136
2137        /* 0x7330-0x7360 RSRV */
2138
2139        "OutVLAN",              /* 0x7370 */
2140        "InUCastOctects",       /* 0x7380 */
2141        "OutUCastOctects",      /* 0x7390 */
2142
2143        /* 0x73A0-0x73B0 RSRV */
2144
2145        "InBCastOctects",       /* 0x73C0 */
2146        "OutBCastOctects",      /* 0x73D0 */
2147        "InOctects",            /* 0x73E0 */
2148        "OutOctects",           /* 0x73F0 */
2149};
2150
2151/*
2152 * bdx_get_settings - get device-specific settings
2153 * @netdev
2154 * @ecmd
2155 */
2156static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2157{
2158        u32 rdintcm;
2159        u32 tdintcm;
2160        struct bdx_priv *priv = netdev_priv(netdev);
2161
2162        rdintcm = priv->rdintcm;
2163        tdintcm = priv->tdintcm;
2164
2165        ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2166        ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2167        ecmd->speed = SPEED_10000;
2168        ecmd->duplex = DUPLEX_FULL;
2169        ecmd->port = PORT_FIBRE;
2170        ecmd->transceiver = XCVR_EXTERNAL;      /* what does it mean? */
2171        ecmd->autoneg = AUTONEG_DISABLE;
2172
2173        /* PCK_TH measures in multiples of FIFO bytes
2174           We translate to packets */
2175        ecmd->maxtxpkt =
2176            ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2177        ecmd->maxrxpkt =
2178            ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2179
2180        return 0;
2181}
2182
2183/*
2184 * bdx_get_drvinfo - report driver information
2185 * @netdev
2186 * @drvinfo
2187 */
2188static void
2189bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2190{
2191        struct bdx_priv *priv = netdev_priv(netdev);
2192
2193        strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2194        strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2195        strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2196        strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2197                sizeof(drvinfo->bus_info));
2198
2199        drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2200        drvinfo->testinfo_len = 0;
2201        drvinfo->regdump_len = 0;
2202        drvinfo->eedump_len = 0;
2203}
2204
2205/*
2206 * bdx_get_rx_csum - report whether receive checksums are turned on or off
2207 * @netdev
2208 */
2209static u32 bdx_get_rx_csum(struct net_device *netdev)
2210{
2211        return 1;               /* always on */
2212}
2213
2214/*
2215 * bdx_get_tx_csum - report whether transmit checksums are turned on or off
2216 * @netdev
2217 */
2218static u32 bdx_get_tx_csum(struct net_device *netdev)
2219{
2220        return (netdev->features & NETIF_F_IP_CSUM) != 0;
2221}
2222
2223/*
2224 * bdx_get_coalesce - get interrupt coalescing parameters
2225 * @netdev
2226 * @ecoal
2227 */
2228static int
2229bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2230{
2231        u32 rdintcm;
2232        u32 tdintcm;
2233        struct bdx_priv *priv = netdev_priv(netdev);
2234
2235        rdintcm = priv->rdintcm;
2236        tdintcm = priv->tdintcm;
2237
2238        /* PCK_TH measures in multiples of FIFO bytes
2239           We translate to packets */
2240        ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2241        ecoal->rx_max_coalesced_frames =
2242            ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2243
2244        ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2245        ecoal->tx_max_coalesced_frames =
2246            ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2247
2248        /* adaptive parameters ignored */
2249        return 0;
2250}
2251
2252/*
2253 * bdx_set_coalesce - set interrupt coalescing parameters
2254 * @netdev
2255 * @ecoal
2256 */
2257static int
2258bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2259{
2260        u32 rdintcm;
2261        u32 tdintcm;
2262        struct bdx_priv *priv = netdev_priv(netdev);
2263        int rx_coal;
2264        int tx_coal;
2265        int rx_max_coal;
2266        int tx_max_coal;
2267
2268        /* Check for valid input */
2269        rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2270        tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2271        rx_max_coal = ecoal->rx_max_coalesced_frames;
2272        tx_max_coal = ecoal->tx_max_coalesced_frames;
2273
2274        /* Translate from packets to multiples of FIFO bytes */
2275        rx_max_coal =
2276            (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2277             / PCK_TH_MULT);
2278        tx_max_coal =
2279            (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2280             / PCK_TH_MULT);
2281
2282        if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
2283            || (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2284                return -EINVAL;
2285
2286        rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2287                              GET_RXF_TH(priv->rdintcm), rx_max_coal);
2288        tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2289                              tx_max_coal);
2290
2291        priv->rdintcm = rdintcm;
2292        priv->tdintcm = tdintcm;
2293
2294        WRITE_REG(priv, regRDINTCM0, rdintcm);
2295        WRITE_REG(priv, regTDINTCM0, tdintcm);
2296
2297        return 0;
2298}
2299
2300/* Convert RX fifo size to number of pending packets */
2301static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2302{
2303        return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
2304}
2305
2306/* Convert TX fifo size to number of pending packets */
2307static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2308{
2309        return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
2310}
2311
2312/*
2313 * bdx_get_ringparam - report ring sizes
2314 * @netdev
2315 * @ring
2316 */
2317static void
2318bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2319{
2320        struct bdx_priv *priv = netdev_priv(netdev);
2321
2322        /*max_pending - the maximum-sized FIFO we allow */
2323        ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2324        ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2325        ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2326        ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2327}
2328
2329/*
2330 * bdx_set_ringparam - set ring sizes
2331 * @netdev
2332 * @ring
2333 */
2334static int
2335bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2336{
2337        struct bdx_priv *priv = netdev_priv(netdev);
2338        int rx_size = 0;
2339        int tx_size = 0;
2340
2341        for (; rx_size < 4; rx_size++) {
2342                if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2343                        break;
2344        }
2345        if (rx_size == 4)
2346                rx_size = 3;
2347
2348        for (; tx_size < 4; tx_size++) {
2349                if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2350                        break;
2351        }
2352        if (tx_size == 4)
2353                tx_size = 3;
2354
2355        /*Is there anything to do? */
2356        if ((rx_size == priv->rxf_size)
2357            && (tx_size == priv->txd_size))
2358                return 0;
2359
2360        priv->rxf_size = rx_size;
2361        if (rx_size > 1)
2362                priv->rxd_size = rx_size - 1;
2363        else
2364                priv->rxd_size = rx_size;
2365
2366        priv->txf_size = priv->txd_size = tx_size;
2367
2368        if (netif_running(netdev)) {
2369                bdx_close(netdev);
2370                bdx_open(netdev);
2371        }
2372        return 0;
2373}
2374
2375/*
2376 * bdx_get_strings - return a set of strings that describe the requested objects
2377 * @netdev
2378 * @data
2379 */
2380static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2381{
2382        switch (stringset) {
2383        case ETH_SS_TEST:
2384                memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
2385                break;
2386        case ETH_SS_STATS:
2387                memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2388                break;
2389        }
2390}
2391
2392/*
2393 * bdx_get_stats_count - return number of 64bit statistics counters
2394 * @netdev
2395 */
2396static int bdx_get_stats_count(struct net_device *netdev)
2397{
2398        struct bdx_priv *priv = netdev_priv(netdev);
2399        BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2400                   != sizeof(struct bdx_stats) / sizeof(u64));
2401        return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2402}
2403
2404/*
2405 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2406 * @netdev
2407 * @stats
2408 * @data
2409 */
2410static void bdx_get_ethtool_stats(struct net_device *netdev,
2411                                  struct ethtool_stats *stats, u64 *data)
2412{
2413        struct bdx_priv *priv = netdev_priv(netdev);
2414
2415        if (priv->stats_flag) {
2416
2417                /* Update stats from HW */
2418                bdx_update_stats(priv);
2419
2420                /* Copy data to user buffer */
2421                memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2422        }
2423}
2424
2425/*
2426 * bdx_ethtool_ops - ethtool interface implementation
2427 * @netdev
2428 */
2429static void bdx_ethtool_ops(struct net_device *netdev)
2430{
2431        static const struct ethtool_ops bdx_ethtool_ops = {
2432                .get_settings = bdx_get_settings,
2433                .get_drvinfo = bdx_get_drvinfo,
2434                .get_link = ethtool_op_get_link,
2435                .get_coalesce = bdx_get_coalesce,
2436                .set_coalesce = bdx_set_coalesce,
2437                .get_ringparam = bdx_get_ringparam,
2438                .set_ringparam = bdx_set_ringparam,
2439                .get_rx_csum = bdx_get_rx_csum,
2440                .get_tx_csum = bdx_get_tx_csum,
2441                .get_sg = ethtool_op_get_sg,
2442                .get_tso = ethtool_op_get_tso,
2443                .get_strings = bdx_get_strings,
2444                .get_stats_count = bdx_get_stats_count,
2445                .get_ethtool_stats = bdx_get_ethtool_stats,
2446        };
2447
2448        SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2449}
2450
2451/**
2452 * bdx_remove - Device Removal Routine
2453 * @pdev: PCI device information struct
2454 *
2455 * bdx_remove is called by the PCI subsystem to alert the driver
2456 * that it should release a PCI device.  The could be caused by a
2457 * Hot-Plug event, or because the driver is going to be removed from
2458 * memory.
2459 **/
2460static void __devexit bdx_remove(struct pci_dev *pdev)
2461{
2462        struct pci_nic *nic = pci_get_drvdata(pdev);
2463        struct net_device *ndev;
2464        int port;
2465
2466        for (port = 0; port < nic->port_num; port++) {
2467                ndev = nic->priv[port]->ndev;
2468                unregister_netdev(ndev);
2469                free_netdev(ndev);
2470        }
2471
2472        /*bdx_hw_reset_direct(nic->regs); */
2473#ifdef BDX_MSI
2474        if (nic->irq_type == IRQ_MSI)
2475                pci_disable_msi(pdev);
2476#endif
2477
2478        iounmap(nic->regs);
2479        pci_release_regions(pdev);
2480        pci_disable_device(pdev);
2481        pci_set_drvdata(pdev, NULL);
2482        vfree(nic);
2483
2484        RET();
2485}
2486
2487static struct pci_driver bdx_pci_driver = {
2488        .name = BDX_DRV_NAME,
2489        .id_table = bdx_pci_tbl,
2490        .probe = bdx_probe,
2491        .remove = __devexit_p(bdx_remove),
2492};
2493
2494/*
2495 * print_driver_id - print parameters of the driver build
2496 */
2497static void __init print_driver_id(void)
2498{
2499        printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
2500               BDX_DRV_VERSION);
2501        printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
2502               BDX_MSI_STRING);
2503}
2504
2505static int __init bdx_module_init(void)
2506{
2507        ENTER;
2508        init_txd_sizes();
2509        print_driver_id();
2510        RET(pci_register_driver(&bdx_pci_driver));
2511}
2512
2513module_init(bdx_module_init);
2514
2515static void __exit bdx_module_exit(void)
2516{
2517        ENTER;
2518        pci_unregister_driver(&bdx_pci_driver);
2519        RET();
2520}
2521
2522module_exit(bdx_module_exit);
2523
2524MODULE_LICENSE("GPL");
2525MODULE_AUTHOR(DRIVER_AUTHOR);
2526MODULE_DESCRIPTION(BDX_DRV_DESC);
2527MODULE_FIRMWARE("tehuti/firmware.bin");
2528