linux/drivers/net/wan/dscc4.c
<<
>>
Prefs
   1/*
   2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
   3 *
   4 * This software may be used and distributed according to the terms of the
   5 * GNU General Public License.
   6 *
   7 * The author may be reached as romieu@cogenit.fr.
   8 * Specific bug reports/asian food will be welcome.
   9 *
  10 * Special thanks to the nice people at CS-Telecom for the hardware and the
  11 * access to the test/measure tools.
  12 *
  13 *
  14 *                             Theory of Operation
  15 *
  16 * I. Board Compatibility
  17 *
  18 * This device driver is designed for the Siemens PEB20534 4 ports serial
  19 * controller as found on Etinc PCISYNC cards. The documentation for the
  20 * chipset is available at http://www.infineon.com:
  21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
  22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
  23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
  24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
  25 * Jens David has built an adapter based on the same chipset. Take a look
  26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
  27 * driver.
  28 * Sample code (2 revisions) is available at Infineon.
  29 *
  30 * II. Board-specific settings
  31 *
  32 * Pcisync can transmit some clock signal to the outside world on the
  33 * *first two* ports provided you put a quartz and a line driver on it and
  34 * remove the jumpers. The operation is described on Etinc web site. If you
  35 * go DCE on these ports, don't forget to use an adequate cable.
  36 *
  37 * Sharing of the PCI interrupt line for this board is possible.
  38 *
  39 * III. Driver operation
  40 *
  41 * The rx/tx operations are based on a linked list of descriptors. The driver
  42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
  43 * I tried to fix it, the more it started to look like (convoluted) software
  44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
  45 * this a rfc2119 MUST.
  46 *
  47 * Tx direction
  48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
  49 * The device is supposed to be enabled again during an ALLS irq (we could
  50 * use HI but as it's easy to lose events, it's fscked).
  51 *
  52 * Rx direction
  53 * The received frames aren't supposed to span over multiple receiving areas.
  54 * I may implement it some day but it isn't the highest ranked item.
  55 *
  56 * IV. Notes
  57 * The current error (XDU, RFO) recovery code is untested.
  58 * So far, RDO takes his RX channel down and the right sequence to enable it
  59 * again is still a mistery. If RDO happens, plan a reboot. More details
  60 * in the code (NB: as this happens, TX still works).
  61 * Don't mess the cables during operation, especially on DTE ports. I don't
  62 * suggest it for DCE either but at least one can get some messages instead
  63 * of a complete instant freeze.
  64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
  65 * the documentation/chipset releases.
  66 *
  67 * TODO:
  68 * - test X25.
  69 * - use polling at high irq/s,
  70 * - performance analysis,
  71 * - endianness.
  72 *
  73 * 2001/12/10   Daniela Squassoni  <daniela@cyclades.com>
  74 * - Contribution to support the new generic HDLC layer.
  75 *
  76 * 2002/01      Ueimor
  77 * - old style interface removal
  78 * - dscc4_release_ring fix (related to DMA mapping)
  79 * - hard_start_xmit fix (hint: TxSizeMax)
  80 * - misc crapectomy.
  81 */
  82
  83#include <linux/module.h>
  84#include <linux/sched.h>
  85#include <linux/types.h>
  86#include <linux/errno.h>
  87#include <linux/list.h>
  88#include <linux/ioport.h>
  89#include <linux/pci.h>
  90#include <linux/kernel.h>
  91#include <linux/mm.h>
  92
  93#include <asm/system.h>
  94#include <asm/cache.h>
  95#include <asm/byteorder.h>
  96#include <asm/uaccess.h>
  97#include <asm/io.h>
  98#include <asm/irq.h>
  99
 100#include <linux/init.h>
 101#include <linux/string.h>
 102
 103#include <linux/if_arp.h>
 104#include <linux/netdevice.h>
 105#include <linux/skbuff.h>
 106#include <linux/delay.h>
 107#include <linux/hdlc.h>
 108#include <linux/mutex.h>
 109
 110/* Version */
 111static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
 112static int debug;
 113static int quartz;
 114
 115#ifdef CONFIG_DSCC4_PCI_RST
 116static DEFINE_MUTEX(dscc4_mutex);
 117static u32 dscc4_pci_config_store[16];
 118#endif
 119
 120#define DRV_NAME        "dscc4"
 121
 122#undef DSCC4_POLLING
 123
 124/* Module parameters */
 125
 126MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
 127MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
 128MODULE_LICENSE("GPL");
 129module_param(debug, int, 0);
 130MODULE_PARM_DESC(debug,"Enable/disable extra messages");
 131module_param(quartz, int, 0);
 132MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
 133
 134/* Structures */
 135
 136struct thingie {
 137        int define;
 138        u32 bits;
 139};
 140
 141struct TxFD {
 142        __le32 state;
 143        __le32 next;
 144        __le32 data;
 145        __le32 complete;
 146        u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
 147                     /* FWIW, datasheet calls that "dummy" and says that card
 148                      * never looks at it; neither does the driver */
 149};
 150
 151struct RxFD {
 152        __le32 state1;
 153        __le32 next;
 154        __le32 data;
 155        __le32 state2;
 156        __le32 end;
 157};
 158
 159#define DUMMY_SKB_SIZE          64
 160#define TX_LOW                  8
 161#define TX_RING_SIZE            32
 162#define RX_RING_SIZE            32
 163#define TX_TOTAL_SIZE           TX_RING_SIZE*sizeof(struct TxFD)
 164#define RX_TOTAL_SIZE           RX_RING_SIZE*sizeof(struct RxFD)
 165#define IRQ_RING_SIZE           64              /* Keep it a multiple of 32 */
 166#define TX_TIMEOUT              (HZ/10)
 167#define DSCC4_HZ_MAX            33000000
 168#define BRR_DIVIDER_MAX         64*0x00004000   /* Cf errata DS5 p.10 */
 169#define dev_per_card            4
 170#define SCC_REGISTERS_MAX       23              /* Cf errata DS5 p.4 */
 171
 172#define SOURCE_ID(flags)        (((flags) >> 28) & 0x03)
 173#define TO_SIZE(state)          (((state) >> 16) & 0x1fff)
 174
 175/*
 176 * Given the operating range of Linux HDLC, the 2 defines below could be
 177 * made simpler. However they are a fine reminder for the limitations of
 178 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
 179 */
 180#define TO_STATE_TX(len)        cpu_to_le32(((len) & TxSizeMax) << 16)
 181#define TO_STATE_RX(len)        cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
 182#define RX_MAX(len)             ((((len) >> 5) + 1) << 5)       /* Cf RLCR */
 183#define SCC_REG_START(dpriv)    (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
 184
 185struct dscc4_pci_priv {
 186        __le32 *iqcfg;
 187        int cfg_cur;
 188        spinlock_t lock;
 189        struct pci_dev *pdev;
 190
 191        struct dscc4_dev_priv *root;
 192        dma_addr_t iqcfg_dma;
 193        u32 xtal_hz;
 194};
 195
 196struct dscc4_dev_priv {
 197        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 198        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 199
 200        struct RxFD *rx_fd;
 201        struct TxFD *tx_fd;
 202        __le32 *iqrx;
 203        __le32 *iqtx;
 204
 205        /* FIXME: check all the volatile are required */
 206        volatile u32 tx_current;
 207        u32 rx_current;
 208        u32 iqtx_current;
 209        u32 iqrx_current;
 210
 211        volatile u32 tx_dirty;
 212        volatile u32 ltda;
 213        u32 rx_dirty;
 214        u32 lrda;
 215
 216        dma_addr_t tx_fd_dma;
 217        dma_addr_t rx_fd_dma;
 218        dma_addr_t iqtx_dma;
 219        dma_addr_t iqrx_dma;
 220
 221        u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
 222
 223        struct timer_list timer;
 224
 225        struct dscc4_pci_priv *pci_priv;
 226        spinlock_t lock;
 227
 228        int dev_id;
 229        volatile u32 flags;
 230        u32 timer_help;
 231
 232        unsigned short encoding;
 233        unsigned short parity;
 234        struct net_device *dev;
 235        sync_serial_settings settings;
 236        void __iomem *base_addr;
 237        u32 __pad __attribute__ ((aligned (4)));
 238};
 239
 240/* GLOBAL registers definitions */
 241#define GCMDR   0x00
 242#define GSTAR   0x04
 243#define GMODE   0x08
 244#define IQLENR0 0x0C
 245#define IQLENR1 0x10
 246#define IQRX0   0x14
 247#define IQTX0   0x24
 248#define IQCFG   0x3c
 249#define FIFOCR1 0x44
 250#define FIFOCR2 0x48
 251#define FIFOCR3 0x4c
 252#define FIFOCR4 0x34
 253#define CH0CFG  0x50
 254#define CH0BRDA 0x54
 255#define CH0BTDA 0x58
 256#define CH0FRDA 0x98
 257#define CH0FTDA 0xb0
 258#define CH0LRDA 0xc8
 259#define CH0LTDA 0xe0
 260
 261/* SCC registers definitions */
 262#define SCC_START       0x0100
 263#define SCC_OFFSET      0x80
 264#define CMDR    0x00
 265#define STAR    0x04
 266#define CCR0    0x08
 267#define CCR1    0x0c
 268#define CCR2    0x10
 269#define BRR     0x2C
 270#define RLCR    0x40
 271#define IMR     0x54
 272#define ISR     0x58
 273
 274#define GPDIR   0x0400
 275#define GPDATA  0x0404
 276#define GPIM    0x0408
 277
 278/* Bit masks */
 279#define EncodingMask    0x00700000
 280#define CrcMask         0x00000003
 281
 282#define IntRxScc0       0x10000000
 283#define IntTxScc0       0x01000000
 284
 285#define TxPollCmd       0x00000400
 286#define RxActivate      0x08000000
 287#define MTFi            0x04000000
 288#define Rdr             0x00400000
 289#define Rdt             0x00200000
 290#define Idr             0x00100000
 291#define Idt             0x00080000
 292#define TxSccRes        0x01000000
 293#define RxSccRes        0x00010000
 294#define TxSizeMax       0x1fff          /* Datasheet DS1 - 11.1.1.1 */
 295#define RxSizeMax       0x1ffc          /* Datasheet DS1 - 11.1.2.1 */
 296
 297#define Ccr0ClockMask   0x0000003f
 298#define Ccr1LoopMask    0x00000200
 299#define IsrMask         0x000fffff
 300#define BrrExpMask      0x00000f00
 301#define BrrMultMask     0x0000003f
 302#define EncodingMask    0x00700000
 303#define Hold            cpu_to_le32(0x40000000)
 304#define SccBusy         0x10000000
 305#define PowerUp         0x80000000
 306#define Vis             0x00001000
 307#define FrameOk         (FrameVfr | FrameCrc)
 308#define FrameVfr        0x80
 309#define FrameRdo        0x40
 310#define FrameCrc        0x20
 311#define FrameRab        0x10
 312#define FrameAborted    cpu_to_le32(0x00000200)
 313#define FrameEnd        cpu_to_le32(0x80000000)
 314#define DataComplete    cpu_to_le32(0x40000000)
 315#define LengthCheck     0x00008000
 316#define SccEvt          0x02000000
 317#define NoAck           0x00000200
 318#define Action          0x00000001
 319#define HiDesc          cpu_to_le32(0x20000000)
 320
 321/* SCC events */
 322#define RxEvt           0xf0000000
 323#define TxEvt           0x0f000000
 324#define Alls            0x00040000
 325#define Xdu             0x00010000
 326#define Cts             0x00004000
 327#define Xmr             0x00002000
 328#define Xpr             0x00001000
 329#define Rdo             0x00000080
 330#define Rfs             0x00000040
 331#define Cd              0x00000004
 332#define Rfo             0x00000002
 333#define Flex            0x00000001
 334
 335/* DMA core events */
 336#define Cfg             0x00200000
 337#define Hi              0x00040000
 338#define Fi              0x00020000
 339#define Err             0x00010000
 340#define Arf             0x00000002
 341#define ArAck           0x00000001
 342
 343/* State flags */
 344#define Ready           0x00000000
 345#define NeedIDR         0x00000001
 346#define NeedIDT         0x00000002
 347#define RdoSet          0x00000004
 348#define FakeReset       0x00000008
 349
 350/* Don't mask RDO. Ever. */
 351#ifdef DSCC4_POLLING
 352#define EventsMask      0xfffeef7f
 353#else
 354#define EventsMask      0xfffa8f7a
 355#endif
 356
 357/* Functions prototypes */
 358static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
 359static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
 360static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
 361static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
 362static int dscc4_open(struct net_device *);
 363static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
 364                                          struct net_device *);
 365static int dscc4_close(struct net_device *);
 366static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 367static int dscc4_init_ring(struct net_device *);
 368static void dscc4_release_ring(struct dscc4_dev_priv *);
 369static void dscc4_timer(unsigned long);
 370static void dscc4_tx_timeout(struct net_device *);
 371static irqreturn_t dscc4_irq(int irq, void *dev_id);
 372static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
 373static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
 374#ifdef DSCC4_POLLING
 375static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
 376#endif
 377
 378static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
 379{
 380        return dev_to_hdlc(dev)->priv;
 381}
 382
 383static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
 384{
 385        return p->dev;
 386}
 387
 388static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
 389                        struct net_device *dev, int offset)
 390{
 391        u32 state;
 392
 393        /* Cf scc_writel for concern regarding thread-safety */
 394        state = dpriv->scc_regs[offset >> 2];
 395        state &= ~mask;
 396        state |= value;
 397        dpriv->scc_regs[offset >> 2] = state;
 398        writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
 399}
 400
 401static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
 402                       struct net_device *dev, int offset)
 403{
 404        /*
 405         * Thread-UNsafe.
 406         * As of 2002/02/16, there are no thread racing for access.
 407         */
 408        dpriv->scc_regs[offset >> 2] = bits;
 409        writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
 410}
 411
 412static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
 413{
 414        return dpriv->scc_regs[offset >> 2];
 415}
 416
 417static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
 418{
 419        /* Cf errata DS5 p.4 */
 420        readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
 421        return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
 422}
 423
 424static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
 425                               struct net_device *dev)
 426{
 427        dpriv->ltda = dpriv->tx_fd_dma +
 428                      ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
 429        writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
 430        /* Flush posted writes *NOW* */
 431        readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
 432}
 433
 434static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
 435                                   struct net_device *dev)
 436{
 437        dpriv->lrda = dpriv->rx_fd_dma +
 438                      ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
 439        writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
 440}
 441
 442static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
 443{
 444        return dpriv->tx_current == dpriv->tx_dirty;
 445}
 446
 447static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
 448                                              struct net_device *dev)
 449{
 450        return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
 451}
 452
 453static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
 454                       struct net_device *dev, const char *msg)
 455{
 456        int ret = 0;
 457
 458        if (debug > 1) {
 459        if (SOURCE_ID(state) != dpriv->dev_id) {
 460                printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
 461                       dev->name, msg, SOURCE_ID(state), state );
 462                        ret = -1;
 463        }
 464        if (state & 0x0df80c00) {
 465                printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
 466                       dev->name, msg, state);
 467                        ret = -1;
 468        }
 469        }
 470        return ret;
 471}
 472
 473static void dscc4_tx_print(struct net_device *dev,
 474                           struct dscc4_dev_priv *dpriv,
 475                           char *msg)
 476{
 477        printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
 478               dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
 479}
 480
 481static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
 482{
 483        struct pci_dev *pdev = dpriv->pci_priv->pdev;
 484        struct TxFD *tx_fd = dpriv->tx_fd;
 485        struct RxFD *rx_fd = dpriv->rx_fd;
 486        struct sk_buff **skbuff;
 487        int i;
 488
 489        pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
 490        pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
 491
 492        skbuff = dpriv->tx_skbuff;
 493        for (i = 0; i < TX_RING_SIZE; i++) {
 494                if (*skbuff) {
 495                        pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
 496                                (*skbuff)->len, PCI_DMA_TODEVICE);
 497                        dev_kfree_skb(*skbuff);
 498                }
 499                skbuff++;
 500                tx_fd++;
 501        }
 502
 503        skbuff = dpriv->rx_skbuff;
 504        for (i = 0; i < RX_RING_SIZE; i++) {
 505                if (*skbuff) {
 506                        pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
 507                                RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
 508                        dev_kfree_skb(*skbuff);
 509                }
 510                skbuff++;
 511                rx_fd++;
 512        }
 513}
 514
 515static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
 516                                 struct net_device *dev)
 517{
 518        unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
 519        struct RxFD *rx_fd = dpriv->rx_fd + dirty;
 520        const int len = RX_MAX(HDLC_MAX_MRU);
 521        struct sk_buff *skb;
 522        int ret = 0;
 523
 524        skb = dev_alloc_skb(len);
 525        dpriv->rx_skbuff[dirty] = skb;
 526        if (skb) {
 527                skb->protocol = hdlc_type_trans(skb, dev);
 528                rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
 529                                          skb->data, len, PCI_DMA_FROMDEVICE));
 530        } else {
 531                rx_fd->data = 0;
 532                ret = -1;
 533        }
 534        return ret;
 535}
 536
 537/*
 538 * IRQ/thread/whatever safe
 539 */
 540static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
 541                              struct net_device *dev, char *msg)
 542{
 543        s8 i = 0;
 544
 545        do {
 546                if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
 547                        printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
 548                               msg, i);
 549                        goto done;
 550                }
 551                schedule_timeout_uninterruptible(10);
 552                rmb();
 553        } while (++i > 0);
 554        printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
 555done:
 556        return (i >= 0) ? i : -EAGAIN;
 557}
 558
 559static int dscc4_do_action(struct net_device *dev, char *msg)
 560{
 561        void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
 562        s16 i = 0;
 563
 564        writel(Action, ioaddr + GCMDR);
 565        ioaddr += GSTAR;
 566        do {
 567                u32 state = readl(ioaddr);
 568
 569                if (state & ArAck) {
 570                        printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
 571                        writel(ArAck, ioaddr);
 572                        goto done;
 573                } else if (state & Arf) {
 574                        printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
 575                        writel(Arf, ioaddr);
 576                        i = -1;
 577                        goto done;
 578        }
 579                rmb();
 580        } while (++i > 0);
 581        printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
 582done:
 583        return i;
 584}
 585
 586static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
 587{
 588        int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
 589        s8 i = 0;
 590
 591        do {
 592                if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
 593                    (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
 594                        break;
 595                smp_rmb();
 596                schedule_timeout_uninterruptible(10);
 597        } while (++i > 0);
 598
 599        return (i >= 0 ) ? i : -EAGAIN;
 600}
 601
 602#if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
 603static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
 604{
 605        unsigned long flags;
 606
 607        spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
 608        /* Cf errata DS5 p.6 */
 609        writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
 610        scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
 611        readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
 612        writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
 613        writel(Action, dpriv->base_addr + GCMDR);
 614        spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
 615}
 616
 617#endif
 618
 619#if 0
 620static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
 621{
 622        u16 i = 0;
 623
 624        /* Cf errata DS5 p.7 */
 625        scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
 626        scc_writel(0x00050000, dpriv, dev, CCR2);
 627        /*
 628         * Must be longer than the time required to fill the fifo.
 629         */
 630        while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
 631                udelay(1);
 632                wmb();
 633        }
 634
 635        writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
 636        if (dscc4_do_action(dev, "Rdt") < 0)
 637                printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
 638}
 639#endif
 640
 641/* TODO: (ab)use this function to refill a completely depleted RX ring. */
 642static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
 643                                struct net_device *dev)
 644{
 645        struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
 646        struct pci_dev *pdev = dpriv->pci_priv->pdev;
 647        struct sk_buff *skb;
 648        int pkt_len;
 649
 650        skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
 651        if (!skb) {
 652                printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
 653                goto refill;
 654        }
 655        pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
 656        pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
 657                         RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
 658        if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
 659                dev->stats.rx_packets++;
 660                dev->stats.rx_bytes += pkt_len;
 661                skb_put(skb, pkt_len);
 662                if (netif_running(dev))
 663                        skb->protocol = hdlc_type_trans(skb, dev);
 664                netif_rx(skb);
 665        } else {
 666                if (skb->data[pkt_len] & FrameRdo)
 667                        dev->stats.rx_fifo_errors++;
 668                else if (!(skb->data[pkt_len] & FrameCrc))
 669                        dev->stats.rx_crc_errors++;
 670                else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
 671                         (FrameVfr | FrameRab))
 672                        dev->stats.rx_length_errors++;
 673                dev->stats.rx_errors++;
 674                dev_kfree_skb_irq(skb);
 675        }
 676refill:
 677        while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
 678                if (try_get_rx_skb(dpriv, dev) < 0)
 679                        break;
 680                dpriv->rx_dirty++;
 681        }
 682        dscc4_rx_update(dpriv, dev);
 683        rx_fd->state2 = 0x00000000;
 684        rx_fd->end = cpu_to_le32(0xbabeface);
 685}
 686
 687static void dscc4_free1(struct pci_dev *pdev)
 688{
 689        struct dscc4_pci_priv *ppriv;
 690        struct dscc4_dev_priv *root;
 691        int i;
 692
 693        ppriv = pci_get_drvdata(pdev);
 694        root = ppriv->root;
 695
 696        for (i = 0; i < dev_per_card; i++)
 697                unregister_hdlc_device(dscc4_to_dev(root + i));
 698
 699        pci_set_drvdata(pdev, NULL);
 700
 701        for (i = 0; i < dev_per_card; i++)
 702                free_netdev(root[i].dev);
 703        kfree(root);
 704        kfree(ppriv);
 705}
 706
 707static int __devinit dscc4_init_one(struct pci_dev *pdev,
 708                                  const struct pci_device_id *ent)
 709{
 710        struct dscc4_pci_priv *priv;
 711        struct dscc4_dev_priv *dpriv;
 712        void __iomem *ioaddr;
 713        int i, rc;
 714
 715        printk(KERN_DEBUG "%s", version);
 716
 717        rc = pci_enable_device(pdev);
 718        if (rc < 0)
 719                goto out;
 720
 721        rc = pci_request_region(pdev, 0, "registers");
 722        if (rc < 0) {
 723                printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
 724                        DRV_NAME);
 725                goto err_disable_0;
 726        }
 727        rc = pci_request_region(pdev, 1, "LBI interface");
 728        if (rc < 0) {
 729                printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
 730                        DRV_NAME);
 731                goto err_free_mmio_region_1;
 732        }
 733
 734        ioaddr = pci_ioremap_bar(pdev, 0);
 735        if (!ioaddr) {
 736                printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
 737                        DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
 738                        (unsigned long long)pci_resource_start(pdev, 0));
 739                rc = -EIO;
 740                goto err_free_mmio_regions_2;
 741        }
 742        printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
 743                (unsigned long long)pci_resource_start(pdev, 0),
 744                (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
 745
 746        /* Cf errata DS5 p.2 */
 747        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
 748        pci_set_master(pdev);
 749
 750        rc = dscc4_found1(pdev, ioaddr);
 751        if (rc < 0)
 752                goto err_iounmap_3;
 753
 754        priv = pci_get_drvdata(pdev);
 755
 756        rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
 757        if (rc < 0) {
 758                printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
 759                goto err_release_4;
 760        }
 761
 762        /* power up/little endian/dma core controlled via lrda/ltda */
 763        writel(0x00000001, ioaddr + GMODE);
 764        /* Shared interrupt queue */
 765        {
 766                u32 bits;
 767
 768                bits = (IRQ_RING_SIZE >> 5) - 1;
 769                bits |= bits << 4;
 770                bits |= bits << 8;
 771                bits |= bits << 16;
 772                writel(bits, ioaddr + IQLENR0);
 773        }
 774        /* Global interrupt queue */
 775        writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
 776        priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
 777                IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
 778        if (!priv->iqcfg)
 779                goto err_free_irq_5;
 780        writel(priv->iqcfg_dma, ioaddr + IQCFG);
 781
 782        rc = -ENOMEM;
 783
 784        /*
 785         * SCC 0-3 private rx/tx irq structures
 786         * IQRX/TXi needs to be set soon. Learned it the hard way...
 787         */
 788        for (i = 0; i < dev_per_card; i++) {
 789                dpriv = priv->root + i;
 790                dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
 791                        IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
 792                if (!dpriv->iqtx)
 793                        goto err_free_iqtx_6;
 794                writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
 795        }
 796        for (i = 0; i < dev_per_card; i++) {
 797                dpriv = priv->root + i;
 798                dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
 799                        IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
 800                if (!dpriv->iqrx)
 801                        goto err_free_iqrx_7;
 802                writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
 803        }
 804
 805        /* Cf application hint. Beware of hard-lock condition on threshold. */
 806        writel(0x42104000, ioaddr + FIFOCR1);
 807        //writel(0x9ce69800, ioaddr + FIFOCR2);
 808        writel(0xdef6d800, ioaddr + FIFOCR2);
 809        //writel(0x11111111, ioaddr + FIFOCR4);
 810        writel(0x18181818, ioaddr + FIFOCR4);
 811        // FIXME: should depend on the chipset revision
 812        writel(0x0000000e, ioaddr + FIFOCR3);
 813
 814        writel(0xff200001, ioaddr + GCMDR);
 815
 816        rc = 0;
 817out:
 818        return rc;
 819
 820err_free_iqrx_7:
 821        while (--i >= 0) {
 822                dpriv = priv->root + i;
 823                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
 824                                    dpriv->iqrx, dpriv->iqrx_dma);
 825        }
 826        i = dev_per_card;
 827err_free_iqtx_6:
 828        while (--i >= 0) {
 829                dpriv = priv->root + i;
 830                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
 831                                    dpriv->iqtx, dpriv->iqtx_dma);
 832        }
 833        pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
 834                            priv->iqcfg_dma);
 835err_free_irq_5:
 836        free_irq(pdev->irq, priv->root);
 837err_release_4:
 838        dscc4_free1(pdev);
 839err_iounmap_3:
 840        iounmap (ioaddr);
 841err_free_mmio_regions_2:
 842        pci_release_region(pdev, 1);
 843err_free_mmio_region_1:
 844        pci_release_region(pdev, 0);
 845err_disable_0:
 846        pci_disable_device(pdev);
 847        goto out;
 848};
 849
 850/*
 851 * Let's hope the default values are decent enough to protect my
 852 * feet from the user's gun - Ueimor
 853 */
 854static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
 855                                 struct net_device *dev)
 856{
 857        /* No interrupts, SCC core disabled. Let's relax */
 858        scc_writel(0x00000000, dpriv, dev, CCR0);
 859
 860        scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
 861
 862        /*
 863         * No address recognition/crc-CCITT/cts enabled
 864         * Shared flags transmission disabled - cf errata DS5 p.11
 865         * Carrier detect disabled - cf errata p.14
 866         * FIXME: carrier detection/polarity may be handled more gracefully.
 867         */
 868        scc_writel(0x02408000, dpriv, dev, CCR1);
 869
 870        /* crc not forwarded - Cf errata DS5 p.11 */
 871        scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
 872        // crc forwarded
 873        //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
 874}
 875
 876static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
 877{
 878        int ret = 0;
 879
 880        if ((hz < 0) || (hz > DSCC4_HZ_MAX))
 881                ret = -EOPNOTSUPP;
 882        else
 883                dpriv->pci_priv->xtal_hz = hz;
 884
 885        return ret;
 886}
 887
 888static const struct net_device_ops dscc4_ops = {
 889        .ndo_open       = dscc4_open,
 890        .ndo_stop       = dscc4_close,
 891        .ndo_change_mtu = hdlc_change_mtu,
 892        .ndo_start_xmit = hdlc_start_xmit,
 893        .ndo_do_ioctl   = dscc4_ioctl,
 894        .ndo_tx_timeout = dscc4_tx_timeout,
 895};
 896
 897static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
 898{
 899        struct dscc4_pci_priv *ppriv;
 900        struct dscc4_dev_priv *root;
 901        int i, ret = -ENOMEM;
 902
 903        root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
 904        if (!root) {
 905                printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
 906                goto err_out;
 907        }
 908
 909        for (i = 0; i < dev_per_card; i++) {
 910                root[i].dev = alloc_hdlcdev(root + i);
 911                if (!root[i].dev)
 912                        goto err_free_dev;
 913        }
 914
 915        ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
 916        if (!ppriv) {
 917                printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
 918                goto err_free_dev;
 919        }
 920
 921        ppriv->root = root;
 922        spin_lock_init(&ppriv->lock);
 923
 924        for (i = 0; i < dev_per_card; i++) {
 925                struct dscc4_dev_priv *dpriv = root + i;
 926                struct net_device *d = dscc4_to_dev(dpriv);
 927                hdlc_device *hdlc = dev_to_hdlc(d);
 928
 929                d->base_addr = (unsigned long)ioaddr;
 930                d->irq = pdev->irq;
 931                d->netdev_ops = &dscc4_ops;
 932                d->watchdog_timeo = TX_TIMEOUT;
 933                SET_NETDEV_DEV(d, &pdev->dev);
 934
 935                dpriv->dev_id = i;
 936                dpriv->pci_priv = ppriv;
 937                dpriv->base_addr = ioaddr;
 938                spin_lock_init(&dpriv->lock);
 939
 940                hdlc->xmit = dscc4_start_xmit;
 941                hdlc->attach = dscc4_hdlc_attach;
 942
 943                dscc4_init_registers(dpriv, d);
 944                dpriv->parity = PARITY_CRC16_PR0_CCITT;
 945                dpriv->encoding = ENCODING_NRZ;
 946        
 947                ret = dscc4_init_ring(d);
 948                if (ret < 0)
 949                        goto err_unregister;
 950
 951                ret = register_hdlc_device(d);
 952                if (ret < 0) {
 953                        printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
 954                        dscc4_release_ring(dpriv);
 955                        goto err_unregister;
 956                }
 957        }
 958
 959        ret = dscc4_set_quartz(root, quartz);
 960        if (ret < 0)
 961                goto err_unregister;
 962
 963        pci_set_drvdata(pdev, ppriv);
 964        return ret;
 965
 966err_unregister:
 967        while (i-- > 0) {
 968                dscc4_release_ring(root + i);
 969                unregister_hdlc_device(dscc4_to_dev(root + i));
 970        }
 971        kfree(ppriv);
 972        i = dev_per_card;
 973err_free_dev:
 974        while (i-- > 0)
 975                free_netdev(root[i].dev);
 976        kfree(root);
 977err_out:
 978        return ret;
 979};
 980
 981/* FIXME: get rid of the unneeded code */
 982static void dscc4_timer(unsigned long data)
 983{
 984        struct net_device *dev = (struct net_device *)data;
 985        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
 986//      struct dscc4_pci_priv *ppriv;
 987
 988        goto done;
 989done:
 990        dpriv->timer.expires = jiffies + TX_TIMEOUT;
 991        add_timer(&dpriv->timer);
 992}
 993
 994static void dscc4_tx_timeout(struct net_device *dev)
 995{
 996        /* FIXME: something is missing there */
 997}
 998
 999static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
1000{
1001        sync_serial_settings *settings = &dpriv->settings;
1002
1003        if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1004                struct net_device *dev = dscc4_to_dev(dpriv);
1005
1006                printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
1007                return -1;
1008        }
1009        return 0;
1010}
1011
1012#ifdef CONFIG_DSCC4_PCI_RST
1013/*
1014 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1015 * so as to provide a safe way to reset the asic while not the whole machine
1016 * rebooting.
1017 *
1018 * This code doesn't need to be efficient. Keep It Simple
1019 */
1020static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1021{
1022        int i;
1023
1024        mutex_lock(&dscc4_mutex);
1025        for (i = 0; i < 16; i++)
1026                pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1027
1028        /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1029        writel(0x001c0000, ioaddr + GMODE);
1030        /* Configure GPIO port as output */
1031        writel(0x0000ffff, ioaddr + GPDIR);
1032        /* Disable interruption */
1033        writel(0x0000ffff, ioaddr + GPIM);
1034
1035        writel(0x0000ffff, ioaddr + GPDATA);
1036        writel(0x00000000, ioaddr + GPDATA);
1037
1038        /* Flush posted writes */
1039        readl(ioaddr + GSTAR);
1040
1041        schedule_timeout_uninterruptible(10);
1042
1043        for (i = 0; i < 16; i++)
1044                pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1045        mutex_unlock(&dscc4_mutex);
1046}
1047#else
1048#define dscc4_pci_reset(pdev,ioaddr)    do {} while (0)
1049#endif /* CONFIG_DSCC4_PCI_RST */
1050
1051static int dscc4_open(struct net_device *dev)
1052{
1053        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1054        struct dscc4_pci_priv *ppriv;
1055        int ret = -EAGAIN;
1056
1057        if ((dscc4_loopback_check(dpriv) < 0))
1058                goto err;
1059
1060        if ((ret = hdlc_open(dev)))
1061                goto err;
1062
1063        ppriv = dpriv->pci_priv;
1064
1065        /*
1066         * Due to various bugs, there is no way to reliably reset a
1067         * specific port (manufacturer's dependant special PCI #RST wiring
1068         * apart: it affects all ports). Thus the device goes in the best
1069         * silent mode possible at dscc4_close() time and simply claims to
1070         * be up if it's opened again. It still isn't possible to change
1071         * the HDLC configuration without rebooting but at least the ports
1072         * can be up/down ifconfig'ed without killing the host.
1073         */
1074        if (dpriv->flags & FakeReset) {
1075                dpriv->flags &= ~FakeReset;
1076                scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1077                scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1078                scc_writel(EventsMask, dpriv, dev, IMR);
1079                printk(KERN_INFO "%s: up again.\n", dev->name);
1080                goto done;
1081        }
1082
1083        /* IDT+IDR during XPR */
1084        dpriv->flags = NeedIDR | NeedIDT;
1085
1086        scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1087
1088        /*
1089         * The following is a bit paranoid...
1090         *
1091         * NB: the datasheet "...CEC will stay active if the SCC is in
1092         * power-down mode or..." and CCR2.RAC = 1 are two different
1093         * situations.
1094         */
1095        if (scc_readl_star(dpriv, dev) & SccBusy) {
1096                printk(KERN_ERR "%s busy. Try later\n", dev->name);
1097                ret = -EAGAIN;
1098                goto err_out;
1099        } else
1100                printk(KERN_INFO "%s: available. Good\n", dev->name);
1101
1102        scc_writel(EventsMask, dpriv, dev, IMR);
1103
1104        /* Posted write is flushed in the wait_ack loop */
1105        scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1106
1107        if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1108                goto err_disable_scc_events;
1109
1110        /*
1111         * I would expect XPR near CE completion (before ? after ?).
1112         * At worst, this code won't see a late XPR and people
1113         * will have to re-issue an ifconfig (this is harmless).
1114         * WARNING, a really missing XPR usually means a hardware
1115         * reset is needed. Suggestions anyone ?
1116         */
1117        if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1118                printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1119                goto err_disable_scc_events;
1120        }
1121        
1122        if (debug > 2)
1123                dscc4_tx_print(dev, dpriv, "Open");
1124
1125done:
1126        netif_start_queue(dev);
1127
1128        init_timer(&dpriv->timer);
1129        dpriv->timer.expires = jiffies + 10*HZ;
1130        dpriv->timer.data = (unsigned long)dev;
1131        dpriv->timer.function = &dscc4_timer;
1132        add_timer(&dpriv->timer);
1133        netif_carrier_on(dev);
1134
1135        return 0;
1136
1137err_disable_scc_events:
1138        scc_writel(0xffffffff, dpriv, dev, IMR);
1139        scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1140err_out:
1141        hdlc_close(dev);
1142err:
1143        return ret;
1144}
1145
1146#ifdef DSCC4_POLLING
1147static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1148{
1149        /* FIXME: it's gonna be easy (TM), for sure */
1150}
1151#endif /* DSCC4_POLLING */
1152
1153static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1154                                          struct net_device *dev)
1155{
1156        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1157        struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1158        struct TxFD *tx_fd;
1159        int next;
1160
1161        next = dpriv->tx_current%TX_RING_SIZE;
1162        dpriv->tx_skbuff[next] = skb;
1163        tx_fd = dpriv->tx_fd + next;
1164        tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1165        tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1166                                     PCI_DMA_TODEVICE));
1167        tx_fd->complete = 0x00000000;
1168        tx_fd->jiffies = jiffies;
1169        mb();
1170
1171#ifdef DSCC4_POLLING
1172        spin_lock(&dpriv->lock);
1173        while (dscc4_tx_poll(dpriv, dev));
1174        spin_unlock(&dpriv->lock);
1175#endif
1176
1177        dev->trans_start = jiffies;
1178
1179        if (debug > 2)
1180                dscc4_tx_print(dev, dpriv, "Xmit");
1181        /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1182        if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1183                netif_stop_queue(dev);
1184
1185        if (dscc4_tx_quiescent(dpriv, dev))
1186                dscc4_do_tx(dpriv, dev);
1187
1188        return NETDEV_TX_OK;
1189}
1190
1191static int dscc4_close(struct net_device *dev)
1192{
1193        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1194
1195        del_timer_sync(&dpriv->timer);
1196        netif_stop_queue(dev);
1197
1198        scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1199        scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1200        scc_writel(0xffffffff, dpriv, dev, IMR);
1201
1202        dpriv->flags |= FakeReset;
1203
1204        hdlc_close(dev);
1205
1206        return 0;
1207}
1208
1209static inline int dscc4_check_clock_ability(int port)
1210{
1211        int ret = 0;
1212
1213#ifdef CONFIG_DSCC4_PCISYNC
1214        if (port >= 2)
1215                ret = -1;
1216#endif
1217        return ret;
1218}
1219
1220/*
1221 * DS1 p.137: "There are a total of 13 different clocking modes..."
1222 *                                  ^^
1223 * Design choices:
1224 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1225 *   Clock mode 3b _should_ work but the testing seems to make this point
1226 *   dubious (DIY testing requires setting CCR0 at 0x00000033).
1227 *   This is supposed to provide least surprise "DTE like" behavior.
1228 * - if line rate is specified, clocks are assumed to be locally generated.
1229 *   A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1230 *   between these it automagically done according on the required frequency
1231 *   scaling. Of course some rounding may take place.
1232 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1233 *   appropriate external clocking device for testing.
1234 * - no time-slot/clock mode 5: shameless lazyness.
1235 *
1236 * The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
1237 *
1238 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1239 * won't pass the init sequence. For example, straight back-to-back DTE without
1240 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1241 * called.
1242 *
1243 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1244 * DS0 for example)
1245 *
1246 * Clock mode related bits of CCR0:
1247 *     +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1248 *     | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1249 *     | | +-------- High Speed: say 0
1250 *     | | | +-+-+-- Clock Mode: 0..7
1251 *     | | | | | |
1252 * -+-+-+-+-+-+-+-+
1253 * x|x|5|4|3|2|1|0| lower bits
1254 *
1255 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1256 *            +-+-+-+------------------ M (0..15)
1257 *            | | | |     +-+-+-+-+-+-- N (0..63)
1258 *    0 0 0 0 | | | | 0 0 | | | | | |
1259 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1260 *    f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1261 *
1262 */
1263static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1264{
1265        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1266        int ret = -1;
1267        u32 brr;
1268
1269        *state &= ~Ccr0ClockMask;
1270        if (*bps) { /* Clock generated - required for DCE */
1271                u32 n = 0, m = 0, divider;
1272                int xtal;
1273
1274                xtal = dpriv->pci_priv->xtal_hz;
1275                if (!xtal)
1276                        goto done;
1277                if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1278                        goto done;
1279                divider = xtal / *bps;
1280                if (divider > BRR_DIVIDER_MAX) {
1281                        divider >>= 4;
1282                        *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1283                } else
1284                        *state |= 0x00000037; /* Clock mode 7b (BRG) */
1285                if (divider >> 22) {
1286                        n = 63;
1287                        m = 15;
1288                } else if (divider) {
1289                        /* Extraction of the 6 highest weighted bits */
1290                        m = 0;
1291                        while (0xffffffc0 & divider) {
1292                                m++;
1293                                divider >>= 1;
1294                        }
1295                        n = divider;
1296                }
1297                brr = (m << 8) | n;
1298                divider = n << m;
1299                if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1300                        divider <<= 4;
1301                *bps = xtal / divider;
1302        } else {
1303                /*
1304                 * External clock - DTE
1305                 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1306                 * Nothing more to be done
1307                 */
1308                brr = 0;
1309        }
1310        scc_writel(brr, dpriv, dev, BRR);
1311        ret = 0;
1312done:
1313        return ret;
1314}
1315
1316static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1317{
1318        sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1319        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1320        const size_t size = sizeof(dpriv->settings);
1321        int ret = 0;
1322
1323        if (dev->flags & IFF_UP)
1324                return -EBUSY;
1325
1326        if (cmd != SIOCWANDEV)
1327                return -EOPNOTSUPP;
1328
1329        switch(ifr->ifr_settings.type) {
1330        case IF_GET_IFACE:
1331                ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1332                if (ifr->ifr_settings.size < size) {
1333                        ifr->ifr_settings.size = size; /* data size wanted */
1334                        return -ENOBUFS;
1335                }
1336                if (copy_to_user(line, &dpriv->settings, size))
1337                        return -EFAULT;
1338                break;
1339
1340        case IF_IFACE_SYNC_SERIAL:
1341                if (!capable(CAP_NET_ADMIN))
1342                        return -EPERM;
1343
1344                if (dpriv->flags & FakeReset) {
1345                        printk(KERN_INFO "%s: please reset the device"
1346                               " before this command\n", dev->name);
1347                        return -EPERM;
1348                }
1349                if (copy_from_user(&dpriv->settings, line, size))
1350                        return -EFAULT;
1351                ret = dscc4_set_iface(dpriv, dev);
1352                break;
1353
1354        default:
1355                ret = hdlc_ioctl(dev, ifr, cmd);
1356                break;
1357        }
1358
1359        return ret;
1360}
1361
1362static int dscc4_match(struct thingie *p, int value)
1363{
1364        int i;
1365
1366        for (i = 0; p[i].define != -1; i++) {
1367                if (value == p[i].define)
1368                        break;
1369        }
1370        if (p[i].define == -1)
1371                return -1;
1372        else
1373                return i;
1374}
1375
1376static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1377                               struct net_device *dev)
1378{
1379        sync_serial_settings *settings = &dpriv->settings;
1380        int ret = -EOPNOTSUPP;
1381        u32 bps, state;
1382
1383        bps = settings->clock_rate;
1384        state = scc_readl(dpriv, CCR0);
1385        if (dscc4_set_clock(dev, &bps, &state) < 0)
1386                goto done;
1387        if (bps) { /* DCE */
1388                printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1389                if (settings->clock_rate != bps) {
1390                        printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1391                                dev->name, settings->clock_rate, bps);
1392                        settings->clock_rate = bps;
1393                }
1394        } else { /* DTE */
1395                state |= PowerUp | Vis;
1396                printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1397        }
1398        scc_writel(state, dpriv, dev, CCR0);
1399        ret = 0;
1400done:
1401        return ret;
1402}
1403
1404static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1405                                  struct net_device *dev)
1406{
1407        struct thingie encoding[] = {
1408                { ENCODING_NRZ,         0x00000000 },
1409                { ENCODING_NRZI,        0x00200000 },
1410                { ENCODING_FM_MARK,     0x00400000 },
1411                { ENCODING_FM_SPACE,    0x00500000 },
1412                { ENCODING_MANCHESTER,  0x00600000 },
1413                { -1,                   0}
1414        };
1415        int i, ret = 0;
1416
1417        i = dscc4_match(encoding, dpriv->encoding);
1418        if (i >= 0)
1419                scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1420        else
1421                ret = -EOPNOTSUPP;
1422        return ret;
1423}
1424
1425static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1426                                  struct net_device *dev)
1427{
1428        sync_serial_settings *settings = &dpriv->settings;
1429        u32 state;
1430
1431        state = scc_readl(dpriv, CCR1);
1432        if (settings->loopback) {
1433                printk(KERN_DEBUG "%s: loopback\n", dev->name);
1434                state |= 0x00000100;
1435        } else {
1436                printk(KERN_DEBUG "%s: normal\n", dev->name);
1437                state &= ~0x00000100;
1438        }
1439        scc_writel(state, dpriv, dev, CCR1);
1440        return 0;
1441}
1442
1443static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1444                             struct net_device *dev)
1445{
1446        struct thingie crc[] = {
1447                { PARITY_CRC16_PR0_CCITT,       0x00000010 },
1448                { PARITY_CRC16_PR1_CCITT,       0x00000000 },
1449                { PARITY_CRC32_PR0_CCITT,       0x00000011 },
1450                { PARITY_CRC32_PR1_CCITT,       0x00000001 }
1451        };
1452        int i, ret = 0;
1453
1454        i = dscc4_match(crc, dpriv->parity);
1455        if (i >= 0)
1456                scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1457        else
1458                ret = -EOPNOTSUPP;
1459        return ret;
1460}
1461
1462static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1463{
1464        struct {
1465                int (*action)(struct dscc4_dev_priv *, struct net_device *);
1466        } *p, do_setting[] = {
1467                { dscc4_encoding_setting },
1468                { dscc4_clock_setting },
1469                { dscc4_loopback_setting },
1470                { dscc4_crc_setting },
1471                { NULL }
1472        };
1473        int ret = 0;
1474
1475        for (p = do_setting; p->action; p++) {
1476                if ((ret = p->action(dpriv, dev)) < 0)
1477                        break;
1478        }
1479        return ret;
1480}
1481
1482static irqreturn_t dscc4_irq(int irq, void *token)
1483{
1484        struct dscc4_dev_priv *root = token;
1485        struct dscc4_pci_priv *priv;
1486        struct net_device *dev;
1487        void __iomem *ioaddr;
1488        u32 state;
1489        unsigned long flags;
1490        int i, handled = 1;
1491
1492        priv = root->pci_priv;
1493        dev = dscc4_to_dev(root);
1494
1495        spin_lock_irqsave(&priv->lock, flags);
1496
1497        ioaddr = root->base_addr;
1498
1499        state = readl(ioaddr + GSTAR);
1500        if (!state) {
1501                handled = 0;
1502                goto out;
1503        }
1504        if (debug > 3)
1505                printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1506        writel(state, ioaddr + GSTAR);
1507
1508        if (state & Arf) {
1509                printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1510                       dev->name);
1511                goto out;
1512        }
1513        state &= ~ArAck;
1514        if (state & Cfg) {
1515                if (debug > 0)
1516                        printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1517                if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1518                        printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1519                if (!(state &= ~Cfg))
1520                        goto out;
1521        }
1522        if (state & RxEvt) {
1523                i = dev_per_card - 1;
1524                do {
1525                        dscc4_rx_irq(priv, root + i);
1526                } while (--i >= 0);
1527                state &= ~RxEvt;
1528        }
1529        if (state & TxEvt) {
1530                i = dev_per_card - 1;
1531                do {
1532                        dscc4_tx_irq(priv, root + i);
1533                } while (--i >= 0);
1534                state &= ~TxEvt;
1535        }
1536out:
1537        spin_unlock_irqrestore(&priv->lock, flags);
1538        return IRQ_RETVAL(handled);
1539}
1540
1541static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1542                                struct dscc4_dev_priv *dpriv)
1543{
1544        struct net_device *dev = dscc4_to_dev(dpriv);
1545        u32 state;
1546        int cur, loop = 0;
1547
1548try:
1549        cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1550        state = le32_to_cpu(dpriv->iqtx[cur]);
1551        if (!state) {
1552                if (debug > 4)
1553                        printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1554                               state);
1555                if ((debug > 1) && (loop > 1))
1556                        printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1557                if (loop && netif_queue_stopped(dev))
1558                        if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1559                                netif_wake_queue(dev);
1560
1561                if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1562                    !dscc4_tx_done(dpriv))
1563                                dscc4_do_tx(dpriv, dev);
1564                return;
1565        }
1566        loop++;
1567        dpriv->iqtx[cur] = 0;
1568        dpriv->iqtx_current++;
1569
1570        if (state_check(state, dpriv, dev, "Tx") < 0)
1571                return;
1572
1573        if (state & SccEvt) {
1574                if (state & Alls) {
1575                        struct sk_buff *skb;
1576                        struct TxFD *tx_fd;
1577
1578                        if (debug > 2)
1579                                dscc4_tx_print(dev, dpriv, "Alls");
1580                        /*
1581                         * DataComplete can't be trusted for Tx completion.
1582                         * Cf errata DS5 p.8
1583                         */
1584                        cur = dpriv->tx_dirty%TX_RING_SIZE;
1585                        tx_fd = dpriv->tx_fd + cur;
1586                        skb = dpriv->tx_skbuff[cur];
1587                        if (skb) {
1588                                pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1589                                                 skb->len, PCI_DMA_TODEVICE);
1590                                if (tx_fd->state & FrameEnd) {
1591                                        dev->stats.tx_packets++;
1592                                        dev->stats.tx_bytes += skb->len;
1593                                }
1594                                dev_kfree_skb_irq(skb);
1595                                dpriv->tx_skbuff[cur] = NULL;
1596                                ++dpriv->tx_dirty;
1597                        } else {
1598                                if (debug > 1)
1599                                        printk(KERN_ERR "%s Tx: NULL skb %d\n",
1600                                                dev->name, cur);
1601                        }
1602                        /*
1603                         * If the driver ends sending crap on the wire, it
1604                         * will be way easier to diagnose than the (not so)
1605                         * random freeze induced by null sized tx frames.
1606                         */
1607                        tx_fd->data = tx_fd->next;
1608                        tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1609                        tx_fd->complete = 0x00000000;
1610                        tx_fd->jiffies = 0;
1611
1612                        if (!(state &= ~Alls))
1613                                goto try;
1614                }
1615                /*
1616                 * Transmit Data Underrun
1617                 */
1618                if (state & Xdu) {
1619                        printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1620                        dpriv->flags = NeedIDT;
1621                        /* Tx reset */
1622                        writel(MTFi | Rdt,
1623                               dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1624                        writel(Action, dpriv->base_addr + GCMDR);
1625                        return;
1626                }
1627                if (state & Cts) {
1628                        printk(KERN_INFO "%s: CTS transition\n", dev->name);
1629                        if (!(state &= ~Cts)) /* DEBUG */
1630                                goto try;
1631                }
1632                if (state & Xmr) {
1633                        /* Frame needs to be sent again - FIXME */
1634                        printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1635                        if (!(state &= ~Xmr)) /* DEBUG */
1636                                goto try;
1637                }
1638                if (state & Xpr) {
1639                        void __iomem *scc_addr;
1640                        unsigned long ring;
1641                        int i;
1642
1643                        /*
1644                         * - the busy condition happens (sometimes);
1645                         * - it doesn't seem to make the handler unreliable.
1646                         */
1647                        for (i = 1; i; i <<= 1) {
1648                                if (!(scc_readl_star(dpriv, dev) & SccBusy))
1649                                        break;
1650                        }
1651                        if (!i)
1652                                printk(KERN_INFO "%s busy in irq\n", dev->name);
1653
1654                        scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1655                        /* Keep this order: IDT before IDR */
1656                        if (dpriv->flags & NeedIDT) {
1657                                if (debug > 2)
1658                                        dscc4_tx_print(dev, dpriv, "Xpr");
1659                                ring = dpriv->tx_fd_dma +
1660                                       (dpriv->tx_dirty%TX_RING_SIZE)*
1661                                       sizeof(struct TxFD);
1662                                writel(ring, scc_addr + CH0BTDA);
1663                                dscc4_do_tx(dpriv, dev);
1664                                writel(MTFi | Idt, scc_addr + CH0CFG);
1665                                if (dscc4_do_action(dev, "IDT") < 0)
1666                                        goto err_xpr;
1667                                dpriv->flags &= ~NeedIDT;
1668                        }
1669                        if (dpriv->flags & NeedIDR) {
1670                                ring = dpriv->rx_fd_dma +
1671                                       (dpriv->rx_current%RX_RING_SIZE)*
1672                                       sizeof(struct RxFD);
1673                                writel(ring, scc_addr + CH0BRDA);
1674                                dscc4_rx_update(dpriv, dev);
1675                                writel(MTFi | Idr, scc_addr + CH0CFG);
1676                                if (dscc4_do_action(dev, "IDR") < 0)
1677                                        goto err_xpr;
1678                                dpriv->flags &= ~NeedIDR;
1679                                smp_wmb();
1680                                /* Activate receiver and misc */
1681                                scc_writel(0x08050008, dpriv, dev, CCR2);
1682                        }
1683                err_xpr:
1684                        if (!(state &= ~Xpr))
1685                                goto try;
1686                }
1687                if (state & Cd) {
1688                        if (debug > 0)
1689                                printk(KERN_INFO "%s: CD transition\n", dev->name);
1690                        if (!(state &= ~Cd)) /* DEBUG */
1691                                goto try;
1692                }
1693        } else { /* ! SccEvt */
1694                if (state & Hi) {
1695#ifdef DSCC4_POLLING
1696                        while (!dscc4_tx_poll(dpriv, dev));
1697#endif
1698                        printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1699                        state &= ~Hi;
1700                }
1701                if (state & Err) {
1702                        printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1703                        dev->stats.tx_errors++;
1704                        state &= ~Err;
1705                }
1706        }
1707        goto try;
1708}
1709
1710static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1711                                    struct dscc4_dev_priv *dpriv)
1712{
1713        struct net_device *dev = dscc4_to_dev(dpriv);
1714        u32 state;
1715        int cur;
1716
1717try:
1718        cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1719        state = le32_to_cpu(dpriv->iqrx[cur]);
1720        if (!state)
1721                return;
1722        dpriv->iqrx[cur] = 0;
1723        dpriv->iqrx_current++;
1724
1725        if (state_check(state, dpriv, dev, "Rx") < 0)
1726                return;
1727
1728        if (!(state & SccEvt)){
1729                struct RxFD *rx_fd;
1730
1731                if (debug > 4)
1732                        printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1733                               state);
1734                state &= 0x00ffffff;
1735                if (state & Err) { /* Hold or reset */
1736                        printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1737                        cur = dpriv->rx_current%RX_RING_SIZE;
1738                        rx_fd = dpriv->rx_fd + cur;
1739                        /*
1740                         * Presume we're not facing a DMAC receiver reset.
1741                         * As We use the rx size-filtering feature of the
1742                         * DSCC4, the beginning of a new frame is waiting in
1743                         * the rx fifo. I bet a Receive Data Overflow will
1744                         * happen most of time but let's try and avoid it.
1745                         * Btw (as for RDO) if one experiences ERR whereas
1746                         * the system looks rather idle, there may be a
1747                         * problem with latency. In this case, increasing
1748                         * RX_RING_SIZE may help.
1749                         */
1750                        //while (dpriv->rx_needs_refill) {
1751                                while (!(rx_fd->state1 & Hold)) {
1752                                        rx_fd++;
1753                                        cur++;
1754                                        if (!(cur = cur%RX_RING_SIZE))
1755                                                rx_fd = dpriv->rx_fd;
1756                                }
1757                                //dpriv->rx_needs_refill--;
1758                                try_get_rx_skb(dpriv, dev);
1759                                if (!rx_fd->data)
1760                                        goto try;
1761                                rx_fd->state1 &= ~Hold;
1762                                rx_fd->state2 = 0x00000000;
1763                                rx_fd->end = cpu_to_le32(0xbabeface);
1764                        //}
1765                        goto try;
1766                }
1767                if (state & Fi) {
1768                        dscc4_rx_skb(dpriv, dev);
1769                        goto try;
1770                }
1771                if (state & Hi ) { /* HI bit */
1772                        printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1773                        state &= ~Hi;
1774                        goto try;
1775                }
1776        } else { /* SccEvt */
1777                if (debug > 1) {
1778                        //FIXME: verifier la presence de tous les evenements
1779                static struct {
1780                        u32 mask;
1781                        const char *irq_name;
1782                } evts[] = {
1783                        { 0x00008000, "TIN"},
1784                        { 0x00000020, "RSC"},
1785                        { 0x00000010, "PCE"},
1786                        { 0x00000008, "PLLA"},
1787                        { 0, NULL}
1788                }, *evt;
1789
1790                for (evt = evts; evt->irq_name; evt++) {
1791                        if (state & evt->mask) {
1792                                        printk(KERN_DEBUG "%s: %s\n",
1793                                                dev->name, evt->irq_name);
1794                                if (!(state &= ~evt->mask))
1795                                        goto try;
1796                        }
1797                }
1798                } else {
1799                        if (!(state &= ~0x0000c03c))
1800                                goto try;
1801                }
1802                if (state & Cts) {
1803                        printk(KERN_INFO "%s: CTS transition\n", dev->name);
1804                        if (!(state &= ~Cts)) /* DEBUG */
1805                                goto try;
1806                }
1807                /*
1808                 * Receive Data Overflow (FIXME: fscked)
1809                 */
1810                if (state & Rdo) {
1811                        struct RxFD *rx_fd;
1812                        void __iomem *scc_addr;
1813                        int cur;
1814
1815                        //if (debug)
1816                        //      dscc4_rx_dump(dpriv);
1817                        scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1818
1819                        scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1820                        /*
1821                         * This has no effect. Why ?
1822                         * ORed with TxSccRes, one sees the CFG ack (for
1823                         * the TX part only).
1824                         */
1825                        scc_writel(RxSccRes, dpriv, dev, CMDR);
1826                        dpriv->flags |= RdoSet;
1827
1828                        /*
1829                         * Let's try and save something in the received data.
1830                         * rx_current must be incremented at least once to
1831                         * avoid HOLD in the BRDA-to-be-pointed desc.
1832                         */
1833                        do {
1834                                cur = dpriv->rx_current++%RX_RING_SIZE;
1835                                rx_fd = dpriv->rx_fd + cur;
1836                                if (!(rx_fd->state2 & DataComplete))
1837                                        break;
1838                                if (rx_fd->state2 & FrameAborted) {
1839                                        dev->stats.rx_over_errors++;
1840                                        rx_fd->state1 |= Hold;
1841                                        rx_fd->state2 = 0x00000000;
1842                                        rx_fd->end = cpu_to_le32(0xbabeface);
1843                                } else
1844                                        dscc4_rx_skb(dpriv, dev);
1845                        } while (1);
1846
1847                        if (debug > 0) {
1848                                if (dpriv->flags & RdoSet)
1849                                        printk(KERN_DEBUG
1850                                               "%s: no RDO in Rx data\n", DRV_NAME);
1851                        }
1852#ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1853                        /*
1854                         * FIXME: must the reset be this violent ?
1855                         */
1856#warning "FIXME: CH0BRDA"
1857                        writel(dpriv->rx_fd_dma +
1858                               (dpriv->rx_current%RX_RING_SIZE)*
1859                               sizeof(struct RxFD), scc_addr + CH0BRDA);
1860                        writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1861                        if (dscc4_do_action(dev, "RDR") < 0) {
1862                                printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1863                                       dev->name, "RDR");
1864                                goto rdo_end;
1865                        }
1866                        writel(MTFi|Idr, scc_addr + CH0CFG);
1867                        if (dscc4_do_action(dev, "IDR") < 0) {
1868                                printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1869                                       dev->name, "IDR");
1870                                goto rdo_end;
1871                        }
1872                rdo_end:
1873#endif
1874                        scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1875                        goto try;
1876                }
1877                if (state & Cd) {
1878                        printk(KERN_INFO "%s: CD transition\n", dev->name);
1879                        if (!(state &= ~Cd)) /* DEBUG */
1880                                goto try;
1881                }
1882                if (state & Flex) {
1883                        printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1884                        if (!(state &= ~Flex))
1885                                goto try;
1886                }
1887        }
1888}
1889
1890/*
1891 * I had expected the following to work for the first descriptor
1892 * (tx_fd->state = 0xc0000000)
1893 * - Hold=1 (don't try and branch to the next descripto);
1894 * - No=0 (I want an empty data section, i.e. size=0);
1895 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1896 * It failed and locked solid. Thus the introduction of a dummy skb.
1897 * Problem is acknowledged in errata sheet DS5. Joy :o/
1898 */
1899static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1900{
1901        struct sk_buff *skb;
1902
1903        skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1904        if (skb) {
1905                int last = dpriv->tx_dirty%TX_RING_SIZE;
1906                struct TxFD *tx_fd = dpriv->tx_fd + last;
1907
1908                skb->len = DUMMY_SKB_SIZE;
1909                skb_copy_to_linear_data(skb, version,
1910                                        strlen(version) % DUMMY_SKB_SIZE);
1911                tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1912                tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1913                                             skb->data, DUMMY_SKB_SIZE,
1914                                             PCI_DMA_TODEVICE));
1915                dpriv->tx_skbuff[last] = skb;
1916        }
1917        return skb;
1918}
1919
1920static int dscc4_init_ring(struct net_device *dev)
1921{
1922        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1923        struct pci_dev *pdev = dpriv->pci_priv->pdev;
1924        struct TxFD *tx_fd;
1925        struct RxFD *rx_fd;
1926        void *ring;
1927        int i;
1928
1929        ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1930        if (!ring)
1931                goto err_out;
1932        dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1933
1934        ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1935        if (!ring)
1936                goto err_free_dma_rx;
1937        dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1938
1939        memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1940        dpriv->tx_dirty = 0xffffffff;
1941        i = dpriv->tx_current = 0;
1942        do {
1943                tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1944                tx_fd->complete = 0x00000000;
1945                /* FIXME: NULL should be ok - to be tried */
1946                tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1947                (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1948                                        (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1949        } while (i < TX_RING_SIZE);
1950
1951        if (!dscc4_init_dummy_skb(dpriv))
1952                goto err_free_dma_tx;
1953
1954        memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1955        i = dpriv->rx_dirty = dpriv->rx_current = 0;
1956        do {
1957                /* size set by the host. Multiple of 4 bytes please */
1958                rx_fd->state1 = HiDesc;
1959                rx_fd->state2 = 0x00000000;
1960                rx_fd->end = cpu_to_le32(0xbabeface);
1961                rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1962                // FIXME: return value verifiee mais traitement suspect
1963                if (try_get_rx_skb(dpriv, dev) >= 0)
1964                        dpriv->rx_dirty++;
1965                (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1966                                        (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1967        } while (i < RX_RING_SIZE);
1968
1969        return 0;
1970
1971err_free_dma_tx:
1972        pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1973err_free_dma_rx:
1974        pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1975err_out:
1976        return -ENOMEM;
1977}
1978
1979static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1980{
1981        struct dscc4_pci_priv *ppriv;
1982        struct dscc4_dev_priv *root;
1983        void __iomem *ioaddr;
1984        int i;
1985
1986        ppriv = pci_get_drvdata(pdev);
1987        root = ppriv->root;
1988
1989        ioaddr = root->base_addr;
1990
1991        dscc4_pci_reset(pdev, ioaddr);
1992
1993        free_irq(pdev->irq, root);
1994        pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1995                            ppriv->iqcfg_dma);
1996        for (i = 0; i < dev_per_card; i++) {
1997                struct dscc4_dev_priv *dpriv = root + i;
1998
1999                dscc4_release_ring(dpriv);
2000                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
2001                                    dpriv->iqrx, dpriv->iqrx_dma);
2002                pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
2003                                    dpriv->iqtx, dpriv->iqtx_dma);
2004        }
2005
2006        dscc4_free1(pdev);
2007
2008        iounmap(ioaddr);
2009
2010        pci_release_region(pdev, 1);
2011        pci_release_region(pdev, 0);
2012
2013        pci_disable_device(pdev);
2014}
2015
2016static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2017        unsigned short parity)
2018{
2019        struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2020
2021        if (encoding != ENCODING_NRZ &&
2022            encoding != ENCODING_NRZI &&
2023            encoding != ENCODING_FM_MARK &&
2024            encoding != ENCODING_FM_SPACE &&
2025            encoding != ENCODING_MANCHESTER)
2026                return -EINVAL;
2027
2028        if (parity != PARITY_NONE &&
2029            parity != PARITY_CRC16_PR0_CCITT &&
2030            parity != PARITY_CRC16_PR1_CCITT &&
2031            parity != PARITY_CRC32_PR0_CCITT &&
2032            parity != PARITY_CRC32_PR1_CCITT)
2033                return -EINVAL;
2034
2035        dpriv->encoding = encoding;
2036        dpriv->parity = parity;
2037        return 0;
2038}
2039
2040#ifndef MODULE
2041static int __init dscc4_setup(char *str)
2042{
2043        int *args[] = { &debug, &quartz, NULL }, **p = args;
2044
2045        while (*p && (get_option(&str, *p) == 2))
2046                p++;
2047        return 1;
2048}
2049
2050__setup("dscc4.setup=", dscc4_setup);
2051#endif
2052
2053static struct pci_device_id dscc4_pci_tbl[] = {
2054        { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2055                PCI_ANY_ID, PCI_ANY_ID, },
2056        { 0,}
2057};
2058MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2059
2060static struct pci_driver dscc4_driver = {
2061        .name           = DRV_NAME,
2062        .id_table       = dscc4_pci_tbl,
2063        .probe          = dscc4_init_one,
2064        .remove         = __devexit_p(dscc4_remove_one),
2065};
2066
2067static int __init dscc4_init_module(void)
2068{
2069        return pci_register_driver(&dscc4_driver);
2070}
2071
2072static void __exit dscc4_cleanup_module(void)
2073{
2074        pci_unregister_driver(&dscc4_driver);
2075}
2076
2077module_init(dscc4_init_module);
2078module_exit(dscc4_cleanup_module);
2079