linux/drivers/net/wan/z85230.c
<<
>>
Prefs
   1/*
   2 *      This program is free software; you can redistribute it and/or
   3 *      modify it under the terms of the GNU General Public License
   4 *      as published by the Free Software Foundation; either version
   5 *      2 of the License, or (at your option) any later version.
   6 *
   7 *      (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   8 *      (c) Copyright 2000, 2001 Red Hat Inc
   9 *
  10 *      Development of this driver was funded by Equiinet Ltd
  11 *                      http://www.equiinet.com
  12 *
  13 *      ChangeLog:
  14 *
  15 *      Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  16 *      unification of all the Z85x30 asynchronous drivers for real.
  17 *
  18 *      DMA now uses get_free_page as kmalloc buffers may span a 64K 
  19 *      boundary.
  20 *
  21 *      Modified for SMP safety and SMP locking by Alan Cox
  22 *                                      <alan@lxorguk.ukuu.org.uk>
  23 *
  24 *      Performance
  25 *
  26 *      Z85230:
  27 *      Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  28 *      X.25 is not unrealistic on all machines. DMA mode can in theory
  29 *      handle T1/E1 quite nicely. In practice the limit seems to be about
  30 *      512Kbit->1Mbit depending on motherboard.
  31 *
  32 *      Z85C30:
  33 *      64K will take DMA, 9600 baud X.25 should be ok.
  34 *
  35 *      Z8530:
  36 *      Synchronous mode without DMA is unlikely to pass about 2400 baud.
  37 */
  38
  39#include <linux/module.h>
  40#include <linux/kernel.h>
  41#include <linux/mm.h>
  42#include <linux/net.h>
  43#include <linux/skbuff.h>
  44#include <linux/netdevice.h>
  45#include <linux/if_arp.h>
  46#include <linux/delay.h>
  47#include <linux/hdlc.h>
  48#include <linux/ioport.h>
  49#include <linux/init.h>
  50#include <asm/dma.h>
  51#include <asm/io.h>
  52#define RT_LOCK
  53#define RT_UNLOCK
  54#include <linux/spinlock.h>
  55
  56#include "z85230.h"
  57
  58
  59/**
  60 *      z8530_read_port - Architecture specific interface function
  61 *      @p: port to read
  62 *
  63 *      Provided port access methods. The Comtrol SV11 requires no delays
  64 *      between accesses and uses PC I/O. Some drivers may need a 5uS delay
  65 *      
  66 *      In the longer term this should become an architecture specific
  67 *      section so that this can become a generic driver interface for all
  68 *      platforms. For now we only handle PC I/O ports with or without the
  69 *      dread 5uS sanity delay.
  70 *
  71 *      The caller must hold sufficient locks to avoid violating the horrible
  72 *      5uS delay rule.
  73 */
  74
  75static inline int z8530_read_port(unsigned long p)
  76{
  77        u8 r=inb(Z8530_PORT_OF(p));
  78        if(p&Z8530_PORT_SLEEP)  /* gcc should figure this out efficiently ! */
  79                udelay(5);
  80        return r;
  81}
  82
  83/**
  84 *      z8530_write_port - Architecture specific interface function
  85 *      @p: port to write
  86 *      @d: value to write
  87 *
  88 *      Write a value to a port with delays if need be. Note that the
  89 *      caller must hold locks to avoid read/writes from other contexts
  90 *      violating the 5uS rule
  91 *
  92 *      In the longer term this should become an architecture specific
  93 *      section so that this can become a generic driver interface for all
  94 *      platforms. For now we only handle PC I/O ports with or without the
  95 *      dread 5uS sanity delay.
  96 */
  97
  98
  99static inline void z8530_write_port(unsigned long p, u8 d)
 100{
 101        outb(d,Z8530_PORT_OF(p));
 102        if(p&Z8530_PORT_SLEEP)
 103                udelay(5);
 104}
 105
 106
 107
 108static void z8530_rx_done(struct z8530_channel *c);
 109static void z8530_tx_done(struct z8530_channel *c);
 110
 111
 112/**
 113 *      read_zsreg - Read a register from a Z85230 
 114 *      @c: Z8530 channel to read from (2 per chip)
 115 *      @reg: Register to read
 116 *      FIXME: Use a spinlock.
 117 *      
 118 *      Most of the Z8530 registers are indexed off the control registers.
 119 *      A read is done by writing to the control register and reading the
 120 *      register back.  The caller must hold the lock
 121 */
 122 
 123static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 124{
 125        if(reg)
 126                z8530_write_port(c->ctrlio, reg);
 127        return z8530_read_port(c->ctrlio);
 128}
 129
 130/**
 131 *      read_zsdata - Read the data port of a Z8530 channel
 132 *      @c: The Z8530 channel to read the data port from
 133 *
 134 *      The data port provides fast access to some things. We still
 135 *      have all the 5uS delays to worry about.
 136 */
 137
 138static inline u8 read_zsdata(struct z8530_channel *c)
 139{
 140        u8 r;
 141        r=z8530_read_port(c->dataio);
 142        return r;
 143}
 144
 145/**
 146 *      write_zsreg - Write to a Z8530 channel register
 147 *      @c: The Z8530 channel
 148 *      @reg: Register number
 149 *      @val: Value to write
 150 *
 151 *      Write a value to an indexed register. The caller must hold the lock
 152 *      to honour the irritating delay rules. We know about register 0
 153 *      being fast to access.
 154 *
 155 *      Assumes c->lock is held.
 156 */
 157static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 158{
 159        if(reg)
 160                z8530_write_port(c->ctrlio, reg);
 161        z8530_write_port(c->ctrlio, val);
 162
 163}
 164
 165/**
 166 *      write_zsctrl - Write to a Z8530 control register
 167 *      @c: The Z8530 channel
 168 *      @val: Value to write
 169 *
 170 *      Write directly to the control register on the Z8530
 171 */
 172
 173static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 174{
 175        z8530_write_port(c->ctrlio, val);
 176}
 177
 178/**
 179 *      write_zsdata - Write to a Z8530 control register
 180 *      @c: The Z8530 channel
 181 *      @val: Value to write
 182 *
 183 *      Write directly to the data register on the Z8530
 184 */
 185
 186
 187static inline void write_zsdata(struct z8530_channel *c, u8 val)
 188{
 189        z8530_write_port(c->dataio, val);
 190}
 191
 192/*
 193 *      Register loading parameters for a dead port
 194 */
 195 
 196u8 z8530_dead_port[]=
 197{
 198        255
 199};
 200
 201EXPORT_SYMBOL(z8530_dead_port);
 202
 203/*
 204 *      Register loading parameters for currently supported circuit types
 205 */
 206
 207
 208/*
 209 *      Data clocked by telco end. This is the correct data for the UK
 210 *      "kilostream" service, and most other similar services.
 211 */
 212 
 213u8 z8530_hdlc_kilostream[]=
 214{
 215        4,      SYNC_ENAB|SDLC|X1CLK,
 216        2,      0,      /* No vector */
 217        1,      0,
 218        3,      ENT_HM|RxCRC_ENAB|Rx8,
 219        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 220        9,      0,              /* Disable interrupts */
 221        6,      0xFF,
 222        7,      FLAG,
 223        10,     ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 224        11,     TCTRxCP,
 225        14,     DISDPLL,
 226        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 227        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 228        9,      NV|MIE|NORESET,
 229        255
 230};
 231
 232EXPORT_SYMBOL(z8530_hdlc_kilostream);
 233
 234/*
 235 *      As above but for enhanced chips.
 236 */
 237 
 238u8 z8530_hdlc_kilostream_85230[]=
 239{
 240        4,      SYNC_ENAB|SDLC|X1CLK,
 241        2,      0,      /* No vector */
 242        1,      0,
 243        3,      ENT_HM|RxCRC_ENAB|Rx8,
 244        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 245        9,      0,              /* Disable interrupts */
 246        6,      0xFF,
 247        7,      FLAG,
 248        10,     ABUNDER|NRZ|CRCPS,      /* MARKIDLE?? */
 249        11,     TCTRxCP,
 250        14,     DISDPLL,
 251        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 252        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 253        9,      NV|MIE|NORESET,
 254        23,     3,              /* Extended mode AUTO TX and EOM*/
 255        
 256        255
 257};
 258
 259EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 260
 261/**
 262 *      z8530_flush_fifo - Flush on chip RX FIFO
 263 *      @c: Channel to flush
 264 *
 265 *      Flush the receive FIFO. There is no specific option for this, we 
 266 *      blindly read bytes and discard them. Reading when there is no data
 267 *      is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 268 *      
 269 *      All locking is handled for the caller. On return data may still be
 270 *      present if it arrived during the flush.
 271 */
 272 
 273static void z8530_flush_fifo(struct z8530_channel *c)
 274{
 275        read_zsreg(c, R1);
 276        read_zsreg(c, R1);
 277        read_zsreg(c, R1);
 278        read_zsreg(c, R1);
 279        if(c->dev->type==Z85230)
 280        {
 281                read_zsreg(c, R1);
 282                read_zsreg(c, R1);
 283                read_zsreg(c, R1);
 284                read_zsreg(c, R1);
 285        }
 286}       
 287
 288/**
 289 *      z8530_rtsdtr - Control the outgoing DTS/RTS line
 290 *      @c: The Z8530 channel to control;
 291 *      @set: 1 to set, 0 to clear
 292 *
 293 *      Sets or clears DTR/RTS on the requested line. All locking is handled
 294 *      by the caller. For now we assume all boards use the actual RTS/DTR
 295 *      on the chip. Apparently one or two don't. We'll scream about them
 296 *      later.
 297 */
 298
 299static void z8530_rtsdtr(struct z8530_channel *c, int set)
 300{
 301        if (set)
 302                c->regs[5] |= (RTS | DTR);
 303        else
 304                c->regs[5] &= ~(RTS | DTR);
 305        write_zsreg(c, R5, c->regs[5]);
 306}
 307
 308/**
 309 *      z8530_rx - Handle a PIO receive event
 310 *      @c: Z8530 channel to process
 311 *
 312 *      Receive handler for receiving in PIO mode. This is much like the 
 313 *      async one but not quite the same or as complex
 314 *
 315 *      Note: Its intended that this handler can easily be separated from
 316 *      the main code to run realtime. That'll be needed for some machines
 317 *      (eg to ever clock 64kbits on a sparc ;)).
 318 *
 319 *      The RT_LOCK macros don't do anything now. Keep the code covered
 320 *      by them as short as possible in all circumstances - clocks cost
 321 *      baud. The interrupt handler is assumed to be atomic w.r.t. to
 322 *      other code - this is true in the RT case too.
 323 *
 324 *      We only cover the sync cases for this. If you want 2Mbit async
 325 *      do it yourself but consider medical assistance first. This non DMA 
 326 *      synchronous mode is portable code. The DMA mode assumes PCI like 
 327 *      ISA DMA
 328 *
 329 *      Called with the device lock held
 330 */
 331 
 332static void z8530_rx(struct z8530_channel *c)
 333{
 334        u8 ch,stat;
 335
 336        while(1)
 337        {
 338                /* FIFO empty ? */
 339                if(!(read_zsreg(c, R0)&1))
 340                        break;
 341                ch=read_zsdata(c);
 342                stat=read_zsreg(c, R1);
 343        
 344                /*
 345                 *      Overrun ?
 346                 */
 347                if(c->count < c->max)
 348                {
 349                        *c->dptr++=ch;
 350                        c->count++;
 351                }
 352
 353                if(stat&END_FR)
 354                {
 355                
 356                        /*
 357                         *      Error ?
 358                         */
 359                        if(stat&(Rx_OVR|CRC_ERR))
 360                        {
 361                                /* Rewind the buffer and return */
 362                                if(c->skb)
 363                                        c->dptr=c->skb->data;
 364                                c->count=0;
 365                                if(stat&Rx_OVR)
 366                                {
 367                                        printk(KERN_WARNING "%s: overrun\n", c->dev->name);
 368                                        c->rx_overrun++;
 369                                }
 370                                if(stat&CRC_ERR)
 371                                {
 372                                        c->rx_crc_err++;
 373                                        /* printk("crc error\n"); */
 374                                }
 375                                /* Shove the frame upstream */
 376                        }
 377                        else
 378                        {
 379                                /*
 380                                 *      Drop the lock for RX processing, or
 381                                 *      there are deadlocks
 382                                 */
 383                                z8530_rx_done(c);
 384                                write_zsctrl(c, RES_Rx_CRC);
 385                        }
 386                }
 387        }
 388        /*
 389         *      Clear irq
 390         */
 391        write_zsctrl(c, ERR_RES);
 392        write_zsctrl(c, RES_H_IUS);
 393}
 394
 395
 396/**
 397 *      z8530_tx - Handle a PIO transmit event
 398 *      @c: Z8530 channel to process
 399 *
 400 *      Z8530 transmit interrupt handler for the PIO mode. The basic
 401 *      idea is to attempt to keep the FIFO fed. We fill as many bytes
 402 *      in as possible, its quite possible that we won't keep up with the
 403 *      data rate otherwise.
 404 */
 405 
 406static void z8530_tx(struct z8530_channel *c)
 407{
 408        while(c->txcount) {
 409                /* FIFO full ? */
 410                if(!(read_zsreg(c, R0)&4))
 411                        return;
 412                c->txcount--;
 413                /*
 414                 *      Shovel out the byte
 415                 */
 416                write_zsreg(c, R8, *c->tx_ptr++);
 417                write_zsctrl(c, RES_H_IUS);
 418                /* We are about to underflow */
 419                if(c->txcount==0)
 420                {
 421                        write_zsctrl(c, RES_EOM_L);
 422                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 423                }
 424        }
 425
 426        
 427        /*
 428         *      End of frame TX - fire another one
 429         */
 430         
 431        write_zsctrl(c, RES_Tx_P);
 432
 433        z8530_tx_done(c);        
 434        write_zsctrl(c, RES_H_IUS);
 435}
 436
 437/**
 438 *      z8530_status - Handle a PIO status exception
 439 *      @chan: Z8530 channel to process
 440 *
 441 *      A status event occurred in PIO synchronous mode. There are several
 442 *      reasons the chip will bother us here. A transmit underrun means we
 443 *      failed to feed the chip fast enough and just broke a packet. A DCD
 444 *      change is a line up or down.
 445 */
 446
 447static void z8530_status(struct z8530_channel *chan)
 448{
 449        u8 status, altered;
 450
 451        status = read_zsreg(chan, R0);
 452        altered = chan->status ^ status;
 453
 454        chan->status = status;
 455
 456        if (status & TxEOM) {
 457/*              printk("%s: Tx underrun.\n", chan->dev->name); */
 458                chan->netdevice->stats.tx_fifo_errors++;
 459                write_zsctrl(chan, ERR_RES);
 460                z8530_tx_done(chan);
 461        }
 462
 463        if (altered & chan->dcdcheck)
 464        {
 465                if (status & chan->dcdcheck) {
 466                        printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
 467                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 468                        if (chan->netdevice)
 469                                netif_carrier_on(chan->netdevice);
 470                } else {
 471                        printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
 472                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 473                        z8530_flush_fifo(chan);
 474                        if (chan->netdevice)
 475                                netif_carrier_off(chan->netdevice);
 476                }
 477
 478        }
 479        write_zsctrl(chan, RES_EXT_INT);
 480        write_zsctrl(chan, RES_H_IUS);
 481}
 482
 483struct z8530_irqhandler z8530_sync =
 484{
 485        z8530_rx,
 486        z8530_tx,
 487        z8530_status
 488};
 489
 490EXPORT_SYMBOL(z8530_sync);
 491
 492/**
 493 *      z8530_dma_rx - Handle a DMA RX event
 494 *      @chan: Channel to handle
 495 *
 496 *      Non bus mastering DMA interfaces for the Z8x30 devices. This
 497 *      is really pretty PC specific. The DMA mode means that most receive
 498 *      events are handled by the DMA hardware. We get a kick here only if
 499 *      a frame ended.
 500 */
 501 
 502static void z8530_dma_rx(struct z8530_channel *chan)
 503{
 504        if(chan->rxdma_on)
 505        {
 506                /* Special condition check only */
 507                u8 status;
 508        
 509                read_zsreg(chan, R7);
 510                read_zsreg(chan, R6);
 511                
 512                status=read_zsreg(chan, R1);
 513        
 514                if(status&END_FR)
 515                {
 516                        z8530_rx_done(chan);    /* Fire up the next one */
 517                }               
 518                write_zsctrl(chan, ERR_RES);
 519                write_zsctrl(chan, RES_H_IUS);
 520        }
 521        else
 522        {
 523                /* DMA is off right now, drain the slow way */
 524                z8530_rx(chan);
 525        }       
 526}
 527
 528/**
 529 *      z8530_dma_tx - Handle a DMA TX event
 530 *      @chan:  The Z8530 channel to handle
 531 *
 532 *      We have received an interrupt while doing DMA transmissions. It
 533 *      shouldn't happen. Scream loudly if it does.
 534 */
 535 
 536static void z8530_dma_tx(struct z8530_channel *chan)
 537{
 538        if(!chan->dma_tx)
 539        {
 540                printk(KERN_WARNING "Hey who turned the DMA off?\n");
 541                z8530_tx(chan);
 542                return;
 543        }
 544        /* This shouldnt occur in DMA mode */
 545        printk(KERN_ERR "DMA tx - bogus event!\n");
 546        z8530_tx(chan);
 547}
 548
 549/**
 550 *      z8530_dma_status - Handle a DMA status exception
 551 *      @chan: Z8530 channel to process
 552 *      
 553 *      A status event occurred on the Z8530. We receive these for two reasons
 554 *      when in DMA mode. Firstly if we finished a packet transfer we get one
 555 *      and kick the next packet out. Secondly we may see a DCD change.
 556 *
 557 */
 558 
 559static void z8530_dma_status(struct z8530_channel *chan)
 560{
 561        u8 status, altered;
 562
 563        status=read_zsreg(chan, R0);
 564        altered=chan->status^status;
 565        
 566        chan->status=status;
 567
 568
 569        if(chan->dma_tx)
 570        {
 571                if(status&TxEOM)
 572                {
 573                        unsigned long flags;
 574        
 575                        flags=claim_dma_lock();
 576                        disable_dma(chan->txdma);
 577                        clear_dma_ff(chan->txdma);      
 578                        chan->txdma_on=0;
 579                        release_dma_lock(flags);
 580                        z8530_tx_done(chan);
 581                }
 582        }
 583
 584        if (altered & chan->dcdcheck)
 585        {
 586                if (status & chan->dcdcheck) {
 587                        printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
 588                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 589                        if (chan->netdevice)
 590                                netif_carrier_on(chan->netdevice);
 591                } else {
 592                        printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
 593                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 594                        z8530_flush_fifo(chan);
 595                        if (chan->netdevice)
 596                                netif_carrier_off(chan->netdevice);
 597                }
 598        }
 599
 600        write_zsctrl(chan, RES_EXT_INT);
 601        write_zsctrl(chan, RES_H_IUS);
 602}
 603
 604static struct z8530_irqhandler z8530_dma_sync = {
 605        z8530_dma_rx,
 606        z8530_dma_tx,
 607        z8530_dma_status
 608};
 609
 610static struct z8530_irqhandler z8530_txdma_sync = {
 611        z8530_rx,
 612        z8530_dma_tx,
 613        z8530_dma_status
 614};
 615
 616/**
 617 *      z8530_rx_clear - Handle RX events from a stopped chip
 618 *      @c: Z8530 channel to shut up
 619 *
 620 *      Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 621 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 622 *      (eg the MacII) we must clear the interrupt cause or die.
 623 */
 624
 625
 626static void z8530_rx_clear(struct z8530_channel *c)
 627{
 628        /*
 629         *      Data and status bytes
 630         */
 631        u8 stat;
 632
 633        read_zsdata(c);
 634        stat=read_zsreg(c, R1);
 635        
 636        if(stat&END_FR)
 637                write_zsctrl(c, RES_Rx_CRC);
 638        /*
 639         *      Clear irq
 640         */
 641        write_zsctrl(c, ERR_RES);
 642        write_zsctrl(c, RES_H_IUS);
 643}
 644
 645/**
 646 *      z8530_tx_clear - Handle TX events from a stopped chip
 647 *      @c: Z8530 channel to shut up
 648 *
 649 *      Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 650 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 651 *      (eg the MacII) we must clear the interrupt cause or die.
 652 */
 653
 654static void z8530_tx_clear(struct z8530_channel *c)
 655{
 656        write_zsctrl(c, RES_Tx_P);
 657        write_zsctrl(c, RES_H_IUS);
 658}
 659
 660/**
 661 *      z8530_status_clear - Handle status events from a stopped chip
 662 *      @chan: Z8530 channel to shut up
 663 *
 664 *      Status interrupt vectors for a Z8530 that is in 'parked' mode.
 665 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 666 *      (eg the MacII) we must clear the interrupt cause or die.
 667 */
 668
 669static void z8530_status_clear(struct z8530_channel *chan)
 670{
 671        u8 status=read_zsreg(chan, R0);
 672        if(status&TxEOM)
 673                write_zsctrl(chan, ERR_RES);
 674        write_zsctrl(chan, RES_EXT_INT);
 675        write_zsctrl(chan, RES_H_IUS);
 676}
 677
 678struct z8530_irqhandler z8530_nop=
 679{
 680        z8530_rx_clear,
 681        z8530_tx_clear,
 682        z8530_status_clear
 683};
 684
 685
 686EXPORT_SYMBOL(z8530_nop);
 687
 688/**
 689 *      z8530_interrupt - Handle an interrupt from a Z8530
 690 *      @irq:   Interrupt number
 691 *      @dev_id: The Z8530 device that is interrupting.
 692 *
 693 *      A Z85[2]30 device has stuck its hand in the air for attention.
 694 *      We scan both the channels on the chip for events and then call
 695 *      the channel specific call backs for each channel that has events.
 696 *      We have to use callback functions because the two channels can be
 697 *      in different modes.
 698 *
 699 *      Locking is done for the handlers. Note that locking is done
 700 *      at the chip level (the 5uS delay issue is per chip not per
 701 *      channel). c->lock for both channels points to dev->lock
 702 */
 703
 704irqreturn_t z8530_interrupt(int irq, void *dev_id)
 705{
 706        struct z8530_dev *dev=dev_id;
 707        u8 uninitialized_var(intr);
 708        static volatile int locker=0;
 709        int work=0;
 710        struct z8530_irqhandler *irqs;
 711        
 712        if(locker)
 713        {
 714                printk(KERN_ERR "IRQ re-enter\n");
 715                return IRQ_NONE;
 716        }
 717        locker=1;
 718
 719        spin_lock(&dev->lock);
 720
 721        while(++work<5000)
 722        {
 723
 724                intr = read_zsreg(&dev->chanA, R3);
 725                if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 726                        break;
 727        
 728                /* This holds the IRQ status. On the 8530 you must read it from chan 
 729                   A even though it applies to the whole chip */
 730                
 731                /* Now walk the chip and see what it is wanting - it may be
 732                   an IRQ for someone else remember */
 733                   
 734                irqs=dev->chanA.irqs;
 735
 736                if(intr & (CHARxIP|CHATxIP|CHAEXT))
 737                {
 738                        if(intr&CHARxIP)
 739                                irqs->rx(&dev->chanA);
 740                        if(intr&CHATxIP)
 741                                irqs->tx(&dev->chanA);
 742                        if(intr&CHAEXT)
 743                                irqs->status(&dev->chanA);
 744                }
 745
 746                irqs=dev->chanB.irqs;
 747
 748                if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 749                {
 750                        if(intr&CHBRxIP)
 751                                irqs->rx(&dev->chanB);
 752                        if(intr&CHBTxIP)
 753                                irqs->tx(&dev->chanB);
 754                        if(intr&CHBEXT)
 755                                irqs->status(&dev->chanB);
 756                }
 757        }
 758        spin_unlock(&dev->lock);
 759        if(work==5000)
 760                printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
 761        /* Ok all done */
 762        locker=0;
 763        return IRQ_HANDLED;
 764}
 765
 766EXPORT_SYMBOL(z8530_interrupt);
 767
 768static char reg_init[16]=
 769{
 770        0,0,0,0,
 771        0,0,0,0,
 772        0,0,0,0,
 773        0x55,0,0,0
 774};
 775
 776
 777/**
 778 *      z8530_sync_open - Open a Z8530 channel for PIO
 779 *      @dev:   The network interface we are using
 780 *      @c:     The Z8530 channel to open in synchronous PIO mode
 781 *
 782 *      Switch a Z8530 into synchronous mode without DMA assist. We
 783 *      raise the RTS/DTR and commence network operation.
 784 */
 785 
 786int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 787{
 788        unsigned long flags;
 789
 790        spin_lock_irqsave(c->lock, flags);
 791
 792        c->sync = 1;
 793        c->mtu = dev->mtu+64;
 794        c->count = 0;
 795        c->skb = NULL;
 796        c->skb2 = NULL;
 797        c->irqs = &z8530_sync;
 798
 799        /* This loads the double buffer up */
 800        z8530_rx_done(c);       /* Load the frame ring */
 801        z8530_rx_done(c);       /* Load the backup frame */
 802        z8530_rtsdtr(c,1);
 803        c->dma_tx = 0;
 804        c->regs[R1]|=TxINT_ENAB;
 805        write_zsreg(c, R1, c->regs[R1]);
 806        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 807
 808        spin_unlock_irqrestore(c->lock, flags);
 809        return 0;
 810}
 811
 812
 813EXPORT_SYMBOL(z8530_sync_open);
 814
 815/**
 816 *      z8530_sync_close - Close a PIO Z8530 channel
 817 *      @dev: Network device to close
 818 *      @c: Z8530 channel to disassociate and move to idle
 819 *
 820 *      Close down a Z8530 interface and switch its interrupt handlers
 821 *      to discard future events.
 822 */
 823 
 824int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 825{
 826        u8 chk;
 827        unsigned long flags;
 828        
 829        spin_lock_irqsave(c->lock, flags);
 830        c->irqs = &z8530_nop;
 831        c->max = 0;
 832        c->sync = 0;
 833        
 834        chk=read_zsreg(c,R0);
 835        write_zsreg(c, R3, c->regs[R3]);
 836        z8530_rtsdtr(c,0);
 837
 838        spin_unlock_irqrestore(c->lock, flags);
 839        return 0;
 840}
 841
 842EXPORT_SYMBOL(z8530_sync_close);
 843
 844/**
 845 *      z8530_sync_dma_open - Open a Z8530 for DMA I/O
 846 *      @dev: The network device to attach
 847 *      @c: The Z8530 channel to configure in sync DMA mode.
 848 *
 849 *      Set up a Z85x30 device for synchronous DMA in both directions. Two
 850 *      ISA DMA channels must be available for this to work. We assume ISA
 851 *      DMA driven I/O and PC limits on access.
 852 */
 853 
 854int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 855{
 856        unsigned long cflags, dflags;
 857        
 858        c->sync = 1;
 859        c->mtu = dev->mtu+64;
 860        c->count = 0;
 861        c->skb = NULL;
 862        c->skb2 = NULL;
 863        /*
 864         *      Load the DMA interfaces up
 865         */
 866        c->rxdma_on = 0;
 867        c->txdma_on = 0;
 868        
 869        /*
 870         *      Allocate the DMA flip buffers. Limit by page size.
 871         *      Everyone runs 1500 mtu or less on wan links so this
 872         *      should be fine.
 873         */
 874         
 875        if(c->mtu  > PAGE_SIZE/2)
 876                return -EMSGSIZE;
 877         
 878        c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 879        if(c->rx_buf[0]==NULL)
 880                return -ENOBUFS;
 881        c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 882        
 883        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 884        if(c->tx_dma_buf[0]==NULL)
 885        {
 886                free_page((unsigned long)c->rx_buf[0]);
 887                c->rx_buf[0]=NULL;
 888                return -ENOBUFS;
 889        }
 890        c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 891
 892        c->tx_dma_used=0;
 893        c->dma_tx = 1;
 894        c->dma_num=0;
 895        c->dma_ready=1;
 896        
 897        /*
 898         *      Enable DMA control mode
 899         */
 900
 901        spin_lock_irqsave(c->lock, cflags);
 902         
 903        /*
 904         *      TX DMA via DIR/REQ
 905         */
 906         
 907        c->regs[R14]|= DTRREQ;
 908        write_zsreg(c, R14, c->regs[R14]);     
 909
 910        c->regs[R1]&= ~TxINT_ENAB;
 911        write_zsreg(c, R1, c->regs[R1]);
 912        
 913        /*
 914         *      RX DMA via W/Req
 915         */      
 916
 917        c->regs[R1]|= WT_FN_RDYFN;
 918        c->regs[R1]|= WT_RDY_RT;
 919        c->regs[R1]|= INT_ERR_Rx;
 920        c->regs[R1]&= ~TxINT_ENAB;
 921        write_zsreg(c, R1, c->regs[R1]);
 922        c->regs[R1]|= WT_RDY_ENAB;
 923        write_zsreg(c, R1, c->regs[R1]);            
 924        
 925        /*
 926         *      DMA interrupts
 927         */
 928         
 929        /*
 930         *      Set up the DMA configuration
 931         */     
 932         
 933        dflags=claim_dma_lock();
 934         
 935        disable_dma(c->rxdma);
 936        clear_dma_ff(c->rxdma);
 937        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 938        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 939        set_dma_count(c->rxdma, c->mtu);
 940        enable_dma(c->rxdma);
 941
 942        disable_dma(c->txdma);
 943        clear_dma_ff(c->txdma);
 944        set_dma_mode(c->txdma, DMA_MODE_WRITE);
 945        disable_dma(c->txdma);
 946        
 947        release_dma_lock(dflags);
 948        
 949        /*
 950         *      Select the DMA interrupt handlers
 951         */
 952
 953        c->rxdma_on = 1;
 954        c->txdma_on = 1;
 955        c->tx_dma_used = 1;
 956         
 957        c->irqs = &z8530_dma_sync;
 958        z8530_rtsdtr(c,1);
 959        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 960
 961        spin_unlock_irqrestore(c->lock, cflags);
 962        
 963        return 0;
 964}
 965
 966EXPORT_SYMBOL(z8530_sync_dma_open);
 967
 968/**
 969 *      z8530_sync_dma_close - Close down DMA I/O
 970 *      @dev: Network device to detach
 971 *      @c: Z8530 channel to move into discard mode
 972 *
 973 *      Shut down a DMA mode synchronous interface. Halt the DMA, and
 974 *      free the buffers.
 975 */
 976 
 977int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 978{
 979        u8 chk;
 980        unsigned long flags;
 981        
 982        c->irqs = &z8530_nop;
 983        c->max = 0;
 984        c->sync = 0;
 985        
 986        /*
 987         *      Disable the PC DMA channels
 988         */
 989        
 990        flags=claim_dma_lock(); 
 991        disable_dma(c->rxdma);
 992        clear_dma_ff(c->rxdma);
 993        
 994        c->rxdma_on = 0;
 995        
 996        disable_dma(c->txdma);
 997        clear_dma_ff(c->txdma);
 998        release_dma_lock(flags);
 999        
1000        c->txdma_on = 0;
1001        c->tx_dma_used = 0;
1002
1003        spin_lock_irqsave(c->lock, flags);
1004
1005        /*
1006         *      Disable DMA control mode
1007         */
1008         
1009        c->regs[R1]&= ~WT_RDY_ENAB;
1010        write_zsreg(c, R1, c->regs[R1]);            
1011        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1012        c->regs[R1]|= INT_ALL_Rx;
1013        write_zsreg(c, R1, c->regs[R1]);
1014        c->regs[R14]&= ~DTRREQ;
1015        write_zsreg(c, R14, c->regs[R14]);   
1016        
1017        if(c->rx_buf[0])
1018        {
1019                free_page((unsigned long)c->rx_buf[0]);
1020                c->rx_buf[0]=NULL;
1021        }
1022        if(c->tx_dma_buf[0])
1023        {
1024                free_page((unsigned  long)c->tx_dma_buf[0]);
1025                c->tx_dma_buf[0]=NULL;
1026        }
1027        chk=read_zsreg(c,R0);
1028        write_zsreg(c, R3, c->regs[R3]);
1029        z8530_rtsdtr(c,0);
1030
1031        spin_unlock_irqrestore(c->lock, flags);
1032
1033        return 0;
1034}
1035
1036EXPORT_SYMBOL(z8530_sync_dma_close);
1037
1038/**
1039 *      z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1040 *      @dev: The network device to attach
1041 *      @c: The Z8530 channel to configure in sync DMA mode.
1042 *
1043 *      Set up a Z85x30 device for synchronous DMA tranmission. One
1044 *      ISA DMA channel must be available for this to work. The receive
1045 *      side is run in PIO mode, but then it has the bigger FIFO.
1046 */
1047
1048int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1049{
1050        unsigned long cflags, dflags;
1051
1052        printk("Opening sync interface for TX-DMA\n");
1053        c->sync = 1;
1054        c->mtu = dev->mtu+64;
1055        c->count = 0;
1056        c->skb = NULL;
1057        c->skb2 = NULL;
1058        
1059        /*
1060         *      Allocate the DMA flip buffers. Limit by page size.
1061         *      Everyone runs 1500 mtu or less on wan links so this
1062         *      should be fine.
1063         */
1064         
1065        if(c->mtu  > PAGE_SIZE/2)
1066                return -EMSGSIZE;
1067         
1068        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1069        if(c->tx_dma_buf[0]==NULL)
1070                return -ENOBUFS;
1071
1072        c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1073
1074
1075        spin_lock_irqsave(c->lock, cflags);
1076
1077        /*
1078         *      Load the PIO receive ring
1079         */
1080
1081        z8530_rx_done(c);
1082        z8530_rx_done(c);
1083
1084        /*
1085         *      Load the DMA interfaces up
1086         */
1087
1088        c->rxdma_on = 0;
1089        c->txdma_on = 0;
1090        
1091        c->tx_dma_used=0;
1092        c->dma_num=0;
1093        c->dma_ready=1;
1094        c->dma_tx = 1;
1095
1096        /*
1097         *      Enable DMA control mode
1098         */
1099
1100        /*
1101         *      TX DMA via DIR/REQ
1102         */
1103        c->regs[R14]|= DTRREQ;
1104        write_zsreg(c, R14, c->regs[R14]);     
1105        
1106        c->regs[R1]&= ~TxINT_ENAB;
1107        write_zsreg(c, R1, c->regs[R1]);
1108        
1109        /*
1110         *      Set up the DMA configuration
1111         */     
1112         
1113        dflags = claim_dma_lock();
1114
1115        disable_dma(c->txdma);
1116        clear_dma_ff(c->txdma);
1117        set_dma_mode(c->txdma, DMA_MODE_WRITE);
1118        disable_dma(c->txdma);
1119
1120        release_dma_lock(dflags);
1121        
1122        /*
1123         *      Select the DMA interrupt handlers
1124         */
1125
1126        c->rxdma_on = 0;
1127        c->txdma_on = 1;
1128        c->tx_dma_used = 1;
1129         
1130        c->irqs = &z8530_txdma_sync;
1131        z8530_rtsdtr(c,1);
1132        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1133        spin_unlock_irqrestore(c->lock, cflags);
1134        
1135        return 0;
1136}
1137
1138EXPORT_SYMBOL(z8530_sync_txdma_open);
1139
1140/**
1141 *      z8530_sync_txdma_close - Close down a TX driven DMA channel
1142 *      @dev: Network device to detach
1143 *      @c: Z8530 channel to move into discard mode
1144 *
1145 *      Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1146 *      and  free the buffers.
1147 */
1148
1149int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1150{
1151        unsigned long dflags, cflags;
1152        u8 chk;
1153
1154        
1155        spin_lock_irqsave(c->lock, cflags);
1156        
1157        c->irqs = &z8530_nop;
1158        c->max = 0;
1159        c->sync = 0;
1160        
1161        /*
1162         *      Disable the PC DMA channels
1163         */
1164         
1165        dflags = claim_dma_lock();
1166
1167        disable_dma(c->txdma);
1168        clear_dma_ff(c->txdma);
1169        c->txdma_on = 0;
1170        c->tx_dma_used = 0;
1171
1172        release_dma_lock(dflags);
1173
1174        /*
1175         *      Disable DMA control mode
1176         */
1177         
1178        c->regs[R1]&= ~WT_RDY_ENAB;
1179        write_zsreg(c, R1, c->regs[R1]);            
1180        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1181        c->regs[R1]|= INT_ALL_Rx;
1182        write_zsreg(c, R1, c->regs[R1]);
1183        c->regs[R14]&= ~DTRREQ;
1184        write_zsreg(c, R14, c->regs[R14]);   
1185        
1186        if(c->tx_dma_buf[0])
1187        {
1188                free_page((unsigned long)c->tx_dma_buf[0]);
1189                c->tx_dma_buf[0]=NULL;
1190        }
1191        chk=read_zsreg(c,R0);
1192        write_zsreg(c, R3, c->regs[R3]);
1193        z8530_rtsdtr(c,0);
1194
1195        spin_unlock_irqrestore(c->lock, cflags);
1196        return 0;
1197}
1198
1199
1200EXPORT_SYMBOL(z8530_sync_txdma_close);
1201
1202
1203/*
1204 *      Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1205 *      it exists...
1206 */
1207 
1208static char *z8530_type_name[]={
1209        "Z8530",
1210        "Z85C30",
1211        "Z85230"
1212};
1213
1214/**
1215 *      z8530_describe - Uniformly describe a Z8530 port
1216 *      @dev: Z8530 device to describe
1217 *      @mapping: string holding mapping type (eg "I/O" or "Mem")
1218 *      @io: the port value in question
1219 *
1220 *      Describe a Z8530 in a standard format. We must pass the I/O as
1221 *      the port offset isnt predictable. The main reason for this function
1222 *      is to try and get a common format of report.
1223 */
1224
1225void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1226{
1227        printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1228                dev->name, 
1229                z8530_type_name[dev->type],
1230                mapping,
1231                Z8530_PORT_OF(io),
1232                dev->irq);
1233}
1234
1235EXPORT_SYMBOL(z8530_describe);
1236
1237/*
1238 *      Locked operation part of the z8530 init code
1239 */
1240 
1241static inline int do_z8530_init(struct z8530_dev *dev)
1242{
1243        /* NOP the interrupt handlers first - we might get a
1244           floating IRQ transition when we reset the chip */
1245        dev->chanA.irqs=&z8530_nop;
1246        dev->chanB.irqs=&z8530_nop;
1247        dev->chanA.dcdcheck=DCD;
1248        dev->chanB.dcdcheck=DCD;
1249
1250        /* Reset the chip */
1251        write_zsreg(&dev->chanA, R9, 0xC0);
1252        udelay(200);
1253        /* Now check its valid */
1254        write_zsreg(&dev->chanA, R12, 0xAA);
1255        if(read_zsreg(&dev->chanA, R12)!=0xAA)
1256                return -ENODEV;
1257        write_zsreg(&dev->chanA, R12, 0x55);
1258        if(read_zsreg(&dev->chanA, R12)!=0x55)
1259                return -ENODEV;
1260                
1261        dev->type=Z8530;
1262        
1263        /*
1264         *      See the application note.
1265         */
1266         
1267        write_zsreg(&dev->chanA, R15, 0x01);
1268        
1269        /*
1270         *      If we can set the low bit of R15 then
1271         *      the chip is enhanced.
1272         */
1273         
1274        if(read_zsreg(&dev->chanA, R15)==0x01)
1275        {
1276                /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1277                /* Put a char in the fifo */
1278                write_zsreg(&dev->chanA, R8, 0);
1279                if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1280                        dev->type = Z85230;     /* Has a FIFO */
1281                else
1282                        dev->type = Z85C30;     /* Z85C30, 1 byte FIFO */
1283        }
1284                
1285        /*
1286         *      The code assumes R7' and friends are
1287         *      off. Use write_zsext() for these and keep
1288         *      this bit clear.
1289         */
1290         
1291        write_zsreg(&dev->chanA, R15, 0);
1292                
1293        /*
1294         *      At this point it looks like the chip is behaving
1295         */
1296         
1297        memcpy(dev->chanA.regs, reg_init, 16);
1298        memcpy(dev->chanB.regs, reg_init ,16);
1299        
1300        return 0;
1301}
1302
1303/**
1304 *      z8530_init - Initialise a Z8530 device
1305 *      @dev: Z8530 device to initialise.
1306 *
1307 *      Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1308 *      is present, identify the type and then program it to hopefully
1309 *      keep quite and behave. This matters a lot, a Z8530 in the wrong
1310 *      state will sometimes get into stupid modes generating 10Khz
1311 *      interrupt streams and the like.
1312 *
1313 *      We set the interrupt handler up to discard any events, in case
1314 *      we get them during reset or setp.
1315 *
1316 *      Return 0 for success, or a negative value indicating the problem
1317 *      in errno form.
1318 */
1319
1320int z8530_init(struct z8530_dev *dev)
1321{
1322        unsigned long flags;
1323        int ret;
1324
1325        /* Set up the chip level lock */
1326        spin_lock_init(&dev->lock);
1327        dev->chanA.lock = &dev->lock;
1328        dev->chanB.lock = &dev->lock;
1329
1330        spin_lock_irqsave(&dev->lock, flags);
1331        ret = do_z8530_init(dev);
1332        spin_unlock_irqrestore(&dev->lock, flags);
1333
1334        return ret;
1335}
1336
1337
1338EXPORT_SYMBOL(z8530_init);
1339
1340/**
1341 *      z8530_shutdown - Shutdown a Z8530 device
1342 *      @dev: The Z8530 chip to shutdown
1343 *
1344 *      We set the interrupt handlers to silence any interrupts. We then 
1345 *      reset the chip and wait 100uS to be sure the reset completed. Just
1346 *      in case the caller then tries to do stuff.
1347 *
1348 *      This is called without the lock held
1349 */
1350 
1351int z8530_shutdown(struct z8530_dev *dev)
1352{
1353        unsigned long flags;
1354        /* Reset the chip */
1355
1356        spin_lock_irqsave(&dev->lock, flags);
1357        dev->chanA.irqs=&z8530_nop;
1358        dev->chanB.irqs=&z8530_nop;
1359        write_zsreg(&dev->chanA, R9, 0xC0);
1360        /* We must lock the udelay, the chip is offlimits here */
1361        udelay(100);
1362        spin_unlock_irqrestore(&dev->lock, flags);
1363        return 0;
1364}
1365
1366EXPORT_SYMBOL(z8530_shutdown);
1367
1368/**
1369 *      z8530_channel_load - Load channel data
1370 *      @c: Z8530 channel to configure
1371 *      @rtable: table of register, value pairs
1372 *      FIXME: ioctl to allow user uploaded tables
1373 *
1374 *      Load a Z8530 channel up from the system data. We use +16 to 
1375 *      indicate the "prime" registers. The value 255 terminates the
1376 *      table.
1377 */
1378
1379int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1380{
1381        unsigned long flags;
1382
1383        spin_lock_irqsave(c->lock, flags);
1384
1385        while(*rtable!=255)
1386        {
1387                int reg=*rtable++;
1388                if(reg>0x0F)
1389                        write_zsreg(c, R15, c->regs[15]|1);
1390                write_zsreg(c, reg&0x0F, *rtable);
1391                if(reg>0x0F)
1392                        write_zsreg(c, R15, c->regs[15]&~1);
1393                c->regs[reg]=*rtable++;
1394        }
1395        c->rx_function=z8530_null_rx;
1396        c->skb=NULL;
1397        c->tx_skb=NULL;
1398        c->tx_next_skb=NULL;
1399        c->mtu=1500;
1400        c->max=0;
1401        c->count=0;
1402        c->status=read_zsreg(c, R0);
1403        c->sync=1;
1404        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1405
1406        spin_unlock_irqrestore(c->lock, flags);
1407        return 0;
1408}
1409
1410EXPORT_SYMBOL(z8530_channel_load);
1411
1412
1413/**
1414 *      z8530_tx_begin - Begin packet transmission
1415 *      @c: The Z8530 channel to kick
1416 *
1417 *      This is the speed sensitive side of transmission. If we are called
1418 *      and no buffer is being transmitted we commence the next buffer. If
1419 *      nothing is queued we idle the sync. 
1420 *
1421 *      Note: We are handling this code path in the interrupt path, keep it
1422 *      fast or bad things will happen.
1423 *
1424 *      Called with the lock held.
1425 */
1426
1427static void z8530_tx_begin(struct z8530_channel *c)
1428{
1429        unsigned long flags;
1430        if(c->tx_skb)
1431                return;
1432                
1433        c->tx_skb=c->tx_next_skb;
1434        c->tx_next_skb=NULL;
1435        c->tx_ptr=c->tx_next_ptr;
1436        
1437        if(c->tx_skb==NULL)
1438        {
1439                /* Idle on */
1440                if(c->dma_tx)
1441                {
1442                        flags=claim_dma_lock();
1443                        disable_dma(c->txdma);
1444                        /*
1445                         *      Check if we crapped out.
1446                         */
1447                        if (get_dma_residue(c->txdma))
1448                        {
1449                                c->netdevice->stats.tx_dropped++;
1450                                c->netdevice->stats.tx_fifo_errors++;
1451                        }
1452                        release_dma_lock(flags);
1453                }
1454                c->txcount=0;
1455        }
1456        else
1457        {
1458                c->txcount=c->tx_skb->len;
1459                
1460                
1461                if(c->dma_tx)
1462                {
1463                        /*
1464                         *      FIXME. DMA is broken for the original 8530,
1465                         *      on the older parts we need to set a flag and
1466                         *      wait for a further TX interrupt to fire this
1467                         *      stage off       
1468                         */
1469                         
1470                        flags=claim_dma_lock();
1471                        disable_dma(c->txdma);
1472
1473                        /*
1474                         *      These two are needed by the 8530/85C30
1475                         *      and must be issued when idling.
1476                         */
1477                         
1478                        if(c->dev->type!=Z85230)
1479                        {
1480                                write_zsctrl(c, RES_Tx_CRC);
1481                                write_zsctrl(c, RES_EOM_L);
1482                        }       
1483                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1484                        clear_dma_ff(c->txdma);
1485                        set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1486                        set_dma_count(c->txdma, c->txcount);
1487                        enable_dma(c->txdma);
1488                        release_dma_lock(flags);
1489                        write_zsctrl(c, RES_EOM_L);
1490                        write_zsreg(c, R5, c->regs[R5]|TxENAB);
1491                }
1492                else
1493                {
1494
1495                        /* ABUNDER off */
1496                        write_zsreg(c, R10, c->regs[10]);
1497                        write_zsctrl(c, RES_Tx_CRC);
1498        
1499                        while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1500                        {               
1501                                write_zsreg(c, R8, *c->tx_ptr++);
1502                                c->txcount--;
1503                        }
1504
1505                }
1506        }
1507        /*
1508         *      Since we emptied tx_skb we can ask for more
1509         */
1510        netif_wake_queue(c->netdevice);
1511}
1512
1513/**
1514 *      z8530_tx_done - TX complete callback
1515 *      @c: The channel that completed a transmit.
1516 *
1517 *      This is called when we complete a packet send. We wake the queue,
1518 *      start the next packet going and then free the buffer of the existing
1519 *      packet. This code is fairly timing sensitive.
1520 *
1521 *      Called with the register lock held.
1522 */
1523
1524static void z8530_tx_done(struct z8530_channel *c)
1525{
1526        struct sk_buff *skb;
1527
1528        /* Actually this can happen.*/
1529        if (c->tx_skb == NULL)
1530                return;
1531
1532        skb = c->tx_skb;
1533        c->tx_skb = NULL;
1534        z8530_tx_begin(c);
1535        c->netdevice->stats.tx_packets++;
1536        c->netdevice->stats.tx_bytes += skb->len;
1537        dev_kfree_skb_irq(skb);
1538}
1539
1540/**
1541 *      z8530_null_rx - Discard a packet
1542 *      @c: The channel the packet arrived on
1543 *      @skb: The buffer
1544 *
1545 *      We point the receive handler at this function when idle. Instead
1546 *      of processing the frames we get to throw them away.
1547 */
1548 
1549void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1550{
1551        dev_kfree_skb_any(skb);
1552}
1553
1554EXPORT_SYMBOL(z8530_null_rx);
1555
1556/**
1557 *      z8530_rx_done - Receive completion callback
1558 *      @c: The channel that completed a receive
1559 *
1560 *      A new packet is complete. Our goal here is to get back into receive
1561 *      mode as fast as possible. On the Z85230 we could change to using
1562 *      ESCC mode, but on the older chips we have no choice. We flip to the
1563 *      new buffer immediately in DMA mode so that the DMA of the next
1564 *      frame can occur while we are copying the previous buffer to an sk_buff
1565 *
1566 *      Called with the lock held
1567 */
1568 
1569static void z8530_rx_done(struct z8530_channel *c)
1570{
1571        struct sk_buff *skb;
1572        int ct;
1573        
1574        /*
1575         *      Is our receive engine in DMA mode
1576         */
1577         
1578        if(c->rxdma_on)
1579        {
1580                /*
1581                 *      Save the ready state and the buffer currently
1582                 *      being used as the DMA target
1583                 */
1584                 
1585                int ready=c->dma_ready;
1586                unsigned char *rxb=c->rx_buf[c->dma_num];
1587                unsigned long flags;
1588                
1589                /*
1590                 *      Complete this DMA. Neccessary to find the length
1591                 */             
1592                 
1593                flags=claim_dma_lock();
1594                
1595                disable_dma(c->rxdma);
1596                clear_dma_ff(c->rxdma);
1597                c->rxdma_on=0;
1598                ct=c->mtu-get_dma_residue(c->rxdma);
1599                if(ct<0)
1600                        ct=2;   /* Shit happens.. */
1601                c->dma_ready=0;
1602                
1603                /*
1604                 *      Normal case: the other slot is free, start the next DMA
1605                 *      into it immediately.
1606                 */
1607                 
1608                if(ready)
1609                {
1610                        c->dma_num^=1;
1611                        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1612                        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1613                        set_dma_count(c->rxdma, c->mtu);
1614                        c->rxdma_on = 1;
1615                        enable_dma(c->rxdma);
1616                        /* Stop any frames that we missed the head of 
1617                           from passing */
1618                        write_zsreg(c, R0, RES_Rx_CRC);
1619                }
1620                else
1621                        /* Can't occur as we dont reenable the DMA irq until
1622                           after the flip is done */
1623                        printk(KERN_WARNING "%s: DMA flip overrun!\n",
1624                               c->netdevice->name);
1625
1626                release_dma_lock(flags);
1627
1628                /*
1629                 *      Shove the old buffer into an sk_buff. We can't DMA
1630                 *      directly into one on a PC - it might be above the 16Mb
1631                 *      boundary. Optimisation - we could check to see if we
1632                 *      can avoid the copy. Optimisation 2 - make the memcpy
1633                 *      a copychecksum.
1634                 */
1635
1636                skb = dev_alloc_skb(ct);
1637                if (skb == NULL) {
1638                        c->netdevice->stats.rx_dropped++;
1639                        printk(KERN_WARNING "%s: Memory squeeze.\n",
1640                               c->netdevice->name);
1641                } else {
1642                        skb_put(skb, ct);
1643                        skb_copy_to_linear_data(skb, rxb, ct);
1644                        c->netdevice->stats.rx_packets++;
1645                        c->netdevice->stats.rx_bytes += ct;
1646                }
1647                c->dma_ready = 1;
1648        } else {
1649                RT_LOCK;
1650                skb = c->skb;
1651
1652                /*
1653                 *      The game we play for non DMA is similar. We want to
1654                 *      get the controller set up for the next packet as fast
1655                 *      as possible. We potentially only have one byte + the
1656                 *      fifo length for this. Thus we want to flip to the new
1657                 *      buffer and then mess around copying and allocating
1658                 *      things. For the current case it doesn't matter but
1659                 *      if you build a system where the sync irq isnt blocked
1660                 *      by the kernel IRQ disable then you need only block the
1661                 *      sync IRQ for the RT_LOCK area.
1662                 *
1663                 */
1664                ct=c->count;
1665
1666                c->skb = c->skb2;
1667                c->count = 0;
1668                c->max = c->mtu;
1669                if (c->skb) {
1670                        c->dptr = c->skb->data;
1671                        c->max = c->mtu;
1672                } else {
1673                        c->count = 0;
1674                        c->max = 0;
1675                }
1676                RT_UNLOCK;
1677
1678                c->skb2 = dev_alloc_skb(c->mtu);
1679                if (c->skb2 == NULL)
1680                        printk(KERN_WARNING "%s: memory squeeze.\n",
1681                               c->netdevice->name);
1682                else
1683                        skb_put(c->skb2, c->mtu);
1684                c->netdevice->stats.rx_packets++;
1685                c->netdevice->stats.rx_bytes += ct;
1686        }
1687        /*
1688         *      If we received a frame we must now process it.
1689         */
1690        if (skb) {
1691                skb_trim(skb, ct);
1692                c->rx_function(c, skb);
1693        } else {
1694                c->netdevice->stats.rx_dropped++;
1695                printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1696        }
1697}
1698
1699/**
1700 *      spans_boundary - Check a packet can be ISA DMA'd
1701 *      @skb: The buffer to check
1702 *
1703 *      Returns true if the buffer cross a DMA boundary on a PC. The poor
1704 *      thing can only DMA within a 64K block not across the edges of it.
1705 */
1706
1707static inline int spans_boundary(struct sk_buff *skb)
1708{
1709        unsigned long a=(unsigned long)skb->data;
1710        a^=(a+skb->len);
1711        if(a&0x00010000)        /* If the 64K bit is different.. */
1712                return 1;
1713        return 0;
1714}
1715
1716/**
1717 *      z8530_queue_xmit - Queue a packet
1718 *      @c: The channel to use
1719 *      @skb: The packet to kick down the channel
1720 *
1721 *      Queue a packet for transmission. Because we have rather
1722 *      hard to hit interrupt latencies for the Z85230 per packet 
1723 *      even in DMA mode we do the flip to DMA buffer if needed here
1724 *      not in the IRQ.
1725 *
1726 *      Called from the network code. The lock is not held at this 
1727 *      point.
1728 */
1729
1730netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1731{
1732        unsigned long flags;
1733        
1734        netif_stop_queue(c->netdevice);
1735        if(c->tx_next_skb)
1736                return NETDEV_TX_BUSY;
1737
1738        
1739        /* PC SPECIFIC - DMA limits */
1740        
1741        /*
1742         *      If we will DMA the transmit and its gone over the ISA bus
1743         *      limit, then copy to the flip buffer
1744         */
1745         
1746        if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1747        {
1748                /* 
1749                 *      Send the flip buffer, and flip the flippy bit.
1750                 *      We don't care which is used when just so long as
1751                 *      we never use the same buffer twice in a row. Since
1752                 *      only one buffer can be going out at a time the other
1753                 *      has to be safe.
1754                 */
1755                c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1756                c->tx_dma_used^=1;      /* Flip temp buffer */
1757                skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1758        }
1759        else
1760                c->tx_next_ptr=skb->data;       
1761        RT_LOCK;
1762        c->tx_next_skb=skb;
1763        RT_UNLOCK;
1764        
1765        spin_lock_irqsave(c->lock, flags);
1766        z8530_tx_begin(c);
1767        spin_unlock_irqrestore(c->lock, flags);
1768        
1769        return NETDEV_TX_OK;
1770}
1771
1772EXPORT_SYMBOL(z8530_queue_xmit);
1773
1774/*
1775 *      Module support
1776 */
1777static const char banner[] __initdata =
1778        KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1779
1780static int __init z85230_init_driver(void)
1781{
1782        printk(banner);
1783        return 0;
1784}
1785module_init(z85230_init_driver);
1786
1787static void __exit z85230_cleanup_driver(void)
1788{
1789}
1790module_exit(z85230_cleanup_driver);
1791
1792MODULE_AUTHOR("Red Hat Inc.");
1793MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1794MODULE_LICENSE("GPL");
1795