linux/drivers/net/wimax/i2400m/fw.c
<<
>>
Prefs
   1/*
   2 * Intel Wireless WiMAX Connection 2400m
   3 * Firmware uploader
   4 *
   5 *
   6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions
  10 * are met:
  11 *
  12 *   * Redistributions of source code must retain the above copyright
  13 *     notice, this list of conditions and the following disclaimer.
  14 *   * Redistributions in binary form must reproduce the above copyright
  15 *     notice, this list of conditions and the following disclaimer in
  16 *     the documentation and/or other materials provided with the
  17 *     distribution.
  18 *   * Neither the name of Intel Corporation nor the names of its
  19 *     contributors may be used to endorse or promote products derived
  20 *     from this software without specific prior written permission.
  21 *
  22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33 *
  34 *
  35 * Intel Corporation <linux-wimax@intel.com>
  36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
  37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  38 *  - Initial implementation
  39 *
  40 *
  41 * THE PROCEDURE
  42 *
  43 * (this is decribed for USB, but for SDIO is similar)
  44 *
  45 * The 2400m works in two modes: boot-mode or normal mode. In boot
  46 * mode we can execute only a handful of commands targeted at
  47 * uploading the firmware and launching it.
  48 *
  49 * The 2400m enters boot mode when it is first connected to the
  50 * system, when it crashes and when you ask it to reboot. There are
  51 * two submodes of the boot mode: signed and non-signed. Signed takes
  52 * firmwares signed with a certain private key, non-signed takes any
  53 * firmware. Normal hardware takes only signed firmware.
  54 *
  55 * Upon entrance to boot mode, the device sends a few zero length
  56 * packets (ZLPs) on the notification endpoint, then a reboot barker
  57 * (4 le32 words with value I2400M_{S,N}BOOT_BARKER). We ack it by
  58 * sending the same barker on the bulk out endpoint. The device acks
  59 * with a reboot ack barker (4 le32 words with value 0xfeedbabe) and
  60 * then the device is fully rebooted. At this point we can upload the
  61 * firmware.
  62 *
  63 * This process is accomplished by the i2400m_bootrom_init()
  64 * function. All the device interaction happens through the
  65 * i2400m_bm_cmd() [boot mode command]. Special return values will
  66 * indicate if the device resets.
  67 *
  68 * After this, we read the MAC address and then (if needed)
  69 * reinitialize the device. We need to read it ahead of time because
  70 * in the future, we might not upload the firmware until userspace
  71 * 'ifconfig up's the device.
  72 *
  73 * We can then upload the firmware file. The file is composed of a BCF
  74 * header (basic data, keys and signatures) and a list of write
  75 * commands and payloads. We first upload the header
  76 * [i2400m_dnload_init()] and then pass the commands and payloads
  77 * verbatim to the i2400m_bm_cmd() function
  78 * [i2400m_dnload_bcf()]. Then we tell the device to jump to the new
  79 * firmware [i2400m_dnload_finalize()].
  80 *
  81 * Once firmware is uploaded, we are good to go :)
  82 *
  83 * When we don't know in which mode we are, we first try by sending a
  84 * warm reset request that will take us to boot-mode. If we time out
  85 * waiting for a reboot barker, that means maybe we are already in
  86 * boot mode, so we send a reboot barker.
  87 *
  88 * COMMAND EXECUTION
  89 *
  90 * This code (and process) is single threaded; for executing commands,
  91 * we post a URB to the notification endpoint, post the command, wait
  92 * for data on the notification buffer. We don't need to worry about
  93 * others as we know we are the only ones in there.
  94 *
  95 * BACKEND IMPLEMENTATION
  96 *
  97 * This code is bus-generic; the bus-specific driver provides back end
  98 * implementations to send a boot mode command to the device and to
  99 * read an acknolwedgement from it (or an asynchronous notification)
 100 * from it.
 101 *
 102 * ROADMAP
 103 *
 104 * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
 105 *   request_firmware
 106 *   i2400m_fw_check
 107 *   i2400m_fw_dnload
 108 *   release_firmware
 109 *
 110 * i2400m_fw_dnload
 111 *   i2400m_bootrom_init
 112 *     i2400m_bm_cmd
 113 *     i2400m->bus_reset
 114 *   i2400m_dnload_init
 115 *     i2400m_dnload_init_signed
 116 *     i2400m_dnload_init_nonsigned
 117 *       i2400m_download_chunk
 118 *         i2400m_bm_cmd
 119 *   i2400m_dnload_bcf
 120 *     i2400m_bm_cmd
 121 *   i2400m_dnload_finalize
 122 *     i2400m_bm_cmd
 123 *
 124 * i2400m_bm_cmd
 125 *   i2400m->bus_bm_cmd_send()
 126 *   i2400m->bus_bm_wait_for_ack
 127 *   __i2400m_bm_ack_verify
 128 *
 129 * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
 130 *                                    commands before sending
 131 */
 132#include <linux/firmware.h>
 133#include <linux/sched.h>
 134#include <linux/usb.h>
 135#include "i2400m.h"
 136
 137
 138#define D_SUBMODULE fw
 139#include "debug-levels.h"
 140
 141
 142static const __le32 i2400m_ACK_BARKER[4] = {
 143        cpu_to_le32(I2400M_ACK_BARKER),
 144        cpu_to_le32(I2400M_ACK_BARKER),
 145        cpu_to_le32(I2400M_ACK_BARKER),
 146        cpu_to_le32(I2400M_ACK_BARKER)
 147};
 148
 149
 150/**
 151 * Prepare a boot-mode command for delivery
 152 *
 153 * @cmd: pointer to bootrom header to prepare
 154 *
 155 * Computes checksum if so needed. After calling this function, DO NOT
 156 * modify the command or header as the checksum won't work anymore.
 157 *
 158 * We do it from here because some times we cannot do it in the
 159 * original context the command was sent (it is a const), so when we
 160 * copy it to our staging buffer, we add the checksum there.
 161 */
 162void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
 163{
 164        if (i2400m_brh_get_use_checksum(cmd)) {
 165                int i;
 166                u32 checksum = 0;
 167                const u32 *checksum_ptr = (void *) cmd->payload;
 168                for (i = 0; i < cmd->data_size / 4; i++)
 169                        checksum += cpu_to_le32(*checksum_ptr++);
 170                checksum += cmd->command + cmd->target_addr + cmd->data_size;
 171                cmd->block_checksum = cpu_to_le32(checksum);
 172        }
 173}
 174EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
 175
 176
 177/*
 178 * Verify the ack data received
 179 *
 180 * Given a reply to a boot mode command, chew it and verify everything
 181 * is ok.
 182 *
 183 * @opcode: opcode which generated this ack. For error messages.
 184 * @ack: pointer to ack data we received
 185 * @ack_size: size of that data buffer
 186 * @flags: I2400M_BM_CMD_* flags we called the command with.
 187 *
 188 * Way too long function -- maybe it should be further split
 189 */
 190static
 191ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
 192                               struct i2400m_bootrom_header *ack,
 193                               size_t ack_size, int flags)
 194{
 195        ssize_t result = -ENOMEM;
 196        struct device *dev = i2400m_dev(i2400m);
 197
 198        d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
 199                  i2400m, opcode, ack, ack_size);
 200        if (ack_size < sizeof(*ack)) {
 201                result = -EIO;
 202                dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
 203                        "return enough data (%zu bytes vs %zu expected)\n",
 204                        opcode, ack_size, sizeof(*ack));
 205                goto error_ack_short;
 206        }
 207        if (ack_size == sizeof(i2400m_NBOOT_BARKER)
 208                 && memcmp(ack, i2400m_NBOOT_BARKER, sizeof(*ack)) == 0) {
 209                result = -ERESTARTSYS;
 210                i2400m->sboot = 0;
 211                d_printf(6, dev, "boot-mode cmd %d: "
 212                         "HW non-signed boot barker\n", opcode);
 213                goto error_reboot;
 214        }
 215        if (ack_size == sizeof(i2400m_SBOOT_BARKER)
 216                 && memcmp(ack, i2400m_SBOOT_BARKER, sizeof(*ack)) == 0) {
 217                result = -ERESTARTSYS;
 218                i2400m->sboot = 1;
 219                d_printf(6, dev, "boot-mode cmd %d: HW signed reboot barker\n",
 220                         opcode);
 221                goto error_reboot;
 222        }
 223        if (ack_size == sizeof(i2400m_ACK_BARKER)
 224                 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
 225                result = -EISCONN;
 226                d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
 227                         opcode);
 228                goto error_reboot_ack;
 229        }
 230        result = 0;
 231        if (flags & I2400M_BM_CMD_RAW)
 232                goto out_raw;
 233        ack->data_size = le32_to_cpu(ack->data_size);
 234        ack->target_addr = le32_to_cpu(ack->target_addr);
 235        ack->block_checksum = le32_to_cpu(ack->block_checksum);
 236        d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
 237                 "response %u csum %u rr %u da %u\n",
 238                 opcode, i2400m_brh_get_opcode(ack),
 239                 i2400m_brh_get_response(ack),
 240                 i2400m_brh_get_use_checksum(ack),
 241                 i2400m_brh_get_response_required(ack),
 242                 i2400m_brh_get_direct_access(ack));
 243        result = -EIO;
 244        if (i2400m_brh_get_signature(ack) != 0xcbbc) {
 245                dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
 246                        "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
 247                goto error_ack_signature;
 248        }
 249        if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
 250                dev_err(dev, "boot-mode cmd %d: HW BUG? "
 251                        "received response for opcode %u, expected %u\n",
 252                        opcode, i2400m_brh_get_opcode(ack), opcode);
 253                goto error_ack_opcode;
 254        }
 255        if (i2400m_brh_get_response(ack) != 0) {        /* failed? */
 256                dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
 257                        opcode, i2400m_brh_get_response(ack));
 258                goto error_ack_failed;
 259        }
 260        if (ack_size < ack->data_size + sizeof(*ack)) {
 261                dev_err(dev, "boot-mode cmd %d: SW BUG "
 262                        "driver provided only %zu bytes for %zu bytes "
 263                        "of data\n", opcode, ack_size,
 264                        (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
 265                goto error_ack_short_buffer;
 266        }
 267        result = ack_size;
 268        /* Don't you love this stack of empty targets? Well, I don't
 269         * either, but it helps track exactly who comes in here and
 270         * why :) */
 271error_ack_short_buffer:
 272error_ack_failed:
 273error_ack_opcode:
 274error_ack_signature:
 275out_raw:
 276error_reboot_ack:
 277error_reboot:
 278error_ack_short:
 279        d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
 280                i2400m, opcode, ack, ack_size, (int) result);
 281        return result;
 282}
 283
 284
 285/**
 286 * i2400m_bm_cmd - Execute a boot mode command
 287 *
 288 * @cmd: buffer containing the command data (pointing at the header).
 289 *     This data can be ANYWHERE (for USB, we will copy it to an
 290 *     specific buffer). Make sure everything is in proper little
 291 *     endian.
 292 *
 293 *     A raw buffer can be also sent, just cast it and set flags to
 294 *     I2400M_BM_CMD_RAW.
 295 *
 296 *     This function will generate a checksum for you if the
 297 *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
 298 *     is set).
 299 *
 300 *     You can use the i2400m->bm_cmd_buf to stage your commands and
 301 *     send them.
 302 *
 303 *     If NULL, no command is sent (we just wait for an ack).
 304 *
 305 * @cmd_size: size of the command. Will be auto padded to the
 306 *     bus-specific drivers padding requirements.
 307 *
 308 * @ack: buffer where to place the acknowledgement. If it is a regular
 309 *     command response, all fields will be returned with the right,
 310 *     native endianess.
 311 *
 312 *     You *cannot* use i2400m->bm_ack_buf for this buffer.
 313 *
 314 * @ack_size: size of @ack, 16 aligned; you need to provide at least
 315 *     sizeof(*ack) bytes and then enough to contain the return data
 316 *     from the command
 317 *
 318 * @flags: see I2400M_BM_CMD_* above.
 319 *
 320 * @returns: bytes received by the notification; if < 0, an errno code
 321 *     denoting an error or:
 322 *
 323 *     -ERESTARTSYS  The device has rebooted
 324 *
 325 * Executes a boot-mode command and waits for a response, doing basic
 326 * validation on it; if a zero length response is received, it retries
 327 * waiting for a response until a non-zero one is received (timing out
 328 * after %I2400M_BOOT_RETRIES retries).
 329 */
 330static
 331ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
 332                      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
 333                      struct i2400m_bootrom_header *ack, size_t ack_size,
 334                      int flags)
 335{
 336        ssize_t result = -ENOMEM, rx_bytes;
 337        struct device *dev = i2400m_dev(i2400m);
 338        int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
 339
 340        d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
 341                  i2400m, cmd, cmd_size, ack, ack_size);
 342        BUG_ON(ack_size < sizeof(*ack));
 343        BUG_ON(i2400m->boot_mode == 0);
 344
 345        if (cmd != NULL) {              /* send the command */
 346                memcpy(i2400m->bm_cmd_buf, cmd, cmd_size);
 347                result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
 348                if (result < 0)
 349                        goto error_cmd_send;
 350                if ((flags & I2400M_BM_CMD_RAW) == 0)
 351                        d_printf(5, dev,
 352                                 "boot-mode cmd %d csum %u rr %u da %u: "
 353                                 "addr 0x%04x size %u block csum 0x%04x\n",
 354                                 opcode, i2400m_brh_get_use_checksum(cmd),
 355                                 i2400m_brh_get_response_required(cmd),
 356                                 i2400m_brh_get_direct_access(cmd),
 357                                 cmd->target_addr, cmd->data_size,
 358                                 cmd->block_checksum);
 359        }
 360        result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
 361        if (result < 0) {
 362                dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
 363                        opcode, (int) result);  /* bah, %zd doesn't work */
 364                goto error_wait_for_ack;
 365        }
 366        rx_bytes = result;
 367        /* verify the ack and read more if neccessary [result is the
 368         * final amount of bytes we get in the ack]  */
 369        result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
 370        if (result < 0)
 371                goto error_bad_ack;
 372        /* Don't you love this stack of empty targets? Well, I don't
 373         * either, but it helps track exactly who comes in here and
 374         * why :) */
 375        result = rx_bytes;
 376error_bad_ack:
 377error_wait_for_ack:
 378error_cmd_send:
 379        d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
 380                i2400m, cmd, cmd_size, ack, ack_size, (int) result);
 381        return result;
 382}
 383
 384
 385/**
 386 * i2400m_download_chunk - write a single chunk of data to the device's memory
 387 *
 388 * @i2400m: device descriptor
 389 * @buf: the buffer to write
 390 * @buf_len: length of the buffer to write
 391 * @addr: address in the device memory space
 392 * @direct: bootrom write mode
 393 * @do_csum: should a checksum validation be performed
 394 */
 395static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
 396                                 size_t __chunk_len, unsigned long addr,
 397                                 unsigned int direct, unsigned int do_csum)
 398{
 399        int ret;
 400        size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
 401        struct device *dev = i2400m_dev(i2400m);
 402        struct {
 403                struct i2400m_bootrom_header cmd;
 404                u8 cmd_payload[chunk_len];
 405        } __attribute__((packed)) *buf;
 406        struct i2400m_bootrom_header ack;
 407
 408        d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 409                  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
 410                  addr, direct, do_csum);
 411        buf = i2400m->bm_cmd_buf;
 412        memcpy(buf->cmd_payload, chunk, __chunk_len);
 413        memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
 414
 415        buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
 416                                              __chunk_len & 0x3 ? 0 : do_csum,
 417                                              __chunk_len & 0xf ? 0 : direct);
 418        buf->cmd.target_addr = cpu_to_le32(addr);
 419        buf->cmd.data_size = cpu_to_le32(__chunk_len);
 420        ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
 421                            &ack, sizeof(ack), 0);
 422        if (ret >= 0)
 423                ret = 0;
 424        d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 425                "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
 426                addr, direct, do_csum, ret);
 427        return ret;
 428}
 429
 430
 431/*
 432 * Download a BCF file's sections to the device
 433 *
 434 * @i2400m: device descriptor
 435 * @bcf: pointer to firmware data (followed by the payloads). Assumed
 436 *       verified and consistent.
 437 * @bcf_len: length (in bytes) of the @bcf buffer.
 438 *
 439 * Returns: < 0 errno code on error or the offset to the jump instruction.
 440 *
 441 * Given a BCF file, downloads each section (a command and a payload)
 442 * to the device's address space. Actually, it just executes each
 443 * command i the BCF file.
 444 *
 445 * The section size has to be aligned to 4 bytes AND the padding has
 446 * to be taken from the firmware file, as the signature takes it into
 447 * account.
 448 */
 449static
 450ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
 451                          const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
 452{
 453        ssize_t ret;
 454        struct device *dev = i2400m_dev(i2400m);
 455        size_t offset,          /* iterator offset */
 456                data_size,      /* Size of the data payload */
 457                section_size,   /* Size of the whole section (cmd + payload) */
 458                section = 1;
 459        const struct i2400m_bootrom_header *bh;
 460        struct i2400m_bootrom_header ack;
 461
 462        d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
 463                  i2400m, bcf, bcf_len);
 464        /* Iterate over the command blocks in the BCF file that start
 465         * after the header */
 466        offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
 467        while (1) {     /* start sending the file */
 468                bh = (void *) bcf + offset;
 469                data_size = le32_to_cpu(bh->data_size);
 470                section_size = ALIGN(sizeof(*bh) + data_size, 4);
 471                d_printf(7, dev,
 472                         "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
 473                         section, offset, sizeof(*bh) + data_size,
 474                         le32_to_cpu(bh->target_addr));
 475                if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP) {
 476                        /* Secure boot needs to stop here */
 477                        d_printf(5, dev,  "signed jump found @%zu\n", offset);
 478                        break;
 479                }
 480                if (offset + section_size == bcf_len)
 481                        /* Non-secure boot stops here */
 482                        break;
 483                if (offset + section_size > bcf_len) {
 484                        dev_err(dev, "fw %s: bad section #%zu, "
 485                                "end (@%zu) beyond EOF (@%zu)\n",
 486                                i2400m->fw_name, section,
 487                                offset + section_size,  bcf_len);
 488                        ret = -EINVAL;
 489                        goto error_section_beyond_eof;
 490                }
 491                __i2400m_msleep(20);
 492                ret = i2400m_bm_cmd(i2400m, bh, section_size,
 493                                    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 494                if (ret < 0) {
 495                        dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
 496                                "failed %d\n", i2400m->fw_name, section,
 497                                offset, sizeof(*bh) + data_size, (int) ret);
 498                        goto error_send;
 499                }
 500                offset += section_size;
 501                section++;
 502        }
 503        ret = offset;
 504error_section_beyond_eof:
 505error_send:
 506        d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
 507                i2400m, bcf, bcf_len, (int) ret);
 508        return ret;
 509}
 510
 511
 512/*
 513 * Do the final steps of uploading firmware
 514 *
 515 * Depending on the boot mode (signed vs non-signed), different
 516 * actions need to be taken.
 517 */
 518static
 519int i2400m_dnload_finalize(struct i2400m *i2400m,
 520                           const struct i2400m_bcf_hdr *bcf, size_t offset)
 521{
 522        int ret = 0;
 523        struct device *dev = i2400m_dev(i2400m);
 524        struct i2400m_bootrom_header *cmd, ack;
 525        struct {
 526                struct i2400m_bootrom_header cmd;
 527                u8 cmd_pl[0];
 528        } __attribute__((packed)) *cmd_buf;
 529        size_t signature_block_offset, signature_block_size;
 530
 531        d_fnstart(3, dev, "offset %zu\n", offset);
 532        cmd = (void *) bcf + offset;
 533        if (i2400m->sboot == 0) {
 534                struct i2400m_bootrom_header jump_ack;
 535                d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
 536                        le32_to_cpu(cmd->target_addr));
 537                i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
 538                cmd->data_size = 0;
 539                ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 540                                    &jump_ack, sizeof(jump_ack), 0);
 541        } else {
 542                d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
 543                         le32_to_cpu(cmd->target_addr));
 544                cmd_buf = i2400m->bm_cmd_buf;
 545                memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
 546                signature_block_offset =
 547                        sizeof(*bcf)
 548                        + le32_to_cpu(bcf->key_size) * sizeof(u32)
 549                        + le32_to_cpu(bcf->exponent_size) * sizeof(u32);
 550                signature_block_size =
 551                        le32_to_cpu(bcf->modulus_size) * sizeof(u32);
 552                memcpy(cmd_buf->cmd_pl, (void *) bcf + signature_block_offset,
 553                       signature_block_size);
 554                ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
 555                                    sizeof(cmd_buf->cmd) + signature_block_size,
 556                                    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 557        }
 558        d_fnend(3, dev, "returning %d\n", ret);
 559        return ret;
 560}
 561
 562
 563/**
 564 * i2400m_bootrom_init - Reboots a powered device into boot mode
 565 *
 566 * @i2400m: device descriptor
 567 * @flags:
 568 *      I2400M_BRI_SOFT: a reboot notification has been seen
 569 *          already, so don't wait for it.
 570 *
 571 *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
 572 *          for a reboot barker notification. This is a one shot; if
 573 *          the state machine needs to send a reboot command it will.
 574 *
 575 * Returns:
 576 *
 577 *     < 0 errno code on error, 0 if ok.
 578 *
 579 *     i2400m->sboot set to 0 for unsecure boot process, 1 for secure
 580 *     boot process.
 581 *
 582 * Description:
 583 *
 584 * Tries hard enough to put the device in boot-mode. There are two
 585 * main phases to this:
 586 *
 587 * a. (1) send a reboot command and (2) get a reboot barker
 588 * b. (1) ack the reboot sending a reboot barker and (2) getting an
 589 *        ack barker in return
 590 *
 591 * We want to skip (a) in some cases [soft]. The state machine is
 592 * horrible, but it is basically: on each phase, send what has to be
 593 * sent (if any), wait for the answer and act on the answer. We might
 594 * have to backtrack and retry, so we keep a max tries counter for
 595 * that.
 596 *
 597 * If we get a timeout after sending a warm reset, we do it again.
 598 */
 599int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
 600{
 601        int result;
 602        struct device *dev = i2400m_dev(i2400m);
 603        struct i2400m_bootrom_header *cmd;
 604        struct i2400m_bootrom_header ack;
 605        int count = I2400M_BOOT_RETRIES;
 606        int ack_timeout_cnt = 1;
 607
 608        BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_NBOOT_BARKER));
 609        BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
 610
 611        d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
 612        result = -ENOMEM;
 613        cmd = i2400m->bm_cmd_buf;
 614        if (flags & I2400M_BRI_SOFT)
 615                goto do_reboot_ack;
 616do_reboot:
 617        if (--count < 0)
 618                goto error_timeout;
 619        d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
 620                 count);
 621        if ((flags & I2400M_BRI_NO_REBOOT) == 0)
 622                i2400m->bus_reset(i2400m, I2400M_RT_WARM);
 623        result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
 624                               I2400M_BM_CMD_RAW);
 625        flags &= ~I2400M_BRI_NO_REBOOT;
 626        switch (result) {
 627        case -ERESTARTSYS:
 628                d_printf(4, dev, "device reboot: got reboot barker\n");
 629                break;
 630        case -EISCONN:  /* we don't know how it got here...but we follow it */
 631                d_printf(4, dev, "device reboot: got ack barker - whatever\n");
 632                goto do_reboot;
 633        case -ETIMEDOUT:        /* device has timed out, we might be in boot
 634                                 * mode already and expecting an ack, let's try
 635                                 * that */
 636                dev_info(dev, "warm reset timed out, trying an ack\n");
 637                goto do_reboot_ack;
 638        case -EPROTO:
 639        case -ESHUTDOWN:        /* dev is gone */
 640        case -EINTR:            /* user cancelled */
 641                goto error_dev_gone;
 642        default:
 643                dev_err(dev, "device reboot: error %d while waiting "
 644                        "for reboot barker - rebooting\n", result);
 645                goto do_reboot;
 646        }
 647        /* At this point we ack back with 4 REBOOT barkers and expect
 648         * 4 ACK barkers. This is ugly, as we send a raw command --
 649         * hence the cast. _bm_cmd() will catch the reboot ack
 650         * notification and report it as -EISCONN. */
 651do_reboot_ack:
 652        d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
 653        if (i2400m->sboot == 0)
 654                memcpy(cmd, i2400m_NBOOT_BARKER,
 655                       sizeof(i2400m_NBOOT_BARKER));
 656        else
 657                memcpy(cmd, i2400m_SBOOT_BARKER,
 658                       sizeof(i2400m_SBOOT_BARKER));
 659        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 660                               &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 661        switch (result) {
 662        case -ERESTARTSYS:
 663                d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
 664                if (--count < 0)
 665                        goto error_timeout;
 666                goto do_reboot_ack;
 667        case -EISCONN:
 668                d_printf(4, dev, "reboot ack: got ack barker - good\n");
 669                break;
 670        case -ETIMEDOUT:        /* no response, maybe it is the other type? */
 671                if (ack_timeout_cnt-- >= 0) {
 672                        d_printf(4, dev, "reboot ack timedout: "
 673                                 "trying the other type?\n");
 674                        i2400m->sboot = !i2400m->sboot;
 675                        goto do_reboot_ack;
 676                } else {
 677                        dev_err(dev, "reboot ack timedout too long: "
 678                                "trying reboot\n");
 679                        goto do_reboot;
 680                }
 681                break;
 682        case -EPROTO:
 683        case -ESHUTDOWN:        /* dev is gone */
 684                goto error_dev_gone;
 685        default:
 686                dev_err(dev, "device reboot ack: error %d while waiting for "
 687                        "reboot ack barker - rebooting\n", result);
 688                goto do_reboot;
 689        }
 690        d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
 691        result = 0;
 692exit_timeout:
 693error_dev_gone:
 694        d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
 695                i2400m, flags, result);
 696        return result;
 697
 698error_timeout:
 699        dev_err(dev, "Timed out waiting for reboot ack\n");
 700        result = -ETIMEDOUT;
 701        goto exit_timeout;
 702}
 703
 704
 705/*
 706 * Read the MAC addr
 707 *
 708 * The position this function reads is fixed in device memory and
 709 * always available, even without firmware.
 710 *
 711 * Note we specify we want to read only six bytes, but provide space
 712 * for 16, as we always get it rounded up.
 713 */
 714int i2400m_read_mac_addr(struct i2400m *i2400m)
 715{
 716        int result;
 717        struct device *dev = i2400m_dev(i2400m);
 718        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
 719        struct i2400m_bootrom_header *cmd;
 720        struct {
 721                struct i2400m_bootrom_header ack;
 722                u8 ack_pl[16];
 723        } __attribute__((packed)) ack_buf;
 724
 725        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
 726        cmd = i2400m->bm_cmd_buf;
 727        cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
 728        cmd->target_addr = cpu_to_le32(0x00203fe8);
 729        cmd->data_size = cpu_to_le32(6);
 730        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 731                               &ack_buf.ack, sizeof(ack_buf), 0);
 732        if (result < 0) {
 733                dev_err(dev, "BM: read mac addr failed: %d\n", result);
 734                goto error_read_mac;
 735        }
 736        d_printf(2, dev,
 737                 "mac addr is %02x:%02x:%02x:%02x:%02x:%02x\n",
 738                 ack_buf.ack_pl[0], ack_buf.ack_pl[1],
 739                 ack_buf.ack_pl[2], ack_buf.ack_pl[3],
 740                 ack_buf.ack_pl[4], ack_buf.ack_pl[5]);
 741        if (i2400m->bus_bm_mac_addr_impaired == 1) {
 742                ack_buf.ack_pl[0] = 0x00;
 743                ack_buf.ack_pl[1] = 0x16;
 744                ack_buf.ack_pl[2] = 0xd3;
 745                get_random_bytes(&ack_buf.ack_pl[3], 3);
 746                dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
 747                        "mac addr is %02x:%02x:%02x:%02x:%02x:%02x\n",
 748                        ack_buf.ack_pl[0], ack_buf.ack_pl[1],
 749                        ack_buf.ack_pl[2], ack_buf.ack_pl[3],
 750                        ack_buf.ack_pl[4], ack_buf.ack_pl[5]);
 751                result = 0;
 752        }
 753        net_dev->addr_len = ETH_ALEN;
 754        memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
 755        memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
 756error_read_mac:
 757        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
 758        return result;
 759}
 760
 761
 762/*
 763 * Initialize a non signed boot
 764 *
 765 * This implies sending some magic values to the device's memory. Note
 766 * we convert the values to little endian in the same array
 767 * declaration.
 768 */
 769static
 770int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
 771{
 772        unsigned i = 0;
 773        int ret = 0;
 774        struct device *dev = i2400m_dev(i2400m);
 775        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
 776        if (i2400m->bus_bm_pokes_table) {
 777                while (i2400m->bus_bm_pokes_table[i].address) {
 778                        ret = i2400m_download_chunk(
 779                                i2400m,
 780                                &i2400m->bus_bm_pokes_table[i].data,
 781                                sizeof(i2400m->bus_bm_pokes_table[i].data),
 782                                i2400m->bus_bm_pokes_table[i].address, 1, 1);
 783                        if (ret < 0)
 784                                break;
 785                        i++;
 786                }
 787        }
 788        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
 789        return ret;
 790}
 791
 792
 793/*
 794 * Initialize the signed boot process
 795 *
 796 * @i2400m: device descriptor
 797 *
 798 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
 799 *     memory (it has gone through basic validation).
 800 *
 801 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
 802 *     rebooted.
 803 *
 804 * This writes the firmware BCF header to the device using the
 805 * HASH_PAYLOAD_ONLY command.
 806 */
 807static
 808int i2400m_dnload_init_signed(struct i2400m *i2400m,
 809                              const struct i2400m_bcf_hdr *bcf_hdr)
 810{
 811        int ret;
 812        struct device *dev = i2400m_dev(i2400m);
 813        struct {
 814                struct i2400m_bootrom_header cmd;
 815                struct i2400m_bcf_hdr cmd_pl;
 816        } __attribute__((packed)) *cmd_buf;
 817        struct i2400m_bootrom_header ack;
 818
 819        d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
 820        cmd_buf = i2400m->bm_cmd_buf;
 821        cmd_buf->cmd.command =
 822                i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
 823        cmd_buf->cmd.target_addr = 0;
 824        cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
 825        memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
 826        ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
 827                            &ack, sizeof(ack), 0);
 828        if (ret >= 0)
 829                ret = 0;
 830        d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
 831        return ret;
 832}
 833
 834
 835/*
 836 * Initialize the firmware download at the device size
 837 *
 838 * Multiplex to the one that matters based on the device's mode
 839 * (signed or non-signed).
 840 */
 841static
 842int i2400m_dnload_init(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf)
 843{
 844        int result;
 845        struct device *dev = i2400m_dev(i2400m);
 846        u32 module_id = le32_to_cpu(bcf->module_id);
 847
 848        if (i2400m->sboot == 0
 849            && (module_id & I2400M_BCF_MOD_ID_POKES) == 0) {
 850                /* non-signed boot process without pokes */
 851                result = i2400m_dnload_init_nonsigned(i2400m);
 852                if (result == -ERESTARTSYS)
 853                        return result;
 854                if (result < 0)
 855                        dev_err(dev, "fw %s: non-signed download "
 856                                "initialization failed: %d\n",
 857                                i2400m->fw_name, result);
 858        } else if (i2400m->sboot == 0
 859                 && (module_id & I2400M_BCF_MOD_ID_POKES)) {
 860                /* non-signed boot process with pokes, nothing to do */
 861                result = 0;
 862        } else {                 /* signed boot process */
 863                result = i2400m_dnload_init_signed(i2400m, bcf);
 864                if (result == -ERESTARTSYS)
 865                        return result;
 866                if (result < 0)
 867                        dev_err(dev, "fw %s: signed boot download "
 868                                "initialization failed: %d\n",
 869                                i2400m->fw_name, result);
 870        }
 871        return result;
 872}
 873
 874
 875/*
 876 * Run quick consistency tests on the firmware file
 877 *
 878 * Check for the firmware being made for the i2400m device,
 879 * etc...These checks are mostly informative, as the device will make
 880 * them too; but the driver's response is more informative on what
 881 * went wrong.
 882 */
 883static
 884int i2400m_fw_check(struct i2400m *i2400m,
 885                    const struct i2400m_bcf_hdr *bcf,
 886                    size_t bcf_size)
 887{
 888        int result;
 889        struct device *dev = i2400m_dev(i2400m);
 890        unsigned module_type, header_len, major_version, minor_version,
 891                module_id, module_vendor, date, size;
 892
 893        /* Check hard errors */
 894        result = -EINVAL;
 895        if (bcf_size < sizeof(*bcf)) {  /* big enough header? */
 896                dev_err(dev, "firmware %s too short: "
 897                        "%zu B vs %zu (at least) expected\n",
 898                        i2400m->fw_name, bcf_size, sizeof(*bcf));
 899                goto error;
 900        }
 901
 902        module_type = bcf->module_type;
 903        header_len = sizeof(u32) * le32_to_cpu(bcf->header_len);
 904        major_version = le32_to_cpu(bcf->header_version) & 0xffff0000 >> 16;
 905        minor_version = le32_to_cpu(bcf->header_version) & 0x0000ffff;
 906        module_id = le32_to_cpu(bcf->module_id);
 907        module_vendor = le32_to_cpu(bcf->module_vendor);
 908        date = le32_to_cpu(bcf->date);
 909        size = sizeof(u32) * le32_to_cpu(bcf->size);
 910
 911        if (bcf_size != size) {         /* annoyingly paranoid */
 912                dev_err(dev, "firmware %s: bad size, got "
 913                        "%zu B vs %u expected\n",
 914                        i2400m->fw_name, bcf_size, size);
 915                goto error;
 916        }
 917
 918        d_printf(2, dev, "type 0x%x id 0x%x vendor 0x%x; header v%u.%u (%zu B) "
 919                 "date %08x (%zu B)\n",
 920                 module_type, module_id, module_vendor,
 921                 major_version, minor_version, (size_t) header_len,
 922                 date, (size_t) size);
 923
 924        if (module_type != 6) {         /* built for the right hardware? */
 925                dev_err(dev, "bad fw %s: unexpected module type 0x%x; "
 926                        "aborting\n", i2400m->fw_name, module_type);
 927                goto error;
 928        }
 929
 930        /* Check soft-er errors */
 931        result = 0;
 932        if (module_vendor != 0x8086)
 933                dev_err(dev, "bad fw %s? unexpected vendor 0x%04x\n",
 934                        i2400m->fw_name, module_vendor);
 935        if (date < 0x20080300)
 936                dev_err(dev, "bad fw %s? build date too old %08x\n",
 937                        i2400m->fw_name, date);
 938error:
 939        return result;
 940}
 941
 942
 943/*
 944 * Download the firmware to the device
 945 *
 946 * @i2400m: device descriptor
 947 * @bcf: pointer to loaded (and minimally verified for consistency)
 948 *    firmware
 949 * @bcf_size: size of the @bcf buffer (header plus payloads)
 950 *
 951 * The process for doing this is described in this file's header.
 952 *
 953 * Note we only reinitialize boot-mode if the flags say so. Some hw
 954 * iterations need it, some don't. In any case, if we loop, we always
 955 * need to reinitialize the boot room, hence the flags modification.
 956 */
 957static
 958int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
 959                     size_t bcf_size, enum i2400m_bri flags)
 960{
 961        int ret = 0;
 962        struct device *dev = i2400m_dev(i2400m);
 963        int count = i2400m->bus_bm_retries;
 964
 965        d_fnstart(5, dev, "(i2400m %p bcf %p size %zu)\n",
 966                  i2400m, bcf, bcf_size);
 967        i2400m->boot_mode = 1;
 968        wmb();          /* Make sure other readers see it */
 969hw_reboot:
 970        if (count-- == 0) {
 971                ret = -ERESTARTSYS;
 972                dev_err(dev, "device rebooted too many times, aborting\n");
 973                goto error_too_many_reboots;
 974        }
 975        if (flags & I2400M_BRI_MAC_REINIT) {
 976                ret = i2400m_bootrom_init(i2400m, flags);
 977                if (ret < 0) {
 978                        dev_err(dev, "bootrom init failed: %d\n", ret);
 979                        goto error_bootrom_init;
 980                }
 981        }
 982        flags |= I2400M_BRI_MAC_REINIT;
 983
 984        /*
 985         * Initialize the download, push the bytes to the device and
 986         * then jump to the new firmware. Note @ret is passed with the
 987         * offset of the jump instruction to _dnload_finalize()
 988         */
 989        ret = i2400m_dnload_init(i2400m, bcf);  /* Init device's dnload */
 990        if (ret == -ERESTARTSYS)
 991                goto error_dev_rebooted;
 992        if (ret < 0)
 993                goto error_dnload_init;
 994
 995        ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
 996        if (ret == -ERESTARTSYS)
 997                goto error_dev_rebooted;
 998        if (ret < 0) {
 999                dev_err(dev, "fw %s: download failed: %d\n",
1000                        i2400m->fw_name, ret);
1001                goto error_dnload_bcf;
1002        }
1003
1004        ret = i2400m_dnload_finalize(i2400m, bcf, ret);
1005        if (ret == -ERESTARTSYS)
1006                goto error_dev_rebooted;
1007        if (ret < 0) {
1008                dev_err(dev, "fw %s: "
1009                        "download finalization failed: %d\n",
1010                        i2400m->fw_name, ret);
1011                goto error_dnload_finalize;
1012        }
1013
1014        d_printf(2, dev, "fw %s successfully uploaded\n",
1015                 i2400m->fw_name);
1016        i2400m->boot_mode = 0;
1017        wmb();          /* Make sure i2400m_msg_to_dev() sees boot_mode */
1018error_dnload_finalize:
1019error_dnload_bcf:
1020error_dnload_init:
1021error_bootrom_init:
1022error_too_many_reboots:
1023        d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1024                i2400m, bcf, bcf_size, ret);
1025        return ret;
1026
1027error_dev_rebooted:
1028        dev_err(dev, "device rebooted, %d tries left\n", count);
1029        /* we got the notification already, no need to wait for it again */
1030        flags |= I2400M_BRI_SOFT;
1031        goto hw_reboot;
1032}
1033
1034
1035/**
1036 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1037 *
1038 * @i2400m: device descriptor
1039 *
1040 * Returns: >= 0 if ok, < 0 errno code on error.
1041 *
1042 * This sets up the firmware upload environment, loads the firmware
1043 * file from disk, verifies and then calls the firmware upload process
1044 * per se.
1045 *
1046 * Can be called either from probe, or after a warm reset.  Can not be
1047 * called from within an interrupt.  All the flow in this code is
1048 * single-threade; all I/Os are synchronous.
1049 */
1050int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1051{
1052        int ret = 0, itr = 0;
1053        struct device *dev = i2400m_dev(i2400m);
1054        const struct firmware *fw;
1055        const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
1056        const char *fw_name;
1057
1058        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1059
1060        /* Load firmware files to memory. */
1061        itr = 0;
1062        while(1) {
1063                fw_name = i2400m->bus_fw_names[itr];
1064                if (fw_name == NULL) {
1065                        dev_err(dev, "Could not find a usable firmware image\n");
1066                        ret = -ENOENT;
1067                        goto error_no_fw;
1068                }
1069                ret = request_firmware(&fw, fw_name, dev);
1070                if (ret == 0)
1071                        break;          /* got it */
1072                if (ret < 0)
1073                        dev_err(dev, "fw %s: cannot load file: %d\n",
1074                                fw_name, ret);
1075                itr++;
1076        }
1077
1078        bcf = (void *) fw->data;
1079        i2400m->fw_name = fw_name;
1080        ret = i2400m_fw_check(i2400m, bcf, fw->size);
1081        if (ret < 0)
1082                goto error_fw_bad;
1083        ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1084error_fw_bad:
1085        release_firmware(fw);
1086error_no_fw:
1087        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1088        return ret;
1089}
1090EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1091