linux/drivers/net/wireless/ath/ath5k/eeprom.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   5 *
   6 * Permission to use, copy, modify, and distribute this software for any
   7 * purpose with or without fee is hereby granted, provided that the above
   8 * copyright notice and this permission notice appear in all copies.
   9 *
  10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17 *
  18 */
  19
  20/*************************************\
  21* EEPROM access functions and helpers *
  22\*************************************/
  23
  24#include "ath5k.h"
  25#include "reg.h"
  26#include "debug.h"
  27#include "base.h"
  28
  29/*
  30 * Read from eeprom
  31 */
  32static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  33{
  34        u32 status, timeout;
  35
  36        ATH5K_TRACE(ah->ah_sc);
  37        /*
  38         * Initialize EEPROM access
  39         */
  40        if (ah->ah_version == AR5K_AR5210) {
  41                AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  42                (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  43        } else {
  44                ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  45                AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  46                                AR5K_EEPROM_CMD_READ);
  47        }
  48
  49        for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  50                status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  51                if (status & AR5K_EEPROM_STAT_RDDONE) {
  52                        if (status & AR5K_EEPROM_STAT_RDERR)
  53                                return -EIO;
  54                        *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  55                                        0xffff);
  56                        return 0;
  57                }
  58                udelay(15);
  59        }
  60
  61        return -ETIMEDOUT;
  62}
  63
  64/*
  65 * Translate binary channel representation in EEPROM to frequency
  66 */
  67static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  68                                 unsigned int mode)
  69{
  70        u16 val;
  71
  72        if (bin == AR5K_EEPROM_CHANNEL_DIS)
  73                return bin;
  74
  75        if (mode == AR5K_EEPROM_MODE_11A) {
  76                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  77                        val = (5 * bin) + 4800;
  78                else
  79                        val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  80                                (bin * 10) + 5100;
  81        } else {
  82                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  83                        val = bin + 2300;
  84                else
  85                        val = bin + 2400;
  86        }
  87
  88        return val;
  89}
  90
  91/*
  92 * Initialize eeprom & capabilities structs
  93 */
  94static int
  95ath5k_eeprom_init_header(struct ath5k_hw *ah)
  96{
  97        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  98        int ret;
  99        u16 val;
 100
 101        /*
 102         * Read values from EEPROM and store them in the capability structure
 103         */
 104        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
 105        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
 106        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
 107        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
 108        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
 109
 110        /* Return if we have an old EEPROM */
 111        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
 112                return 0;
 113
 114#ifdef notyet
 115        /*
 116         * Validate the checksum of the EEPROM date. There are some
 117         * devices with invalid EEPROMs.
 118         */
 119        for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
 120                AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
 121                cksum ^= val;
 122        }
 123        if (cksum != AR5K_EEPROM_INFO_CKSUM) {
 124                ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
 125                return -EIO;
 126        }
 127#endif
 128
 129        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
 130            ee_ant_gain);
 131
 132        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
 133                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
 134                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
 135
 136                /* XXX: Don't know which versions include these two */
 137                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
 138
 139                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
 140                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
 141
 142                if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
 143                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
 144                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
 145                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
 146                }
 147        }
 148
 149        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
 150                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
 151                ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
 152                ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
 153
 154                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
 155                ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
 156                ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
 157        }
 158
 159        AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
 160
 161        if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
 162                ee->ee_is_hb63 = true;
 163        else
 164                ee->ee_is_hb63 = false;
 165
 166        AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
 167        ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
 168        ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
 169
 170        /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
 171         * and enable serdes programming if needed.
 172         *
 173         * XXX: Serdes values seem to be fixed so
 174         * no need to read them here, we write them
 175         * during ath5k_hw_attach */
 176        AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
 177        ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
 178                                                        true : false;
 179
 180        return 0;
 181}
 182
 183
 184/*
 185 * Read antenna infos from eeprom
 186 */
 187static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
 188                unsigned int mode)
 189{
 190        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 191        u32 o = *offset;
 192        u16 val;
 193        int ret, i = 0;
 194
 195        AR5K_EEPROM_READ(o++, val);
 196        ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
 197        ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
 198        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 199
 200        AR5K_EEPROM_READ(o++, val);
 201        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 202        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 203        ee->ee_ant_control[mode][i++]   = val & 0x3f;
 204
 205        AR5K_EEPROM_READ(o++, val);
 206        ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
 207        ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
 208        ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
 209
 210        AR5K_EEPROM_READ(o++, val);
 211        ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
 212        ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
 213        ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
 214        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 215
 216        AR5K_EEPROM_READ(o++, val);
 217        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 218        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 219        ee->ee_ant_control[mode][i++]   = val & 0x3f;
 220
 221        /* Get antenna switch tables */
 222        ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
 223            (ee->ee_ant_control[mode][0] << 4);
 224        ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
 225             ee->ee_ant_control[mode][1]        |
 226            (ee->ee_ant_control[mode][2] << 6)  |
 227            (ee->ee_ant_control[mode][3] << 12) |
 228            (ee->ee_ant_control[mode][4] << 18) |
 229            (ee->ee_ant_control[mode][5] << 24);
 230        ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
 231             ee->ee_ant_control[mode][6]        |
 232            (ee->ee_ant_control[mode][7] << 6)  |
 233            (ee->ee_ant_control[mode][8] << 12) |
 234            (ee->ee_ant_control[mode][9] << 18) |
 235            (ee->ee_ant_control[mode][10] << 24);
 236
 237        /* return new offset */
 238        *offset = o;
 239
 240        return 0;
 241}
 242
 243/*
 244 * Read supported modes and some mode-specific calibration data
 245 * from eeprom
 246 */
 247static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
 248                unsigned int mode)
 249{
 250        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 251        u32 o = *offset;
 252        u16 val;
 253        int ret;
 254
 255        ee->ee_n_piers[mode] = 0;
 256        AR5K_EEPROM_READ(o++, val);
 257        ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
 258        switch(mode) {
 259        case AR5K_EEPROM_MODE_11A:
 260                ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
 261                ee->ee_db[mode][3]      = (val >> 2) & 0x7;
 262                ee->ee_ob[mode][2]      = (val << 1) & 0x7;
 263
 264                AR5K_EEPROM_READ(o++, val);
 265                ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
 266                ee->ee_db[mode][2]      = (val >> 12) & 0x7;
 267                ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
 268                ee->ee_db[mode][1]      = (val >> 6) & 0x7;
 269                ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
 270                ee->ee_db[mode][0]      = val & 0x7;
 271                break;
 272        case AR5K_EEPROM_MODE_11G:
 273        case AR5K_EEPROM_MODE_11B:
 274                ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
 275                ee->ee_db[mode][1]      = val & 0x7;
 276                break;
 277        }
 278
 279        AR5K_EEPROM_READ(o++, val);
 280        ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
 281        ee->ee_thr_62[mode]             = val & 0xff;
 282
 283        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 284                ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
 285
 286        AR5K_EEPROM_READ(o++, val);
 287        ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
 288        ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
 289
 290        AR5K_EEPROM_READ(o++, val);
 291        ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
 292
 293        if ((val & 0xff) & 0x80)
 294                ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
 295        else
 296                ee->ee_noise_floor_thr[mode] = val & 0xff;
 297
 298        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 299                ee->ee_noise_floor_thr[mode] =
 300                    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
 301
 302        AR5K_EEPROM_READ(o++, val);
 303        ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
 304        ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
 305        ee->ee_xpd[mode]                = val & 0x1;
 306
 307        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
 308                ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
 309
 310        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
 311                AR5K_EEPROM_READ(o++, val);
 312                ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
 313
 314                if (mode == AR5K_EEPROM_MODE_11A)
 315                        ee->ee_xr_power[mode] = val & 0x3f;
 316                else {
 317                        ee->ee_ob[mode][0] = val & 0x7;
 318                        ee->ee_db[mode][0] = (val >> 3) & 0x7;
 319                }
 320        }
 321
 322        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
 323                ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
 324                ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
 325        } else {
 326                ee->ee_i_gain[mode] = (val >> 13) & 0x7;
 327
 328                AR5K_EEPROM_READ(o++, val);
 329                ee->ee_i_gain[mode] |= (val << 3) & 0x38;
 330
 331                if (mode == AR5K_EEPROM_MODE_11G) {
 332                        ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
 333                        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
 334                                ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
 335                }
 336        }
 337
 338        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 339                        mode == AR5K_EEPROM_MODE_11A) {
 340                ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 341                ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 342        }
 343
 344        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
 345                goto done;
 346
 347        /* Note: >= v5 have bg freq piers on another location
 348         * so these freq piers are ignored for >= v5 (should be 0xff
 349         * anyway) */
 350        switch(mode) {
 351        case AR5K_EEPROM_MODE_11A:
 352                if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
 353                        break;
 354
 355                AR5K_EEPROM_READ(o++, val);
 356                ee->ee_margin_tx_rx[mode] = val & 0x3f;
 357                break;
 358        case AR5K_EEPROM_MODE_11B:
 359                AR5K_EEPROM_READ(o++, val);
 360
 361                ee->ee_pwr_cal_b[0].freq =
 362                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 363                if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 364                        ee->ee_n_piers[mode]++;
 365
 366                ee->ee_pwr_cal_b[1].freq =
 367                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 368                if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 369                        ee->ee_n_piers[mode]++;
 370
 371                AR5K_EEPROM_READ(o++, val);
 372                ee->ee_pwr_cal_b[2].freq =
 373                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 374                if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 375                        ee->ee_n_piers[mode]++;
 376
 377                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 378                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 379                break;
 380        case AR5K_EEPROM_MODE_11G:
 381                AR5K_EEPROM_READ(o++, val);
 382
 383                ee->ee_pwr_cal_g[0].freq =
 384                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 385                if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 386                        ee->ee_n_piers[mode]++;
 387
 388                ee->ee_pwr_cal_g[1].freq =
 389                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 390                if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 391                        ee->ee_n_piers[mode]++;
 392
 393                AR5K_EEPROM_READ(o++, val);
 394                ee->ee_turbo_max_power[mode] = val & 0x7f;
 395                ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
 396
 397                AR5K_EEPROM_READ(o++, val);
 398                ee->ee_pwr_cal_g[2].freq =
 399                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 400                if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 401                        ee->ee_n_piers[mode]++;
 402
 403                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 404                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 405
 406                AR5K_EEPROM_READ(o++, val);
 407                ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 408                ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 409
 410                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
 411                        AR5K_EEPROM_READ(o++, val);
 412                        ee->ee_cck_ofdm_gain_delta = val & 0xff;
 413                }
 414                break;
 415        }
 416
 417        /*
 418         * Read turbo mode information on newer EEPROM versions
 419         */
 420        if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
 421                goto done;
 422
 423        switch (mode){
 424        case AR5K_EEPROM_MODE_11A:
 425                ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
 426
 427                ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
 428                AR5K_EEPROM_READ(o++, val);
 429                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
 430                ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
 431
 432                ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
 433                AR5K_EEPROM_READ(o++, val);
 434                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
 435                ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
 436
 437                if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
 438                        ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
 439                break;
 440        case AR5K_EEPROM_MODE_11G:
 441                ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
 442
 443                ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
 444                AR5K_EEPROM_READ(o++, val);
 445                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
 446                ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
 447
 448                ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
 449                AR5K_EEPROM_READ(o++, val);
 450                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
 451                ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
 452                break;
 453        }
 454
 455done:
 456        /* return new offset */
 457        *offset = o;
 458
 459        return 0;
 460}
 461
 462/* Read mode-specific data (except power calibration data) */
 463static int
 464ath5k_eeprom_init_modes(struct ath5k_hw *ah)
 465{
 466        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 467        u32 mode_offset[3];
 468        unsigned int mode;
 469        u32 offset;
 470        int ret;
 471
 472        /*
 473         * Get values for all modes
 474         */
 475        mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
 476        mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
 477        mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
 478
 479        ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
 480                AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
 481
 482        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
 483                offset = mode_offset[mode];
 484
 485                ret = ath5k_eeprom_read_ants(ah, &offset, mode);
 486                if (ret)
 487                        return ret;
 488
 489                ret = ath5k_eeprom_read_modes(ah, &offset, mode);
 490                if (ret)
 491                        return ret;
 492        }
 493
 494        /* override for older eeprom versions for better performance */
 495        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
 496                ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
 497                ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
 498                ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
 499        }
 500
 501        return 0;
 502}
 503
 504/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
 505 * frequency mask) */
 506static inline int
 507ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
 508                        struct ath5k_chan_pcal_info *pc, unsigned int mode)
 509{
 510        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 511        int o = *offset;
 512        int i = 0;
 513        u8 freq1, freq2;
 514        int ret;
 515        u16 val;
 516
 517        ee->ee_n_piers[mode] = 0;
 518        while(i < max) {
 519                AR5K_EEPROM_READ(o++, val);
 520
 521                freq1 = val & 0xff;
 522                if (!freq1)
 523                        break;
 524
 525                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 526                                freq1, mode);
 527                ee->ee_n_piers[mode]++;
 528
 529                freq2 = (val >> 8) & 0xff;
 530                if (!freq2)
 531                        break;
 532
 533                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 534                                freq2, mode);
 535                ee->ee_n_piers[mode]++;
 536        }
 537
 538        /* return new offset */
 539        *offset = o;
 540
 541        return 0;
 542}
 543
 544/* Read frequency piers for 802.11a */
 545static int
 546ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
 547{
 548        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 549        struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
 550        int i, ret;
 551        u16 val;
 552        u8 mask;
 553
 554        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
 555                ath5k_eeprom_read_freq_list(ah, &offset,
 556                        AR5K_EEPROM_N_5GHZ_CHAN, pcal,
 557                        AR5K_EEPROM_MODE_11A);
 558        } else {
 559                mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
 560
 561                AR5K_EEPROM_READ(offset++, val);
 562                pcal[0].freq  = (val >> 9) & mask;
 563                pcal[1].freq  = (val >> 2) & mask;
 564                pcal[2].freq  = (val << 5) & mask;
 565
 566                AR5K_EEPROM_READ(offset++, val);
 567                pcal[2].freq |= (val >> 11) & 0x1f;
 568                pcal[3].freq  = (val >> 4) & mask;
 569                pcal[4].freq  = (val << 3) & mask;
 570
 571                AR5K_EEPROM_READ(offset++, val);
 572                pcal[4].freq |= (val >> 13) & 0x7;
 573                pcal[5].freq  = (val >> 6) & mask;
 574                pcal[6].freq  = (val << 1) & mask;
 575
 576                AR5K_EEPROM_READ(offset++, val);
 577                pcal[6].freq |= (val >> 15) & 0x1;
 578                pcal[7].freq  = (val >> 8) & mask;
 579                pcal[8].freq  = (val >> 1) & mask;
 580                pcal[9].freq  = (val << 6) & mask;
 581
 582                AR5K_EEPROM_READ(offset++, val);
 583                pcal[9].freq |= (val >> 10) & 0x3f;
 584
 585                /* Fixed number of piers */
 586                ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
 587
 588                for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
 589                        pcal[i].freq = ath5k_eeprom_bin2freq(ee,
 590                                pcal[i].freq, AR5K_EEPROM_MODE_11A);
 591                }
 592        }
 593
 594        return 0;
 595}
 596
 597/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
 598static inline int
 599ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
 600{
 601        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 602        struct ath5k_chan_pcal_info *pcal;
 603
 604        switch(mode) {
 605        case AR5K_EEPROM_MODE_11B:
 606                pcal = ee->ee_pwr_cal_b;
 607                break;
 608        case AR5K_EEPROM_MODE_11G:
 609                pcal = ee->ee_pwr_cal_g;
 610                break;
 611        default:
 612                return -EINVAL;
 613        }
 614
 615        ath5k_eeprom_read_freq_list(ah, &offset,
 616                AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
 617                mode);
 618
 619        return 0;
 620}
 621
 622/*
 623 * Read power calibration for RF5111 chips
 624 *
 625 * For RF5111 we have an XPD -eXternal Power Detector- curve
 626 * for each calibrated channel. Each curve has 0,5dB Power steps
 627 * on x axis and PCDAC steps (offsets) on y axis and looks like an
 628 * exponential function. To recreate the curve we read 11 points
 629 * here and interpolate later.
 630 */
 631
 632/* Used to match PCDAC steps with power values on RF5111 chips
 633 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
 634 * steps that match with the power values we read from eeprom. On
 635 * older eeprom versions (< 3.2) these steps are equaly spaced at
 636 * 10% of the pcdac curve -until the curve reaches it's maximum-
 637 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
 638 * these 11 steps are spaced in a different way. This function returns
 639 * the pcdac steps based on eeprom version and curve min/max so that we
 640 * can have pcdac/pwr points.
 641 */
 642static inline void
 643ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
 644{
 645        static const u16 intercepts3[] =
 646                { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
 647        static const u16 intercepts3_2[] =
 648                { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
 649        const u16 *ip;
 650        int i;
 651
 652        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
 653                ip = intercepts3_2;
 654        else
 655                ip = intercepts3;
 656
 657        for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
 658                vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
 659}
 660
 661/* Convert RF5111 specific data to generic raw data
 662 * used by interpolation code */
 663static int
 664ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
 665                                struct ath5k_chan_pcal_info *chinfo)
 666{
 667        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 668        struct ath5k_chan_pcal_info_rf5111 *pcinfo;
 669        struct ath5k_pdgain_info *pd;
 670        u8 pier, point, idx;
 671        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 672
 673        /* Fill raw data for each calibration pier */
 674        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 675
 676                pcinfo = &chinfo[pier].rf5111_info;
 677
 678                /* Allocate pd_curves for this cal pier */
 679                chinfo[pier].pd_curves =
 680                        kcalloc(AR5K_EEPROM_N_PD_CURVES,
 681                                sizeof(struct ath5k_pdgain_info),
 682                                GFP_KERNEL);
 683
 684                if (!chinfo[pier].pd_curves)
 685                        return -ENOMEM;
 686
 687                /* Only one curve for RF5111
 688                 * find out which one and place
 689                 * in in pd_curves.
 690                 * Note: ee_x_gain is reversed here */
 691                for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
 692
 693                        if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
 694                                pdgain_idx[0] = idx;
 695                                break;
 696                        }
 697                }
 698
 699                ee->ee_pd_gains[mode] = 1;
 700
 701                pd = &chinfo[pier].pd_curves[idx];
 702
 703                pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
 704
 705                /* Allocate pd points for this curve */
 706                pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 707                                        sizeof(u8), GFP_KERNEL);
 708                if (!pd->pd_step)
 709                        return -ENOMEM;
 710
 711                pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 712                                        sizeof(s16), GFP_KERNEL);
 713                if (!pd->pd_pwr)
 714                        return -ENOMEM;
 715
 716                /* Fill raw dataset
 717                 * (convert power to 0.25dB units
 718                 * for RF5112 combatibility) */
 719                for (point = 0; point < pd->pd_points; point++) {
 720
 721                        /* Absolute values */
 722                        pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
 723
 724                        /* Already sorted */
 725                        pd->pd_step[point] = pcinfo->pcdac[point];
 726                }
 727
 728                /* Set min/max pwr */
 729                chinfo[pier].min_pwr = pd->pd_pwr[0];
 730                chinfo[pier].max_pwr = pd->pd_pwr[10];
 731
 732        }
 733
 734        return 0;
 735}
 736
 737/* Parse EEPROM data */
 738static int
 739ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
 740{
 741        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 742        struct ath5k_chan_pcal_info *pcal;
 743        int offset, ret;
 744        int i;
 745        u16 val;
 746
 747        offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 748        switch(mode) {
 749        case AR5K_EEPROM_MODE_11A:
 750                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 751                        return 0;
 752
 753                ret = ath5k_eeprom_init_11a_pcal_freq(ah,
 754                        offset + AR5K_EEPROM_GROUP1_OFFSET);
 755                if (ret < 0)
 756                        return ret;
 757
 758                offset += AR5K_EEPROM_GROUP2_OFFSET;
 759                pcal = ee->ee_pwr_cal_a;
 760                break;
 761        case AR5K_EEPROM_MODE_11B:
 762                if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
 763                    !AR5K_EEPROM_HDR_11G(ee->ee_header))
 764                        return 0;
 765
 766                pcal = ee->ee_pwr_cal_b;
 767                offset += AR5K_EEPROM_GROUP3_OFFSET;
 768
 769                /* fixed piers */
 770                pcal[0].freq = 2412;
 771                pcal[1].freq = 2447;
 772                pcal[2].freq = 2484;
 773                ee->ee_n_piers[mode] = 3;
 774                break;
 775        case AR5K_EEPROM_MODE_11G:
 776                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 777                        return 0;
 778
 779                pcal = ee->ee_pwr_cal_g;
 780                offset += AR5K_EEPROM_GROUP4_OFFSET;
 781
 782                /* fixed piers */
 783                pcal[0].freq = 2312;
 784                pcal[1].freq = 2412;
 785                pcal[2].freq = 2484;
 786                ee->ee_n_piers[mode] = 3;
 787                break;
 788        default:
 789                return -EINVAL;
 790        }
 791
 792        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 793                struct ath5k_chan_pcal_info_rf5111 *cdata =
 794                        &pcal[i].rf5111_info;
 795
 796                AR5K_EEPROM_READ(offset++, val);
 797                cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
 798                cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
 799                cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
 800
 801                AR5K_EEPROM_READ(offset++, val);
 802                cdata->pwr[0] |= ((val >> 14) & 0x3);
 803                cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 804                cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 805                cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
 806
 807                AR5K_EEPROM_READ(offset++, val);
 808                cdata->pwr[3] |= ((val >> 12) & 0xf);
 809                cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
 810                cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
 811
 812                AR5K_EEPROM_READ(offset++, val);
 813                cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
 814                cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
 815                cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
 816
 817                AR5K_EEPROM_READ(offset++, val);
 818                cdata->pwr[8] |= ((val >> 14) & 0x3);
 819                cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 820                cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 821
 822                ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
 823                        cdata->pcdac_max, cdata->pcdac);
 824        }
 825
 826        return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
 827}
 828
 829
 830/*
 831 * Read power calibration for RF5112 chips
 832 *
 833 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 834 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
 835 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
 836 * power steps on x axis and PCDAC steps on y axis and looks like a
 837 * linear function. To recreate the curve and pass the power values
 838 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
 839 * and 3 points for xpd 3 (higher gain -> lower power) here and
 840 * interpolate later.
 841 *
 842 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
 843 */
 844
 845/* Convert RF5112 specific data to generic raw data
 846 * used by interpolation code */
 847static int
 848ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
 849                                struct ath5k_chan_pcal_info *chinfo)
 850{
 851        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 852        struct ath5k_chan_pcal_info_rf5112 *pcinfo;
 853        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 854        unsigned int pier, pdg, point;
 855
 856        /* Fill raw data for each calibration pier */
 857        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 858
 859                pcinfo = &chinfo[pier].rf5112_info;
 860
 861                /* Allocate pd_curves for this cal pier */
 862                chinfo[pier].pd_curves =
 863                                kcalloc(AR5K_EEPROM_N_PD_CURVES,
 864                                        sizeof(struct ath5k_pdgain_info),
 865                                        GFP_KERNEL);
 866
 867                if (!chinfo[pier].pd_curves)
 868                        return -ENOMEM;
 869
 870                /* Fill pd_curves */
 871                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 872
 873                        u8 idx = pdgain_idx[pdg];
 874                        struct ath5k_pdgain_info *pd =
 875                                        &chinfo[pier].pd_curves[idx];
 876
 877                        /* Lowest gain curve (max power) */
 878                        if (pdg == 0) {
 879                                /* One more point for better accuracy */
 880                                pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
 881
 882                                /* Allocate pd points for this curve */
 883                                pd->pd_step = kcalloc(pd->pd_points,
 884                                                sizeof(u8), GFP_KERNEL);
 885
 886                                if (!pd->pd_step)
 887                                        return -ENOMEM;
 888
 889                                pd->pd_pwr = kcalloc(pd->pd_points,
 890                                                sizeof(s16), GFP_KERNEL);
 891
 892                                if (!pd->pd_pwr)
 893                                        return -ENOMEM;
 894
 895
 896                                /* Fill raw dataset
 897                                 * (all power levels are in 0.25dB units) */
 898                                pd->pd_step[0] = pcinfo->pcdac_x0[0];
 899                                pd->pd_pwr[0] = pcinfo->pwr_x0[0];
 900
 901                                for (point = 1; point < pd->pd_points;
 902                                point++) {
 903                                        /* Absolute values */
 904                                        pd->pd_pwr[point] =
 905                                                pcinfo->pwr_x0[point];
 906
 907                                        /* Deltas */
 908                                        pd->pd_step[point] =
 909                                                pd->pd_step[point - 1] +
 910                                                pcinfo->pcdac_x0[point];
 911                                }
 912
 913                                /* Set min power for this frequency */
 914                                chinfo[pier].min_pwr = pd->pd_pwr[0];
 915
 916                        /* Highest gain curve (min power) */
 917                        } else if (pdg == 1) {
 918
 919                                pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
 920
 921                                /* Allocate pd points for this curve */
 922                                pd->pd_step = kcalloc(pd->pd_points,
 923                                                sizeof(u8), GFP_KERNEL);
 924
 925                                if (!pd->pd_step)
 926                                        return -ENOMEM;
 927
 928                                pd->pd_pwr = kcalloc(pd->pd_points,
 929                                                sizeof(s16), GFP_KERNEL);
 930
 931                                if (!pd->pd_pwr)
 932                                        return -ENOMEM;
 933
 934                                /* Fill raw dataset
 935                                 * (all power levels are in 0.25dB units) */
 936                                for (point = 0; point < pd->pd_points;
 937                                point++) {
 938                                        /* Absolute values */
 939                                        pd->pd_pwr[point] =
 940                                                pcinfo->pwr_x3[point];
 941
 942                                        /* Fixed points */
 943                                        pd->pd_step[point] =
 944                                                pcinfo->pcdac_x3[point];
 945                                }
 946
 947                                /* Since we have a higher gain curve
 948                                 * override min power */
 949                                chinfo[pier].min_pwr = pd->pd_pwr[0];
 950                        }
 951                }
 952        }
 953
 954        return 0;
 955}
 956
 957/* Parse EEPROM data */
 958static int
 959ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
 960{
 961        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 962        struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
 963        struct ath5k_chan_pcal_info *gen_chan_info;
 964        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 965        u32 offset;
 966        u8 i, c;
 967        u16 val;
 968        int ret;
 969        u8 pd_gains = 0;
 970
 971        /* Count how many curves we have and
 972         * identify them (which one of the 4
 973         * available curves we have on each count).
 974         * Curves are stored from lower (x0) to
 975         * higher (x3) gain */
 976        for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
 977                /* ee_x_gain[mode] is x gain mask */
 978                if ((ee->ee_x_gain[mode] >> i) & 0x1)
 979                        pdgain_idx[pd_gains++] = i;
 980        }
 981        ee->ee_pd_gains[mode] = pd_gains;
 982
 983        if (pd_gains == 0 || pd_gains > 2)
 984                return -EINVAL;
 985
 986        switch (mode) {
 987        case AR5K_EEPROM_MODE_11A:
 988                /*
 989                 * Read 5GHz EEPROM channels
 990                 */
 991                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 992                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
 993
 994                offset += AR5K_EEPROM_GROUP2_OFFSET;
 995                gen_chan_info = ee->ee_pwr_cal_a;
 996                break;
 997        case AR5K_EEPROM_MODE_11B:
 998                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 999                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1000                        offset += AR5K_EEPROM_GROUP3_OFFSET;
1001
1002                /* NB: frequency piers parsed during mode init */
1003                gen_chan_info = ee->ee_pwr_cal_b;
1004                break;
1005        case AR5K_EEPROM_MODE_11G:
1006                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1007                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1008                        offset += AR5K_EEPROM_GROUP4_OFFSET;
1009                else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1010                        offset += AR5K_EEPROM_GROUP2_OFFSET;
1011
1012                /* NB: frequency piers parsed during mode init */
1013                gen_chan_info = ee->ee_pwr_cal_g;
1014                break;
1015        default:
1016                return -EINVAL;
1017        }
1018
1019        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1020                chan_pcal_info = &gen_chan_info[i].rf5112_info;
1021
1022                /* Power values in quarter dB
1023                 * for the lower xpd gain curve
1024                 * (0 dBm -> higher output power) */
1025                for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1026                        AR5K_EEPROM_READ(offset++, val);
1027                        chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1028                        chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1029                }
1030
1031                /* PCDAC steps
1032                 * corresponding to the above power
1033                 * measurements */
1034                AR5K_EEPROM_READ(offset++, val);
1035                chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1036                chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1037                chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1038
1039                /* Power values in quarter dB
1040                 * for the higher xpd gain curve
1041                 * (18 dBm -> lower output power) */
1042                AR5K_EEPROM_READ(offset++, val);
1043                chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1044                chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1045
1046                AR5K_EEPROM_READ(offset++, val);
1047                chan_pcal_info->pwr_x3[2] = (val & 0xff);
1048
1049                /* PCDAC steps
1050                 * corresponding to the above power
1051                 * measurements (fixed) */
1052                chan_pcal_info->pcdac_x3[0] = 20;
1053                chan_pcal_info->pcdac_x3[1] = 35;
1054                chan_pcal_info->pcdac_x3[2] = 63;
1055
1056                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1057                        chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1058
1059                        /* Last xpd0 power level is also channel maximum */
1060                        gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1061                } else {
1062                        chan_pcal_info->pcdac_x0[0] = 1;
1063                        gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1064                }
1065
1066        }
1067
1068        return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1069}
1070
1071
1072/*
1073 * Read power calibration for RF2413 chips
1074 *
1075 * For RF2413 we have a Power to PDDAC table (Power Detector)
1076 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1077 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1078 * axis and looks like an exponential function like the RF5111 curve.
1079 *
1080 * To recreate the curves we read here the points and interpolate
1081 * later. Note that in most cases only 2 (higher and lower) curves are
1082 * used (like RF5112) but vendors have the oportunity to include all
1083 * 4 curves on eeprom. The final curve (higher power) has an extra
1084 * point for better accuracy like RF5112.
1085 */
1086
1087/* For RF2413 power calibration data doesn't start on a fixed location and
1088 * if a mode is not supported, it's section is missing -not zeroed-.
1089 * So we need to calculate the starting offset for each section by using
1090 * these two functions */
1091
1092/* Return the size of each section based on the mode and the number of pd
1093 * gains available (maximum 4). */
1094static inline unsigned int
1095ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1096{
1097        static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1098        unsigned int sz;
1099
1100        sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1101        sz *= ee->ee_n_piers[mode];
1102
1103        return sz;
1104}
1105
1106/* Return the starting offset for a section based on the modes supported
1107 * and each section's size. */
1108static unsigned int
1109ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1110{
1111        u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1112
1113        switch(mode) {
1114        case AR5K_EEPROM_MODE_11G:
1115                if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1116                        offset += ath5k_pdgains_size_2413(ee,
1117                                        AR5K_EEPROM_MODE_11B) +
1118                                        AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1119                /* fall through */
1120        case AR5K_EEPROM_MODE_11B:
1121                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1122                        offset += ath5k_pdgains_size_2413(ee,
1123                                        AR5K_EEPROM_MODE_11A) +
1124                                        AR5K_EEPROM_N_5GHZ_CHAN / 2;
1125                /* fall through */
1126        case AR5K_EEPROM_MODE_11A:
1127                break;
1128        default:
1129                break;
1130        }
1131
1132        return offset;
1133}
1134
1135/* Convert RF2413 specific data to generic raw data
1136 * used by interpolation code */
1137static int
1138ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1139                                struct ath5k_chan_pcal_info *chinfo)
1140{
1141        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1142        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1143        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1144        unsigned int pier, pdg, point;
1145
1146        /* Fill raw data for each calibration pier */
1147        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1148
1149                pcinfo = &chinfo[pier].rf2413_info;
1150
1151                /* Allocate pd_curves for this cal pier */
1152                chinfo[pier].pd_curves =
1153                                kcalloc(AR5K_EEPROM_N_PD_CURVES,
1154                                        sizeof(struct ath5k_pdgain_info),
1155                                        GFP_KERNEL);
1156
1157                if (!chinfo[pier].pd_curves)
1158                        return -ENOMEM;
1159
1160                /* Fill pd_curves */
1161                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1162
1163                        u8 idx = pdgain_idx[pdg];
1164                        struct ath5k_pdgain_info *pd =
1165                                        &chinfo[pier].pd_curves[idx];
1166
1167                        /* One more point for the highest power
1168                         * curve (lowest gain) */
1169                        if (pdg == ee->ee_pd_gains[mode] - 1)
1170                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1171                        else
1172                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1173
1174                        /* Allocate pd points for this curve */
1175                        pd->pd_step = kcalloc(pd->pd_points,
1176                                        sizeof(u8), GFP_KERNEL);
1177
1178                        if (!pd->pd_step)
1179                                return -ENOMEM;
1180
1181                        pd->pd_pwr = kcalloc(pd->pd_points,
1182                                        sizeof(s16), GFP_KERNEL);
1183
1184                        if (!pd->pd_pwr)
1185                                return -ENOMEM;
1186
1187                        /* Fill raw dataset
1188                         * convert all pwr levels to
1189                         * quarter dB for RF5112 combatibility */
1190                        pd->pd_step[0] = pcinfo->pddac_i[pdg];
1191                        pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1192
1193                        for (point = 1; point < pd->pd_points; point++) {
1194
1195                                pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1196                                        2 * pcinfo->pwr[pdg][point - 1];
1197
1198                                pd->pd_step[point] = pd->pd_step[point - 1] +
1199                                                pcinfo->pddac[pdg][point - 1];
1200
1201                        }
1202
1203                        /* Highest gain curve -> min power */
1204                        if (pdg == 0)
1205                                chinfo[pier].min_pwr = pd->pd_pwr[0];
1206
1207                        /* Lowest gain curve -> max power */
1208                        if (pdg == ee->ee_pd_gains[mode] - 1)
1209                                chinfo[pier].max_pwr =
1210                                        pd->pd_pwr[pd->pd_points - 1];
1211                }
1212        }
1213
1214        return 0;
1215}
1216
1217/* Parse EEPROM data */
1218static int
1219ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1220{
1221        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1222        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1223        struct ath5k_chan_pcal_info *chinfo;
1224        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1225        u32 offset;
1226        int idx, i, ret;
1227        u16 val;
1228        u8 pd_gains = 0;
1229
1230        /* Count how many curves we have and
1231         * identify them (which one of the 4
1232         * available curves we have on each count).
1233         * Curves are stored from higher to
1234         * lower gain so we go backwards */
1235        for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1236                /* ee_x_gain[mode] is x gain mask */
1237                if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1238                        pdgain_idx[pd_gains++] = idx;
1239
1240        }
1241        ee->ee_pd_gains[mode] = pd_gains;
1242
1243        if (pd_gains == 0)
1244                return -EINVAL;
1245
1246        offset = ath5k_cal_data_offset_2413(ee, mode);
1247        switch (mode) {
1248        case AR5K_EEPROM_MODE_11A:
1249                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1250                        return 0;
1251
1252                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1253                offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1254                chinfo = ee->ee_pwr_cal_a;
1255                break;
1256        case AR5K_EEPROM_MODE_11B:
1257                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1258                        return 0;
1259
1260                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1261                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1262                chinfo = ee->ee_pwr_cal_b;
1263                break;
1264        case AR5K_EEPROM_MODE_11G:
1265                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1266                        return 0;
1267
1268                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1269                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1270                chinfo = ee->ee_pwr_cal_g;
1271                break;
1272        default:
1273                return -EINVAL;
1274        }
1275
1276        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1277                pcinfo = &chinfo[i].rf2413_info;
1278
1279                /*
1280                 * Read pwr_i, pddac_i and the first
1281                 * 2 pd points (pwr, pddac)
1282                 */
1283                AR5K_EEPROM_READ(offset++, val);
1284                pcinfo->pwr_i[0] = val & 0x1f;
1285                pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1286                pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1287
1288                AR5K_EEPROM_READ(offset++, val);
1289                pcinfo->pddac[0][0] = val & 0x3f;
1290                pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1291                pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1292
1293                AR5K_EEPROM_READ(offset++, val);
1294                pcinfo->pwr[0][2] = val & 0xf;
1295                pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1296
1297                pcinfo->pwr[0][3] = 0;
1298                pcinfo->pddac[0][3] = 0;
1299
1300                if (pd_gains > 1) {
1301                        /*
1302                         * Pd gain 0 is not the last pd gain
1303                         * so it only has 2 pd points.
1304                         * Continue wih pd gain 1.
1305                         */
1306                        pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1307
1308                        pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1309                        AR5K_EEPROM_READ(offset++, val);
1310                        pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1311
1312                        pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1313                        pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1314
1315                        AR5K_EEPROM_READ(offset++, val);
1316                        pcinfo->pwr[1][1] = val & 0xf;
1317                        pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1318                        pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1319
1320                        pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1321                        AR5K_EEPROM_READ(offset++, val);
1322                        pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1323
1324                        pcinfo->pwr[1][3] = 0;
1325                        pcinfo->pddac[1][3] = 0;
1326                } else if (pd_gains == 1) {
1327                        /*
1328                         * Pd gain 0 is the last one so
1329                         * read the extra point.
1330                         */
1331                        pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1332
1333                        pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1334                        AR5K_EEPROM_READ(offset++, val);
1335                        pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1336                }
1337
1338                /*
1339                 * Proceed with the other pd_gains
1340                 * as above.
1341                 */
1342                if (pd_gains > 2) {
1343                        pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1344                        pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1345
1346                        AR5K_EEPROM_READ(offset++, val);
1347                        pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1348                        pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1349                        pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1350
1351                        pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1352                        AR5K_EEPROM_READ(offset++, val);
1353                        pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1354
1355                        pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1356                        pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1357
1358                        pcinfo->pwr[2][3] = 0;
1359                        pcinfo->pddac[2][3] = 0;
1360                } else if (pd_gains == 2) {
1361                        pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1362                        pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1363                }
1364
1365                if (pd_gains > 3) {
1366                        pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1367                        AR5K_EEPROM_READ(offset++, val);
1368                        pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1369
1370                        pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1371                        pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1372                        pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1373
1374                        AR5K_EEPROM_READ(offset++, val);
1375                        pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1376                        pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1377                        pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1378
1379                        pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1380                        AR5K_EEPROM_READ(offset++, val);
1381                        pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1382
1383                        pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1384                        pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1385
1386                        pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1387                        AR5K_EEPROM_READ(offset++, val);
1388                        pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1389                } else if (pd_gains == 3) {
1390                        pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1391                        AR5K_EEPROM_READ(offset++, val);
1392                        pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1393
1394                        pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1395                }
1396        }
1397
1398        return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1399}
1400
1401
1402/*
1403 * Read per rate target power (this is the maximum tx power
1404 * supported by the card). This info is used when setting
1405 * tx power, no matter the channel.
1406 *
1407 * This also works for v5 EEPROMs.
1408 */
1409static int
1410ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1411{
1412        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1413        struct ath5k_rate_pcal_info *rate_pcal_info;
1414        u8 *rate_target_pwr_num;
1415        u32 offset;
1416        u16 val;
1417        int ret, i;
1418
1419        offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1420        rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1421        switch (mode) {
1422        case AR5K_EEPROM_MODE_11A:
1423                offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1424                rate_pcal_info = ee->ee_rate_tpwr_a;
1425                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1426                break;
1427        case AR5K_EEPROM_MODE_11B:
1428                offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1429                rate_pcal_info = ee->ee_rate_tpwr_b;
1430                ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1431                break;
1432        case AR5K_EEPROM_MODE_11G:
1433                offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1434                rate_pcal_info = ee->ee_rate_tpwr_g;
1435                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1436                break;
1437        default:
1438                return -EINVAL;
1439        }
1440
1441        /* Different freq mask for older eeproms (<= v3.2) */
1442        if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1443                for (i = 0; i < (*rate_target_pwr_num); i++) {
1444                        AR5K_EEPROM_READ(offset++, val);
1445                        rate_pcal_info[i].freq =
1446                            ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1447
1448                        rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1449                        rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1450
1451                        AR5K_EEPROM_READ(offset++, val);
1452
1453                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1454                            val == 0) {
1455                                (*rate_target_pwr_num) = i;
1456                                break;
1457                        }
1458
1459                        rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1460                        rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1461                        rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1462                }
1463        } else {
1464                for (i = 0; i < (*rate_target_pwr_num); i++) {
1465                        AR5K_EEPROM_READ(offset++, val);
1466                        rate_pcal_info[i].freq =
1467                            ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1468
1469                        rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1470                        rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1471
1472                        AR5K_EEPROM_READ(offset++, val);
1473
1474                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1475                            val == 0) {
1476                                (*rate_target_pwr_num) = i;
1477                                break;
1478                        }
1479
1480                        rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1481                        rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1482                        rate_pcal_info[i].target_power_54 = (val & 0x3f);
1483                }
1484        }
1485
1486        return 0;
1487}
1488
1489/*
1490 * Read per channel calibration info from EEPROM
1491 *
1492 * This info is used to calibrate the baseband power table. Imagine
1493 * that for each channel there is a power curve that's hw specific
1494 * (depends on amplifier etc) and we try to "correct" this curve using
1495 * offests we pass on to phy chip (baseband -> before amplifier) so that
1496 * it can use accurate power values when setting tx power (takes amplifier's
1497 * performance on each channel into account).
1498 *
1499 * EEPROM provides us with the offsets for some pre-calibrated channels
1500 * and we have to interpolate to create the full table for these channels and
1501 * also the table for any channel.
1502 */
1503static int
1504ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1505{
1506        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1507        int (*read_pcal)(struct ath5k_hw *hw, int mode);
1508        int mode;
1509        int err;
1510
1511        if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1512                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1513                read_pcal = ath5k_eeprom_read_pcal_info_5112;
1514        else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1515                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1516                read_pcal = ath5k_eeprom_read_pcal_info_2413;
1517        else
1518                read_pcal = ath5k_eeprom_read_pcal_info_5111;
1519
1520
1521        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1522        mode++) {
1523                err = read_pcal(ah, mode);
1524                if (err)
1525                        return err;
1526
1527                err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1528                if (err < 0)
1529                        return err;
1530        }
1531
1532        return 0;
1533}
1534
1535static int
1536ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1537{
1538        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1539        struct ath5k_chan_pcal_info *chinfo;
1540        u8 pier, pdg;
1541
1542        switch (mode) {
1543        case AR5K_EEPROM_MODE_11A:
1544                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1545                        return 0;
1546                chinfo = ee->ee_pwr_cal_a;
1547                break;
1548        case AR5K_EEPROM_MODE_11B:
1549                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1550                        return 0;
1551                chinfo = ee->ee_pwr_cal_b;
1552                break;
1553        case AR5K_EEPROM_MODE_11G:
1554                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1555                        return 0;
1556                chinfo = ee->ee_pwr_cal_g;
1557                break;
1558        default:
1559                return -EINVAL;
1560        }
1561
1562        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1563                if (!chinfo[pier].pd_curves)
1564                        continue;
1565
1566                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1567                        struct ath5k_pdgain_info *pd =
1568                                        &chinfo[pier].pd_curves[pdg];
1569
1570                        if (pd != NULL) {
1571                                kfree(pd->pd_step);
1572                                kfree(pd->pd_pwr);
1573                        }
1574                }
1575
1576                kfree(chinfo[pier].pd_curves);
1577        }
1578
1579        return 0;
1580}
1581
1582void
1583ath5k_eeprom_detach(struct ath5k_hw *ah)
1584{
1585        u8 mode;
1586
1587        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1588                ath5k_eeprom_free_pcal_info(ah, mode);
1589}
1590
1591/* Read conformance test limits used for regulatory control */
1592static int
1593ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1594{
1595        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1596        struct ath5k_edge_power *rep;
1597        unsigned int fmask, pmask;
1598        unsigned int ctl_mode;
1599        int ret, i, j;
1600        u32 offset;
1601        u16 val;
1602
1603        pmask = AR5K_EEPROM_POWER_M;
1604        fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1605        offset = AR5K_EEPROM_CTL(ee->ee_version);
1606        ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1607        for (i = 0; i < ee->ee_ctls; i += 2) {
1608                AR5K_EEPROM_READ(offset++, val);
1609                ee->ee_ctl[i] = (val >> 8) & 0xff;
1610                ee->ee_ctl[i + 1] = val & 0xff;
1611        }
1612
1613        offset = AR5K_EEPROM_GROUP8_OFFSET;
1614        if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1615                offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1616                        AR5K_EEPROM_GROUP5_OFFSET;
1617        else
1618                offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1619
1620        rep = ee->ee_ctl_pwr;
1621        for(i = 0; i < ee->ee_ctls; i++) {
1622                switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1623                case AR5K_CTL_11A:
1624                case AR5K_CTL_TURBO:
1625                        ctl_mode = AR5K_EEPROM_MODE_11A;
1626                        break;
1627                default:
1628                        ctl_mode = AR5K_EEPROM_MODE_11G;
1629                        break;
1630                }
1631                if (ee->ee_ctl[i] == 0) {
1632                        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1633                                offset += 8;
1634                        else
1635                                offset += 7;
1636                        rep += AR5K_EEPROM_N_EDGES;
1637                        continue;
1638                }
1639                if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1640                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1641                                AR5K_EEPROM_READ(offset++, val);
1642                                rep[j].freq = (val >> 8) & fmask;
1643                                rep[j + 1].freq = val & fmask;
1644                        }
1645                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646                                AR5K_EEPROM_READ(offset++, val);
1647                                rep[j].edge = (val >> 8) & pmask;
1648                                rep[j].flag = (val >> 14) & 1;
1649                                rep[j + 1].edge = val & pmask;
1650                                rep[j + 1].flag = (val >> 6) & 1;
1651                        }
1652                } else {
1653                        AR5K_EEPROM_READ(offset++, val);
1654                        rep[0].freq = (val >> 9) & fmask;
1655                        rep[1].freq = (val >> 2) & fmask;
1656                        rep[2].freq = (val << 5) & fmask;
1657
1658                        AR5K_EEPROM_READ(offset++, val);
1659                        rep[2].freq |= (val >> 11) & 0x1f;
1660                        rep[3].freq = (val >> 4) & fmask;
1661                        rep[4].freq = (val << 3) & fmask;
1662
1663                        AR5K_EEPROM_READ(offset++, val);
1664                        rep[4].freq |= (val >> 13) & 0x7;
1665                        rep[5].freq = (val >> 6) & fmask;
1666                        rep[6].freq = (val << 1) & fmask;
1667
1668                        AR5K_EEPROM_READ(offset++, val);
1669                        rep[6].freq |= (val >> 15) & 0x1;
1670                        rep[7].freq = (val >> 8) & fmask;
1671
1672                        rep[0].edge = (val >> 2) & pmask;
1673                        rep[1].edge = (val << 4) & pmask;
1674
1675                        AR5K_EEPROM_READ(offset++, val);
1676                        rep[1].edge |= (val >> 12) & 0xf;
1677                        rep[2].edge = (val >> 6) & pmask;
1678                        rep[3].edge = val & pmask;
1679
1680                        AR5K_EEPROM_READ(offset++, val);
1681                        rep[4].edge = (val >> 10) & pmask;
1682                        rep[5].edge = (val >> 4) & pmask;
1683                        rep[6].edge = (val << 2) & pmask;
1684
1685                        AR5K_EEPROM_READ(offset++, val);
1686                        rep[6].edge |= (val >> 14) & 0x3;
1687                        rep[7].edge = (val >> 8) & pmask;
1688                }
1689                for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1690                        rep[j].freq = ath5k_eeprom_bin2freq(ee,
1691                                rep[j].freq, ctl_mode);
1692                }
1693                rep += AR5K_EEPROM_N_EDGES;
1694        }
1695
1696        return 0;
1697}
1698
1699static int
1700ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1701{
1702        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1703        u32 offset;
1704        u16 val;
1705        int ret = 0, i;
1706
1707        offset = AR5K_EEPROM_CTL(ee->ee_version) +
1708                                AR5K_EEPROM_N_CTLS(ee->ee_version);
1709
1710        if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1711                /* No spur info for 5GHz */
1712                ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1713                /* 2 channels for 2GHz (2464/2420) */
1714                ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1715                ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1716                ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1717        } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1718                for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1719                        AR5K_EEPROM_READ(offset, val);
1720                        ee->ee_spur_chans[i][0] = val;
1721                        AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1722                                                                        val);
1723                        ee->ee_spur_chans[i][1] = val;
1724                        offset++;
1725                }
1726        }
1727
1728        return ret;
1729}
1730
1731/*
1732 * Initialize eeprom data structure
1733 */
1734int
1735ath5k_eeprom_init(struct ath5k_hw *ah)
1736{
1737        int err;
1738
1739        err = ath5k_eeprom_init_header(ah);
1740        if (err < 0)
1741                return err;
1742
1743        err = ath5k_eeprom_init_modes(ah);
1744        if (err < 0)
1745                return err;
1746
1747        err = ath5k_eeprom_read_pcal_info(ah);
1748        if (err < 0)
1749                return err;
1750
1751        err = ath5k_eeprom_read_ctl_info(ah);
1752        if (err < 0)
1753                return err;
1754
1755        err = ath5k_eeprom_read_spur_chans(ah);
1756        if (err < 0)
1757                return err;
1758
1759        return 0;
1760}
1761
1762/*
1763 * Read the MAC address from eeprom
1764 */
1765int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1766{
1767        u8 mac_d[ETH_ALEN] = {};
1768        u32 total, offset;
1769        u16 data;
1770        int octet, ret;
1771
1772        ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1773        if (ret)
1774                return ret;
1775
1776        for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1777                ret = ath5k_hw_eeprom_read(ah, offset, &data);
1778                if (ret)
1779                        return ret;
1780
1781                total += data;
1782                mac_d[octet + 1] = data & 0xff;
1783                mac_d[octet] = data >> 8;
1784                octet += 2;
1785        }
1786
1787        if (!total || total == 3 * 0xffff)
1788                return -EINVAL;
1789
1790        memcpy(mac, mac_d, ETH_ALEN);
1791
1792        return 0;
1793}
1794