linux/drivers/net/wireless/ath/ath5k/pcu.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
   5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
   6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
   7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   8 *
   9 * Permission to use, copy, modify, and distribute this software for any
  10 * purpose with or without fee is hereby granted, provided that the above
  11 * copyright notice and this permission notice appear in all copies.
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20 *
  21 */
  22
  23/*********************************\
  24* Protocol Control Unit Functions *
  25\*********************************/
  26
  27#include "ath5k.h"
  28#include "reg.h"
  29#include "debug.h"
  30#include "base.h"
  31
  32/*******************\
  33* Generic functions *
  34\*******************/
  35
  36/**
  37 * ath5k_hw_set_opmode - Set PCU operating mode
  38 *
  39 * @ah: The &struct ath5k_hw
  40 *
  41 * Initialize PCU for the various operating modes (AP/STA etc)
  42 *
  43 * NOTE: ah->ah_op_mode must be set before calling this.
  44 */
  45int ath5k_hw_set_opmode(struct ath5k_hw *ah)
  46{
  47        u32 pcu_reg, beacon_reg, low_id, high_id;
  48
  49
  50        /* Preserve rest settings */
  51        pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
  52        pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
  53                        | AR5K_STA_ID1_KEYSRCH_MODE
  54                        | (ah->ah_version == AR5K_AR5210 ?
  55                        (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
  56
  57        beacon_reg = 0;
  58
  59        ATH5K_TRACE(ah->ah_sc);
  60
  61        switch (ah->ah_op_mode) {
  62        case NL80211_IFTYPE_ADHOC:
  63                pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
  64                beacon_reg |= AR5K_BCR_ADHOC;
  65                if (ah->ah_version == AR5K_AR5210)
  66                        pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
  67                else
  68                        AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
  69                break;
  70
  71        case NL80211_IFTYPE_AP:
  72        case NL80211_IFTYPE_MESH_POINT:
  73                pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
  74                beacon_reg |= AR5K_BCR_AP;
  75                if (ah->ah_version == AR5K_AR5210)
  76                        pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
  77                else
  78                        AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
  79                break;
  80
  81        case NL80211_IFTYPE_STATION:
  82                pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
  83                        | (ah->ah_version == AR5K_AR5210 ?
  84                                AR5K_STA_ID1_PWR_SV : 0);
  85        case NL80211_IFTYPE_MONITOR:
  86                pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
  87                        | (ah->ah_version == AR5K_AR5210 ?
  88                                AR5K_STA_ID1_NO_PSPOLL : 0);
  89                break;
  90
  91        default:
  92                return -EINVAL;
  93        }
  94
  95        /*
  96         * Set PCU registers
  97         */
  98        low_id = AR5K_LOW_ID(ah->ah_sta_id);
  99        high_id = AR5K_HIGH_ID(ah->ah_sta_id);
 100        ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
 101        ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
 102
 103        /*
 104         * Set Beacon Control Register on 5210
 105         */
 106        if (ah->ah_version == AR5K_AR5210)
 107                ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
 108
 109        return 0;
 110}
 111
 112/**
 113 * ath5k_hw_update - Update mib counters (mac layer statistics)
 114 *
 115 * @ah: The &struct ath5k_hw
 116 * @stats: The &struct ieee80211_low_level_stats we use to track
 117 * statistics on the driver
 118 *
 119 * Reads MIB counters from PCU and updates sw statistics. Must be
 120 * called after a MIB interrupt.
 121 */
 122void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
 123                struct ieee80211_low_level_stats  *stats)
 124{
 125        ATH5K_TRACE(ah->ah_sc);
 126
 127        /* Read-And-Clear */
 128        stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
 129        stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
 130        stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
 131        stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
 132
 133        /* XXX: Should we use this to track beacon count ?
 134         * -we read it anyway to clear the register */
 135        ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
 136
 137        /* Reset profile count registers on 5212*/
 138        if (ah->ah_version == AR5K_AR5212) {
 139                ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
 140                ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
 141                ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
 142                ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
 143        }
 144
 145        /* TODO: Handle ANI stats */
 146}
 147
 148/**
 149 * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
 150 *
 151 * @ah: The &struct ath5k_hw
 152 * @high: Flag to determine if we want to use high transmition rate
 153 * for ACKs or not
 154 *
 155 * If high flag is set, we tell hw to use a set of control rates based on
 156 * the current transmition rate (check out control_rates array inside reset.c).
 157 * If not hw just uses the lowest rate available for the current modulation
 158 * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
 159 */
 160void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
 161{
 162        if (ah->ah_version != AR5K_AR5212)
 163                return;
 164        else {
 165                u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
 166                if (high)
 167                        AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
 168                else
 169                        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
 170        }
 171}
 172
 173
 174/******************\
 175* ACK/CTS Timeouts *
 176\******************/
 177
 178/**
 179 * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
 180 *
 181 * @ah: The &struct ath5k_hw
 182 */
 183unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
 184{
 185        ATH5K_TRACE(ah->ah_sc);
 186
 187        return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
 188                        AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
 189}
 190
 191/**
 192 * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
 193 *
 194 * @ah: The &struct ath5k_hw
 195 * @timeout: Timeout in usec
 196 */
 197int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
 198{
 199        ATH5K_TRACE(ah->ah_sc);
 200        if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
 201                        ah->ah_turbo) <= timeout)
 202                return -EINVAL;
 203
 204        AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
 205                ath5k_hw_htoclock(timeout, ah->ah_turbo));
 206
 207        return 0;
 208}
 209
 210/**
 211 * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
 212 *
 213 * @ah: The &struct ath5k_hw
 214 */
 215unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
 216{
 217        ATH5K_TRACE(ah->ah_sc);
 218        return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
 219                        AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
 220}
 221
 222/**
 223 * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
 224 *
 225 * @ah: The &struct ath5k_hw
 226 * @timeout: Timeout in usec
 227 */
 228int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
 229{
 230        ATH5K_TRACE(ah->ah_sc);
 231        if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
 232                        ah->ah_turbo) <= timeout)
 233                return -EINVAL;
 234
 235        AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
 236                        ath5k_hw_htoclock(timeout, ah->ah_turbo));
 237
 238        return 0;
 239}
 240
 241
 242/****************\
 243* BSSID handling *
 244\****************/
 245
 246/**
 247 * ath5k_hw_get_lladdr - Get station id
 248 *
 249 * @ah: The &struct ath5k_hw
 250 * @mac: The card's mac address
 251 *
 252 * Initialize ah->ah_sta_id using the mac address provided
 253 * (just a memcpy).
 254 *
 255 * TODO: Remove it once we merge ath5k_softc and ath5k_hw
 256 */
 257void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
 258{
 259        ATH5K_TRACE(ah->ah_sc);
 260        memcpy(mac, ah->ah_sta_id, ETH_ALEN);
 261}
 262
 263/**
 264 * ath5k_hw_set_lladdr - Set station id
 265 *
 266 * @ah: The &struct ath5k_hw
 267 * @mac: The card's mac address
 268 *
 269 * Set station id on hw using the provided mac address
 270 */
 271int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
 272{
 273        u32 low_id, high_id;
 274        u32 pcu_reg;
 275
 276        ATH5K_TRACE(ah->ah_sc);
 277        /* Set new station ID */
 278        memcpy(ah->ah_sta_id, mac, ETH_ALEN);
 279
 280        pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
 281
 282        low_id = AR5K_LOW_ID(mac);
 283        high_id = AR5K_HIGH_ID(mac);
 284
 285        ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
 286        ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
 287
 288        return 0;
 289}
 290
 291/**
 292 * ath5k_hw_set_associd - Set BSSID for association
 293 *
 294 * @ah: The &struct ath5k_hw
 295 * @bssid: BSSID
 296 * @assoc_id: Assoc id
 297 *
 298 * Sets the BSSID which trigers the "SME Join" operation
 299 */
 300void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
 301{
 302        u32 low_id, high_id;
 303        u16 tim_offset = 0;
 304
 305        /*
 306         * Set simple BSSID mask on 5212
 307         */
 308        if (ah->ah_version == AR5K_AR5212) {
 309                ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask),
 310                                                        AR5K_BSS_IDM0);
 311                ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask),
 312                                                        AR5K_BSS_IDM1);
 313        }
 314
 315        /*
 316         * Set BSSID which triggers the "SME Join" operation
 317         */
 318        low_id = AR5K_LOW_ID(bssid);
 319        high_id = AR5K_HIGH_ID(bssid);
 320        ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
 321        ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
 322                                AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
 323
 324        if (assoc_id == 0) {
 325                ath5k_hw_disable_pspoll(ah);
 326                return;
 327        }
 328
 329        AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
 330                        tim_offset ? tim_offset + 4 : 0);
 331
 332        ath5k_hw_enable_pspoll(ah, NULL, 0);
 333}
 334
 335/**
 336 * ath5k_hw_set_bssid_mask - filter out bssids we listen
 337 *
 338 * @ah: the &struct ath5k_hw
 339 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
 340 *
 341 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
 342 * which bits of the interface's MAC address should be looked at when trying
 343 * to decide which packets to ACK. In station mode and AP mode with a single
 344 * BSS every bit matters since we lock to only one BSS. In AP mode with
 345 * multiple BSSes (virtual interfaces) not every bit matters because hw must
 346 * accept frames for all BSSes and so we tweak some bits of our mac address
 347 * in order to have multiple BSSes.
 348 *
 349 * NOTE: This is a simple filter and does *not* filter out all
 350 * relevant frames. Some frames that are not for us might get ACKed from us
 351 * by PCU because they just match the mask.
 352 *
 353 * When handling multiple BSSes you can get the BSSID mask by computing the
 354 * set of  ~ ( MAC XOR BSSID ) for all bssids we handle.
 355 *
 356 * When you do this you are essentially computing the common bits of all your
 357 * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
 358 * the MAC address to obtain the relevant bits and compare the result with
 359 * (frame's BSSID & mask) to see if they match.
 360 */
 361/*
 362 * Simple example: on your card you have have two BSSes you have created with
 363 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
 364 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
 365 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
 366 *
 367 *                  \
 368 * MAC:                0001 |
 369 * BSSID-01:   0100 | --> Belongs to us
 370 * BSSID-02:   1001 |
 371 *                  /
 372 * -------------------
 373 * BSSID-03:   0110  | --> External
 374 * -------------------
 375 *
 376 * Our bssid_mask would then be:
 377 *
 378 *             On loop iteration for BSSID-01:
 379 *             ~(0001 ^ 0100)  -> ~(0101)
 380 *                             ->   1010
 381 *             bssid_mask      =    1010
 382 *
 383 *             On loop iteration for BSSID-02:
 384 *             bssid_mask &= ~(0001   ^   1001)
 385 *             bssid_mask =   (1010)  & ~(0001 ^ 1001)
 386 *             bssid_mask =   (1010)  & ~(1001)
 387 *             bssid_mask =   (1010)  &  (0110)
 388 *             bssid_mask =   0010
 389 *
 390 * A bssid_mask of 0010 means "only pay attention to the second least
 391 * significant bit". This is because its the only bit common
 392 * amongst the MAC and all BSSIDs we support. To findout what the real
 393 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
 394 * or our MAC address (we assume the hardware uses the MAC address).
 395 *
 396 * Now, suppose there's an incoming frame for BSSID-03:
 397 *
 398 * IFRAME-01:  0110
 399 *
 400 * An easy eye-inspeciton of this already should tell you that this frame
 401 * will not pass our check. This is beacuse the bssid_mask tells the
 402 * hardware to only look at the second least significant bit and the
 403 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
 404 * as 1, which does not match 0.
 405 *
 406 * So with IFRAME-01 we *assume* the hardware will do:
 407 *
 408 *     allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
 409 *  --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
 410 *  --> allow = (0010) == 0000 ? 1 : 0;
 411 *  --> allow = 0
 412 *
 413 *  Lets now test a frame that should work:
 414 *
 415 * IFRAME-02:  0001 (we should allow)
 416 *
 417 *     allow = (0001 & 1010) == 1010
 418 *
 419 *     allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
 420 *  --> allow = (0001 & 0010) ==  (0010 & 0001) ? 1 :0;
 421 *  --> allow = (0010) == (0010)
 422 *  --> allow = 1
 423 *
 424 * Other examples:
 425 *
 426 * IFRAME-03:  0100 --> allowed
 427 * IFRAME-04:  1001 --> allowed
 428 * IFRAME-05:  1101 --> allowed but its not for us!!!
 429 *
 430 */
 431int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
 432{
 433        u32 low_id, high_id;
 434        ATH5K_TRACE(ah->ah_sc);
 435
 436        /* Cache bssid mask so that we can restore it
 437         * on reset */
 438        memcpy(ah->ah_bssid_mask, mask, ETH_ALEN);
 439        if (ah->ah_version == AR5K_AR5212) {
 440                low_id = AR5K_LOW_ID(mask);
 441                high_id = AR5K_HIGH_ID(mask);
 442
 443                ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
 444                ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
 445
 446                return 0;
 447        }
 448
 449        return -EIO;
 450}
 451
 452
 453/************\
 454* RX Control *
 455\************/
 456
 457/**
 458 * ath5k_hw_start_rx_pcu - Start RX engine
 459 *
 460 * @ah: The &struct ath5k_hw
 461 *
 462 * Starts RX engine on PCU so that hw can process RXed frames
 463 * (ACK etc).
 464 *
 465 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
 466 * TODO: Init ANI here
 467 */
 468void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
 469{
 470        ATH5K_TRACE(ah->ah_sc);
 471        AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
 472}
 473
 474/**
 475 * at5k_hw_stop_rx_pcu - Stop RX engine
 476 *
 477 * @ah: The &struct ath5k_hw
 478 *
 479 * Stops RX engine on PCU
 480 *
 481 * TODO: Detach ANI here
 482 */
 483void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
 484{
 485        ATH5K_TRACE(ah->ah_sc);
 486        AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
 487}
 488
 489/*
 490 * Set multicast filter
 491 */
 492void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
 493{
 494        ATH5K_TRACE(ah->ah_sc);
 495        /* Set the multicat filter */
 496        ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
 497        ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
 498}
 499
 500/*
 501 * Set multicast filter by index
 502 */
 503int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
 504{
 505
 506        ATH5K_TRACE(ah->ah_sc);
 507        if (index >= 64)
 508                return -EINVAL;
 509        else if (index >= 32)
 510                AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
 511                                (1 << (index - 32)));
 512        else
 513                AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
 514
 515        return 0;
 516}
 517
 518/*
 519 * Clear Multicast filter by index
 520 */
 521int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
 522{
 523
 524        ATH5K_TRACE(ah->ah_sc);
 525        if (index >= 64)
 526                return -EINVAL;
 527        else if (index >= 32)
 528                AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
 529                                (1 << (index - 32)));
 530        else
 531                AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
 532
 533        return 0;
 534}
 535
 536/**
 537 * ath5k_hw_get_rx_filter - Get current rx filter
 538 *
 539 * @ah: The &struct ath5k_hw
 540 *
 541 * Returns the RX filter by reading rx filter and
 542 * phy error filter registers. RX filter is used
 543 * to set the allowed frame types that PCU will accept
 544 * and pass to the driver. For a list of frame types
 545 * check out reg.h.
 546 */
 547u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
 548{
 549        u32 data, filter = 0;
 550
 551        ATH5K_TRACE(ah->ah_sc);
 552        filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
 553
 554        /*Radar detection for 5212*/
 555        if (ah->ah_version == AR5K_AR5212) {
 556                data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
 557
 558                if (data & AR5K_PHY_ERR_FIL_RADAR)
 559                        filter |= AR5K_RX_FILTER_RADARERR;
 560                if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
 561                        filter |= AR5K_RX_FILTER_PHYERR;
 562        }
 563
 564        return filter;
 565}
 566
 567/**
 568 * ath5k_hw_set_rx_filter - Set rx filter
 569 *
 570 * @ah: The &struct ath5k_hw
 571 * @filter: RX filter mask (see reg.h)
 572 *
 573 * Sets RX filter register and also handles PHY error filter
 574 * register on 5212 and newer chips so that we have proper PHY
 575 * error reporting.
 576 */
 577void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
 578{
 579        u32 data = 0;
 580
 581        ATH5K_TRACE(ah->ah_sc);
 582
 583        /* Set PHY error filter register on 5212*/
 584        if (ah->ah_version == AR5K_AR5212) {
 585                if (filter & AR5K_RX_FILTER_RADARERR)
 586                        data |= AR5K_PHY_ERR_FIL_RADAR;
 587                if (filter & AR5K_RX_FILTER_PHYERR)
 588                        data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
 589        }
 590
 591        /*
 592         * The AR5210 uses promiscous mode to detect radar activity
 593         */
 594        if (ah->ah_version == AR5K_AR5210 &&
 595                        (filter & AR5K_RX_FILTER_RADARERR)) {
 596                filter &= ~AR5K_RX_FILTER_RADARERR;
 597                filter |= AR5K_RX_FILTER_PROM;
 598        }
 599
 600        /*Zero length DMA (phy error reporting) */
 601        if (data)
 602                AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
 603        else
 604                AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
 605
 606        /*Write RX Filter register*/
 607        ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
 608
 609        /*Write PHY error filter register on 5212*/
 610        if (ah->ah_version == AR5K_AR5212)
 611                ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
 612
 613}
 614
 615
 616/****************\
 617* Beacon control *
 618\****************/
 619
 620/**
 621 * ath5k_hw_get_tsf32 - Get a 32bit TSF
 622 *
 623 * @ah: The &struct ath5k_hw
 624 *
 625 * Returns lower 32 bits of current TSF
 626 */
 627u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
 628{
 629        ATH5K_TRACE(ah->ah_sc);
 630        return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
 631}
 632
 633/**
 634 * ath5k_hw_get_tsf64 - Get the full 64bit TSF
 635 *
 636 * @ah: The &struct ath5k_hw
 637 *
 638 * Returns the current TSF
 639 */
 640u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
 641{
 642        u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
 643        ATH5K_TRACE(ah->ah_sc);
 644
 645        return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
 646}
 647
 648/**
 649 * ath5k_hw_set_tsf64 - Set a new 64bit TSF
 650 *
 651 * @ah: The &struct ath5k_hw
 652 * @tsf64: The new 64bit TSF
 653 *
 654 * Sets the new TSF
 655 */
 656void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
 657{
 658        ATH5K_TRACE(ah->ah_sc);
 659
 660        ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
 661        ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
 662}
 663
 664/**
 665 * ath5k_hw_reset_tsf - Force a TSF reset
 666 *
 667 * @ah: The &struct ath5k_hw
 668 *
 669 * Forces a TSF reset on PCU
 670 */
 671void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
 672{
 673        u32 val;
 674
 675        ATH5K_TRACE(ah->ah_sc);
 676
 677        val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
 678
 679        /*
 680         * Each write to the RESET_TSF bit toggles a hardware internal
 681         * signal to reset TSF, but if left high it will cause a TSF reset
 682         * on the next chip reset as well.  Thus we always write the value
 683         * twice to clear the signal.
 684         */
 685        ath5k_hw_reg_write(ah, val, AR5K_BEACON);
 686        ath5k_hw_reg_write(ah, val, AR5K_BEACON);
 687}
 688
 689/*
 690 * Initialize beacon timers
 691 */
 692void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
 693{
 694        u32 timer1, timer2, timer3;
 695
 696        ATH5K_TRACE(ah->ah_sc);
 697        /*
 698         * Set the additional timers by mode
 699         */
 700        switch (ah->ah_op_mode) {
 701        case NL80211_IFTYPE_MONITOR:
 702        case NL80211_IFTYPE_STATION:
 703                /* In STA mode timer1 is used as next wakeup
 704                 * timer and timer2 as next CFP duration start
 705                 * timer. Both in 1/8TUs. */
 706                /* TODO: PCF handling */
 707                if (ah->ah_version == AR5K_AR5210) {
 708                        timer1 = 0xffffffff;
 709                        timer2 = 0xffffffff;
 710                } else {
 711                        timer1 = 0x0000ffff;
 712                        timer2 = 0x0007ffff;
 713                }
 714                /* Mark associated AP as PCF incapable for now */
 715                AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
 716                break;
 717        case NL80211_IFTYPE_ADHOC:
 718                AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
 719        default:
 720                /* On non-STA modes timer1 is used as next DMA
 721                 * beacon alert (DBA) timer and timer2 as next
 722                 * software beacon alert. Both in 1/8TUs. */
 723                timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
 724                timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
 725                break;
 726        }
 727
 728        /* Timer3 marks the end of our ATIM window
 729         * a zero length window is not allowed because
 730         * we 'll get no beacons */
 731        timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
 732
 733        /*
 734         * Set the beacon register and enable all timers.
 735         */
 736        /* When in AP or Mesh Point mode zero timer0 to start TSF */
 737        if (ah->ah_op_mode == NL80211_IFTYPE_AP ||
 738            ah->ah_op_mode == NL80211_IFTYPE_MESH_POINT)
 739                ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
 740
 741        ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
 742        ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
 743        ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
 744        ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
 745
 746        /* Force a TSF reset if requested and enable beacons */
 747        if (interval & AR5K_BEACON_RESET_TSF)
 748                ath5k_hw_reset_tsf(ah);
 749
 750        ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
 751                                        AR5K_BEACON_ENABLE),
 752                                                AR5K_BEACON);
 753
 754        /* Flush any pending BMISS interrupts on ISR by
 755         * performing a clear-on-write operation on PISR
 756         * register for the BMISS bit (writing a bit on
 757         * ISR togles a reset for that bit and leaves
 758         * the rest bits intact) */
 759        if (ah->ah_version == AR5K_AR5210)
 760                ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
 761        else
 762                ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
 763
 764        /* TODO: Set enchanced sleep registers on AR5212
 765         * based on vif->bss_conf params, until then
 766         * disable power save reporting.*/
 767        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
 768
 769}
 770
 771#if 0
 772/*
 773 * Set beacon timers
 774 */
 775int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
 776                const struct ath5k_beacon_state *state)
 777{
 778        u32 cfp_period, next_cfp, dtim, interval, next_beacon;
 779
 780        /*
 781         * TODO: should be changed through *state
 782         * review struct ath5k_beacon_state struct
 783         *
 784         * XXX: These are used for cfp period bellow, are they
 785         * ok ? Is it O.K. for tsf here to be 0 or should we use
 786         * get_tsf ?
 787         */
 788        u32 dtim_count = 0; /* XXX */
 789        u32 cfp_count = 0; /* XXX */
 790        u32 tsf = 0; /* XXX */
 791
 792        ATH5K_TRACE(ah->ah_sc);
 793        /* Return on an invalid beacon state */
 794        if (state->bs_interval < 1)
 795                return -EINVAL;
 796
 797        interval = state->bs_interval;
 798        dtim = state->bs_dtim_period;
 799
 800        /*
 801         * PCF support?
 802         */
 803        if (state->bs_cfp_period > 0) {
 804                /*
 805                 * Enable PCF mode and set the CFP
 806                 * (Contention Free Period) and timer registers
 807                 */
 808                cfp_period = state->bs_cfp_period * state->bs_dtim_period *
 809                        state->bs_interval;
 810                next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
 811                        state->bs_interval;
 812
 813                AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
 814                                AR5K_STA_ID1_DEFAULT_ANTENNA |
 815                                AR5K_STA_ID1_PCF);
 816                ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
 817                ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
 818                                AR5K_CFP_DUR);
 819                ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
 820                                                next_cfp)) << 3, AR5K_TIMER2);
 821        } else {
 822                /* Disable PCF mode */
 823                AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
 824                                AR5K_STA_ID1_DEFAULT_ANTENNA |
 825                                AR5K_STA_ID1_PCF);
 826        }
 827
 828        /*
 829         * Enable the beacon timer register
 830         */
 831        ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
 832
 833        /*
 834         * Start the beacon timers
 835         */
 836        ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
 837                ~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
 838                AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
 839                AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
 840                AR5K_BEACON_PERIOD), AR5K_BEACON);
 841
 842        /*
 843         * Write new beacon miss threshold, if it appears to be valid
 844         * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
 845         * and return if its not in range. We can test this by reading value and
 846         * setting value to a largest value and seeing which values register.
 847         */
 848
 849        AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
 850                        state->bs_bmiss_threshold);
 851
 852        /*
 853         * Set sleep control register
 854         * XXX: Didn't find this in 5210 code but since this register
 855         * exists also in ar5k's 5210 headers i leave it as common code.
 856         */
 857        AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
 858                        (state->bs_sleep_duration - 3) << 3);
 859
 860        /*
 861         * Set enhanced sleep registers on 5212
 862         */
 863        if (ah->ah_version == AR5K_AR5212) {
 864                if (state->bs_sleep_duration > state->bs_interval &&
 865                                roundup(state->bs_sleep_duration, interval) ==
 866                                state->bs_sleep_duration)
 867                        interval = state->bs_sleep_duration;
 868
 869                if (state->bs_sleep_duration > dtim && (dtim == 0 ||
 870                                roundup(state->bs_sleep_duration, dtim) ==
 871                                state->bs_sleep_duration))
 872                        dtim = state->bs_sleep_duration;
 873
 874                if (interval > dtim)
 875                        return -EINVAL;
 876
 877                next_beacon = interval == dtim ? state->bs_next_dtim :
 878                        state->bs_next_beacon;
 879
 880                ath5k_hw_reg_write(ah,
 881                        AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
 882                        AR5K_SLEEP0_NEXT_DTIM) |
 883                        AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
 884                        AR5K_SLEEP0_ENH_SLEEP_EN |
 885                        AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
 886
 887                ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
 888                        AR5K_SLEEP1_NEXT_TIM) |
 889                        AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
 890
 891                ath5k_hw_reg_write(ah,
 892                        AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
 893                        AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
 894        }
 895
 896        return 0;
 897}
 898
 899/*
 900 * Reset beacon timers
 901 */
 902void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
 903{
 904        ATH5K_TRACE(ah->ah_sc);
 905        /*
 906         * Disable beacon timer
 907         */
 908        ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
 909
 910        /*
 911         * Disable some beacon register values
 912         */
 913        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
 914                        AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
 915        ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
 916}
 917
 918/*
 919 * Wait for beacon queue to finish
 920 */
 921int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
 922{
 923        unsigned int i;
 924        int ret;
 925
 926        ATH5K_TRACE(ah->ah_sc);
 927
 928        /* 5210 doesn't have QCU*/
 929        if (ah->ah_version == AR5K_AR5210) {
 930                /*
 931                 * Wait for beaconn queue to finish by checking
 932                 * Control Register and Beacon Status Register.
 933                 */
 934                for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
 935                        if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
 936                                        ||
 937                            !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
 938                                break;
 939                        udelay(10);
 940                }
 941
 942                /* Timeout... */
 943                if (i <= 0) {
 944                        /*
 945                         * Re-schedule the beacon queue
 946                         */
 947                        ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
 948                        ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
 949                                        AR5K_BCR);
 950
 951                        return -EIO;
 952                }
 953                ret = 0;
 954        } else {
 955        /*5211/5212*/
 956                ret = ath5k_hw_register_timeout(ah,
 957                        AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
 958                        AR5K_QCU_STS_FRMPENDCNT, 0, false);
 959
 960                if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
 961                        return -EIO;
 962        }
 963
 964        return ret;
 965}
 966#endif
 967
 968
 969/*********************\
 970* Key table functions *
 971\*********************/
 972
 973/*
 974 * Reset a key entry on the table
 975 */
 976int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
 977{
 978        unsigned int i, type;
 979        u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
 980
 981        ATH5K_TRACE(ah->ah_sc);
 982        AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
 983
 984        type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
 985
 986        for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
 987                ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
 988
 989        /* Reset associated MIC entry if TKIP
 990         * is enabled located at offset (entry + 64) */
 991        if (type == AR5K_KEYTABLE_TYPE_TKIP) {
 992                AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
 993                for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
 994                        ath5k_hw_reg_write(ah, 0,
 995                                AR5K_KEYTABLE_OFF(micentry, i));
 996        }
 997
 998        /*
 999         * Set NULL encryption on AR5212+
1000         *
1001         * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
1002         *       AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
1003         *
1004         * Note2: Windows driver (ndiswrapper) sets this to
1005         *        0x00000714 instead of 0x00000007
1006         */
1007        if (ah->ah_version >= AR5K_AR5211) {
1008                ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1009                                AR5K_KEYTABLE_TYPE(entry));
1010
1011                if (type == AR5K_KEYTABLE_TYPE_TKIP) {
1012                        ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1013                                AR5K_KEYTABLE_TYPE(micentry));
1014                }
1015        }
1016
1017        return 0;
1018}
1019
1020/*
1021 * Check if a table entry is valid
1022 */
1023int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
1024{
1025        ATH5K_TRACE(ah->ah_sc);
1026        AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1027
1028        /* Check the validation flag at the end of the entry */
1029        return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
1030                AR5K_KEYTABLE_VALID;
1031}
1032
1033static
1034int ath5k_keycache_type(const struct ieee80211_key_conf *key)
1035{
1036        switch (key->alg) {
1037        case ALG_TKIP:
1038                return AR5K_KEYTABLE_TYPE_TKIP;
1039        case ALG_CCMP:
1040                return AR5K_KEYTABLE_TYPE_CCM;
1041        case ALG_WEP:
1042                if (key->keylen == WLAN_KEY_LEN_WEP40)
1043                        return AR5K_KEYTABLE_TYPE_40;
1044                else if (key->keylen == WLAN_KEY_LEN_WEP104)
1045                        return AR5K_KEYTABLE_TYPE_104;
1046                return -EINVAL;
1047        default:
1048                return -EINVAL;
1049        }
1050        return -EINVAL;
1051}
1052
1053/*
1054 * Set a key entry on the table
1055 */
1056int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
1057                const struct ieee80211_key_conf *key, const u8 *mac)
1058{
1059        unsigned int i;
1060        int keylen;
1061        __le32 key_v[5] = {};
1062        __le32 key0 = 0, key1 = 0;
1063        __le32 *rxmic, *txmic;
1064        int keytype;
1065        u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
1066        bool is_tkip;
1067        const u8 *key_ptr;
1068
1069        ATH5K_TRACE(ah->ah_sc);
1070
1071        is_tkip = (key->alg == ALG_TKIP);
1072
1073        /*
1074         * key->keylen comes in from mac80211 in bytes.
1075         * TKIP is 128 bit + 128 bit mic
1076         */
1077        keylen = (is_tkip) ? (128 / 8) : key->keylen;
1078
1079        if (entry > AR5K_KEYTABLE_SIZE ||
1080                (is_tkip && micentry > AR5K_KEYTABLE_SIZE))
1081                return -EOPNOTSUPP;
1082
1083        if (unlikely(keylen > 16))
1084                return -EOPNOTSUPP;
1085
1086        keytype = ath5k_keycache_type(key);
1087        if (keytype < 0)
1088                return keytype;
1089
1090        /*
1091         * each key block is 6 bytes wide, written as pairs of
1092         * alternating 32 and 16 bit le values.
1093         */
1094        key_ptr = key->key;
1095        for (i = 0; keylen >= 6; keylen -= 6) {
1096                memcpy(&key_v[i], key_ptr, 6);
1097                i += 2;
1098                key_ptr += 6;
1099        }
1100        if (keylen)
1101                memcpy(&key_v[i], key_ptr, keylen);
1102
1103        /* intentionally corrupt key until mic is installed */
1104        if (is_tkip) {
1105                key0 = key_v[0] = ~key_v[0];
1106                key1 = key_v[1] = ~key_v[1];
1107        }
1108
1109        for (i = 0; i < ARRAY_SIZE(key_v); i++)
1110                ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1111                                AR5K_KEYTABLE_OFF(entry, i));
1112
1113        ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
1114
1115        if (is_tkip) {
1116                /* Install rx/tx MIC */
1117                rxmic = (__le32 *) &key->key[16];
1118                txmic = (__le32 *) &key->key[24];
1119
1120                if (ah->ah_combined_mic) {
1121                        key_v[0] = rxmic[0];
1122                        key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
1123                        key_v[2] = rxmic[1];
1124                        key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
1125                        key_v[4] = txmic[1];
1126                } else {
1127                        key_v[0] = rxmic[0];
1128                        key_v[1] = 0;
1129                        key_v[2] = rxmic[1];
1130                        key_v[3] = 0;
1131                        key_v[4] = 0;
1132                }
1133                for (i = 0; i < ARRAY_SIZE(key_v); i++)
1134                        ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1135                                AR5K_KEYTABLE_OFF(micentry, i));
1136
1137                ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1138                        AR5K_KEYTABLE_TYPE(micentry));
1139                ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
1140                ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
1141
1142                /* restore first 2 words of key */
1143                ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
1144                        AR5K_KEYTABLE_OFF(entry, 0));
1145                ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
1146                        AR5K_KEYTABLE_OFF(entry, 1));
1147        }
1148
1149        return ath5k_hw_set_key_lladdr(ah, entry, mac);
1150}
1151
1152int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
1153{
1154        u32 low_id, high_id;
1155
1156        ATH5K_TRACE(ah->ah_sc);
1157         /* Invalid entry (key table overflow) */
1158        AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1159
1160        /* MAC may be NULL if it's a broadcast key. In this case no need to
1161         * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
1162        if (!mac) {
1163                low_id = 0xffffffff;
1164                high_id = 0xffff | AR5K_KEYTABLE_VALID;
1165        } else {
1166                low_id = AR5K_LOW_ID(mac);
1167                high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
1168        }
1169
1170        ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
1171        ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
1172
1173        return 0;
1174}
1175
1176