linux/drivers/net/wireless/ath/ath5k/phy.c
<<
>>
Prefs
   1/*
   2 * PHY functions
   3 *
   4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   8 *
   9 * Permission to use, copy, modify, and distribute this software for any
  10 * purpose with or without fee is hereby granted, provided that the above
  11 * copyright notice and this permission notice appear in all copies.
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20 *
  21 */
  22
  23#define _ATH5K_PHY
  24
  25#include <linux/delay.h>
  26
  27#include "ath5k.h"
  28#include "reg.h"
  29#include "base.h"
  30#include "rfbuffer.h"
  31#include "rfgain.h"
  32
  33/*
  34 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
  35 */
  36static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
  37                                        const struct ath5k_rf_reg *rf_regs,
  38                                        u32 val, u8 reg_id, bool set)
  39{
  40        const struct ath5k_rf_reg *rfreg = NULL;
  41        u8 offset, bank, num_bits, col, position;
  42        u16 entry;
  43        u32 mask, data, last_bit, bits_shifted, first_bit;
  44        u32 *rfb;
  45        s32 bits_left;
  46        int i;
  47
  48        data = 0;
  49        rfb = ah->ah_rf_banks;
  50
  51        for (i = 0; i < ah->ah_rf_regs_count; i++) {
  52                if (rf_regs[i].index == reg_id) {
  53                        rfreg = &rf_regs[i];
  54                        break;
  55                }
  56        }
  57
  58        if (rfb == NULL || rfreg == NULL) {
  59                ATH5K_PRINTF("Rf register not found!\n");
  60                /* should not happen */
  61                return 0;
  62        }
  63
  64        bank = rfreg->bank;
  65        num_bits = rfreg->field.len;
  66        first_bit = rfreg->field.pos;
  67        col = rfreg->field.col;
  68
  69        /* first_bit is an offset from bank's
  70         * start. Since we have all banks on
  71         * the same array, we use this offset
  72         * to mark each bank's start */
  73        offset = ah->ah_offset[bank];
  74
  75        /* Boundary check */
  76        if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
  77                ATH5K_PRINTF("invalid values at offset %u\n", offset);
  78                return 0;
  79        }
  80
  81        entry = ((first_bit - 1) / 8) + offset;
  82        position = (first_bit - 1) % 8;
  83
  84        if (set)
  85                data = ath5k_hw_bitswap(val, num_bits);
  86
  87        for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
  88        position = 0, entry++) {
  89
  90                last_bit = (position + bits_left > 8) ? 8 :
  91                                        position + bits_left;
  92
  93                mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
  94                                                                (col * 8);
  95
  96                if (set) {
  97                        rfb[entry] &= ~mask;
  98                        rfb[entry] |= ((data << position) << (col * 8)) & mask;
  99                        data >>= (8 - position);
 100                } else {
 101                        data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 102                                << bits_shifted;
 103                        bits_shifted += last_bit - position;
 104                }
 105
 106                bits_left -= 8 - position;
 107        }
 108
 109        data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 110
 111        return data;
 112}
 113
 114/**********************\
 115* RF Gain optimization *
 116\**********************/
 117
 118/*
 119 * This code is used to optimize rf gain on different environments
 120 * (temprature mostly) based on feedback from a power detector.
 121 *
 122 * It's only used on RF5111 and RF5112, later RF chips seem to have
 123 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 124 * no gain optimization ladder-.
 125 *
 126 * For more infos check out this patent doc
 127 * http://www.freepatentsonline.com/7400691.html
 128 *
 129 * This paper describes power drops as seen on the receiver due to
 130 * probe packets
 131 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 132 * %20of%20Power%20Control.pdf
 133 *
 134 * And this is the MadWiFi bug entry related to the above
 135 * http://madwifi-project.org/ticket/1659
 136 * with various measurements and diagrams
 137 *
 138 * TODO: Deal with power drops due to probes by setting an apropriate
 139 * tx power on the probe packets ! Make this part of the calibration process.
 140 */
 141
 142/* Initialize ah_gain durring attach */
 143int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 144{
 145        /* Initialize the gain optimization values */
 146        switch (ah->ah_radio) {
 147        case AR5K_RF5111:
 148                ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 149                ah->ah_gain.g_low = 20;
 150                ah->ah_gain.g_high = 35;
 151                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 152                break;
 153        case AR5K_RF5112:
 154                ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 155                ah->ah_gain.g_low = 20;
 156                ah->ah_gain.g_high = 85;
 157                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 158                break;
 159        default:
 160                return -EINVAL;
 161        }
 162
 163        return 0;
 164}
 165
 166/* Schedule a gain probe check on the next transmited packet.
 167 * That means our next packet is going to be sent with lower
 168 * tx power and a Peak to Average Power Detector (PAPD) will try
 169 * to measure the gain.
 170 *
 171 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
 172 * just after we enable the probe so that we don't mess with
 173 * standard traffic ? Maybe it's time to use sw interrupts and
 174 * a probe tasklet !!!
 175 */
 176static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 177{
 178
 179        /* Skip if gain calibration is inactive or
 180         * we already handle a probe request */
 181        if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 182                return;
 183
 184        /* Send the packet with 2dB below max power as
 185         * patent doc suggest */
 186        ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 187                        AR5K_PHY_PAPD_PROBE_TXPOWER) |
 188                        AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 189
 190        ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 191
 192}
 193
 194/* Calculate gain_F measurement correction
 195 * based on the current step for RF5112 rev. 2 */
 196static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 197{
 198        u32 mix, step;
 199        u32 *rf;
 200        const struct ath5k_gain_opt *go;
 201        const struct ath5k_gain_opt_step *g_step;
 202        const struct ath5k_rf_reg *rf_regs;
 203
 204        /* Only RF5112 Rev. 2 supports it */
 205        if ((ah->ah_radio != AR5K_RF5112) ||
 206        (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 207                return 0;
 208
 209        go = &rfgain_opt_5112;
 210        rf_regs = rf_regs_5112a;
 211        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 212
 213        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 214
 215        if (ah->ah_rf_banks == NULL)
 216                return 0;
 217
 218        rf = ah->ah_rf_banks;
 219        ah->ah_gain.g_f_corr = 0;
 220
 221        /* No VGA (Variable Gain Amplifier) override, skip */
 222        if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 223                return 0;
 224
 225        /* Mix gain stepping */
 226        step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 227
 228        /* Mix gain override */
 229        mix = g_step->gos_param[0];
 230
 231        switch (mix) {
 232        case 3:
 233                ah->ah_gain.g_f_corr = step * 2;
 234                break;
 235        case 2:
 236                ah->ah_gain.g_f_corr = (step - 5) * 2;
 237                break;
 238        case 1:
 239                ah->ah_gain.g_f_corr = step;
 240                break;
 241        default:
 242                ah->ah_gain.g_f_corr = 0;
 243                break;
 244        }
 245
 246        return ah->ah_gain.g_f_corr;
 247}
 248
 249/* Check if current gain_F measurement is in the range of our
 250 * power detector windows. If we get a measurement outside range
 251 * we know it's not accurate (detectors can't measure anything outside
 252 * their detection window) so we must ignore it */
 253static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 254{
 255        const struct ath5k_rf_reg *rf_regs;
 256        u32 step, mix_ovr, level[4];
 257        u32 *rf;
 258
 259        if (ah->ah_rf_banks == NULL)
 260                return false;
 261
 262        rf = ah->ah_rf_banks;
 263
 264        if (ah->ah_radio == AR5K_RF5111) {
 265
 266                rf_regs = rf_regs_5111;
 267                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 268
 269                step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 270                        false);
 271
 272                level[0] = 0;
 273                level[1] = (step == 63) ? 50 : step + 4;
 274                level[2] = (step != 63) ? 64 : level[0];
 275                level[3] = level[2] + 50 ;
 276
 277                ah->ah_gain.g_high = level[3] -
 278                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 279                ah->ah_gain.g_low = level[0] +
 280                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 281        } else {
 282
 283                rf_regs = rf_regs_5112;
 284                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 285
 286                mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 287                        false);
 288
 289                level[0] = level[2] = 0;
 290
 291                if (mix_ovr == 1) {
 292                        level[1] = level[3] = 83;
 293                } else {
 294                        level[1] = level[3] = 107;
 295                        ah->ah_gain.g_high = 55;
 296                }
 297        }
 298
 299        return (ah->ah_gain.g_current >= level[0] &&
 300                        ah->ah_gain.g_current <= level[1]) ||
 301                (ah->ah_gain.g_current >= level[2] &&
 302                        ah->ah_gain.g_current <= level[3]);
 303}
 304
 305/* Perform gain_F adjustment by choosing the right set
 306 * of parameters from rf gain optimization ladder */
 307static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 308{
 309        const struct ath5k_gain_opt *go;
 310        const struct ath5k_gain_opt_step *g_step;
 311        int ret = 0;
 312
 313        switch (ah->ah_radio) {
 314        case AR5K_RF5111:
 315                go = &rfgain_opt_5111;
 316                break;
 317        case AR5K_RF5112:
 318                go = &rfgain_opt_5112;
 319                break;
 320        default:
 321                return 0;
 322        }
 323
 324        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 325
 326        if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 327
 328                /* Reached maximum */
 329                if (ah->ah_gain.g_step_idx == 0)
 330                        return -1;
 331
 332                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 333                                ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 334                                ah->ah_gain.g_step_idx > 0;
 335                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
 336                        ah->ah_gain.g_target -= 2 *
 337                            (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 338                            g_step->gos_gain);
 339
 340                ret = 1;
 341                goto done;
 342        }
 343
 344        if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 345
 346                /* Reached minimum */
 347                if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 348                        return -2;
 349
 350                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 351                                ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 352                                ah->ah_gain.g_step_idx < go->go_steps_count-1;
 353                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
 354                        ah->ah_gain.g_target -= 2 *
 355                            (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 356                            g_step->gos_gain);
 357
 358                ret = 2;
 359                goto done;
 360        }
 361
 362done:
 363        ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
 364                "ret %d, gain step %u, current gain %u, target gain %u\n",
 365                ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 366                ah->ah_gain.g_target);
 367
 368        return ret;
 369}
 370
 371/* Main callback for thermal rf gain calibration engine
 372 * Check for a new gain reading and schedule an adjustment
 373 * if needed.
 374 *
 375 * TODO: Use sw interrupt to schedule reset if gain_F needs
 376 * adjustment */
 377enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 378{
 379        u32 data, type;
 380        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 381
 382        ATH5K_TRACE(ah->ah_sc);
 383
 384        if (ah->ah_rf_banks == NULL ||
 385        ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 386                return AR5K_RFGAIN_INACTIVE;
 387
 388        /* No check requested, either engine is inactive
 389         * or an adjustment is already requested */
 390        if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 391                goto done;
 392
 393        /* Read the PAPD (Peak to Average Power Detector)
 394         * register */
 395        data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 396
 397        /* No probe is scheduled, read gain_F measurement */
 398        if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 399                ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 400                type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 401
 402                /* If tx packet is CCK correct the gain_F measurement
 403                 * by cck ofdm gain delta */
 404                if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 405                        if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 406                                ah->ah_gain.g_current +=
 407                                        ee->ee_cck_ofdm_gain_delta;
 408                        else
 409                                ah->ah_gain.g_current +=
 410                                        AR5K_GAIN_CCK_PROBE_CORR;
 411                }
 412
 413                /* Further correct gain_F measurement for
 414                 * RF5112A radios */
 415                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 416                        ath5k_hw_rf_gainf_corr(ah);
 417                        ah->ah_gain.g_current =
 418                                ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 419                                (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
 420                                0;
 421                }
 422
 423                /* Check if measurement is ok and if we need
 424                 * to adjust gain, schedule a gain adjustment,
 425                 * else switch back to the acive state */
 426                if (ath5k_hw_rf_check_gainf_readback(ah) &&
 427                AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 428                ath5k_hw_rf_gainf_adjust(ah)) {
 429                        ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 430                } else {
 431                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 432                }
 433        }
 434
 435done:
 436        return ah->ah_gain.g_state;
 437}
 438
 439/* Write initial rf gain table to set the RF sensitivity
 440 * this one works on all RF chips and has nothing to do
 441 * with gain_F calibration */
 442int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
 443{
 444        const struct ath5k_ini_rfgain *ath5k_rfg;
 445        unsigned int i, size;
 446
 447        switch (ah->ah_radio) {
 448        case AR5K_RF5111:
 449                ath5k_rfg = rfgain_5111;
 450                size = ARRAY_SIZE(rfgain_5111);
 451                break;
 452        case AR5K_RF5112:
 453                ath5k_rfg = rfgain_5112;
 454                size = ARRAY_SIZE(rfgain_5112);
 455                break;
 456        case AR5K_RF2413:
 457                ath5k_rfg = rfgain_2413;
 458                size = ARRAY_SIZE(rfgain_2413);
 459                break;
 460        case AR5K_RF2316:
 461                ath5k_rfg = rfgain_2316;
 462                size = ARRAY_SIZE(rfgain_2316);
 463                break;
 464        case AR5K_RF5413:
 465                ath5k_rfg = rfgain_5413;
 466                size = ARRAY_SIZE(rfgain_5413);
 467                break;
 468        case AR5K_RF2317:
 469        case AR5K_RF2425:
 470                ath5k_rfg = rfgain_2425;
 471                size = ARRAY_SIZE(rfgain_2425);
 472                break;
 473        default:
 474                return -EINVAL;
 475        }
 476
 477        switch (freq) {
 478        case AR5K_INI_RFGAIN_2GHZ:
 479        case AR5K_INI_RFGAIN_5GHZ:
 480                break;
 481        default:
 482                return -EINVAL;
 483        }
 484
 485        for (i = 0; i < size; i++) {
 486                AR5K_REG_WAIT(i);
 487                ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
 488                        (u32)ath5k_rfg[i].rfg_register);
 489        }
 490
 491        return 0;
 492}
 493
 494
 495
 496/********************\
 497* RF Registers setup *
 498\********************/
 499
 500
 501/*
 502 * Setup RF registers by writing rf buffer on hw
 503 */
 504int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
 505                unsigned int mode)
 506{
 507        const struct ath5k_rf_reg *rf_regs;
 508        const struct ath5k_ini_rfbuffer *ini_rfb;
 509        const struct ath5k_gain_opt *go = NULL;
 510        const struct ath5k_gain_opt_step *g_step;
 511        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 512        u8 ee_mode = 0;
 513        u32 *rfb;
 514        int i, obdb = -1, bank = -1;
 515
 516        switch (ah->ah_radio) {
 517        case AR5K_RF5111:
 518                rf_regs = rf_regs_5111;
 519                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 520                ini_rfb = rfb_5111;
 521                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 522                go = &rfgain_opt_5111;
 523                break;
 524        case AR5K_RF5112:
 525                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 526                        rf_regs = rf_regs_5112a;
 527                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 528                        ini_rfb = rfb_5112a;
 529                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 530                } else {
 531                        rf_regs = rf_regs_5112;
 532                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 533                        ini_rfb = rfb_5112;
 534                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 535                }
 536                go = &rfgain_opt_5112;
 537                break;
 538        case AR5K_RF2413:
 539                rf_regs = rf_regs_2413;
 540                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 541                ini_rfb = rfb_2413;
 542                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 543                break;
 544        case AR5K_RF2316:
 545                rf_regs = rf_regs_2316;
 546                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 547                ini_rfb = rfb_2316;
 548                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 549                break;
 550        case AR5K_RF5413:
 551                rf_regs = rf_regs_5413;
 552                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 553                ini_rfb = rfb_5413;
 554                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 555                break;
 556        case AR5K_RF2317:
 557                rf_regs = rf_regs_2425;
 558                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 559                ini_rfb = rfb_2317;
 560                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 561                break;
 562        case AR5K_RF2425:
 563                rf_regs = rf_regs_2425;
 564                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 565                if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 566                        ini_rfb = rfb_2425;
 567                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 568                } else {
 569                        ini_rfb = rfb_2417;
 570                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 571                }
 572                break;
 573        default:
 574                return -EINVAL;
 575        }
 576
 577        /* If it's the first time we set rf buffer, allocate
 578         * ah->ah_rf_banks based on ah->ah_rf_banks_size
 579         * we set above */
 580        if (ah->ah_rf_banks == NULL) {
 581                ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
 582                                                                GFP_KERNEL);
 583                if (ah->ah_rf_banks == NULL) {
 584                        ATH5K_ERR(ah->ah_sc, "out of memory\n");
 585                        return -ENOMEM;
 586                }
 587        }
 588
 589        /* Copy values to modify them */
 590        rfb = ah->ah_rf_banks;
 591
 592        for (i = 0; i < ah->ah_rf_banks_size; i++) {
 593                if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 594                        ATH5K_ERR(ah->ah_sc, "invalid bank\n");
 595                        return -EINVAL;
 596                }
 597
 598                /* Bank changed, write down the offset */
 599                if (bank != ini_rfb[i].rfb_bank) {
 600                        bank = ini_rfb[i].rfb_bank;
 601                        ah->ah_offset[bank] = i;
 602                }
 603
 604                rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 605        }
 606
 607        /* Set Output and Driver bias current (OB/DB) */
 608        if (channel->hw_value & CHANNEL_2GHZ) {
 609
 610                if (channel->hw_value & CHANNEL_CCK)
 611                        ee_mode = AR5K_EEPROM_MODE_11B;
 612                else
 613                        ee_mode = AR5K_EEPROM_MODE_11G;
 614
 615                /* For RF511X/RF211X combination we
 616                 * use b_OB and b_DB parameters stored
 617                 * in eeprom on ee->ee_ob[ee_mode][0]
 618                 *
 619                 * For all other chips we use OB/DB for 2Ghz
 620                 * stored in the b/g modal section just like
 621                 * 802.11a on ee->ee_ob[ee_mode][1] */
 622                if ((ah->ah_radio == AR5K_RF5111) ||
 623                (ah->ah_radio == AR5K_RF5112))
 624                        obdb = 0;
 625                else
 626                        obdb = 1;
 627
 628                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 629                                                AR5K_RF_OB_2GHZ, true);
 630
 631                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 632                                                AR5K_RF_DB_2GHZ, true);
 633
 634        /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 635        } else if ((channel->hw_value & CHANNEL_5GHZ) ||
 636                        (ah->ah_radio == AR5K_RF5111)) {
 637
 638                /* For 11a, Turbo and XR we need to choose
 639                 * OB/DB based on frequency range */
 640                ee_mode = AR5K_EEPROM_MODE_11A;
 641                obdb =   channel->center_freq >= 5725 ? 3 :
 642                        (channel->center_freq >= 5500 ? 2 :
 643                        (channel->center_freq >= 5260 ? 1 :
 644                         (channel->center_freq > 4000 ? 0 : -1)));
 645
 646                if (obdb < 0)
 647                        return -EINVAL;
 648
 649                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 650                                                AR5K_RF_OB_5GHZ, true);
 651
 652                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 653                                                AR5K_RF_DB_5GHZ, true);
 654        }
 655
 656        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 657
 658        /* Bank Modifications (chip-specific) */
 659        if (ah->ah_radio == AR5K_RF5111) {
 660
 661                /* Set gain_F settings according to current step */
 662                if (channel->hw_value & CHANNEL_OFDM) {
 663
 664                        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 665                                        AR5K_PHY_FRAME_CTL_TX_CLIP,
 666                                        g_step->gos_param[0]);
 667
 668                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 669                                                        AR5K_RF_PWD_90, true);
 670
 671                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 672                                                        AR5K_RF_PWD_84, true);
 673
 674                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 675                                                AR5K_RF_RFGAIN_SEL, true);
 676
 677                        /* We programmed gain_F parameters, switch back
 678                         * to active state */
 679                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 680
 681                }
 682
 683                /* Bank 6/7 setup */
 684
 685                ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 686                                                AR5K_RF_PWD_XPD, true);
 687
 688                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
 689                                                AR5K_RF_XPD_GAIN, true);
 690
 691                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
 692                                                AR5K_RF_GAIN_I, true);
 693
 694                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 695                                                AR5K_RF_PLO_SEL, true);
 696
 697                /* TODO: Half/quarter channel support */
 698        }
 699
 700        if (ah->ah_radio == AR5K_RF5112) {
 701
 702                /* Set gain_F settings according to current step */
 703                if (channel->hw_value & CHANNEL_OFDM) {
 704
 705                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
 706                                                AR5K_RF_MIXGAIN_OVR, true);
 707
 708                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 709                                                AR5K_RF_PWD_138, true);
 710
 711                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 712                                                AR5K_RF_PWD_137, true);
 713
 714                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 715                                                AR5K_RF_PWD_136, true);
 716
 717                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
 718                                                AR5K_RF_PWD_132, true);
 719
 720                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
 721                                                AR5K_RF_PWD_131, true);
 722
 723                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
 724                                                AR5K_RF_PWD_130, true);
 725
 726                        /* We programmed gain_F parameters, switch back
 727                         * to active state */
 728                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 729                }
 730
 731                /* Bank 6/7 setup */
 732
 733                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
 734                                                AR5K_RF_XPD_SEL, true);
 735
 736                if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
 737                        /* Rev. 1 supports only one xpd */
 738                        ath5k_hw_rfb_op(ah, rf_regs,
 739                                                ee->ee_x_gain[ee_mode],
 740                                                AR5K_RF_XPD_GAIN, true);
 741
 742                } else {
 743                        u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
 744                        if (ee->ee_pd_gains[ee_mode] > 1) {
 745                                ath5k_hw_rfb_op(ah, rf_regs,
 746                                                pdg_curve_to_idx[0],
 747                                                AR5K_RF_PD_GAIN_LO, true);
 748                                ath5k_hw_rfb_op(ah, rf_regs,
 749                                                pdg_curve_to_idx[1],
 750                                                AR5K_RF_PD_GAIN_HI, true);
 751                        } else {
 752                                ath5k_hw_rfb_op(ah, rf_regs,
 753                                                pdg_curve_to_idx[0],
 754                                                AR5K_RF_PD_GAIN_LO, true);
 755                                ath5k_hw_rfb_op(ah, rf_regs,
 756                                                pdg_curve_to_idx[0],
 757                                                AR5K_RF_PD_GAIN_HI, true);
 758                        }
 759
 760                        /* Lower synth voltage on Rev 2 */
 761                        ath5k_hw_rfb_op(ah, rf_regs, 2,
 762                                        AR5K_RF_HIGH_VC_CP, true);
 763
 764                        ath5k_hw_rfb_op(ah, rf_regs, 2,
 765                                        AR5K_RF_MID_VC_CP, true);
 766
 767                        ath5k_hw_rfb_op(ah, rf_regs, 2,
 768                                        AR5K_RF_LOW_VC_CP, true);
 769
 770                        ath5k_hw_rfb_op(ah, rf_regs, 2,
 771                                        AR5K_RF_PUSH_UP, true);
 772
 773                        /* Decrease power consumption on 5213+ BaseBand */
 774                        if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
 775                                ath5k_hw_rfb_op(ah, rf_regs, 1,
 776                                                AR5K_RF_PAD2GND, true);
 777
 778                                ath5k_hw_rfb_op(ah, rf_regs, 1,
 779                                                AR5K_RF_XB2_LVL, true);
 780
 781                                ath5k_hw_rfb_op(ah, rf_regs, 1,
 782                                                AR5K_RF_XB5_LVL, true);
 783
 784                                ath5k_hw_rfb_op(ah, rf_regs, 1,
 785                                                AR5K_RF_PWD_167, true);
 786
 787                                ath5k_hw_rfb_op(ah, rf_regs, 1,
 788                                                AR5K_RF_PWD_166, true);
 789                        }
 790                }
 791
 792                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
 793                                                AR5K_RF_GAIN_I, true);
 794
 795                /* TODO: Half/quarter channel support */
 796
 797        }
 798
 799        if (ah->ah_radio == AR5K_RF5413 &&
 800        channel->hw_value & CHANNEL_2GHZ) {
 801
 802                ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
 803                                                                        true);
 804
 805                /* Set optimum value for early revisions (on pci-e chips) */
 806                if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
 807                ah->ah_mac_srev < AR5K_SREV_AR5413)
 808                        ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
 809                                                AR5K_RF_PWD_ICLOBUF_2G, true);
 810
 811        }
 812
 813        /* Write RF banks on hw */
 814        for (i = 0; i < ah->ah_rf_banks_size; i++) {
 815                AR5K_REG_WAIT(i);
 816                ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
 817        }
 818
 819        return 0;
 820}
 821
 822
 823/**************************\
 824  PHY/RF channel functions
 825\**************************/
 826
 827/*
 828 * Check if a channel is supported
 829 */
 830bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
 831{
 832        /* Check if the channel is in our supported range */
 833        if (flags & CHANNEL_2GHZ) {
 834                if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 835                    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 836                        return true;
 837        } else if (flags & CHANNEL_5GHZ)
 838                if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 839                    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 840                        return true;
 841
 842        return false;
 843}
 844
 845/*
 846 * Convertion needed for RF5110
 847 */
 848static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
 849{
 850        u32 athchan;
 851
 852        /*
 853         * Convert IEEE channel/MHz to an internal channel value used
 854         * by the AR5210 chipset. This has not been verified with
 855         * newer chipsets like the AR5212A who have a completely
 856         * different RF/PHY part.
 857         */
 858        athchan = (ath5k_hw_bitswap(
 859                        (ieee80211_frequency_to_channel(
 860                                channel->center_freq) - 24) / 2, 5)
 861                                << 1) | (1 << 6) | 0x1;
 862        return athchan;
 863}
 864
 865/*
 866 * Set channel on RF5110
 867 */
 868static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
 869                struct ieee80211_channel *channel)
 870{
 871        u32 data;
 872
 873        /*
 874         * Set the channel and wait
 875         */
 876        data = ath5k_hw_rf5110_chan2athchan(channel);
 877        ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
 878        ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
 879        mdelay(1);
 880
 881        return 0;
 882}
 883
 884/*
 885 * Convertion needed for 5111
 886 */
 887static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
 888                struct ath5k_athchan_2ghz *athchan)
 889{
 890        int channel;
 891
 892        /* Cast this value to catch negative channel numbers (>= -19) */
 893        channel = (int)ieee;
 894
 895        /*
 896         * Map 2GHz IEEE channel to 5GHz Atheros channel
 897         */
 898        if (channel <= 13) {
 899                athchan->a2_athchan = 115 + channel;
 900                athchan->a2_flags = 0x46;
 901        } else if (channel == 14) {
 902                athchan->a2_athchan = 124;
 903                athchan->a2_flags = 0x44;
 904        } else if (channel >= 15 && channel <= 26) {
 905                athchan->a2_athchan = ((channel - 14) * 4) + 132;
 906                athchan->a2_flags = 0x46;
 907        } else
 908                return -EINVAL;
 909
 910        return 0;
 911}
 912
 913/*
 914 * Set channel on 5111
 915 */
 916static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
 917                struct ieee80211_channel *channel)
 918{
 919        struct ath5k_athchan_2ghz ath5k_channel_2ghz;
 920        unsigned int ath5k_channel =
 921                ieee80211_frequency_to_channel(channel->center_freq);
 922        u32 data0, data1, clock;
 923        int ret;
 924
 925        /*
 926         * Set the channel on the RF5111 radio
 927         */
 928        data0 = data1 = 0;
 929
 930        if (channel->hw_value & CHANNEL_2GHZ) {
 931                /* Map 2GHz channel to 5GHz Atheros channel ID */
 932                ret = ath5k_hw_rf5111_chan2athchan(
 933                        ieee80211_frequency_to_channel(channel->center_freq),
 934                        &ath5k_channel_2ghz);
 935                if (ret)
 936                        return ret;
 937
 938                ath5k_channel = ath5k_channel_2ghz.a2_athchan;
 939                data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
 940                    << 5) | (1 << 4);
 941        }
 942
 943        if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
 944                clock = 1;
 945                data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
 946                        (clock << 1) | (1 << 10) | 1;
 947        } else {
 948                clock = 0;
 949                data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
 950                        << 2) | (clock << 1) | (1 << 10) | 1;
 951        }
 952
 953        ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
 954                        AR5K_RF_BUFFER);
 955        ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
 956                        AR5K_RF_BUFFER_CONTROL_3);
 957
 958        return 0;
 959}
 960
 961/*
 962 * Set channel on 5112 and newer
 963 */
 964static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
 965                struct ieee80211_channel *channel)
 966{
 967        u32 data, data0, data1, data2;
 968        u16 c;
 969
 970        data = data0 = data1 = data2 = 0;
 971        c = channel->center_freq;
 972
 973        if (c < 4800) {
 974                if (!((c - 2224) % 5)) {
 975                        data0 = ((2 * (c - 704)) - 3040) / 10;
 976                        data1 = 1;
 977                } else if (!((c - 2192) % 5)) {
 978                        data0 = ((2 * (c - 672)) - 3040) / 10;
 979                        data1 = 0;
 980                } else
 981                        return -EINVAL;
 982
 983                data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
 984        } else if ((c - (c % 5)) != 2 || c > 5435) {
 985                if (!(c % 20) && c >= 5120) {
 986                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
 987                        data2 = ath5k_hw_bitswap(3, 2);
 988                } else if (!(c % 10)) {
 989                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
 990                        data2 = ath5k_hw_bitswap(2, 2);
 991                } else if (!(c % 5)) {
 992                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
 993                        data2 = ath5k_hw_bitswap(1, 2);
 994                } else
 995                        return -EINVAL;
 996        } else {
 997                data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
 998                data2 = ath5k_hw_bitswap(0, 2);
 999        }
1000
1001        data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1002
1003        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1004        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1005
1006        return 0;
1007}
1008
1009/*
1010 * Set the channel on the RF2425
1011 */
1012static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1013                struct ieee80211_channel *channel)
1014{
1015        u32 data, data0, data2;
1016        u16 c;
1017
1018        data = data0 = data2 = 0;
1019        c = channel->center_freq;
1020
1021        if (c < 4800) {
1022                data0 = ath5k_hw_bitswap((c - 2272), 8);
1023                data2 = 0;
1024        /* ? 5GHz ? */
1025        } else if ((c - (c % 5)) != 2 || c > 5435) {
1026                if (!(c % 20) && c < 5120)
1027                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1028                else if (!(c % 10))
1029                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1030                else if (!(c % 5))
1031                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1032                else
1033                        return -EINVAL;
1034                data2 = ath5k_hw_bitswap(1, 2);
1035        } else {
1036                data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1037                data2 = ath5k_hw_bitswap(0, 2);
1038        }
1039
1040        data = (data0 << 4) | data2 << 2 | 0x1001;
1041
1042        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1043        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1044
1045        return 0;
1046}
1047
1048/*
1049 * Set a channel on the radio chip
1050 */
1051int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1052{
1053        int ret;
1054        /*
1055         * Check bounds supported by the PHY (we don't care about regultory
1056         * restrictions at this point). Note: hw_value already has the band
1057         * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1058         * of the band by that */
1059        if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1060                ATH5K_ERR(ah->ah_sc,
1061                        "channel frequency (%u MHz) out of supported "
1062                        "band range\n",
1063                        channel->center_freq);
1064                        return -EINVAL;
1065        }
1066
1067        /*
1068         * Set the channel and wait
1069         */
1070        switch (ah->ah_radio) {
1071        case AR5K_RF5110:
1072                ret = ath5k_hw_rf5110_channel(ah, channel);
1073                break;
1074        case AR5K_RF5111:
1075                ret = ath5k_hw_rf5111_channel(ah, channel);
1076                break;
1077        case AR5K_RF2425:
1078                ret = ath5k_hw_rf2425_channel(ah, channel);
1079                break;
1080        default:
1081                ret = ath5k_hw_rf5112_channel(ah, channel);
1082                break;
1083        }
1084
1085        if (ret)
1086                return ret;
1087
1088        /* Set JAPAN setting for channel 14 */
1089        if (channel->center_freq == 2484) {
1090                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091                                AR5K_PHY_CCKTXCTL_JAPAN);
1092        } else {
1093                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1094                                AR5K_PHY_CCKTXCTL_WORLD);
1095        }
1096
1097        ah->ah_current_channel = channel;
1098        ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1099
1100        return 0;
1101}
1102
1103/*****************\
1104  PHY calibration
1105\*****************/
1106
1107void
1108ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1109{
1110        /* Calibration interval in jiffies */
1111        unsigned long cal_intval;
1112
1113        cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1114
1115        /* Initialize timestamp if needed */
1116        if (!ah->ah_cal_tstamp)
1117                ah->ah_cal_tstamp = jiffies;
1118
1119        /* For now we always do full calibration
1120         * Mark software interrupt mask and fire software
1121         * interrupt (bit gets auto-cleared) */
1122        if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1123                ah->ah_cal_tstamp = jiffies;
1124                ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1125                AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1126        }
1127
1128}
1129
1130/**
1131 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1132 *
1133 * @ah: struct ath5k_hw pointer we are operating on
1134 * @freq: the channel frequency, just used for error logging
1135 *
1136 * This function performs a noise floor calibration of the PHY and waits for
1137 * it to complete. Then the noise floor value is compared to some maximum
1138 * noise floor we consider valid.
1139 *
1140 * Note that this is different from what the madwifi HAL does: it reads the
1141 * noise floor and afterwards initiates the calibration. Since the noise floor
1142 * calibration can take some time to finish, depending on the current channel
1143 * use, that avoids the occasional timeout warnings we are seeing now.
1144 *
1145 * See the following link for an Atheros patent on noise floor calibration:
1146 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1147 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1148 *
1149 * XXX: Since during noise floor calibration antennas are detached according to
1150 * the patent, we should stop tx queues here.
1151 */
1152int
1153ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1154{
1155        int ret;
1156        unsigned int i;
1157        s32 noise_floor;
1158
1159        /*
1160         * Enable noise floor calibration
1161         */
1162        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1163                                AR5K_PHY_AGCCTL_NF);
1164
1165        ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1166                        AR5K_PHY_AGCCTL_NF, 0, false);
1167        if (ret) {
1168                ATH5K_ERR(ah->ah_sc,
1169                        "noise floor calibration timeout (%uMHz)\n", freq);
1170                return -EAGAIN;
1171        }
1172
1173        /* Wait until the noise floor is calibrated and read the value */
1174        for (i = 20; i > 0; i--) {
1175                mdelay(1);
1176                noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1177                noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1178                if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1179                        noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1180
1181                        if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1182                                break;
1183                }
1184        }
1185
1186        ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1187                "noise floor %d\n", noise_floor);
1188
1189        if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1190                ATH5K_ERR(ah->ah_sc,
1191                        "noise floor calibration failed (%uMHz)\n", freq);
1192                return -EAGAIN;
1193        }
1194
1195        ah->ah_noise_floor = noise_floor;
1196
1197        return 0;
1198}
1199
1200/*
1201 * Perform a PHY calibration on RF5110
1202 * -Fix BPSK/QAM Constellation (I/Q correction)
1203 * -Calculate Noise Floor
1204 */
1205static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1206                struct ieee80211_channel *channel)
1207{
1208        u32 phy_sig, phy_agc, phy_sat, beacon;
1209        int ret;
1210
1211        /*
1212         * Disable beacons and RX/TX queues, wait
1213         */
1214        AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1215                AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1216        beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1217        ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1218
1219        mdelay(2);
1220
1221        /*
1222         * Set the channel (with AGC turned off)
1223         */
1224        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1225        udelay(10);
1226        ret = ath5k_hw_channel(ah, channel);
1227
1228        /*
1229         * Activate PHY and wait
1230         */
1231        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1232        mdelay(1);
1233
1234        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1235
1236        if (ret)
1237                return ret;
1238
1239        /*
1240         * Calibrate the radio chip
1241         */
1242
1243        /* Remember normal state */
1244        phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1245        phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1246        phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1247
1248        /* Update radio registers */
1249        ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1250                AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1251
1252        ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1253                        AR5K_PHY_AGCCOARSE_LO)) |
1254                AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1255                AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1256
1257        ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1258                        AR5K_PHY_ADCSAT_THR)) |
1259                AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1260                AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1261
1262        udelay(20);
1263
1264        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1265        udelay(10);
1266        ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1267        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1268
1269        mdelay(1);
1270
1271        /*
1272         * Enable calibration and wait until completion
1273         */
1274        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1275
1276        ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1277                        AR5K_PHY_AGCCTL_CAL, 0, false);
1278
1279        /* Reset to normal state */
1280        ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1281        ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1282        ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1283
1284        if (ret) {
1285                ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1286                                channel->center_freq);
1287                return ret;
1288        }
1289
1290        ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1291
1292        /*
1293         * Re-enable RX/TX and beacons
1294         */
1295        AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1296                AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1297        ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1298
1299        return 0;
1300}
1301
1302/*
1303 * Perform a PHY calibration on RF5111/5112 and newer chips
1304 */
1305static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1306                struct ieee80211_channel *channel)
1307{
1308        u32 i_pwr, q_pwr;
1309        s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1310        int i;
1311        ATH5K_TRACE(ah->ah_sc);
1312
1313        if (!ah->ah_calibration ||
1314                ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1315                goto done;
1316
1317        /* Calibration has finished, get the results and re-run */
1318        for (i = 0; i <= 10; i++) {
1319                iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1320                i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1321                q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1322        }
1323
1324        i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1325        q_coffd = q_pwr >> 7;
1326
1327        /* No correction */
1328        if (i_coffd == 0 || q_coffd == 0)
1329                goto done;
1330
1331        i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1332
1333        /* Boundary check */
1334        if (i_coff > 31)
1335                i_coff = 31;
1336        if (i_coff < -32)
1337                i_coff = -32;
1338
1339        q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1340
1341        /* Boundary check */
1342        if (q_coff > 15)
1343                q_coff = 15;
1344        if (q_coff < -16)
1345                q_coff = -16;
1346
1347        /* Commit new I/Q value */
1348        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1349                ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1350
1351        /* Re-enable calibration -if we don't we'll commit
1352         * the same values again and again */
1353        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1354                        AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1355        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1356
1357done:
1358
1359        /* TODO: Separate noise floor calibration from I/Q calibration
1360         * since noise floor calibration interrupts rx path while I/Q
1361         * calibration doesn't. We don't need to run noise floor calibration
1362         * as often as I/Q calibration.*/
1363        ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1364
1365        /* Initiate a gain_F calibration */
1366        ath5k_hw_request_rfgain_probe(ah);
1367
1368        return 0;
1369}
1370
1371/*
1372 * Perform a PHY calibration
1373 */
1374int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1375                struct ieee80211_channel *channel)
1376{
1377        int ret;
1378
1379        if (ah->ah_radio == AR5K_RF5110)
1380                ret = ath5k_hw_rf5110_calibrate(ah, channel);
1381        else
1382                ret = ath5k_hw_rf511x_calibrate(ah, channel);
1383
1384        return ret;
1385}
1386
1387/***************************\
1388* Spur mitigation functions *
1389\***************************/
1390
1391bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1392                                struct ieee80211_channel *channel)
1393{
1394        u8 refclk_freq;
1395
1396        if ((ah->ah_radio == AR5K_RF5112) ||
1397        (ah->ah_radio == AR5K_RF5413) ||
1398        (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1399                refclk_freq = 40;
1400        else
1401                refclk_freq = 32;
1402
1403        if ((channel->center_freq % refclk_freq != 0) &&
1404        ((channel->center_freq % refclk_freq < 10) ||
1405        (channel->center_freq % refclk_freq > 22)))
1406                return true;
1407        else
1408                return false;
1409}
1410
1411void
1412ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1413                                struct ieee80211_channel *channel)
1414{
1415        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1416        u32 mag_mask[4] = {0, 0, 0, 0};
1417        u32 pilot_mask[2] = {0, 0};
1418        /* Note: fbin values are scaled up by 2 */
1419        u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1420        s32 spur_delta_phase, spur_freq_sigma_delta;
1421        s32 spur_offset, num_symbols_x16;
1422        u8 num_symbol_offsets, i, freq_band;
1423
1424        /* Convert current frequency to fbin value (the same way channels
1425         * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1426         * up by 2 so we can compare it later */
1427        if (channel->hw_value & CHANNEL_2GHZ) {
1428                chan_fbin = (channel->center_freq - 2300) * 10;
1429                freq_band = AR5K_EEPROM_BAND_2GHZ;
1430        } else {
1431                chan_fbin = (channel->center_freq - 4900) * 10;
1432                freq_band = AR5K_EEPROM_BAND_5GHZ;
1433        }
1434
1435        /* Check if any spur_chan_fbin from EEPROM is
1436         * within our current channel's spur detection range */
1437        spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1438        spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1439        /* XXX: Half/Quarter channels ?*/
1440        if (channel->hw_value & CHANNEL_TURBO)
1441                spur_detection_window *= 2;
1442
1443        for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1444                spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1445
1446                /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1447                 * so it's zero if we got nothing from EEPROM */
1448                if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1449                        spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1450                        break;
1451                }
1452
1453                if ((chan_fbin - spur_detection_window <=
1454                (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1455                (chan_fbin + spur_detection_window >=
1456                (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1457                        spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1458                        break;
1459                }
1460        }
1461
1462        /* We need to enable spur filter for this channel */
1463        if (spur_chan_fbin) {
1464                spur_offset = spur_chan_fbin - chan_fbin;
1465                /*
1466                 * Calculate deltas:
1467                 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1468                 * spur_delta_phase -> spur_offset / chip_freq << 11
1469                 * Note: Both values have 100KHz resolution
1470                 */
1471                /* XXX: Half/Quarter rate channels ? */
1472                switch (channel->hw_value) {
1473                case CHANNEL_A:
1474                        /* Both sample_freq and chip_freq are 40MHz */
1475                        spur_delta_phase = (spur_offset << 17) / 25;
1476                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1477                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1478                        break;
1479                case CHANNEL_G:
1480                        /* sample_freq -> 40MHz chip_freq -> 44MHz
1481                         * (for b compatibility) */
1482                        spur_freq_sigma_delta = (spur_offset << 8) / 55;
1483                        spur_delta_phase = (spur_offset << 17) / 25;
1484                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1485                        break;
1486                case CHANNEL_T:
1487                case CHANNEL_TG:
1488                        /* Both sample_freq and chip_freq are 80MHz */
1489                        spur_delta_phase = (spur_offset << 16) / 25;
1490                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1491                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1492                        break;
1493                default:
1494                        return;
1495                }
1496
1497                /* Calculate pilot and magnitude masks */
1498
1499                /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1500                 * and divide by symbol_width to find how many symbols we have
1501                 * Note: number of symbols is scaled up by 16 */
1502                num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1503
1504                /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1505                if (!(num_symbols_x16 & 0xF))
1506                        /* _X_ */
1507                        num_symbol_offsets = 3;
1508                else
1509                        /* _xx_ */
1510                        num_symbol_offsets = 4;
1511
1512                for (i = 0; i < num_symbol_offsets; i++) {
1513
1514                        /* Calculate pilot mask */
1515                        s32 curr_sym_off =
1516                                (num_symbols_x16 / 16) + i + 25;
1517
1518                        /* Pilot magnitude mask seems to be a way to
1519                         * declare the boundaries for our detection
1520                         * window or something, it's 2 for the middle
1521                         * value(s) where the symbol is expected to be
1522                         * and 1 on the boundary values */
1523                        u8 plt_mag_map =
1524                                (i == 0 || i == (num_symbol_offsets - 1))
1525                                                                ? 1 : 2;
1526
1527                        if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1528                                if (curr_sym_off <= 25)
1529                                        pilot_mask[0] |= 1 << curr_sym_off;
1530                                else if (curr_sym_off >= 27)
1531                                        pilot_mask[0] |= 1 << (curr_sym_off - 1);
1532                        } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1533                                pilot_mask[1] |= 1 << (curr_sym_off - 33);
1534
1535                        /* Calculate magnitude mask (for viterbi decoder) */
1536                        if (curr_sym_off >= -1 && curr_sym_off <= 14)
1537                                mag_mask[0] |=
1538                                        plt_mag_map << (curr_sym_off + 1) * 2;
1539                        else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1540                                mag_mask[1] |=
1541                                        plt_mag_map << (curr_sym_off - 15) * 2;
1542                        else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1543                                mag_mask[2] |=
1544                                        plt_mag_map << (curr_sym_off - 31) * 2;
1545                        else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1546                                mag_mask[3] |=
1547                                        plt_mag_map << (curr_sym_off - 47) * 2;
1548
1549                }
1550
1551                /* Write settings on hw to enable spur filter */
1552                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1553                                        AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1554                /* XXX: Self correlator also ? */
1555                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1556                                        AR5K_PHY_IQ_PILOT_MASK_EN |
1557                                        AR5K_PHY_IQ_CHAN_MASK_EN |
1558                                        AR5K_PHY_IQ_SPUR_FILT_EN);
1559
1560                /* Set delta phase and freq sigma delta */
1561                ath5k_hw_reg_write(ah,
1562                                AR5K_REG_SM(spur_delta_phase,
1563                                        AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1564                                AR5K_REG_SM(spur_freq_sigma_delta,
1565                                AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1566                                AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1567                                AR5K_PHY_TIMING_11);
1568
1569                /* Write pilot masks */
1570                ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1571                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1572                                        AR5K_PHY_TIMING_8_PILOT_MASK_2,
1573                                        pilot_mask[1]);
1574
1575                ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1576                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1577                                        AR5K_PHY_TIMING_10_PILOT_MASK_2,
1578                                        pilot_mask[1]);
1579
1580                /* Write magnitude masks */
1581                ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1582                ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1583                ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1584                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1585                                        AR5K_PHY_BIN_MASK_CTL_MASK_4,
1586                                        mag_mask[3]);
1587
1588                ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1589                ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1590                ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1591                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1592                                        AR5K_PHY_BIN_MASK2_4_MASK_4,
1593                                        mag_mask[3]);
1594
1595        } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1596        AR5K_PHY_IQ_SPUR_FILT_EN) {
1597                /* Clean up spur mitigation settings and disable fliter */
1598                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1599                                        AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1600                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1601                                        AR5K_PHY_IQ_PILOT_MASK_EN |
1602                                        AR5K_PHY_IQ_CHAN_MASK_EN |
1603                                        AR5K_PHY_IQ_SPUR_FILT_EN);
1604                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1605
1606                /* Clear pilot masks */
1607                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1608                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1609                                        AR5K_PHY_TIMING_8_PILOT_MASK_2,
1610                                        0);
1611
1612                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1613                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1614                                        AR5K_PHY_TIMING_10_PILOT_MASK_2,
1615                                        0);
1616
1617                /* Clear magnitude masks */
1618                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1619                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1620                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1621                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1622                                        AR5K_PHY_BIN_MASK_CTL_MASK_4,
1623                                        0);
1624
1625                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1626                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1627                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1628                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1629                                        AR5K_PHY_BIN_MASK2_4_MASK_4,
1630                                        0);
1631        }
1632}
1633
1634/********************\
1635  Misc PHY functions
1636\********************/
1637
1638int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1639{
1640        ATH5K_TRACE(ah->ah_sc);
1641        /*Just a try M.F.*/
1642        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1643
1644        return 0;
1645}
1646
1647/*
1648 * Get the PHY Chip revision
1649 */
1650u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1651{
1652        unsigned int i;
1653        u32 srev;
1654        u16 ret;
1655
1656        ATH5K_TRACE(ah->ah_sc);
1657
1658        /*
1659         * Set the radio chip access register
1660         */
1661        switch (chan) {
1662        case CHANNEL_2GHZ:
1663                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1664                break;
1665        case CHANNEL_5GHZ:
1666                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1667                break;
1668        default:
1669                return 0;
1670        }
1671
1672        mdelay(2);
1673
1674        /* ...wait until PHY is ready and read the selected radio revision */
1675        ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1676
1677        for (i = 0; i < 8; i++)
1678                ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1679
1680        if (ah->ah_version == AR5K_AR5210) {
1681                srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1682                ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1683        } else {
1684                srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1685                ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1686                                ((srev & 0x0f) << 4), 8);
1687        }
1688
1689        /* Reset to the 5GHz mode */
1690        ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1691
1692        return ret;
1693}
1694
1695/*****************\
1696* Antenna control *
1697\*****************/
1698
1699void /*TODO:Boundary check*/
1700ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1701{
1702        ATH5K_TRACE(ah->ah_sc);
1703
1704        if (ah->ah_version != AR5K_AR5210)
1705                ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1706}
1707
1708unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1709{
1710        ATH5K_TRACE(ah->ah_sc);
1711
1712        if (ah->ah_version != AR5K_AR5210)
1713                return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1714
1715        return false; /*XXX: What do we return for 5210 ?*/
1716}
1717
1718/*
1719 * Enable/disable fast rx antenna diversity
1720 */
1721static void
1722ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1723{
1724        switch (ee_mode) {
1725        case AR5K_EEPROM_MODE_11G:
1726                /* XXX: This is set to
1727                 * disabled on initvals !!! */
1728        case AR5K_EEPROM_MODE_11A:
1729                if (enable)
1730                        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1731                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1732                else
1733                        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1734                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1735                break;
1736        case AR5K_EEPROM_MODE_11B:
1737                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1738                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1739                break;
1740        default:
1741                return;
1742        }
1743
1744        if (enable) {
1745                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1746                                AR5K_PHY_RESTART_DIV_GC, 0xc);
1747
1748                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1749                                        AR5K_PHY_FAST_ANT_DIV_EN);
1750        } else {
1751                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1752                                AR5K_PHY_RESTART_DIV_GC, 0x8);
1753
1754                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1755                                        AR5K_PHY_FAST_ANT_DIV_EN);
1756        }
1757}
1758
1759/*
1760 * Set antenna operating mode
1761 */
1762void
1763ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1764{
1765        struct ieee80211_channel *channel = ah->ah_current_channel;
1766        bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1767        bool use_def_for_sg;
1768        u8 def_ant, tx_ant, ee_mode;
1769        u32 sta_id1 = 0;
1770
1771        def_ant = ah->ah_def_ant;
1772
1773        ATH5K_TRACE(ah->ah_sc);
1774
1775        switch (channel->hw_value & CHANNEL_MODES) {
1776        case CHANNEL_A:
1777        case CHANNEL_T:
1778        case CHANNEL_XR:
1779                ee_mode = AR5K_EEPROM_MODE_11A;
1780                break;
1781        case CHANNEL_G:
1782        case CHANNEL_TG:
1783                ee_mode = AR5K_EEPROM_MODE_11G;
1784                break;
1785        case CHANNEL_B:
1786                ee_mode = AR5K_EEPROM_MODE_11B;
1787                break;
1788        default:
1789                ATH5K_ERR(ah->ah_sc,
1790                        "invalid channel: %d\n", channel->center_freq);
1791                return;
1792        }
1793
1794        switch (ant_mode) {
1795        case AR5K_ANTMODE_DEFAULT:
1796                tx_ant = 0;
1797                use_def_for_tx = false;
1798                update_def_on_tx = false;
1799                use_def_for_rts = false;
1800                use_def_for_sg = false;
1801                fast_div = true;
1802                break;
1803        case AR5K_ANTMODE_FIXED_A:
1804                def_ant = 1;
1805                tx_ant = 0;
1806                use_def_for_tx = true;
1807                update_def_on_tx = false;
1808                use_def_for_rts = true;
1809                use_def_for_sg = true;
1810                fast_div = false;
1811                break;
1812        case AR5K_ANTMODE_FIXED_B:
1813                def_ant = 2;
1814                tx_ant = 0;
1815                use_def_for_tx = true;
1816                update_def_on_tx = false;
1817                use_def_for_rts = true;
1818                use_def_for_sg = true;
1819                fast_div = false;
1820                break;
1821        case AR5K_ANTMODE_SINGLE_AP:
1822                def_ant = 1;    /* updated on tx */
1823                tx_ant = 0;
1824                use_def_for_tx = true;
1825                update_def_on_tx = true;
1826                use_def_for_rts = true;
1827                use_def_for_sg = true;
1828                fast_div = true;
1829                break;
1830        case AR5K_ANTMODE_SECTOR_AP:
1831                tx_ant = 1;     /* variable */
1832                use_def_for_tx = false;
1833                update_def_on_tx = false;
1834                use_def_for_rts = true;
1835                use_def_for_sg = false;
1836                fast_div = false;
1837                break;
1838        case AR5K_ANTMODE_SECTOR_STA:
1839                tx_ant = 1;     /* variable */
1840                use_def_for_tx = true;
1841                update_def_on_tx = false;
1842                use_def_for_rts = true;
1843                use_def_for_sg = false;
1844                fast_div = true;
1845                break;
1846        case AR5K_ANTMODE_DEBUG:
1847                def_ant = 1;
1848                tx_ant = 2;
1849                use_def_for_tx = false;
1850                update_def_on_tx = false;
1851                use_def_for_rts = false;
1852                use_def_for_sg = false;
1853                fast_div = false;
1854                break;
1855        default:
1856                return;
1857        }
1858
1859        ah->ah_tx_ant = tx_ant;
1860        ah->ah_ant_mode = ant_mode;
1861
1862        sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1863        sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1864        sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1865        sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1866
1867        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1868
1869        if (sta_id1)
1870                AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1871
1872        /* Note: set diversity before default antenna
1873         * because it won't work correctly */
1874        ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1875        ath5k_hw_set_def_antenna(ah, def_ant);
1876}
1877
1878
1879/****************\
1880* TX power setup *
1881\****************/
1882
1883/*
1884 * Helper functions
1885 */
1886
1887/*
1888 * Do linear interpolation between two given (x, y) points
1889 */
1890static s16
1891ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1892                                        s16 y_left, s16 y_right)
1893{
1894        s16 ratio, result;
1895
1896        /* Avoid divide by zero and skip interpolation
1897         * if we have the same point */
1898        if ((x_left == x_right) || (y_left == y_right))
1899                return y_left;
1900
1901        /*
1902         * Since we use ints and not fps, we need to scale up in
1903         * order to get a sane ratio value (or else we 'll eg. get
1904         * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1905         * to have some accuracy both for 0.5 and 0.25 steps.
1906         */
1907        ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1908
1909        /* Now scale down to be in range */
1910        result = y_left + (ratio * (target - x_left) / 100);
1911
1912        return result;
1913}
1914
1915/*
1916 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1917 *
1918 * Since we have the top of the curve and we draw the line below
1919 * until we reach 1 (1 pcdac step) we need to know which point
1920 * (x value) that is so that we don't go below y axis and have negative
1921 * pcdac values when creating the curve, or fill the table with zeroes.
1922 */
1923static s16
1924ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1925                                const s16 *pwrL, const s16 *pwrR)
1926{
1927        s8 tmp;
1928        s16 min_pwrL, min_pwrR;
1929        s16 pwr_i;
1930
1931        /* Some vendors write the same pcdac value twice !!! */
1932        if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1933                return max(pwrL[0], pwrR[0]);
1934
1935        if (pwrL[0] == pwrL[1])
1936                min_pwrL = pwrL[0];
1937        else {
1938                pwr_i = pwrL[0];
1939                do {
1940                        pwr_i--;
1941                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1942                                                        pwrL[0], pwrL[1],
1943                                                        stepL[0], stepL[1]);
1944                } while (tmp > 1);
1945
1946                min_pwrL = pwr_i;
1947        }
1948
1949        if (pwrR[0] == pwrR[1])
1950                min_pwrR = pwrR[0];
1951        else {
1952                pwr_i = pwrR[0];
1953                do {
1954                        pwr_i--;
1955                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1956                                                        pwrR[0], pwrR[1],
1957                                                        stepR[0], stepR[1]);
1958                } while (tmp > 1);
1959
1960                min_pwrR = pwr_i;
1961        }
1962
1963        /* Keep the right boundary so that it works for both curves */
1964        return max(min_pwrL, min_pwrR);
1965}
1966
1967/*
1968 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1969 * Power to PCDAC curve.
1970 *
1971 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1972 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1973 * PCDAC/PDADC step for each curve is 64 but we can write more than
1974 * one curves on hw so we can go up to 128 (which is the max step we
1975 * can write on the final table).
1976 *
1977 * We write y values (PCDAC/PDADC steps) on hw.
1978 */
1979static void
1980ath5k_create_power_curve(s16 pmin, s16 pmax,
1981                        const s16 *pwr, const u8 *vpd,
1982                        u8 num_points,
1983                        u8 *vpd_table, u8 type)
1984{
1985        u8 idx[2] = { 0, 1 };
1986        s16 pwr_i = 2*pmin;
1987        int i;
1988
1989        if (num_points < 2)
1990                return;
1991
1992        /* We want the whole line, so adjust boundaries
1993         * to cover the entire power range. Note that
1994         * power values are already 0.25dB so no need
1995         * to multiply pwr_i by 2 */
1996        if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1997                pwr_i = pmin;
1998                pmin = 0;
1999                pmax = 63;
2000        }
2001
2002        /* Find surrounding turning points (TPs)
2003         * and interpolate between them */
2004        for (i = 0; (i <= (u16) (pmax - pmin)) &&
2005        (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2006
2007                /* We passed the right TP, move to the next set of TPs
2008                 * if we pass the last TP, extrapolate above using the last
2009                 * two TPs for ratio */
2010                if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2011                        idx[0]++;
2012                        idx[1]++;
2013                }
2014
2015                vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2016                                                pwr[idx[0]], pwr[idx[1]],
2017                                                vpd[idx[0]], vpd[idx[1]]);
2018
2019                /* Increase by 0.5dB
2020                 * (0.25 dB units) */
2021                pwr_i += 2;
2022        }
2023}
2024
2025/*
2026 * Get the surrounding per-channel power calibration piers
2027 * for a given frequency so that we can interpolate between
2028 * them and come up with an apropriate dataset for our current
2029 * channel.
2030 */
2031static void
2032ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2033                        struct ieee80211_channel *channel,
2034                        struct ath5k_chan_pcal_info **pcinfo_l,
2035                        struct ath5k_chan_pcal_info **pcinfo_r)
2036{
2037        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2038        struct ath5k_chan_pcal_info *pcinfo;
2039        u8 idx_l, idx_r;
2040        u8 mode, max, i;
2041        u32 target = channel->center_freq;
2042
2043        idx_l = 0;
2044        idx_r = 0;
2045
2046        if (!(channel->hw_value & CHANNEL_OFDM)) {
2047                pcinfo = ee->ee_pwr_cal_b;
2048                mode = AR5K_EEPROM_MODE_11B;
2049        } else if (channel->hw_value & CHANNEL_2GHZ) {
2050                pcinfo = ee->ee_pwr_cal_g;
2051                mode = AR5K_EEPROM_MODE_11G;
2052        } else {
2053                pcinfo = ee->ee_pwr_cal_a;
2054                mode = AR5K_EEPROM_MODE_11A;
2055        }
2056        max = ee->ee_n_piers[mode] - 1;
2057
2058        /* Frequency is below our calibrated
2059         * range. Use the lowest power curve
2060         * we have */
2061        if (target < pcinfo[0].freq) {
2062                idx_l = idx_r = 0;
2063                goto done;
2064        }
2065
2066        /* Frequency is above our calibrated
2067         * range. Use the highest power curve
2068         * we have */
2069        if (target > pcinfo[max].freq) {
2070                idx_l = idx_r = max;
2071                goto done;
2072        }
2073
2074        /* Frequency is inside our calibrated
2075         * channel range. Pick the surrounding
2076         * calibration piers so that we can
2077         * interpolate */
2078        for (i = 0; i <= max; i++) {
2079
2080                /* Frequency matches one of our calibration
2081                 * piers, no need to interpolate, just use
2082                 * that calibration pier */
2083                if (pcinfo[i].freq == target) {
2084                        idx_l = idx_r = i;
2085                        goto done;
2086                }
2087
2088                /* We found a calibration pier that's above
2089                 * frequency, use this pier and the previous
2090                 * one to interpolate */
2091                if (target < pcinfo[i].freq) {
2092                        idx_r = i;
2093                        idx_l = idx_r - 1;
2094                        goto done;
2095                }
2096        }
2097
2098done:
2099        *pcinfo_l = &pcinfo[idx_l];
2100        *pcinfo_r = &pcinfo[idx_r];
2101
2102        return;
2103}
2104
2105/*
2106 * Get the surrounding per-rate power calibration data
2107 * for a given frequency and interpolate between power
2108 * values to set max target power supported by hw for
2109 * each rate.
2110 */
2111static void
2112ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2113                        struct ieee80211_channel *channel,
2114                        struct ath5k_rate_pcal_info *rates)
2115{
2116        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2117        struct ath5k_rate_pcal_info *rpinfo;
2118        u8 idx_l, idx_r;
2119        u8 mode, max, i;
2120        u32 target = channel->center_freq;
2121
2122        idx_l = 0;
2123        idx_r = 0;
2124
2125        if (!(channel->hw_value & CHANNEL_OFDM)) {
2126                rpinfo = ee->ee_rate_tpwr_b;
2127                mode = AR5K_EEPROM_MODE_11B;
2128        } else if (channel->hw_value & CHANNEL_2GHZ) {
2129                rpinfo = ee->ee_rate_tpwr_g;
2130                mode = AR5K_EEPROM_MODE_11G;
2131        } else {
2132                rpinfo = ee->ee_rate_tpwr_a;
2133                mode = AR5K_EEPROM_MODE_11A;
2134        }
2135        max = ee->ee_rate_target_pwr_num[mode] - 1;
2136
2137        /* Get the surrounding calibration
2138         * piers - same as above */
2139        if (target < rpinfo[0].freq) {
2140                idx_l = idx_r = 0;
2141                goto done;
2142        }
2143
2144        if (target > rpinfo[max].freq) {
2145                idx_l = idx_r = max;
2146                goto done;
2147        }
2148
2149        for (i = 0; i <= max; i++) {
2150
2151                if (rpinfo[i].freq == target) {
2152                        idx_l = idx_r = i;
2153                        goto done;
2154                }
2155
2156                if (target < rpinfo[i].freq) {
2157                        idx_r = i;
2158                        idx_l = idx_r - 1;
2159                        goto done;
2160                }
2161        }
2162
2163done:
2164        /* Now interpolate power value, based on the frequency */
2165        rates->freq = target;
2166
2167        rates->target_power_6to24 =
2168                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2169                                        rpinfo[idx_r].freq,
2170                                        rpinfo[idx_l].target_power_6to24,
2171                                        rpinfo[idx_r].target_power_6to24);
2172
2173        rates->target_power_36 =
2174                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2175                                        rpinfo[idx_r].freq,
2176                                        rpinfo[idx_l].target_power_36,
2177                                        rpinfo[idx_r].target_power_36);
2178
2179        rates->target_power_48 =
2180                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2181                                        rpinfo[idx_r].freq,
2182                                        rpinfo[idx_l].target_power_48,
2183                                        rpinfo[idx_r].target_power_48);
2184
2185        rates->target_power_54 =
2186                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2187                                        rpinfo[idx_r].freq,
2188                                        rpinfo[idx_l].target_power_54,
2189                                        rpinfo[idx_r].target_power_54);
2190}
2191
2192/*
2193 * Get the max edge power for this channel if
2194 * we have such data from EEPROM's Conformance Test
2195 * Limits (CTL), and limit max power if needed.
2196 */
2197static void
2198ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2199                        struct ieee80211_channel *channel)
2200{
2201        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2202        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2203        struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2204        u8 *ctl_val = ee->ee_ctl;
2205        s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2206        s16 edge_pwr = 0;
2207        u8 rep_idx;
2208        u8 i, ctl_mode;
2209        u8 ctl_idx = 0xFF;
2210        u32 target = channel->center_freq;
2211
2212        ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2213
2214        switch (channel->hw_value & CHANNEL_MODES) {
2215        case CHANNEL_A:
2216                ctl_mode |= AR5K_CTL_11A;
2217                break;
2218        case CHANNEL_G:
2219                ctl_mode |= AR5K_CTL_11G;
2220                break;
2221        case CHANNEL_B:
2222                ctl_mode |= AR5K_CTL_11B;
2223                break;
2224        case CHANNEL_T:
2225                ctl_mode |= AR5K_CTL_TURBO;
2226                break;
2227        case CHANNEL_TG:
2228                ctl_mode |= AR5K_CTL_TURBOG;
2229                break;
2230        case CHANNEL_XR:
2231                /* Fall through */
2232        default:
2233                return;
2234        }
2235
2236        for (i = 0; i < ee->ee_ctls; i++) {
2237                if (ctl_val[i] == ctl_mode) {
2238                        ctl_idx = i;
2239                        break;
2240                }
2241        }
2242
2243        /* If we have a CTL dataset available grab it and find the
2244         * edge power for our frequency */
2245        if (ctl_idx == 0xFF)
2246                return;
2247
2248        /* Edge powers are sorted by frequency from lower
2249         * to higher. Each CTL corresponds to 8 edge power
2250         * measurements. */
2251        rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2252
2253        /* Don't do boundaries check because we
2254         * might have more that one bands defined
2255         * for this mode */
2256
2257        /* Get the edge power that's closer to our
2258         * frequency */
2259        for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2260                rep_idx += i;
2261                if (target <= rep[rep_idx].freq)
2262                        edge_pwr = (s16) rep[rep_idx].edge;
2263        }
2264
2265        if (edge_pwr)
2266                ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2267}
2268
2269
2270/*
2271 * Power to PCDAC table functions
2272 */
2273
2274/*
2275 * Fill Power to PCDAC table on RF5111
2276 *
2277 * No further processing is needed for RF5111, the only thing we have to
2278 * do is fill the values below and above calibration range since eeprom data
2279 * may not cover the entire PCDAC table.
2280 */
2281static void
2282ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2283                                                        s16 *table_max)
2284{
2285        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2286        u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2287        u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2288        s16     min_pwr, max_pwr;
2289
2290        /* Get table boundaries */
2291        min_pwr = table_min[0];
2292        pcdac_0 = pcdac_tmp[0];
2293
2294        max_pwr = table_max[0];
2295        pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2296
2297        /* Extrapolate below minimum using pcdac_0 */
2298        pcdac_i = 0;
2299        for (i = 0; i < min_pwr; i++)
2300                pcdac_out[pcdac_i++] = pcdac_0;
2301
2302        /* Copy values from pcdac_tmp */
2303        pwr_idx = min_pwr;
2304        for (i = 0 ; pwr_idx <= max_pwr &&
2305        pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2306                pcdac_out[pcdac_i++] = pcdac_tmp[i];
2307                pwr_idx++;
2308        }
2309
2310        /* Extrapolate above maximum */
2311        while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2312                pcdac_out[pcdac_i++] = pcdac_n;
2313
2314}
2315
2316/*
2317 * Combine available XPD Curves and fill Linear Power to PCDAC table
2318 * on RF5112
2319 *
2320 * RFX112 can have up to 2 curves (one for low txpower range and one for
2321 * higher txpower range). We need to put them both on pcdac_out and place
2322 * them in the correct location. In case we only have one curve available
2323 * just fit it on pcdac_out (it's supposed to cover the entire range of
2324 * available pwr levels since it's always the higher power curve). Extrapolate
2325 * below and above final table if needed.
2326 */
2327static void
2328ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2329                                                s16 *table_max, u8 pdcurves)
2330{
2331        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2332        u8      *pcdac_low_pwr;
2333        u8      *pcdac_high_pwr;
2334        u8      *pcdac_tmp;
2335        u8      pwr;
2336        s16     max_pwr_idx;
2337        s16     min_pwr_idx;
2338        s16     mid_pwr_idx = 0;
2339        /* Edge flag turs on the 7nth bit on the PCDAC
2340         * to delcare the higher power curve (force values
2341         * to be greater than 64). If we only have one curve
2342         * we don't need to set this, if we have 2 curves and
2343         * fill the table backwards this can also be used to
2344         * switch from higher power curve to lower power curve */
2345        u8      edge_flag;
2346        int     i;
2347
2348        /* When we have only one curve available
2349         * that's the higher power curve. If we have
2350         * two curves the first is the high power curve
2351         * and the next is the low power curve. */
2352        if (pdcurves > 1) {
2353                pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2354                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2355                mid_pwr_idx = table_max[1] - table_min[1] - 1;
2356                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2357
2358                /* If table size goes beyond 31.5dB, keep the
2359                 * upper 31.5dB range when setting tx power.
2360                 * Note: 126 = 31.5 dB in quarter dB steps */
2361                if (table_max[0] - table_min[1] > 126)
2362                        min_pwr_idx = table_max[0] - 126;
2363                else
2364                        min_pwr_idx = table_min[1];
2365
2366                /* Since we fill table backwards
2367                 * start from high power curve */
2368                pcdac_tmp = pcdac_high_pwr;
2369
2370                edge_flag = 0x40;
2371#if 0
2372                /* If both min and max power limits are in lower
2373                 * power curve's range, only use the low power curve.
2374                 * TODO: min/max levels are related to target
2375                 * power values requested from driver/user
2376                 * XXX: Is this really needed ? */
2377                if (min_pwr < table_max[1] &&
2378                max_pwr < table_max[1]) {
2379                        edge_flag = 0;
2380                        pcdac_tmp = pcdac_low_pwr;
2381                        max_pwr_idx = (table_max[1] - table_min[1])/2;
2382                }
2383#endif
2384        } else {
2385                pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2386                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2387                min_pwr_idx = table_min[0];
2388                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2389                pcdac_tmp = pcdac_high_pwr;
2390                edge_flag = 0;
2391        }
2392
2393        /* This is used when setting tx power*/
2394        ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2395
2396        /* Fill Power to PCDAC table backwards */
2397        pwr = max_pwr_idx;
2398        for (i = 63; i >= 0; i--) {
2399                /* Entering lower power range, reset
2400                 * edge flag and set pcdac_tmp to lower
2401                 * power curve.*/
2402                if (edge_flag == 0x40 &&
2403                (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2404                        edge_flag = 0x00;
2405                        pcdac_tmp = pcdac_low_pwr;
2406                        pwr = mid_pwr_idx/2;
2407                }
2408
2409                /* Don't go below 1, extrapolate below if we have
2410                 * already swithced to the lower power curve -or
2411                 * we only have one curve and edge_flag is zero
2412                 * anyway */
2413                if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2414                        while (i >= 0) {
2415                                pcdac_out[i] = pcdac_out[i + 1];
2416                                i--;
2417                        }
2418                        break;
2419                }
2420
2421                pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2422
2423                /* Extrapolate above if pcdac is greater than
2424                 * 126 -this can happen because we OR pcdac_out
2425                 * value with edge_flag on high power curve */
2426                if (pcdac_out[i] > 126)
2427                        pcdac_out[i] = 126;
2428
2429                /* Decrease by a 0.5dB step */
2430                pwr--;
2431        }
2432}
2433
2434/* Write PCDAC values on hw */
2435static void
2436ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2437{
2438        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2439        int     i;
2440
2441        /*
2442         * Write TX power values
2443         */
2444        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2445                ath5k_hw_reg_write(ah,
2446                        (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2447                        (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2448                        AR5K_PHY_PCDAC_TXPOWER(i));
2449        }
2450}
2451
2452
2453/*
2454 * Power to PDADC table functions
2455 */
2456
2457/*
2458 * Set the gain boundaries and create final Power to PDADC table
2459 *
2460 * We can have up to 4 pd curves, we need to do a simmilar process
2461 * as we do for RF5112. This time we don't have an edge_flag but we
2462 * set the gain boundaries on a separate register.
2463 */
2464static void
2465ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2466                        s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2467{
2468        u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2469        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2470        u8 *pdadc_tmp;
2471        s16 pdadc_0;
2472        u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2473        u8 pd_gain_overlap;
2474
2475        /* Note: Register value is initialized on initvals
2476         * there is no feedback from hw.
2477         * XXX: What about pd_gain_overlap from EEPROM ? */
2478        pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2479                AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2480
2481        /* Create final PDADC table */
2482        for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2483                pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2484
2485                if (pdg == pdcurves - 1)
2486                        /* 2 dB boundary stretch for last
2487                         * (higher power) curve */
2488                        gain_boundaries[pdg] = pwr_max[pdg] + 4;
2489                else
2490                        /* Set gain boundary in the middle
2491                         * between this curve and the next one */
2492                        gain_boundaries[pdg] =
2493                                (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2494
2495                /* Sanity check in case our 2 db stretch got out of
2496                 * range. */
2497                if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2498                        gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2499
2500                /* For the first curve (lower power)
2501                 * start from 0 dB */
2502                if (pdg == 0)
2503                        pdadc_0 = 0;
2504                else
2505                        /* For the other curves use the gain overlap */
2506                        pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2507                                                        pd_gain_overlap;
2508
2509                /* Force each power step to be at least 0.5 dB */
2510                if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2511                        pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2512                else
2513                        pwr_step = 1;
2514
2515                /* If pdadc_0 is negative, we need to extrapolate
2516                 * below this pdgain by a number of pwr_steps */
2517                while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2518                        s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2519                        pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2520                        pdadc_0++;
2521                }
2522
2523                /* Set last pwr level, using gain boundaries */
2524                pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2525                /* Limit it to be inside pwr range */
2526                table_size = pwr_max[pdg] - pwr_min[pdg];
2527                max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2528
2529                /* Fill pdadc_out table */
2530                while (pdadc_0 < max_idx)
2531                        pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2532
2533                /* Need to extrapolate above this pdgain? */
2534                if (pdadc_n <= max_idx)
2535                        continue;
2536
2537                /* Force each power step to be at least 0.5 dB */
2538                if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2539                        pwr_step = pdadc_tmp[table_size - 1] -
2540                                                pdadc_tmp[table_size - 2];
2541                else
2542                        pwr_step = 1;
2543
2544                /* Extrapolate above */
2545                while ((pdadc_0 < (s16) pdadc_n) &&
2546                (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2547                        s16 tmp = pdadc_tmp[table_size - 1] +
2548                                        (pdadc_0 - max_idx) * pwr_step;
2549                        pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2550                        pdadc_0++;
2551                }
2552        }
2553
2554        while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2555                gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2556                pdg++;
2557        }
2558
2559        while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2560                pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2561                pdadc_i++;
2562        }
2563
2564        /* Set gain boundaries */
2565        ath5k_hw_reg_write(ah,
2566                AR5K_REG_SM(pd_gain_overlap,
2567                        AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2568                AR5K_REG_SM(gain_boundaries[0],
2569                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2570                AR5K_REG_SM(gain_boundaries[1],
2571                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2572                AR5K_REG_SM(gain_boundaries[2],
2573                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2574                AR5K_REG_SM(gain_boundaries[3],
2575                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2576                AR5K_PHY_TPC_RG5);
2577
2578        /* Used for setting rate power table */
2579        ah->ah_txpower.txp_min_idx = pwr_min[0];
2580
2581}
2582
2583/* Write PDADC values on hw */
2584static void
2585ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2586                        u8 pdcurves, u8 *pdg_to_idx)
2587{
2588        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2589        u32 reg;
2590        u8 i;
2591
2592        /* Select the right pdgain curves */
2593
2594        /* Clear current settings */
2595        reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2596        reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2597                AR5K_PHY_TPC_RG1_PDGAIN_2 |
2598                AR5K_PHY_TPC_RG1_PDGAIN_3 |
2599                AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2600
2601        /*
2602         * Use pd_gains curve from eeprom
2603         *
2604         * This overrides the default setting from initvals
2605         * in case some vendors (e.g. Zcomax) don't use the default
2606         * curves. If we don't honor their settings we 'll get a
2607         * 5dB (1 * gain overlap ?) drop.
2608         */
2609        reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2610
2611        switch (pdcurves) {
2612        case 3:
2613                reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2614                /* Fall through */
2615        case 2:
2616                reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2617                /* Fall through */
2618        case 1:
2619                reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2620                break;
2621        }
2622        ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2623
2624        /*
2625         * Write TX power values
2626         */
2627        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2628                ath5k_hw_reg_write(ah,
2629                        ((pdadc_out[4*i + 0] & 0xff) << 0) |
2630                        ((pdadc_out[4*i + 1] & 0xff) << 8) |
2631                        ((pdadc_out[4*i + 2] & 0xff) << 16) |
2632                        ((pdadc_out[4*i + 3] & 0xff) << 24),
2633                        AR5K_PHY_PDADC_TXPOWER(i));
2634        }
2635}
2636
2637
2638/*
2639 * Common code for PCDAC/PDADC tables
2640 */
2641
2642/*
2643 * This is the main function that uses all of the above
2644 * to set PCDAC/PDADC table on hw for the current channel.
2645 * This table is used for tx power calibration on the basband,
2646 * without it we get weird tx power levels and in some cases
2647 * distorted spectral mask
2648 */
2649static int
2650ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2651                        struct ieee80211_channel *channel,
2652                        u8 ee_mode, u8 type)
2653{
2654        struct ath5k_pdgain_info *pdg_L, *pdg_R;
2655        struct ath5k_chan_pcal_info *pcinfo_L;
2656        struct ath5k_chan_pcal_info *pcinfo_R;
2657        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2658        u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2659        s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2660        s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2661        u8 *tmpL;
2662        u8 *tmpR;
2663        u32 target = channel->center_freq;
2664        int pdg, i;
2665
2666        /* Get surounding freq piers for this channel */
2667        ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2668                                                &pcinfo_L,
2669                                                &pcinfo_R);
2670
2671        /* Loop over pd gain curves on
2672         * surounding freq piers by index */
2673        for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2674
2675                /* Fill curves in reverse order
2676                 * from lower power (max gain)
2677                 * to higher power. Use curve -> idx
2678                 * backmaping we did on eeprom init */
2679                u8 idx = pdg_curve_to_idx[pdg];
2680
2681                /* Grab the needed curves by index */
2682                pdg_L = &pcinfo_L->pd_curves[idx];
2683                pdg_R = &pcinfo_R->pd_curves[idx];
2684
2685                /* Initialize the temp tables */
2686                tmpL = ah->ah_txpower.tmpL[pdg];
2687                tmpR = ah->ah_txpower.tmpR[pdg];
2688
2689                /* Set curve's x boundaries and create
2690                 * curves so that they cover the same
2691                 * range (if we don't do that one table
2692                 * will have values on some range and the
2693                 * other one won't have any so interpolation
2694                 * will fail) */
2695                table_min[pdg] = min(pdg_L->pd_pwr[0],
2696                                        pdg_R->pd_pwr[0]) / 2;
2697
2698                table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2699                                pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2700
2701                /* Now create the curves on surrounding channels
2702                 * and interpolate if needed to get the final
2703                 * curve for this gain on this channel */
2704                switch (type) {
2705                case AR5K_PWRTABLE_LINEAR_PCDAC:
2706                        /* Override min/max so that we don't loose
2707                         * accuracy (don't divide by 2) */
2708                        table_min[pdg] = min(pdg_L->pd_pwr[0],
2709                                                pdg_R->pd_pwr[0]);
2710
2711                        table_max[pdg] =
2712                                max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2713                                        pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2714
2715                        /* Override minimum so that we don't get
2716                         * out of bounds while extrapolating
2717                         * below. Don't do this when we have 2
2718                         * curves and we are on the high power curve
2719                         * because table_min is ok in this case */
2720                        if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2721
2722                                table_min[pdg] =
2723                                        ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2724                                                                pdg_R->pd_step,
2725                                                                pdg_L->pd_pwr,
2726                                                                pdg_R->pd_pwr);
2727
2728                                /* Don't go too low because we will
2729                                 * miss the upper part of the curve.
2730                                 * Note: 126 = 31.5dB (max power supported)
2731                                 * in 0.25dB units */
2732                                if (table_max[pdg] - table_min[pdg] > 126)
2733                                        table_min[pdg] = table_max[pdg] - 126;
2734                        }
2735
2736                        /* Fall through */
2737                case AR5K_PWRTABLE_PWR_TO_PCDAC:
2738                case AR5K_PWRTABLE_PWR_TO_PDADC:
2739
2740                        ath5k_create_power_curve(table_min[pdg],
2741                                                table_max[pdg],
2742                                                pdg_L->pd_pwr,
2743                                                pdg_L->pd_step,
2744                                                pdg_L->pd_points, tmpL, type);
2745
2746                        /* We are in a calibration
2747                         * pier, no need to interpolate
2748                         * between freq piers */
2749                        if (pcinfo_L == pcinfo_R)
2750                                continue;
2751
2752                        ath5k_create_power_curve(table_min[pdg],
2753                                                table_max[pdg],
2754                                                pdg_R->pd_pwr,
2755                                                pdg_R->pd_step,
2756                                                pdg_R->pd_points, tmpR, type);
2757                        break;
2758                default:
2759                        return -EINVAL;
2760                }
2761
2762                /* Interpolate between curves
2763                 * of surounding freq piers to
2764                 * get the final curve for this
2765                 * pd gain. Re-use tmpL for interpolation
2766                 * output */
2767                for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2768                (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2769                        tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2770                                                        (s16) pcinfo_L->freq,
2771                                                        (s16) pcinfo_R->freq,
2772                                                        (s16) tmpL[i],
2773                                                        (s16) tmpR[i]);
2774                }
2775        }
2776
2777        /* Now we have a set of curves for this
2778         * channel on tmpL (x range is table_max - table_min
2779         * and y values are tmpL[pdg][]) sorted in the same
2780         * order as EEPROM (because we've used the backmaping).
2781         * So for RF5112 it's from higher power to lower power
2782         * and for RF2413 it's from lower power to higher power.
2783         * For RF5111 we only have one curve. */
2784
2785        /* Fill min and max power levels for this
2786         * channel by interpolating the values on
2787         * surounding channels to complete the dataset */
2788        ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2789                                        (s16) pcinfo_L->freq,
2790                                        (s16) pcinfo_R->freq,
2791                                        pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2792
2793        ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2794                                        (s16) pcinfo_L->freq,
2795                                        (s16) pcinfo_R->freq,
2796                                        pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2797
2798        /* We are ready to go, fill PCDAC/PDADC
2799         * table and write settings on hardware */
2800        switch (type) {
2801        case AR5K_PWRTABLE_LINEAR_PCDAC:
2802                /* For RF5112 we can have one or two curves
2803                 * and each curve covers a certain power lvl
2804                 * range so we need to do some more processing */
2805                ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2806                                                ee->ee_pd_gains[ee_mode]);
2807
2808                /* Set txp.offset so that we can
2809                 * match max power value with max
2810                 * table index */
2811                ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2812
2813                /* Write settings on hw */
2814                ath5k_setup_pcdac_table(ah);
2815                break;
2816        case AR5K_PWRTABLE_PWR_TO_PCDAC:
2817                /* We are done for RF5111 since it has only
2818                 * one curve, just fit the curve on the table */
2819                ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2820
2821                /* No rate powertable adjustment for RF5111 */
2822                ah->ah_txpower.txp_min_idx = 0;
2823                ah->ah_txpower.txp_offset = 0;
2824
2825                /* Write settings on hw */
2826                ath5k_setup_pcdac_table(ah);
2827                break;
2828        case AR5K_PWRTABLE_PWR_TO_PDADC:
2829                /* Set PDADC boundaries and fill
2830                 * final PDADC table */
2831                ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2832                                                ee->ee_pd_gains[ee_mode]);
2833
2834                /* Write settings on hw */
2835                ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2836
2837                /* Set txp.offset, note that table_min
2838                 * can be negative */
2839                ah->ah_txpower.txp_offset = table_min[0];
2840                break;
2841        default:
2842                return -EINVAL;
2843        }
2844
2845        return 0;
2846}
2847
2848
2849/*
2850 * Per-rate tx power setting
2851 *
2852 * This is the code that sets the desired tx power (below
2853 * maximum) on hw for each rate (we also have TPC that sets
2854 * power per packet). We do that by providing an index on the
2855 * PCDAC/PDADC table we set up.
2856 */
2857
2858/*
2859 * Set rate power table
2860 *
2861 * For now we only limit txpower based on maximum tx power
2862 * supported by hw (what's inside rate_info). We need to limit
2863 * this even more, based on regulatory domain etc.
2864 *
2865 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2866 * and is indexed as follows:
2867 * rates[0] - rates[7] -> OFDM rates
2868 * rates[8] - rates[14] -> CCK rates
2869 * rates[15] -> XR rates (they all have the same power)
2870 */
2871static void
2872ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2873                        struct ath5k_rate_pcal_info *rate_info,
2874                        u8 ee_mode)
2875{
2876        unsigned int i;
2877        u16 *rates;
2878
2879        /* max_pwr is power level we got from driver/user in 0.5dB
2880         * units, switch to 0.25dB units so we can compare */
2881        max_pwr *= 2;
2882        max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2883
2884        /* apply rate limits */
2885        rates = ah->ah_txpower.txp_rates_power_table;
2886
2887        /* OFDM rates 6 to 24Mb/s */
2888        for (i = 0; i < 5; i++)
2889                rates[i] = min(max_pwr, rate_info->target_power_6to24);
2890
2891        /* Rest OFDM rates */
2892        rates[5] = min(rates[0], rate_info->target_power_36);
2893        rates[6] = min(rates[0], rate_info->target_power_48);
2894        rates[7] = min(rates[0], rate_info->target_power_54);
2895
2896        /* CCK rates */
2897        /* 1L */
2898        rates[8] = min(rates[0], rate_info->target_power_6to24);
2899        /* 2L */
2900        rates[9] = min(rates[0], rate_info->target_power_36);
2901        /* 2S */
2902        rates[10] = min(rates[0], rate_info->target_power_36);
2903        /* 5L */
2904        rates[11] = min(rates[0], rate_info->target_power_48);
2905        /* 5S */
2906        rates[12] = min(rates[0], rate_info->target_power_48);
2907        /* 11L */
2908        rates[13] = min(rates[0], rate_info->target_power_54);
2909        /* 11S */
2910        rates[14] = min(rates[0], rate_info->target_power_54);
2911
2912        /* XR rates */
2913        rates[15] = min(rates[0], rate_info->target_power_6to24);
2914
2915        /* CCK rates have different peak to average ratio
2916         * so we have to tweak their power so that gainf
2917         * correction works ok. For this we use OFDM to
2918         * CCK delta from eeprom */
2919        if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2920        (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2921                for (i = 8; i <= 15; i++)
2922                        rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2923
2924        /* Now that we have all rates setup use table offset to
2925         * match the power range set by user with the power indices
2926         * on PCDAC/PDADC table */
2927        for (i = 0; i < 16; i++) {
2928                rates[i] += ah->ah_txpower.txp_offset;
2929                /* Don't get out of bounds */
2930                if (rates[i] > 63)
2931                        rates[i] = 63;
2932        }
2933
2934        /* Min/max in 0.25dB units */
2935        ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2936        ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2937        ah->ah_txpower.txp_ofdm = rates[7];
2938}
2939
2940
2941/*
2942 * Set transmition power
2943 */
2944int
2945ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2946                u8 ee_mode, u8 txpower)
2947{
2948        struct ath5k_rate_pcal_info rate_info;
2949        u8 type;
2950        int ret;
2951
2952        ATH5K_TRACE(ah->ah_sc);
2953        if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2954                ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2955                return -EINVAL;
2956        }
2957        if (txpower == 0)
2958                txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2959
2960        /* Reset TX power values */
2961        memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2962        ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2963        ah->ah_txpower.txp_min_pwr = 0;
2964        ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2965
2966        /* Initialize TX power table */
2967        switch (ah->ah_radio) {
2968        case AR5K_RF5111:
2969                type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2970                break;
2971        case AR5K_RF5112:
2972                type = AR5K_PWRTABLE_LINEAR_PCDAC;
2973                break;
2974        case AR5K_RF2413:
2975        case AR5K_RF5413:
2976        case AR5K_RF2316:
2977        case AR5K_RF2317:
2978        case AR5K_RF2425:
2979                type = AR5K_PWRTABLE_PWR_TO_PDADC;
2980                break;
2981        default:
2982                return -EINVAL;
2983        }
2984
2985        /* FIXME: Only on channel/mode change */
2986        ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2987        if (ret)
2988                return ret;
2989
2990        /* Limit max power if we have a CTL available */
2991        ath5k_get_max_ctl_power(ah, channel);
2992
2993        /* FIXME: Tx power limit for this regdomain
2994         * XXX: Mac80211/CRDA will do that anyway ? */
2995
2996        /* FIXME: Antenna reduction stuff */
2997
2998        /* FIXME: Limit power on turbo modes */
2999
3000        /* FIXME: TPC scale reduction */
3001
3002        /* Get surounding channels for per-rate power table
3003         * calibration */
3004        ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3005
3006        /* Setup rate power table */
3007        ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3008
3009        /* Write rate power table on hw */
3010        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3011                AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3012                AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3013
3014        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3015                AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3016                AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3017
3018        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3019                AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3020                AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3021
3022        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3023                AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3024                AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3025
3026        /* FIXME: TPC support */
3027        if (ah->ah_txpower.txp_tpc) {
3028                ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3029                        AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3030
3031                ath5k_hw_reg_write(ah,
3032                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3033                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3034                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3035                        AR5K_TPC);
3036        } else {
3037                ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3038                        AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3039        }
3040
3041        return 0;
3042}
3043
3044int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3045{
3046        /*Just a try M.F.*/
3047        struct ieee80211_channel *channel = ah->ah_current_channel;
3048        u8 ee_mode;
3049
3050        ATH5K_TRACE(ah->ah_sc);
3051
3052        switch (channel->hw_value & CHANNEL_MODES) {
3053        case CHANNEL_A:
3054        case CHANNEL_T:
3055        case CHANNEL_XR:
3056                ee_mode = AR5K_EEPROM_MODE_11A;
3057                break;
3058        case CHANNEL_G:
3059        case CHANNEL_TG:
3060                ee_mode = AR5K_EEPROM_MODE_11G;
3061                break;
3062        case CHANNEL_B:
3063                ee_mode = AR5K_EEPROM_MODE_11B;
3064                break;
3065        default:
3066                ATH5K_ERR(ah->ah_sc,
3067                        "invalid channel: %d\n", channel->center_freq);
3068                return -EINVAL;
3069        }
3070
3071        ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3072                "changing txpower to %d\n", txpower);
3073
3074        return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3075}
3076
3077#undef _ATH5K_PHY
3078