linux/drivers/net/wireless/iwlwifi/iwl-calib.c
<<
>>
Prefs
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22 * USA
  23 *
  24 * The full GNU General Public License is included in this distribution
  25 * in the file called LICENSE.GPL.
  26 *
  27 * Contact Information:
  28 *  Intel Linux Wireless <ilw@linux.intel.com>
  29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30 *
  31 * BSD LICENSE
  32 *
  33 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
  34 * All rights reserved.
  35 *
  36 * Redistribution and use in source and binary forms, with or without
  37 * modification, are permitted provided that the following conditions
  38 * are met:
  39 *
  40 *  * Redistributions of source code must retain the above copyright
  41 *    notice, this list of conditions and the following disclaimer.
  42 *  * Redistributions in binary form must reproduce the above copyright
  43 *    notice, this list of conditions and the following disclaimer in
  44 *    the documentation and/or other materials provided with the
  45 *    distribution.
  46 *  * Neither the name Intel Corporation nor the names of its
  47 *    contributors may be used to endorse or promote products derived
  48 *    from this software without specific prior written permission.
  49 *
  50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61 *****************************************************************************/
  62
  63#include <net/mac80211.h>
  64
  65#include "iwl-dev.h"
  66#include "iwl-core.h"
  67#include "iwl-calib.h"
  68
  69/*****************************************************************************
  70 * INIT calibrations framework
  71 *****************************************************************************/
  72
  73struct statistics_general_data {
  74        u32 beacon_silence_rssi_a;
  75        u32 beacon_silence_rssi_b;
  76        u32 beacon_silence_rssi_c;
  77        u32 beacon_energy_a;
  78        u32 beacon_energy_b;
  79        u32 beacon_energy_c;
  80};
  81
  82int iwl_send_calib_results(struct iwl_priv *priv)
  83{
  84        int ret = 0;
  85        int i = 0;
  86
  87        struct iwl_host_cmd hcmd = {
  88                .id = REPLY_PHY_CALIBRATION_CMD,
  89                .flags = CMD_SIZE_HUGE,
  90        };
  91
  92        for (i = 0; i < IWL_CALIB_MAX; i++) {
  93                if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
  94                    priv->calib_results[i].buf) {
  95                        hcmd.len = priv->calib_results[i].buf_len;
  96                        hcmd.data = priv->calib_results[i].buf;
  97                        ret = iwl_send_cmd_sync(priv, &hcmd);
  98                        if (ret)
  99                                goto err;
 100                }
 101        }
 102
 103        return 0;
 104err:
 105        IWL_ERR(priv, "Error %d iteration %d\n", ret, i);
 106        return ret;
 107}
 108EXPORT_SYMBOL(iwl_send_calib_results);
 109
 110int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
 111{
 112        if (res->buf_len != len) {
 113                kfree(res->buf);
 114                res->buf = kzalloc(len, GFP_ATOMIC);
 115        }
 116        if (unlikely(res->buf == NULL))
 117                return -ENOMEM;
 118
 119        res->buf_len = len;
 120        memcpy(res->buf, buf, len);
 121        return 0;
 122}
 123EXPORT_SYMBOL(iwl_calib_set);
 124
 125void iwl_calib_free_results(struct iwl_priv *priv)
 126{
 127        int i;
 128
 129        for (i = 0; i < IWL_CALIB_MAX; i++) {
 130                kfree(priv->calib_results[i].buf);
 131                priv->calib_results[i].buf = NULL;
 132                priv->calib_results[i].buf_len = 0;
 133        }
 134}
 135
 136/*****************************************************************************
 137 * RUNTIME calibrations framework
 138 *****************************************************************************/
 139
 140/* "false alarms" are signals that our DSP tries to lock onto,
 141 *   but then determines that they are either noise, or transmissions
 142 *   from a distant wireless network (also "noise", really) that get
 143 *   "stepped on" by stronger transmissions within our own network.
 144 * This algorithm attempts to set a sensitivity level that is high
 145 *   enough to receive all of our own network traffic, but not so
 146 *   high that our DSP gets too busy trying to lock onto non-network
 147 *   activity/noise. */
 148static int iwl_sens_energy_cck(struct iwl_priv *priv,
 149                                   u32 norm_fa,
 150                                   u32 rx_enable_time,
 151                                   struct statistics_general_data *rx_info)
 152{
 153        u32 max_nrg_cck = 0;
 154        int i = 0;
 155        u8 max_silence_rssi = 0;
 156        u32 silence_ref = 0;
 157        u8 silence_rssi_a = 0;
 158        u8 silence_rssi_b = 0;
 159        u8 silence_rssi_c = 0;
 160        u32 val;
 161
 162        /* "false_alarms" values below are cross-multiplications to assess the
 163         *   numbers of false alarms within the measured period of actual Rx
 164         *   (Rx is off when we're txing), vs the min/max expected false alarms
 165         *   (some should be expected if rx is sensitive enough) in a
 166         *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 167         *
 168         * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 169         *
 170         * */
 171        u32 false_alarms = norm_fa * 200 * 1024;
 172        u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 173        u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 174        struct iwl_sensitivity_data *data = NULL;
 175        const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 176
 177        data = &(priv->sensitivity_data);
 178
 179        data->nrg_auto_corr_silence_diff = 0;
 180
 181        /* Find max silence rssi among all 3 receivers.
 182         * This is background noise, which may include transmissions from other
 183         *    networks, measured during silence before our network's beacon */
 184        silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
 185                            ALL_BAND_FILTER) >> 8);
 186        silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
 187                            ALL_BAND_FILTER) >> 8);
 188        silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
 189                            ALL_BAND_FILTER) >> 8);
 190
 191        val = max(silence_rssi_b, silence_rssi_c);
 192        max_silence_rssi = max(silence_rssi_a, (u8) val);
 193
 194        /* Store silence rssi in 20-beacon history table */
 195        data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 196        data->nrg_silence_idx++;
 197        if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 198                data->nrg_silence_idx = 0;
 199
 200        /* Find max silence rssi across 20 beacon history */
 201        for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 202                val = data->nrg_silence_rssi[i];
 203                silence_ref = max(silence_ref, val);
 204        }
 205        IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
 206                        silence_rssi_a, silence_rssi_b, silence_rssi_c,
 207                        silence_ref);
 208
 209        /* Find max rx energy (min value!) among all 3 receivers,
 210         *   measured during beacon frame.
 211         * Save it in 10-beacon history table. */
 212        i = data->nrg_energy_idx;
 213        val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 214        data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 215
 216        data->nrg_energy_idx++;
 217        if (data->nrg_energy_idx >= 10)
 218                data->nrg_energy_idx = 0;
 219
 220        /* Find min rx energy (max value) across 10 beacon history.
 221         * This is the minimum signal level that we want to receive well.
 222         * Add backoff (margin so we don't miss slightly lower energy frames).
 223         * This establishes an upper bound (min value) for energy threshold. */
 224        max_nrg_cck = data->nrg_value[0];
 225        for (i = 1; i < 10; i++)
 226                max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 227        max_nrg_cck += 6;
 228
 229        IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 230                        rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 231                        rx_info->beacon_energy_c, max_nrg_cck - 6);
 232
 233        /* Count number of consecutive beacons with fewer-than-desired
 234         *   false alarms. */
 235        if (false_alarms < min_false_alarms)
 236                data->num_in_cck_no_fa++;
 237        else
 238                data->num_in_cck_no_fa = 0;
 239        IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
 240                        data->num_in_cck_no_fa);
 241
 242        /* If we got too many false alarms this time, reduce sensitivity */
 243        if ((false_alarms > max_false_alarms) &&
 244                (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
 245                IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
 246                     false_alarms, max_false_alarms);
 247                IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
 248                data->nrg_curr_state = IWL_FA_TOO_MANY;
 249                /* Store for "fewer than desired" on later beacon */
 250                data->nrg_silence_ref = silence_ref;
 251
 252                /* increase energy threshold (reduce nrg value)
 253                 *   to decrease sensitivity */
 254                data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 255        /* Else if we got fewer than desired, increase sensitivity */
 256        } else if (false_alarms < min_false_alarms) {
 257                data->nrg_curr_state = IWL_FA_TOO_FEW;
 258
 259                /* Compare silence level with silence level for most recent
 260                 *   healthy number or too many false alarms */
 261                data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
 262                                                   (s32)silence_ref;
 263
 264                IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
 265                         false_alarms, min_false_alarms,
 266                         data->nrg_auto_corr_silence_diff);
 267
 268                /* Increase value to increase sensitivity, but only if:
 269                 * 1a) previous beacon did *not* have *too many* false alarms
 270                 * 1b) AND there's a significant difference in Rx levels
 271                 *      from a previous beacon with too many, or healthy # FAs
 272                 * OR 2) We've seen a lot of beacons (100) with too few
 273                 *       false alarms */
 274                if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
 275                        ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 276                        (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 277
 278                        IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
 279                        /* Increase nrg value to increase sensitivity */
 280                        val = data->nrg_th_cck + NRG_STEP_CCK;
 281                        data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
 282                } else {
 283                        IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
 284                }
 285
 286        /* Else we got a healthy number of false alarms, keep status quo */
 287        } else {
 288                IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
 289                data->nrg_curr_state = IWL_FA_GOOD_RANGE;
 290
 291                /* Store for use in "fewer than desired" with later beacon */
 292                data->nrg_silence_ref = silence_ref;
 293
 294                /* If previous beacon had too many false alarms,
 295                 *   give it some extra margin by reducing sensitivity again
 296                 *   (but don't go below measured energy of desired Rx) */
 297                if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
 298                        IWL_DEBUG_CALIB(priv, "... increasing margin\n");
 299                        if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 300                                data->nrg_th_cck -= NRG_MARGIN;
 301                        else
 302                                data->nrg_th_cck = max_nrg_cck;
 303                }
 304        }
 305
 306        /* Make sure the energy threshold does not go above the measured
 307         * energy of the desired Rx signals (reduced by backoff margin),
 308         * or else we might start missing Rx frames.
 309         * Lower value is higher energy, so we use max()!
 310         */
 311        data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 312        IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
 313
 314        data->nrg_prev_state = data->nrg_curr_state;
 315
 316        /* Auto-correlation CCK algorithm */
 317        if (false_alarms > min_false_alarms) {
 318
 319                /* increase auto_corr values to decrease sensitivity
 320                 * so the DSP won't be disturbed by the noise
 321                 */
 322                if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 323                        data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 324                else {
 325                        val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 326                        data->auto_corr_cck =
 327                                min((u32)ranges->auto_corr_max_cck, val);
 328                }
 329                val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 330                data->auto_corr_cck_mrc =
 331                        min((u32)ranges->auto_corr_max_cck_mrc, val);
 332        } else if ((false_alarms < min_false_alarms) &&
 333           ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 334           (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 335
 336                /* Decrease auto_corr values to increase sensitivity */
 337                val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 338                data->auto_corr_cck =
 339                        max((u32)ranges->auto_corr_min_cck, val);
 340                val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 341                data->auto_corr_cck_mrc =
 342                        max((u32)ranges->auto_corr_min_cck_mrc, val);
 343        }
 344
 345        return 0;
 346}
 347
 348
 349static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
 350                                       u32 norm_fa,
 351                                       u32 rx_enable_time)
 352{
 353        u32 val;
 354        u32 false_alarms = norm_fa * 200 * 1024;
 355        u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 356        u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 357        struct iwl_sensitivity_data *data = NULL;
 358        const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 359
 360        data = &(priv->sensitivity_data);
 361
 362        /* If we got too many false alarms this time, reduce sensitivity */
 363        if (false_alarms > max_false_alarms) {
 364
 365                IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
 366                             false_alarms, max_false_alarms);
 367
 368                val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 369                data->auto_corr_ofdm =
 370                        min((u32)ranges->auto_corr_max_ofdm, val);
 371
 372                val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 373                data->auto_corr_ofdm_mrc =
 374                        min((u32)ranges->auto_corr_max_ofdm_mrc, val);
 375
 376                val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 377                data->auto_corr_ofdm_x1 =
 378                        min((u32)ranges->auto_corr_max_ofdm_x1, val);
 379
 380                val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 381                data->auto_corr_ofdm_mrc_x1 =
 382                        min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
 383        }
 384
 385        /* Else if we got fewer than desired, increase sensitivity */
 386        else if (false_alarms < min_false_alarms) {
 387
 388                IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
 389                             false_alarms, min_false_alarms);
 390
 391                val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 392                data->auto_corr_ofdm =
 393                        max((u32)ranges->auto_corr_min_ofdm, val);
 394
 395                val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 396                data->auto_corr_ofdm_mrc =
 397                        max((u32)ranges->auto_corr_min_ofdm_mrc, val);
 398
 399                val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 400                data->auto_corr_ofdm_x1 =
 401                        max((u32)ranges->auto_corr_min_ofdm_x1, val);
 402
 403                val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 404                data->auto_corr_ofdm_mrc_x1 =
 405                        max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
 406        } else {
 407                IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
 408                         min_false_alarms, false_alarms, max_false_alarms);
 409        }
 410        return 0;
 411}
 412
 413/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 414static int iwl_sensitivity_write(struct iwl_priv *priv)
 415{
 416        int ret = 0;
 417        struct iwl_sensitivity_cmd cmd ;
 418        struct iwl_sensitivity_data *data = NULL;
 419        struct iwl_host_cmd cmd_out = {
 420                .id = SENSITIVITY_CMD,
 421                .len = sizeof(struct iwl_sensitivity_cmd),
 422                .flags = CMD_ASYNC,
 423                .data = &cmd,
 424        };
 425
 426        data = &(priv->sensitivity_data);
 427
 428        memset(&cmd, 0, sizeof(cmd));
 429
 430        cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
 431                                cpu_to_le16((u16)data->auto_corr_ofdm);
 432        cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
 433                                cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
 434        cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
 435                                cpu_to_le16((u16)data->auto_corr_ofdm_x1);
 436        cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
 437                                cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
 438
 439        cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
 440                                cpu_to_le16((u16)data->auto_corr_cck);
 441        cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
 442                                cpu_to_le16((u16)data->auto_corr_cck_mrc);
 443
 444        cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
 445                                cpu_to_le16((u16)data->nrg_th_cck);
 446        cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
 447                                cpu_to_le16((u16)data->nrg_th_ofdm);
 448
 449        cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
 450                                cpu_to_le16(190);
 451        cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
 452                                cpu_to_le16(390);
 453        cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
 454                                cpu_to_le16(62);
 455
 456        IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 457                        data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 458                        data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 459                        data->nrg_th_ofdm);
 460
 461        IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
 462                        data->auto_corr_cck, data->auto_corr_cck_mrc,
 463                        data->nrg_th_cck);
 464
 465        /* Update uCode's "work" table, and copy it to DSP */
 466        cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 467
 468        /* Don't send command to uCode if nothing has changed */
 469        if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
 470                    sizeof(u16)*HD_TABLE_SIZE)) {
 471                IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 472                return 0;
 473        }
 474
 475        /* Copy table for comparison next time */
 476        memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
 477               sizeof(u16)*HD_TABLE_SIZE);
 478
 479        ret = iwl_send_cmd(priv, &cmd_out);
 480        if (ret)
 481                IWL_ERR(priv, "SENSITIVITY_CMD failed\n");
 482
 483        return ret;
 484}
 485
 486void iwl_init_sensitivity(struct iwl_priv *priv)
 487{
 488        int ret = 0;
 489        int i;
 490        struct iwl_sensitivity_data *data = NULL;
 491        const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 492
 493        if (priv->disable_sens_cal)
 494                return;
 495
 496        IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
 497
 498        /* Clear driver's sensitivity algo data */
 499        data = &(priv->sensitivity_data);
 500
 501        if (ranges == NULL)
 502                return;
 503
 504        memset(data, 0, sizeof(struct iwl_sensitivity_data));
 505
 506        data->num_in_cck_no_fa = 0;
 507        data->nrg_curr_state = IWL_FA_TOO_MANY;
 508        data->nrg_prev_state = IWL_FA_TOO_MANY;
 509        data->nrg_silence_ref = 0;
 510        data->nrg_silence_idx = 0;
 511        data->nrg_energy_idx = 0;
 512
 513        for (i = 0; i < 10; i++)
 514                data->nrg_value[i] = 0;
 515
 516        for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 517                data->nrg_silence_rssi[i] = 0;
 518
 519        data->auto_corr_ofdm = 90;
 520        data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 521        data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
 522        data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 523        data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 524        data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 525        data->nrg_th_cck = ranges->nrg_th_cck;
 526        data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 527
 528        data->last_bad_plcp_cnt_ofdm = 0;
 529        data->last_fa_cnt_ofdm = 0;
 530        data->last_bad_plcp_cnt_cck = 0;
 531        data->last_fa_cnt_cck = 0;
 532
 533        ret |= iwl_sensitivity_write(priv);
 534        IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
 535}
 536EXPORT_SYMBOL(iwl_init_sensitivity);
 537
 538void iwl_sensitivity_calibration(struct iwl_priv *priv,
 539                                    struct iwl_notif_statistics *resp)
 540{
 541        u32 rx_enable_time;
 542        u32 fa_cck;
 543        u32 fa_ofdm;
 544        u32 bad_plcp_cck;
 545        u32 bad_plcp_ofdm;
 546        u32 norm_fa_ofdm;
 547        u32 norm_fa_cck;
 548        struct iwl_sensitivity_data *data = NULL;
 549        struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
 550        struct statistics_rx *statistics = &(resp->rx);
 551        unsigned long flags;
 552        struct statistics_general_data statis;
 553
 554        if (priv->disable_sens_cal)
 555                return;
 556
 557        data = &(priv->sensitivity_data);
 558
 559        if (!iwl_is_associated(priv)) {
 560                IWL_DEBUG_CALIB(priv, "<< - not associated\n");
 561                return;
 562        }
 563
 564        spin_lock_irqsave(&priv->lock, flags);
 565        if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 566                IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
 567                spin_unlock_irqrestore(&priv->lock, flags);
 568                return;
 569        }
 570
 571        /* Extract Statistics: */
 572        rx_enable_time = le32_to_cpu(rx_info->channel_load);
 573        fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
 574        fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
 575        bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
 576        bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
 577
 578        statis.beacon_silence_rssi_a =
 579                        le32_to_cpu(statistics->general.beacon_silence_rssi_a);
 580        statis.beacon_silence_rssi_b =
 581                        le32_to_cpu(statistics->general.beacon_silence_rssi_b);
 582        statis.beacon_silence_rssi_c =
 583                        le32_to_cpu(statistics->general.beacon_silence_rssi_c);
 584        statis.beacon_energy_a =
 585                        le32_to_cpu(statistics->general.beacon_energy_a);
 586        statis.beacon_energy_b =
 587                        le32_to_cpu(statistics->general.beacon_energy_b);
 588        statis.beacon_energy_c =
 589                        le32_to_cpu(statistics->general.beacon_energy_c);
 590
 591        spin_unlock_irqrestore(&priv->lock, flags);
 592
 593        IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
 594
 595        if (!rx_enable_time) {
 596                IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0! \n");
 597                return;
 598        }
 599
 600        /* These statistics increase monotonically, and do not reset
 601         *   at each beacon.  Calculate difference from last value, or just
 602         *   use the new statistics value if it has reset or wrapped around. */
 603        if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 604                data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 605        else {
 606                bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 607                data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 608        }
 609
 610        if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 611                data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 612        else {
 613                bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 614                data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 615        }
 616
 617        if (data->last_fa_cnt_ofdm > fa_ofdm)
 618                data->last_fa_cnt_ofdm = fa_ofdm;
 619        else {
 620                fa_ofdm -= data->last_fa_cnt_ofdm;
 621                data->last_fa_cnt_ofdm += fa_ofdm;
 622        }
 623
 624        if (data->last_fa_cnt_cck > fa_cck)
 625                data->last_fa_cnt_cck = fa_cck;
 626        else {
 627                fa_cck -= data->last_fa_cnt_cck;
 628                data->last_fa_cnt_cck += fa_cck;
 629        }
 630
 631        /* Total aborted signal locks */
 632        norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 633        norm_fa_cck = fa_cck + bad_plcp_cck;
 634
 635        IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 636                        bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 637
 638        iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
 639        iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
 640        iwl_sensitivity_write(priv);
 641
 642        return;
 643}
 644EXPORT_SYMBOL(iwl_sensitivity_calibration);
 645
 646/*
 647 * Accumulate 20 beacons of signal and noise statistics for each of
 648 *   3 receivers/antennas/rx-chains, then figure out:
 649 * 1)  Which antennas are connected.
 650 * 2)  Differential rx gain settings to balance the 3 receivers.
 651 */
 652void iwl_chain_noise_calibration(struct iwl_priv *priv,
 653                                 struct iwl_notif_statistics *stat_resp)
 654{
 655        struct iwl_chain_noise_data *data = NULL;
 656
 657        u32 chain_noise_a;
 658        u32 chain_noise_b;
 659        u32 chain_noise_c;
 660        u32 chain_sig_a;
 661        u32 chain_sig_b;
 662        u32 chain_sig_c;
 663        u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 664        u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 665        u32 max_average_sig;
 666        u16 max_average_sig_antenna_i;
 667        u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 668        u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 669        u16 i = 0;
 670        u16 rxon_chnum = INITIALIZATION_VALUE;
 671        u16 stat_chnum = INITIALIZATION_VALUE;
 672        u8 rxon_band24;
 673        u8 stat_band24;
 674        u32 active_chains = 0;
 675        u8 num_tx_chains;
 676        unsigned long flags;
 677        struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
 678
 679        if (priv->disable_chain_noise_cal)
 680                return;
 681
 682        data = &(priv->chain_noise_data);
 683
 684        /* Accumulate just the first 20 beacons after the first association,
 685         *   then we're done forever. */
 686        if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
 687                if (data->state == IWL_CHAIN_NOISE_ALIVE)
 688                        IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
 689                return;
 690        }
 691
 692        spin_lock_irqsave(&priv->lock, flags);
 693        if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 694                IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
 695                spin_unlock_irqrestore(&priv->lock, flags);
 696                return;
 697        }
 698
 699        rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
 700        rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
 701        stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
 702        stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
 703
 704        /* Make sure we accumulate data for just the associated channel
 705         *   (even if scanning). */
 706        if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
 707                IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
 708                                rxon_chnum, rxon_band24);
 709                spin_unlock_irqrestore(&priv->lock, flags);
 710                return;
 711        }
 712
 713        /* Accumulate beacon statistics values across 20 beacons */
 714        chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
 715                                IN_BAND_FILTER;
 716        chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
 717                                IN_BAND_FILTER;
 718        chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
 719                                IN_BAND_FILTER;
 720
 721        chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
 722        chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
 723        chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
 724
 725        spin_unlock_irqrestore(&priv->lock, flags);
 726
 727        data->beacon_count++;
 728
 729        data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
 730        data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
 731        data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
 732
 733        data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
 734        data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
 735        data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
 736
 737        IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
 738                        rxon_chnum, rxon_band24, data->beacon_count);
 739        IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
 740                        chain_sig_a, chain_sig_b, chain_sig_c);
 741        IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
 742                        chain_noise_a, chain_noise_b, chain_noise_c);
 743
 744        /* If this is the 20th beacon, determine:
 745         * 1)  Disconnected antennas (using signal strengths)
 746         * 2)  Differential gain (using silence noise) to balance receivers */
 747        if (data->beacon_count != CAL_NUM_OF_BEACONS)
 748                return;
 749
 750        /* Analyze signal for disconnected antenna */
 751        average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
 752        average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
 753        average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
 754
 755        if (average_sig[0] >= average_sig[1]) {
 756                max_average_sig = average_sig[0];
 757                max_average_sig_antenna_i = 0;
 758                active_chains = (1 << max_average_sig_antenna_i);
 759        } else {
 760                max_average_sig = average_sig[1];
 761                max_average_sig_antenna_i = 1;
 762                active_chains = (1 << max_average_sig_antenna_i);
 763        }
 764
 765        if (average_sig[2] >= max_average_sig) {
 766                max_average_sig = average_sig[2];
 767                max_average_sig_antenna_i = 2;
 768                active_chains = (1 << max_average_sig_antenna_i);
 769        }
 770
 771        IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
 772                     average_sig[0], average_sig[1], average_sig[2]);
 773        IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
 774                     max_average_sig, max_average_sig_antenna_i);
 775
 776        /* Compare signal strengths for all 3 receivers. */
 777        for (i = 0; i < NUM_RX_CHAINS; i++) {
 778                if (i != max_average_sig_antenna_i) {
 779                        s32 rssi_delta = (max_average_sig - average_sig[i]);
 780
 781                        /* If signal is very weak, compared with
 782                         * strongest, mark it as disconnected. */
 783                        if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 784                                data->disconn_array[i] = 1;
 785                        else
 786                                active_chains |= (1 << i);
 787                        IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
 788                             "disconn_array[i] = %d\n",
 789                             i, rssi_delta, data->disconn_array[i]);
 790                }
 791        }
 792
 793        num_tx_chains = 0;
 794        for (i = 0; i < NUM_RX_CHAINS; i++) {
 795                /* loops on all the bits of
 796                 * priv->hw_setting.valid_tx_ant */
 797                u8 ant_msk = (1 << i);
 798                if (!(priv->hw_params.valid_tx_ant & ant_msk))
 799                        continue;
 800
 801                num_tx_chains++;
 802                if (data->disconn_array[i] == 0)
 803                        /* there is a Tx antenna connected */
 804                        break;
 805                if (num_tx_chains == priv->hw_params.tx_chains_num &&
 806                data->disconn_array[i]) {
 807                        /* This is the last TX antenna and is also
 808                         * disconnected connect it anyway */
 809                        data->disconn_array[i] = 0;
 810                        active_chains |= ant_msk;
 811                        IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected W/A - "
 812                                "declare %d as connected\n", i);
 813                        break;
 814                }
 815        }
 816
 817        /* Save for use within RXON, TX, SCAN commands, etc. */
 818        priv->chain_noise_data.active_chains = active_chains;
 819        IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
 820                        active_chains);
 821
 822        /* Analyze noise for rx balance */
 823        average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
 824        average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
 825        average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
 826
 827        for (i = 0; i < NUM_RX_CHAINS; i++) {
 828                if (!(data->disconn_array[i]) &&
 829                   (average_noise[i] <= min_average_noise)) {
 830                        /* This means that chain i is active and has
 831                         * lower noise values so far: */
 832                        min_average_noise = average_noise[i];
 833                        min_average_noise_antenna_i = i;
 834                }
 835        }
 836
 837        IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
 838                        average_noise[0], average_noise[1],
 839                        average_noise[2]);
 840
 841        IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
 842                        min_average_noise, min_average_noise_antenna_i);
 843
 844        if (priv->cfg->ops->utils->gain_computation)
 845                priv->cfg->ops->utils->gain_computation(priv, average_noise,
 846                        min_average_noise_antenna_i, min_average_noise);
 847
 848        /* Some power changes may have been made during the calibration.
 849         * Update and commit the RXON
 850         */
 851        if (priv->cfg->ops->lib->update_chain_flags)
 852                priv->cfg->ops->lib->update_chain_flags(priv);
 853
 854        data->state = IWL_CHAIN_NOISE_DONE;
 855        iwl_power_update_mode(priv, false);
 856}
 857EXPORT_SYMBOL(iwl_chain_noise_calibration);
 858
 859
 860void iwl_reset_run_time_calib(struct iwl_priv *priv)
 861{
 862        int i;
 863        memset(&(priv->sensitivity_data), 0,
 864               sizeof(struct iwl_sensitivity_data));
 865        memset(&(priv->chain_noise_data), 0,
 866               sizeof(struct iwl_chain_noise_data));
 867        for (i = 0; i < NUM_RX_CHAINS; i++)
 868                priv->chain_noise_data.delta_gain_code[i] =
 869                                CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
 870
 871        /* Ask for statistics now, the uCode will send notification
 872         * periodically after association */
 873        iwl_send_statistics_request(priv, CMD_ASYNC);
 874}
 875EXPORT_SYMBOL(iwl_reset_run_time_calib);
 876
 877