linux/drivers/net/wireless/rt2x00/rt2x00queue.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt2x00lib
  23        Abstract: rt2x00 queue specific routines.
  24 */
  25
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/dma-mapping.h>
  29
  30#include "rt2x00.h"
  31#include "rt2x00lib.h"
  32
  33struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
  34                                        struct queue_entry *entry)
  35{
  36        struct sk_buff *skb;
  37        struct skb_frame_desc *skbdesc;
  38        unsigned int frame_size;
  39        unsigned int head_size = 0;
  40        unsigned int tail_size = 0;
  41
  42        /*
  43         * The frame size includes descriptor size, because the
  44         * hardware directly receive the frame into the skbuffer.
  45         */
  46        frame_size = entry->queue->data_size + entry->queue->desc_size;
  47
  48        /*
  49         * The payload should be aligned to a 4-byte boundary,
  50         * this means we need at least 3 bytes for moving the frame
  51         * into the correct offset.
  52         */
  53        head_size = 4;
  54
  55        /*
  56         * For IV/EIV/ICV assembly we must make sure there is
  57         * at least 8 bytes bytes available in headroom for IV/EIV
  58         * and 8 bytes for ICV data as tailroon.
  59         */
  60        if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  61                head_size += 8;
  62                tail_size += 8;
  63        }
  64
  65        /*
  66         * Allocate skbuffer.
  67         */
  68        skb = dev_alloc_skb(frame_size + head_size + tail_size);
  69        if (!skb)
  70                return NULL;
  71
  72        /*
  73         * Make sure we not have a frame with the requested bytes
  74         * available in the head and tail.
  75         */
  76        skb_reserve(skb, head_size);
  77        skb_put(skb, frame_size);
  78
  79        /*
  80         * Populate skbdesc.
  81         */
  82        skbdesc = get_skb_frame_desc(skb);
  83        memset(skbdesc, 0, sizeof(*skbdesc));
  84        skbdesc->entry = entry;
  85
  86        if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  87                skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  88                                                  skb->data,
  89                                                  skb->len,
  90                                                  DMA_FROM_DEVICE);
  91                skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  92        }
  93
  94        return skb;
  95}
  96
  97void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  98{
  99        struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
 100
 101        /*
 102         * If device has requested headroom, we should make sure that
 103         * is also mapped to the DMA so it can be used for transfering
 104         * additional descriptor information to the hardware.
 105         */
 106        skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
 107
 108        skbdesc->skb_dma =
 109            dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
 110
 111        /*
 112         * Restore data pointer to original location again.
 113         */
 114        skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
 115
 116        skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
 117}
 118EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
 119
 120void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
 121{
 122        struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
 123
 124        if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
 125                dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
 126                                 DMA_FROM_DEVICE);
 127                skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
 128        }
 129
 130        if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
 131                /*
 132                 * Add headroom to the skb length, it has been removed
 133                 * by the driver, but it was actually mapped to DMA.
 134                 */
 135                dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
 136                                 skb->len + rt2x00dev->hw->extra_tx_headroom,
 137                                 DMA_TO_DEVICE);
 138                skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
 139        }
 140}
 141
 142void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
 143{
 144        if (!skb)
 145                return;
 146
 147        rt2x00queue_unmap_skb(rt2x00dev, skb);
 148        dev_kfree_skb_any(skb);
 149}
 150
 151void rt2x00queue_align_frame(struct sk_buff *skb)
 152{
 153        unsigned int frame_length = skb->len;
 154        unsigned int align = ALIGN_SIZE(skb, 0);
 155
 156        if (!align)
 157                return;
 158
 159        skb_push(skb, align);
 160        memmove(skb->data, skb->data + align, frame_length);
 161        skb_trim(skb, frame_length);
 162}
 163
 164void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_lengt)
 165{
 166        unsigned int frame_length = skb->len;
 167        unsigned int align = ALIGN_SIZE(skb, header_lengt);
 168
 169        if (!align)
 170                return;
 171
 172        skb_push(skb, align);
 173        memmove(skb->data, skb->data + align, frame_length);
 174        skb_trim(skb, frame_length);
 175}
 176
 177void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
 178{
 179        struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
 180        unsigned int frame_length = skb->len;
 181        unsigned int header_align = ALIGN_SIZE(skb, 0);
 182        unsigned int payload_align = ALIGN_SIZE(skb, header_length);
 183        unsigned int l2pad = 4 - (payload_align - header_align);
 184
 185        if (header_align == payload_align) {
 186                /*
 187                 * Both header and payload must be moved the same
 188                 * amount of bytes to align them properly. This means
 189                 * we don't use the L2 padding but just move the entire
 190                 * frame.
 191                 */
 192                rt2x00queue_align_frame(skb);
 193        } else if (!payload_align) {
 194                /*
 195                 * Simple L2 padding, only the header needs to be moved,
 196                 * the payload is already properly aligned.
 197                 */
 198                skb_push(skb, header_align);
 199                memmove(skb->data, skb->data + header_align, frame_length);
 200                skbdesc->flags |= SKBDESC_L2_PADDED;
 201        } else {
 202                /*
 203                 *
 204                 * Complicated L2 padding, both header and payload need
 205                 * to be moved. By default we only move to the start
 206                 * of the buffer, so our header alignment needs to be
 207                 * increased if there is not enough room for the header
 208                 * to be moved.
 209                 */
 210                if (payload_align > header_align)
 211                        header_align += 4;
 212
 213                skb_push(skb, header_align);
 214                memmove(skb->data, skb->data + header_align, header_length);
 215                memmove(skb->data + header_length + l2pad,
 216                        skb->data + header_length + l2pad + header_align,
 217                        frame_length - header_length);
 218                skbdesc->flags |= SKBDESC_L2_PADDED;
 219        }
 220}
 221
 222void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
 223{
 224        struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
 225        unsigned int l2pad = 4 - (header_length & 3);
 226
 227        if (!l2pad || (skbdesc->flags & SKBDESC_L2_PADDED))
 228                return;
 229
 230        memmove(skb->data + l2pad, skb->data, header_length);
 231        skb_pull(skb, l2pad);
 232}
 233
 234static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
 235                                                 struct txentry_desc *txdesc)
 236{
 237        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 238        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
 239        struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
 240        unsigned long irqflags;
 241
 242        if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
 243            unlikely(!tx_info->control.vif))
 244                return;
 245
 246        /*
 247         * Hardware should insert sequence counter.
 248         * FIXME: We insert a software sequence counter first for
 249         * hardware that doesn't support hardware sequence counting.
 250         *
 251         * This is wrong because beacons are not getting sequence
 252         * numbers assigned properly.
 253         *
 254         * A secondary problem exists for drivers that cannot toggle
 255         * sequence counting per-frame, since those will override the
 256         * sequence counter given by mac80211.
 257         */
 258        spin_lock_irqsave(&intf->seqlock, irqflags);
 259
 260        if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 261                intf->seqno += 0x10;
 262        hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
 263        hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
 264
 265        spin_unlock_irqrestore(&intf->seqlock, irqflags);
 266
 267        __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 268}
 269
 270static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
 271                                                  struct txentry_desc *txdesc,
 272                                                  const struct rt2x00_rate *hwrate)
 273{
 274        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 275        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 276        struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 277        unsigned int data_length;
 278        unsigned int duration;
 279        unsigned int residual;
 280
 281        /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
 282        data_length = entry->skb->len + 4;
 283        data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
 284
 285        /*
 286         * PLCP setup
 287         * Length calculation depends on OFDM/CCK rate.
 288         */
 289        txdesc->signal = hwrate->plcp;
 290        txdesc->service = 0x04;
 291
 292        if (hwrate->flags & DEV_RATE_OFDM) {
 293                txdesc->length_high = (data_length >> 6) & 0x3f;
 294                txdesc->length_low = data_length & 0x3f;
 295        } else {
 296                /*
 297                 * Convert length to microseconds.
 298                 */
 299                residual = GET_DURATION_RES(data_length, hwrate->bitrate);
 300                duration = GET_DURATION(data_length, hwrate->bitrate);
 301
 302                if (residual != 0) {
 303                        duration++;
 304
 305                        /*
 306                         * Check if we need to set the Length Extension
 307                         */
 308                        if (hwrate->bitrate == 110 && residual <= 30)
 309                                txdesc->service |= 0x80;
 310                }
 311
 312                txdesc->length_high = (duration >> 8) & 0xff;
 313                txdesc->length_low = duration & 0xff;
 314
 315                /*
 316                 * When preamble is enabled we should set the
 317                 * preamble bit for the signal.
 318                 */
 319                if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 320                        txdesc->signal |= 0x08;
 321        }
 322}
 323
 324static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
 325                                             struct txentry_desc *txdesc)
 326{
 327        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 328        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 329        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
 330        struct ieee80211_rate *rate =
 331            ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
 332        const struct rt2x00_rate *hwrate;
 333
 334        memset(txdesc, 0, sizeof(*txdesc));
 335
 336        /*
 337         * Initialize information from queue
 338         */
 339        txdesc->queue = entry->queue->qid;
 340        txdesc->cw_min = entry->queue->cw_min;
 341        txdesc->cw_max = entry->queue->cw_max;
 342        txdesc->aifs = entry->queue->aifs;
 343
 344        /*
 345         * Header and alignment information.
 346         */
 347        txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 348        txdesc->l2pad = ALIGN_SIZE(entry->skb, txdesc->header_length);
 349
 350        /*
 351         * Check whether this frame is to be acked.
 352         */
 353        if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
 354                __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
 355
 356        /*
 357         * Check if this is a RTS/CTS frame
 358         */
 359        if (ieee80211_is_rts(hdr->frame_control) ||
 360            ieee80211_is_cts(hdr->frame_control)) {
 361                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 362                if (ieee80211_is_rts(hdr->frame_control))
 363                        __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
 364                else
 365                        __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
 366                if (tx_info->control.rts_cts_rate_idx >= 0)
 367                        rate =
 368                            ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
 369        }
 370
 371        /*
 372         * Determine retry information.
 373         */
 374        txdesc->retry_limit = tx_info->control.rates[0].count - 1;
 375        if (txdesc->retry_limit >= rt2x00dev->long_retry)
 376                __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
 377
 378        /*
 379         * Check if more fragments are pending
 380         */
 381        if (ieee80211_has_morefrags(hdr->frame_control) ||
 382            (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
 383                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 384                __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
 385        }
 386
 387        /*
 388         * Beacons and probe responses require the tsf timestamp
 389         * to be inserted into the frame.
 390         */
 391        if (ieee80211_is_beacon(hdr->frame_control) ||
 392            ieee80211_is_probe_resp(hdr->frame_control))
 393                __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
 394
 395        /*
 396         * Determine with what IFS priority this frame should be send.
 397         * Set ifs to IFS_SIFS when the this is not the first fragment,
 398         * or this fragment came after RTS/CTS.
 399         */
 400        if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
 401            !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
 402                __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
 403                txdesc->ifs = IFS_BACKOFF;
 404        } else
 405                txdesc->ifs = IFS_SIFS;
 406
 407        /*
 408         * Determine rate modulation.
 409         */
 410        hwrate = rt2x00_get_rate(rate->hw_value);
 411        txdesc->rate_mode = RATE_MODE_CCK;
 412        if (hwrate->flags & DEV_RATE_OFDM)
 413                txdesc->rate_mode = RATE_MODE_OFDM;
 414
 415        /*
 416         * Apply TX descriptor handling by components
 417         */
 418        rt2x00crypto_create_tx_descriptor(entry, txdesc);
 419        rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
 420        rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
 421        rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
 422}
 423
 424static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
 425                                            struct txentry_desc *txdesc)
 426{
 427        struct data_queue *queue = entry->queue;
 428        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 429
 430        rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
 431
 432        /*
 433         * All processing on the frame has been completed, this means
 434         * it is now ready to be dumped to userspace through debugfs.
 435         */
 436        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
 437
 438        /*
 439         * Check if we need to kick the queue, there are however a few rules
 440         *      1) Don't kick beacon queue
 441         *      2) Don't kick unless this is the last in frame in a burst.
 442         *         When the burst flag is set, this frame is always followed
 443         *         by another frame which in some way are related to eachother.
 444         *         This is true for fragments, RTS or CTS-to-self frames.
 445         *      3) Rule 2 can be broken when the available entries
 446         *         in the queue are less then a certain threshold.
 447         */
 448        if (entry->queue->qid == QID_BEACON)
 449                return;
 450
 451        if (rt2x00queue_threshold(queue) ||
 452            !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
 453                rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
 454}
 455
 456int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
 457{
 458        struct ieee80211_tx_info *tx_info;
 459        struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
 460        struct txentry_desc txdesc;
 461        struct skb_frame_desc *skbdesc;
 462        u8 rate_idx, rate_flags;
 463
 464        if (unlikely(rt2x00queue_full(queue)))
 465                return -ENOBUFS;
 466
 467        if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
 468                ERROR(queue->rt2x00dev,
 469                      "Arrived at non-free entry in the non-full queue %d.\n"
 470                      "Please file bug report to %s.\n",
 471                      queue->qid, DRV_PROJECT);
 472                return -EINVAL;
 473        }
 474
 475        /*
 476         * Copy all TX descriptor information into txdesc,
 477         * after that we are free to use the skb->cb array
 478         * for our information.
 479         */
 480        entry->skb = skb;
 481        rt2x00queue_create_tx_descriptor(entry, &txdesc);
 482
 483        /*
 484         * All information is retrieved from the skb->cb array,
 485         * now we should claim ownership of the driver part of that
 486         * array, preserving the bitrate index and flags.
 487         */
 488        tx_info = IEEE80211_SKB_CB(skb);
 489        rate_idx = tx_info->control.rates[0].idx;
 490        rate_flags = tx_info->control.rates[0].flags;
 491        skbdesc = get_skb_frame_desc(skb);
 492        memset(skbdesc, 0, sizeof(*skbdesc));
 493        skbdesc->entry = entry;
 494        skbdesc->tx_rate_idx = rate_idx;
 495        skbdesc->tx_rate_flags = rate_flags;
 496
 497        /*
 498         * When hardware encryption is supported, and this frame
 499         * is to be encrypted, we should strip the IV/EIV data from
 500         * the frame so we can provide it to the driver seperately.
 501         */
 502        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
 503            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
 504                if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
 505                        rt2x00crypto_tx_copy_iv(skb, &txdesc);
 506                else
 507                        rt2x00crypto_tx_remove_iv(skb, &txdesc);
 508        }
 509
 510        /*
 511         * When DMA allocation is required we should guarentee to the
 512         * driver that the DMA is aligned to a 4-byte boundary.
 513         * However some drivers require L2 padding to pad the payload
 514         * rather then the header. This could be a requirement for
 515         * PCI and USB devices, while header alignment only is valid
 516         * for PCI devices.
 517         */
 518        if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
 519                rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
 520        else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
 521                rt2x00queue_align_frame(entry->skb);
 522
 523        /*
 524         * It could be possible that the queue was corrupted and this
 525         * call failed. Since we always return NETDEV_TX_OK to mac80211,
 526         * this frame will simply be dropped.
 527         */
 528        if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
 529                clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 530                entry->skb = NULL;
 531                return -EIO;
 532        }
 533
 534        if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
 535                rt2x00queue_map_txskb(queue->rt2x00dev, skb);
 536
 537        set_bit(ENTRY_DATA_PENDING, &entry->flags);
 538
 539        rt2x00queue_index_inc(queue, Q_INDEX);
 540        rt2x00queue_write_tx_descriptor(entry, &txdesc);
 541
 542        return 0;
 543}
 544
 545int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
 546                              struct ieee80211_vif *vif,
 547                              const bool enable_beacon)
 548{
 549        struct rt2x00_intf *intf = vif_to_intf(vif);
 550        struct skb_frame_desc *skbdesc;
 551        struct txentry_desc txdesc;
 552        __le32 desc[16];
 553
 554        if (unlikely(!intf->beacon))
 555                return -ENOBUFS;
 556
 557        mutex_lock(&intf->beacon_skb_mutex);
 558
 559        /*
 560         * Clean up the beacon skb.
 561         */
 562        rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
 563        intf->beacon->skb = NULL;
 564
 565        if (!enable_beacon) {
 566                rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
 567                mutex_unlock(&intf->beacon_skb_mutex);
 568                return 0;
 569        }
 570
 571        intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
 572        if (!intf->beacon->skb) {
 573                mutex_unlock(&intf->beacon_skb_mutex);
 574                return -ENOMEM;
 575        }
 576
 577        /*
 578         * Copy all TX descriptor information into txdesc,
 579         * after that we are free to use the skb->cb array
 580         * for our information.
 581         */
 582        rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
 583
 584        /*
 585         * For the descriptor we use a local array from where the
 586         * driver can move it to the correct location required for
 587         * the hardware.
 588         */
 589        memset(desc, 0, sizeof(desc));
 590
 591        /*
 592         * Fill in skb descriptor
 593         */
 594        skbdesc = get_skb_frame_desc(intf->beacon->skb);
 595        memset(skbdesc, 0, sizeof(*skbdesc));
 596        skbdesc->desc = desc;
 597        skbdesc->desc_len = intf->beacon->queue->desc_size;
 598        skbdesc->entry = intf->beacon;
 599
 600        /*
 601         * Write TX descriptor into reserved room in front of the beacon.
 602         */
 603        rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
 604
 605        /*
 606         * Send beacon to hardware.
 607         * Also enable beacon generation, which might have been disabled
 608         * by the driver during the config_beacon() callback function.
 609         */
 610        rt2x00dev->ops->lib->write_beacon(intf->beacon);
 611        rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
 612
 613        mutex_unlock(&intf->beacon_skb_mutex);
 614
 615        return 0;
 616}
 617
 618struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
 619                                         const enum data_queue_qid queue)
 620{
 621        int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
 622
 623        if (queue == QID_RX)
 624                return rt2x00dev->rx;
 625
 626        if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
 627                return &rt2x00dev->tx[queue];
 628
 629        if (!rt2x00dev->bcn)
 630                return NULL;
 631
 632        if (queue == QID_BEACON)
 633                return &rt2x00dev->bcn[0];
 634        else if (queue == QID_ATIM && atim)
 635                return &rt2x00dev->bcn[1];
 636
 637        return NULL;
 638}
 639EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
 640
 641struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
 642                                          enum queue_index index)
 643{
 644        struct queue_entry *entry;
 645        unsigned long irqflags;
 646
 647        if (unlikely(index >= Q_INDEX_MAX)) {
 648                ERROR(queue->rt2x00dev,
 649                      "Entry requested from invalid index type (%d)\n", index);
 650                return NULL;
 651        }
 652
 653        spin_lock_irqsave(&queue->lock, irqflags);
 654
 655        entry = &queue->entries[queue->index[index]];
 656
 657        spin_unlock_irqrestore(&queue->lock, irqflags);
 658
 659        return entry;
 660}
 661EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
 662
 663void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
 664{
 665        unsigned long irqflags;
 666
 667        if (unlikely(index >= Q_INDEX_MAX)) {
 668                ERROR(queue->rt2x00dev,
 669                      "Index change on invalid index type (%d)\n", index);
 670                return;
 671        }
 672
 673        spin_lock_irqsave(&queue->lock, irqflags);
 674
 675        queue->index[index]++;
 676        if (queue->index[index] >= queue->limit)
 677                queue->index[index] = 0;
 678
 679        if (index == Q_INDEX) {
 680                queue->length++;
 681        } else if (index == Q_INDEX_DONE) {
 682                queue->length--;
 683                queue->count++;
 684        }
 685
 686        spin_unlock_irqrestore(&queue->lock, irqflags);
 687}
 688
 689static void rt2x00queue_reset(struct data_queue *queue)
 690{
 691        unsigned long irqflags;
 692
 693        spin_lock_irqsave(&queue->lock, irqflags);
 694
 695        queue->count = 0;
 696        queue->length = 0;
 697        memset(queue->index, 0, sizeof(queue->index));
 698
 699        spin_unlock_irqrestore(&queue->lock, irqflags);
 700}
 701
 702void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
 703{
 704        struct data_queue *queue;
 705
 706        txall_queue_for_each(rt2x00dev, queue)
 707                rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
 708}
 709
 710void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
 711{
 712        struct data_queue *queue;
 713        unsigned int i;
 714
 715        queue_for_each(rt2x00dev, queue) {
 716                rt2x00queue_reset(queue);
 717
 718                for (i = 0; i < queue->limit; i++) {
 719                        queue->entries[i].flags = 0;
 720
 721                        rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
 722                }
 723        }
 724}
 725
 726static int rt2x00queue_alloc_entries(struct data_queue *queue,
 727                                     const struct data_queue_desc *qdesc)
 728{
 729        struct queue_entry *entries;
 730        unsigned int entry_size;
 731        unsigned int i;
 732
 733        rt2x00queue_reset(queue);
 734
 735        queue->limit = qdesc->entry_num;
 736        queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
 737        queue->data_size = qdesc->data_size;
 738        queue->desc_size = qdesc->desc_size;
 739
 740        /*
 741         * Allocate all queue entries.
 742         */
 743        entry_size = sizeof(*entries) + qdesc->priv_size;
 744        entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
 745        if (!entries)
 746                return -ENOMEM;
 747
 748#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
 749        ( ((char *)(__base)) + ((__limit) * (__esize)) + \
 750            ((__index) * (__psize)) )
 751
 752        for (i = 0; i < queue->limit; i++) {
 753                entries[i].flags = 0;
 754                entries[i].queue = queue;
 755                entries[i].skb = NULL;
 756                entries[i].entry_idx = i;
 757                entries[i].priv_data =
 758                    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
 759                                            sizeof(*entries), qdesc->priv_size);
 760        }
 761
 762#undef QUEUE_ENTRY_PRIV_OFFSET
 763
 764        queue->entries = entries;
 765
 766        return 0;
 767}
 768
 769static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
 770                                  struct data_queue *queue)
 771{
 772        unsigned int i;
 773
 774        if (!queue->entries)
 775                return;
 776
 777        for (i = 0; i < queue->limit; i++) {
 778                if (queue->entries[i].skb)
 779                        rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
 780        }
 781}
 782
 783static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
 784                                    struct data_queue *queue)
 785{
 786        unsigned int i;
 787        struct sk_buff *skb;
 788
 789        for (i = 0; i < queue->limit; i++) {
 790                skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
 791                if (!skb)
 792                        return -ENOMEM;
 793                queue->entries[i].skb = skb;
 794        }
 795
 796        return 0;
 797}
 798
 799int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
 800{
 801        struct data_queue *queue;
 802        int status;
 803
 804        status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
 805        if (status)
 806                goto exit;
 807
 808        tx_queue_for_each(rt2x00dev, queue) {
 809                status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
 810                if (status)
 811                        goto exit;
 812        }
 813
 814        status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
 815        if (status)
 816                goto exit;
 817
 818        if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
 819                status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
 820                                                   rt2x00dev->ops->atim);
 821                if (status)
 822                        goto exit;
 823        }
 824
 825        status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
 826        if (status)
 827                goto exit;
 828
 829        return 0;
 830
 831exit:
 832        ERROR(rt2x00dev, "Queue entries allocation failed.\n");
 833
 834        rt2x00queue_uninitialize(rt2x00dev);
 835
 836        return status;
 837}
 838
 839void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
 840{
 841        struct data_queue *queue;
 842
 843        rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
 844
 845        queue_for_each(rt2x00dev, queue) {
 846                kfree(queue->entries);
 847                queue->entries = NULL;
 848        }
 849}
 850
 851static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
 852                             struct data_queue *queue, enum data_queue_qid qid)
 853{
 854        spin_lock_init(&queue->lock);
 855
 856        queue->rt2x00dev = rt2x00dev;
 857        queue->qid = qid;
 858        queue->txop = 0;
 859        queue->aifs = 2;
 860        queue->cw_min = 5;
 861        queue->cw_max = 10;
 862}
 863
 864int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
 865{
 866        struct data_queue *queue;
 867        enum data_queue_qid qid;
 868        unsigned int req_atim =
 869            !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
 870
 871        /*
 872         * We need the following queues:
 873         * RX: 1
 874         * TX: ops->tx_queues
 875         * Beacon: 1
 876         * Atim: 1 (if required)
 877         */
 878        rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
 879
 880        queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
 881        if (!queue) {
 882                ERROR(rt2x00dev, "Queue allocation failed.\n");
 883                return -ENOMEM;
 884        }
 885
 886        /*
 887         * Initialize pointers
 888         */
 889        rt2x00dev->rx = queue;
 890        rt2x00dev->tx = &queue[1];
 891        rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
 892
 893        /*
 894         * Initialize queue parameters.
 895         * RX: qid = QID_RX
 896         * TX: qid = QID_AC_BE + index
 897         * TX: cw_min: 2^5 = 32.
 898         * TX: cw_max: 2^10 = 1024.
 899         * BCN: qid = QID_BEACON
 900         * ATIM: qid = QID_ATIM
 901         */
 902        rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
 903
 904        qid = QID_AC_BE;
 905        tx_queue_for_each(rt2x00dev, queue)
 906                rt2x00queue_init(rt2x00dev, queue, qid++);
 907
 908        rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
 909        if (req_atim)
 910                rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
 911
 912        return 0;
 913}
 914
 915void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
 916{
 917        kfree(rt2x00dev->rx);
 918        rt2x00dev->rx = NULL;
 919        rt2x00dev->tx = NULL;
 920        rt2x00dev->bcn = NULL;
 921}
 922