linux/drivers/net/wireless/rt2x00/rt61pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt61pci
  23        Abstract: rt61pci device specific routines.
  24        Supported chipsets: RT2561, RT2561s, RT2661.
  25 */
  26
  27#include <linux/crc-itu-t.h>
  28#include <linux/delay.h>
  29#include <linux/etherdevice.h>
  30#include <linux/init.h>
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/pci.h>
  34#include <linux/eeprom_93cx6.h>
  35
  36#include "rt2x00.h"
  37#include "rt2x00pci.h"
  38#include "rt61pci.h"
  39
  40/*
  41 * Allow hardware encryption to be disabled.
  42 */
  43static int modparam_nohwcrypt = 0;
  44module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  45MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  46
  47/*
  48 * Register access.
  49 * BBP and RF register require indirect register access,
  50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  51 * These indirect registers work with busy bits,
  52 * and we will try maximal REGISTER_BUSY_COUNT times to access
  53 * the register while taking a REGISTER_BUSY_DELAY us delay
  54 * between each attampt. When the busy bit is still set at that time,
  55 * the access attempt is considered to have failed,
  56 * and we will print an error.
  57 */
  58#define WAIT_FOR_BBP(__dev, __reg) \
  59        rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  60#define WAIT_FOR_RF(__dev, __reg) \
  61        rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  62#define WAIT_FOR_MCU(__dev, __reg) \
  63        rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  64                               H2M_MAILBOX_CSR_OWNER, (__reg))
  65
  66static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  67                              const unsigned int word, const u8 value)
  68{
  69        u32 reg;
  70
  71        mutex_lock(&rt2x00dev->csr_mutex);
  72
  73        /*
  74         * Wait until the BBP becomes available, afterwards we
  75         * can safely write the new data into the register.
  76         */
  77        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  78                reg = 0;
  79                rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  80                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  81                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  82                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  83
  84                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  85        }
  86
  87        mutex_unlock(&rt2x00dev->csr_mutex);
  88}
  89
  90static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  91                             const unsigned int word, u8 *value)
  92{
  93        u32 reg;
  94
  95        mutex_lock(&rt2x00dev->csr_mutex);
  96
  97        /*
  98         * Wait until the BBP becomes available, afterwards we
  99         * can safely write the read request into the register.
 100         * After the data has been written, we wait until hardware
 101         * returns the correct value, if at any time the register
 102         * doesn't become available in time, reg will be 0xffffffff
 103         * which means we return 0xff to the caller.
 104         */
 105        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 106                reg = 0;
 107                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 108                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 109                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 110
 111                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
 112
 113                WAIT_FOR_BBP(rt2x00dev, &reg);
 114        }
 115
 116        *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 117
 118        mutex_unlock(&rt2x00dev->csr_mutex);
 119}
 120
 121static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 122                             const unsigned int word, const u32 value)
 123{
 124        u32 reg;
 125
 126        mutex_lock(&rt2x00dev->csr_mutex);
 127
 128        /*
 129         * Wait until the RF becomes available, afterwards we
 130         * can safely write the new data into the register.
 131         */
 132        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 133                reg = 0;
 134                rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 135                rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 136                rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 137                rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 138
 139                rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
 140                rt2x00_rf_write(rt2x00dev, word, value);
 141        }
 142
 143        mutex_unlock(&rt2x00dev->csr_mutex);
 144}
 145
 146static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 147                                const u8 command, const u8 token,
 148                                const u8 arg0, const u8 arg1)
 149{
 150        u32 reg;
 151
 152        mutex_lock(&rt2x00dev->csr_mutex);
 153
 154        /*
 155         * Wait until the MCU becomes available, afterwards we
 156         * can safely write the new data into the register.
 157         */
 158        if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 159                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 160                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 161                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 162                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 163                rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 164
 165                rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 166                rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 167                rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 168                rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 169        }
 170
 171        mutex_unlock(&rt2x00dev->csr_mutex);
 172
 173}
 174
 175static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 176{
 177        struct rt2x00_dev *rt2x00dev = eeprom->data;
 178        u32 reg;
 179
 180        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
 181
 182        eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 183        eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 184        eeprom->reg_data_clock =
 185            !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 186        eeprom->reg_chip_select =
 187            !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 188}
 189
 190static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 191{
 192        struct rt2x00_dev *rt2x00dev = eeprom->data;
 193        u32 reg = 0;
 194
 195        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 196        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 197        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 198                           !!eeprom->reg_data_clock);
 199        rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 200                           !!eeprom->reg_chip_select);
 201
 202        rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
 203}
 204
 205#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 206static const struct rt2x00debug rt61pci_rt2x00debug = {
 207        .owner  = THIS_MODULE,
 208        .csr    = {
 209                .read           = rt2x00pci_register_read,
 210                .write          = rt2x00pci_register_write,
 211                .flags          = RT2X00DEBUGFS_OFFSET,
 212                .word_base      = CSR_REG_BASE,
 213                .word_size      = sizeof(u32),
 214                .word_count     = CSR_REG_SIZE / sizeof(u32),
 215        },
 216        .eeprom = {
 217                .read           = rt2x00_eeprom_read,
 218                .write          = rt2x00_eeprom_write,
 219                .word_base      = EEPROM_BASE,
 220                .word_size      = sizeof(u16),
 221                .word_count     = EEPROM_SIZE / sizeof(u16),
 222        },
 223        .bbp    = {
 224                .read           = rt61pci_bbp_read,
 225                .write          = rt61pci_bbp_write,
 226                .word_base      = BBP_BASE,
 227                .word_size      = sizeof(u8),
 228                .word_count     = BBP_SIZE / sizeof(u8),
 229        },
 230        .rf     = {
 231                .read           = rt2x00_rf_read,
 232                .write          = rt61pci_rf_write,
 233                .word_base      = RF_BASE,
 234                .word_size      = sizeof(u32),
 235                .word_count     = RF_SIZE / sizeof(u32),
 236        },
 237};
 238#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 239
 240static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 241{
 242        u32 reg;
 243
 244        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 245        return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
 246}
 247
 248#ifdef CONFIG_RT2X00_LIB_LEDS
 249static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 250                                   enum led_brightness brightness)
 251{
 252        struct rt2x00_led *led =
 253            container_of(led_cdev, struct rt2x00_led, led_dev);
 254        unsigned int enabled = brightness != LED_OFF;
 255        unsigned int a_mode =
 256            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 257        unsigned int bg_mode =
 258            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 259
 260        if (led->type == LED_TYPE_RADIO) {
 261                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 262                                   MCU_LEDCS_RADIO_STATUS, enabled);
 263
 264                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 265                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 266                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 267        } else if (led->type == LED_TYPE_ASSOC) {
 268                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 269                                   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 270                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 271                                   MCU_LEDCS_LINK_A_STATUS, a_mode);
 272
 273                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 274                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 275                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 276        } else if (led->type == LED_TYPE_QUALITY) {
 277                /*
 278                 * The brightness is divided into 6 levels (0 - 5),
 279                 * this means we need to convert the brightness
 280                 * argument into the matching level within that range.
 281                 */
 282                rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 283                                    brightness / (LED_FULL / 6), 0);
 284        }
 285}
 286
 287static int rt61pci_blink_set(struct led_classdev *led_cdev,
 288                             unsigned long *delay_on,
 289                             unsigned long *delay_off)
 290{
 291        struct rt2x00_led *led =
 292            container_of(led_cdev, struct rt2x00_led, led_dev);
 293        u32 reg;
 294
 295        rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 296        rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 297        rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 298        rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
 299
 300        return 0;
 301}
 302
 303static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 304                             struct rt2x00_led *led,
 305                             enum led_type type)
 306{
 307        led->rt2x00dev = rt2x00dev;
 308        led->type = type;
 309        led->led_dev.brightness_set = rt61pci_brightness_set;
 310        led->led_dev.blink_set = rt61pci_blink_set;
 311        led->flags = LED_INITIALIZED;
 312}
 313#endif /* CONFIG_RT2X00_LIB_LEDS */
 314
 315/*
 316 * Configuration handlers.
 317 */
 318static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 319                                     struct rt2x00lib_crypto *crypto,
 320                                     struct ieee80211_key_conf *key)
 321{
 322        struct hw_key_entry key_entry;
 323        struct rt2x00_field32 field;
 324        u32 mask;
 325        u32 reg;
 326
 327        if (crypto->cmd == SET_KEY) {
 328                /*
 329                 * rt2x00lib can't determine the correct free
 330                 * key_idx for shared keys. We have 1 register
 331                 * with key valid bits. The goal is simple, read
 332                 * the register, if that is full we have no slots
 333                 * left.
 334                 * Note that each BSS is allowed to have up to 4
 335                 * shared keys, so put a mask over the allowed
 336                 * entries.
 337                 */
 338                mask = (0xf << crypto->bssidx);
 339
 340                rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 341                reg &= mask;
 342
 343                if (reg && reg == mask)
 344                        return -ENOSPC;
 345
 346                key->hw_key_idx += reg ? ffz(reg) : 0;
 347
 348                /*
 349                 * Upload key to hardware
 350                 */
 351                memcpy(key_entry.key, crypto->key,
 352                       sizeof(key_entry.key));
 353                memcpy(key_entry.tx_mic, crypto->tx_mic,
 354                       sizeof(key_entry.tx_mic));
 355                memcpy(key_entry.rx_mic, crypto->rx_mic,
 356                       sizeof(key_entry.rx_mic));
 357
 358                reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 359                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 360                                              &key_entry, sizeof(key_entry));
 361
 362                /*
 363                 * The cipher types are stored over 2 registers.
 364                 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 365                 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 366                 * Using the correct defines correctly will cause overhead,
 367                 * so just calculate the correct offset.
 368                 */
 369                if (key->hw_key_idx < 8) {
 370                        field.bit_offset = (3 * key->hw_key_idx);
 371                        field.bit_mask = 0x7 << field.bit_offset;
 372
 373                        rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
 374                        rt2x00_set_field32(&reg, field, crypto->cipher);
 375                        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
 376                } else {
 377                        field.bit_offset = (3 * (key->hw_key_idx - 8));
 378                        field.bit_mask = 0x7 << field.bit_offset;
 379
 380                        rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
 381                        rt2x00_set_field32(&reg, field, crypto->cipher);
 382                        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
 383                }
 384
 385                /*
 386                 * The driver does not support the IV/EIV generation
 387                 * in hardware. However it doesn't support the IV/EIV
 388                 * inside the ieee80211 frame either, but requires it
 389                 * to be provided seperately for the descriptor.
 390                 * rt2x00lib will cut the IV/EIV data out of all frames
 391                 * given to us by mac80211, but we must tell mac80211
 392                 * to generate the IV/EIV data.
 393                 */
 394                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 395        }
 396
 397        /*
 398         * SEC_CSR0 contains only single-bit fields to indicate
 399         * a particular key is valid. Because using the FIELD32()
 400         * defines directly will cause a lot of overhead we use
 401         * a calculation to determine the correct bit directly.
 402         */
 403        mask = 1 << key->hw_key_idx;
 404
 405        rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 406        if (crypto->cmd == SET_KEY)
 407                reg |= mask;
 408        else if (crypto->cmd == DISABLE_KEY)
 409                reg &= ~mask;
 410        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
 411
 412        return 0;
 413}
 414
 415static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 416                                       struct rt2x00lib_crypto *crypto,
 417                                       struct ieee80211_key_conf *key)
 418{
 419        struct hw_pairwise_ta_entry addr_entry;
 420        struct hw_key_entry key_entry;
 421        u32 mask;
 422        u32 reg;
 423
 424        if (crypto->cmd == SET_KEY) {
 425                /*
 426                 * rt2x00lib can't determine the correct free
 427                 * key_idx for pairwise keys. We have 2 registers
 428                 * with key valid bits. The goal is simple, read
 429                 * the first register, if that is full move to
 430                 * the next register.
 431                 * When both registers are full, we drop the key,
 432                 * otherwise we use the first invalid entry.
 433                 */
 434                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 435                if (reg && reg == ~0) {
 436                        key->hw_key_idx = 32;
 437                        rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 438                        if (reg && reg == ~0)
 439                                return -ENOSPC;
 440                }
 441
 442                key->hw_key_idx += reg ? ffz(reg) : 0;
 443
 444                /*
 445                 * Upload key to hardware
 446                 */
 447                memcpy(key_entry.key, crypto->key,
 448                       sizeof(key_entry.key));
 449                memcpy(key_entry.tx_mic, crypto->tx_mic,
 450                       sizeof(key_entry.tx_mic));
 451                memcpy(key_entry.rx_mic, crypto->rx_mic,
 452                       sizeof(key_entry.rx_mic));
 453
 454                memset(&addr_entry, 0, sizeof(addr_entry));
 455                memcpy(&addr_entry, crypto->address, ETH_ALEN);
 456                addr_entry.cipher = crypto->cipher;
 457
 458                reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 459                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 460                                              &key_entry, sizeof(key_entry));
 461
 462                reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 463                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 464                                              &addr_entry, sizeof(addr_entry));
 465
 466                /*
 467                 * Enable pairwise lookup table for given BSS idx,
 468                 * without this received frames will not be decrypted
 469                 * by the hardware.
 470                 */
 471                rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
 472                reg |= (1 << crypto->bssidx);
 473                rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
 474
 475                /*
 476                 * The driver does not support the IV/EIV generation
 477                 * in hardware. However it doesn't support the IV/EIV
 478                 * inside the ieee80211 frame either, but requires it
 479                 * to be provided seperately for the descriptor.
 480                 * rt2x00lib will cut the IV/EIV data out of all frames
 481                 * given to us by mac80211, but we must tell mac80211
 482                 * to generate the IV/EIV data.
 483                 */
 484                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 485        }
 486
 487        /*
 488         * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 489         * a particular key is valid. Because using the FIELD32()
 490         * defines directly will cause a lot of overhead we use
 491         * a calculation to determine the correct bit directly.
 492         */
 493        if (key->hw_key_idx < 32) {
 494                mask = 1 << key->hw_key_idx;
 495
 496                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 497                if (crypto->cmd == SET_KEY)
 498                        reg |= mask;
 499                else if (crypto->cmd == DISABLE_KEY)
 500                        reg &= ~mask;
 501                rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
 502        } else {
 503                mask = 1 << (key->hw_key_idx - 32);
 504
 505                rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 506                if (crypto->cmd == SET_KEY)
 507                        reg |= mask;
 508                else if (crypto->cmd == DISABLE_KEY)
 509                        reg &= ~mask;
 510                rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
 511        }
 512
 513        return 0;
 514}
 515
 516static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 517                                  const unsigned int filter_flags)
 518{
 519        u32 reg;
 520
 521        /*
 522         * Start configuration steps.
 523         * Note that the version error will always be dropped
 524         * and broadcast frames will always be accepted since
 525         * there is no filter for it at this time.
 526         */
 527        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 528        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 529                           !(filter_flags & FIF_FCSFAIL));
 530        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 531                           !(filter_flags & FIF_PLCPFAIL));
 532        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 533                           !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 534        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 535                           !(filter_flags & FIF_PROMISC_IN_BSS));
 536        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 537                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 538                           !rt2x00dev->intf_ap_count);
 539        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 540        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 541                           !(filter_flags & FIF_ALLMULTI));
 542        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 543        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 544                           !(filter_flags & FIF_CONTROL));
 545        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 546}
 547
 548static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 549                                struct rt2x00_intf *intf,
 550                                struct rt2x00intf_conf *conf,
 551                                const unsigned int flags)
 552{
 553        unsigned int beacon_base;
 554        u32 reg;
 555
 556        if (flags & CONFIG_UPDATE_TYPE) {
 557                /*
 558                 * Clear current synchronisation setup.
 559                 * For the Beacon base registers we only need to clear
 560                 * the first byte since that byte contains the VALID and OWNER
 561                 * bits which (when set to 0) will invalidate the entire beacon.
 562                 */
 563                beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
 564                rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
 565
 566                /*
 567                 * Enable synchronisation.
 568                 */
 569                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 570                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
 571                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 572                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
 573                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 574        }
 575
 576        if (flags & CONFIG_UPDATE_MAC) {
 577                reg = le32_to_cpu(conf->mac[1]);
 578                rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 579                conf->mac[1] = cpu_to_le32(reg);
 580
 581                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
 582                                              conf->mac, sizeof(conf->mac));
 583        }
 584
 585        if (flags & CONFIG_UPDATE_BSSID) {
 586                reg = le32_to_cpu(conf->bssid[1]);
 587                rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 588                conf->bssid[1] = cpu_to_le32(reg);
 589
 590                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
 591                                              conf->bssid, sizeof(conf->bssid));
 592        }
 593}
 594
 595static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 596                               struct rt2x00lib_erp *erp)
 597{
 598        u32 reg;
 599
 600        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 601        rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 602        rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 603        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 604
 605        rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 606        rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 607        rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 608                           !!erp->short_preamble);
 609        rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 610
 611        rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
 612
 613        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 614        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 615                           erp->beacon_int * 16);
 616        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 617
 618        rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
 619        rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 620        rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
 621
 622        rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
 623        rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 624        rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 625        rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 626        rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
 627}
 628
 629static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 630                                      struct antenna_setup *ant)
 631{
 632        u8 r3;
 633        u8 r4;
 634        u8 r77;
 635
 636        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 637        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 638        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 639
 640        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
 641                          rt2x00_rf(&rt2x00dev->chip, RF5325));
 642
 643        /*
 644         * Configure the RX antenna.
 645         */
 646        switch (ant->rx) {
 647        case ANTENNA_HW_DIVERSITY:
 648                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 649                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 650                                  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 651                break;
 652        case ANTENNA_A:
 653                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 654                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 655                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 656                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 657                else
 658                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 659                break;
 660        case ANTENNA_B:
 661        default:
 662                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 663                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 664                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 665                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 666                else
 667                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 668                break;
 669        }
 670
 671        rt61pci_bbp_write(rt2x00dev, 77, r77);
 672        rt61pci_bbp_write(rt2x00dev, 3, r3);
 673        rt61pci_bbp_write(rt2x00dev, 4, r4);
 674}
 675
 676static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 677                                      struct antenna_setup *ant)
 678{
 679        u8 r3;
 680        u8 r4;
 681        u8 r77;
 682
 683        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 684        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 685        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 686
 687        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
 688                          rt2x00_rf(&rt2x00dev->chip, RF2529));
 689        rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 690                          !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
 691
 692        /*
 693         * Configure the RX antenna.
 694         */
 695        switch (ant->rx) {
 696        case ANTENNA_HW_DIVERSITY:
 697                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 698                break;
 699        case ANTENNA_A:
 700                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 701                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 702                break;
 703        case ANTENNA_B:
 704        default:
 705                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 706                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 707                break;
 708        }
 709
 710        rt61pci_bbp_write(rt2x00dev, 77, r77);
 711        rt61pci_bbp_write(rt2x00dev, 3, r3);
 712        rt61pci_bbp_write(rt2x00dev, 4, r4);
 713}
 714
 715static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 716                                           const int p1, const int p2)
 717{
 718        u32 reg;
 719
 720        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 721
 722        rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
 723        rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
 724
 725        rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
 726        rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
 727
 728        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
 729}
 730
 731static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 732                                        struct antenna_setup *ant)
 733{
 734        u8 r3;
 735        u8 r4;
 736        u8 r77;
 737
 738        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 739        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 740        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 741
 742        /*
 743         * Configure the RX antenna.
 744         */
 745        switch (ant->rx) {
 746        case ANTENNA_A:
 747                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 748                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 749                rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 750                break;
 751        case ANTENNA_HW_DIVERSITY:
 752                /*
 753                 * FIXME: Antenna selection for the rf 2529 is very confusing
 754                 * in the legacy driver. Just default to antenna B until the
 755                 * legacy code can be properly translated into rt2x00 code.
 756                 */
 757        case ANTENNA_B:
 758        default:
 759                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 760                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 761                rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 762                break;
 763        }
 764
 765        rt61pci_bbp_write(rt2x00dev, 77, r77);
 766        rt61pci_bbp_write(rt2x00dev, 3, r3);
 767        rt61pci_bbp_write(rt2x00dev, 4, r4);
 768}
 769
 770struct antenna_sel {
 771        u8 word;
 772        /*
 773         * value[0] -> non-LNA
 774         * value[1] -> LNA
 775         */
 776        u8 value[2];
 777};
 778
 779static const struct antenna_sel antenna_sel_a[] = {
 780        { 96,  { 0x58, 0x78 } },
 781        { 104, { 0x38, 0x48 } },
 782        { 75,  { 0xfe, 0x80 } },
 783        { 86,  { 0xfe, 0x80 } },
 784        { 88,  { 0xfe, 0x80 } },
 785        { 35,  { 0x60, 0x60 } },
 786        { 97,  { 0x58, 0x58 } },
 787        { 98,  { 0x58, 0x58 } },
 788};
 789
 790static const struct antenna_sel antenna_sel_bg[] = {
 791        { 96,  { 0x48, 0x68 } },
 792        { 104, { 0x2c, 0x3c } },
 793        { 75,  { 0xfe, 0x80 } },
 794        { 86,  { 0xfe, 0x80 } },
 795        { 88,  { 0xfe, 0x80 } },
 796        { 35,  { 0x50, 0x50 } },
 797        { 97,  { 0x48, 0x48 } },
 798        { 98,  { 0x48, 0x48 } },
 799};
 800
 801static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 802                               struct antenna_setup *ant)
 803{
 804        const struct antenna_sel *sel;
 805        unsigned int lna;
 806        unsigned int i;
 807        u32 reg;
 808
 809        /*
 810         * We should never come here because rt2x00lib is supposed
 811         * to catch this and send us the correct antenna explicitely.
 812         */
 813        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 814               ant->tx == ANTENNA_SW_DIVERSITY);
 815
 816        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 817                sel = antenna_sel_a;
 818                lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
 819        } else {
 820                sel = antenna_sel_bg;
 821                lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
 822        }
 823
 824        for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 825                rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 826
 827        rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
 828
 829        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 830                           rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 831        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 832                           rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 833
 834        rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
 835
 836        if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
 837            rt2x00_rf(&rt2x00dev->chip, RF5325))
 838                rt61pci_config_antenna_5x(rt2x00dev, ant);
 839        else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
 840                rt61pci_config_antenna_2x(rt2x00dev, ant);
 841        else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
 842                if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
 843                        rt61pci_config_antenna_2x(rt2x00dev, ant);
 844                else
 845                        rt61pci_config_antenna_2529(rt2x00dev, ant);
 846        }
 847}
 848
 849static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 850                                    struct rt2x00lib_conf *libconf)
 851{
 852        u16 eeprom;
 853        short lna_gain = 0;
 854
 855        if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
 856                if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
 857                        lna_gain += 14;
 858
 859                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 860                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 861        } else {
 862                if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
 863                        lna_gain += 14;
 864
 865                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 866                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 867        }
 868
 869        rt2x00dev->lna_gain = lna_gain;
 870}
 871
 872static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 873                                   struct rf_channel *rf, const int txpower)
 874{
 875        u8 r3;
 876        u8 r94;
 877        u8 smart;
 878
 879        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 880        rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 881
 882        smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
 883                  rt2x00_rf(&rt2x00dev->chip, RF2527));
 884
 885        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 886        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 887        rt61pci_bbp_write(rt2x00dev, 3, r3);
 888
 889        r94 = 6;
 890        if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 891                r94 += txpower - MAX_TXPOWER;
 892        else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 893                r94 += txpower;
 894        rt61pci_bbp_write(rt2x00dev, 94, r94);
 895
 896        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 897        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 898        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 899        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 900
 901        udelay(200);
 902
 903        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 904        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 905        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 906        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 907
 908        udelay(200);
 909
 910        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 911        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 912        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 913        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 914
 915        msleep(1);
 916}
 917
 918static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 919                                   const int txpower)
 920{
 921        struct rf_channel rf;
 922
 923        rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 924        rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 925        rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 926        rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 927
 928        rt61pci_config_channel(rt2x00dev, &rf, txpower);
 929}
 930
 931static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 932                                    struct rt2x00lib_conf *libconf)
 933{
 934        u32 reg;
 935
 936        rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 937        rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 938                           libconf->conf->long_frame_max_tx_count);
 939        rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 940                           libconf->conf->short_frame_max_tx_count);
 941        rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 942}
 943
 944static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 945                                struct rt2x00lib_conf *libconf)
 946{
 947        enum dev_state state =
 948            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 949                STATE_SLEEP : STATE_AWAKE;
 950        u32 reg;
 951
 952        if (state == STATE_SLEEP) {
 953                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 954                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 955                                   rt2x00dev->beacon_int - 10);
 956                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 957                                   libconf->conf->listen_interval - 1);
 958                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 959
 960                /* We must first disable autowake before it can be enabled */
 961                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 962                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 963
 964                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 965                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 966
 967                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
 968                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 969                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 970
 971                rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 972        } else {
 973                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 974                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 975                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 976                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 977                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 978                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 979
 980                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
 981                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 982                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 983
 984                rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 985        }
 986}
 987
 988static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 989                           struct rt2x00lib_conf *libconf,
 990                           const unsigned int flags)
 991{
 992        /* Always recalculate LNA gain before changing configuration */
 993        rt61pci_config_lna_gain(rt2x00dev, libconf);
 994
 995        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 996                rt61pci_config_channel(rt2x00dev, &libconf->rf,
 997                                       libconf->conf->power_level);
 998        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 999            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1000                rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1001        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1002                rt61pci_config_retry_limit(rt2x00dev, libconf);
1003        if (flags & IEEE80211_CONF_CHANGE_PS)
1004                rt61pci_config_ps(rt2x00dev, libconf);
1005}
1006
1007/*
1008 * Link tuning
1009 */
1010static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1011                               struct link_qual *qual)
1012{
1013        u32 reg;
1014
1015        /*
1016         * Update FCS error count from register.
1017         */
1018        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1019        qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1020
1021        /*
1022         * Update False CCA count from register.
1023         */
1024        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1025        qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1026}
1027
1028static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1029                                   struct link_qual *qual, u8 vgc_level)
1030{
1031        if (qual->vgc_level != vgc_level) {
1032                rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1033                qual->vgc_level = vgc_level;
1034                qual->vgc_level_reg = vgc_level;
1035        }
1036}
1037
1038static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1039                                struct link_qual *qual)
1040{
1041        rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1042}
1043
1044static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1045                               struct link_qual *qual, const u32 count)
1046{
1047        u8 up_bound;
1048        u8 low_bound;
1049
1050        /*
1051         * Determine r17 bounds.
1052         */
1053        if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1054                low_bound = 0x28;
1055                up_bound = 0x48;
1056                if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1057                        low_bound += 0x10;
1058                        up_bound += 0x10;
1059                }
1060        } else {
1061                low_bound = 0x20;
1062                up_bound = 0x40;
1063                if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1064                        low_bound += 0x10;
1065                        up_bound += 0x10;
1066                }
1067        }
1068
1069        /*
1070         * If we are not associated, we should go straight to the
1071         * dynamic CCA tuning.
1072         */
1073        if (!rt2x00dev->intf_associated)
1074                goto dynamic_cca_tune;
1075
1076        /*
1077         * Special big-R17 for very short distance
1078         */
1079        if (qual->rssi >= -35) {
1080                rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1081                return;
1082        }
1083
1084        /*
1085         * Special big-R17 for short distance
1086         */
1087        if (qual->rssi >= -58) {
1088                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1089                return;
1090        }
1091
1092        /*
1093         * Special big-R17 for middle-short distance
1094         */
1095        if (qual->rssi >= -66) {
1096                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1097                return;
1098        }
1099
1100        /*
1101         * Special mid-R17 for middle distance
1102         */
1103        if (qual->rssi >= -74) {
1104                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1105                return;
1106        }
1107
1108        /*
1109         * Special case: Change up_bound based on the rssi.
1110         * Lower up_bound when rssi is weaker then -74 dBm.
1111         */
1112        up_bound -= 2 * (-74 - qual->rssi);
1113        if (low_bound > up_bound)
1114                up_bound = low_bound;
1115
1116        if (qual->vgc_level > up_bound) {
1117                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1118                return;
1119        }
1120
1121dynamic_cca_tune:
1122
1123        /*
1124         * r17 does not yet exceed upper limit, continue and base
1125         * the r17 tuning on the false CCA count.
1126         */
1127        if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1128                rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1129        else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1130                rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1131}
1132
1133/*
1134 * Firmware functions
1135 */
1136static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1137{
1138        char *fw_name;
1139
1140        switch (rt2x00dev->chip.rt) {
1141        case RT2561:
1142                fw_name = FIRMWARE_RT2561;
1143                break;
1144        case RT2561s:
1145                fw_name = FIRMWARE_RT2561s;
1146                break;
1147        case RT2661:
1148                fw_name = FIRMWARE_RT2661;
1149                break;
1150        default:
1151                fw_name = NULL;
1152                break;
1153        }
1154
1155        return fw_name;
1156}
1157
1158static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1159                                  const u8 *data, const size_t len)
1160{
1161        u16 fw_crc;
1162        u16 crc;
1163
1164        /*
1165         * Only support 8kb firmware files.
1166         */
1167        if (len != 8192)
1168                return FW_BAD_LENGTH;
1169
1170        /*
1171         * The last 2 bytes in the firmware array are the crc checksum itself,
1172         * this means that we should never pass those 2 bytes to the crc
1173         * algorithm.
1174         */
1175        fw_crc = (data[len - 2] << 8 | data[len - 1]);
1176
1177        /*
1178         * Use the crc itu-t algorithm.
1179         */
1180        crc = crc_itu_t(0, data, len - 2);
1181        crc = crc_itu_t_byte(crc, 0);
1182        crc = crc_itu_t_byte(crc, 0);
1183
1184        return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1185}
1186
1187static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1188                                 const u8 *data, const size_t len)
1189{
1190        int i;
1191        u32 reg;
1192
1193        /*
1194         * Wait for stable hardware.
1195         */
1196        for (i = 0; i < 100; i++) {
1197                rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1198                if (reg)
1199                        break;
1200                msleep(1);
1201        }
1202
1203        if (!reg) {
1204                ERROR(rt2x00dev, "Unstable hardware.\n");
1205                return -EBUSY;
1206        }
1207
1208        /*
1209         * Prepare MCU and mailbox for firmware loading.
1210         */
1211        reg = 0;
1212        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1213        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1214        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1215        rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1216        rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1217
1218        /*
1219         * Write firmware to device.
1220         */
1221        reg = 0;
1222        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1223        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1224        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1225
1226        rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1227                                      data, len);
1228
1229        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1230        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1231
1232        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1233        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1234
1235        for (i = 0; i < 100; i++) {
1236                rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1237                if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1238                        break;
1239                msleep(1);
1240        }
1241
1242        if (i == 100) {
1243                ERROR(rt2x00dev, "MCU Control register not ready.\n");
1244                return -EBUSY;
1245        }
1246
1247        /*
1248         * Hardware needs another millisecond before it is ready.
1249         */
1250        msleep(1);
1251
1252        /*
1253         * Reset MAC and BBP registers.
1254         */
1255        reg = 0;
1256        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1257        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1258        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1259
1260        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1261        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1262        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1263        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1264
1265        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1266        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1267        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1268
1269        return 0;
1270}
1271
1272/*
1273 * Initialization functions.
1274 */
1275static bool rt61pci_get_entry_state(struct queue_entry *entry)
1276{
1277        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1278        u32 word;
1279
1280        if (entry->queue->qid == QID_RX) {
1281                rt2x00_desc_read(entry_priv->desc, 0, &word);
1282
1283                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1284        } else {
1285                rt2x00_desc_read(entry_priv->desc, 0, &word);
1286
1287                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1288                        rt2x00_get_field32(word, TXD_W0_VALID));
1289        }
1290}
1291
1292static void rt61pci_clear_entry(struct queue_entry *entry)
1293{
1294        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1295        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1296        u32 word;
1297
1298        if (entry->queue->qid == QID_RX) {
1299                rt2x00_desc_read(entry_priv->desc, 5, &word);
1300                rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1301                                   skbdesc->skb_dma);
1302                rt2x00_desc_write(entry_priv->desc, 5, word);
1303
1304                rt2x00_desc_read(entry_priv->desc, 0, &word);
1305                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1306                rt2x00_desc_write(entry_priv->desc, 0, word);
1307        } else {
1308                rt2x00_desc_read(entry_priv->desc, 0, &word);
1309                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1310                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1311                rt2x00_desc_write(entry_priv->desc, 0, word);
1312        }
1313}
1314
1315static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1316{
1317        struct queue_entry_priv_pci *entry_priv;
1318        u32 reg;
1319
1320        /*
1321         * Initialize registers.
1322         */
1323        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1324        rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1325                           rt2x00dev->tx[0].limit);
1326        rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1327                           rt2x00dev->tx[1].limit);
1328        rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1329                           rt2x00dev->tx[2].limit);
1330        rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1331                           rt2x00dev->tx[3].limit);
1332        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1333
1334        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1335        rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1336                           rt2x00dev->tx[0].desc_size / 4);
1337        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1338
1339        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1340        rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1341        rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1342                           entry_priv->desc_dma);
1343        rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1344
1345        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1346        rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1347        rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1348                           entry_priv->desc_dma);
1349        rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1350
1351        entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1352        rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1353        rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1354                           entry_priv->desc_dma);
1355        rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1356
1357        entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1358        rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1359        rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1360                           entry_priv->desc_dma);
1361        rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1362
1363        rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1364        rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1365        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1366                           rt2x00dev->rx->desc_size / 4);
1367        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1368        rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1369
1370        entry_priv = rt2x00dev->rx->entries[0].priv_data;
1371        rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1372        rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1373                           entry_priv->desc_dma);
1374        rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1375
1376        rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1377        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1378        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1379        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1380        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1381        rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1382
1383        rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1384        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1385        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1386        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1387        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1388        rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1389
1390        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1391        rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1392        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1393
1394        return 0;
1395}
1396
1397static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1398{
1399        u32 reg;
1400
1401        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1402        rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1403        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1404        rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1405        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1406
1407        rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1408        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1409        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1410        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1411        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1412        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1413        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1414        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1415        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1416        rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1417
1418        /*
1419         * CCK TXD BBP registers
1420         */
1421        rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1422        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1423        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1424        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1425        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1426        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1427        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1428        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1429        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1430        rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1431
1432        /*
1433         * OFDM TXD BBP registers
1434         */
1435        rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1436        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1437        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1438        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1439        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1440        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1441        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1442        rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1443
1444        rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1445        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1446        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1447        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1448        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1449        rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1450
1451        rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1452        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1453        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1454        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1455        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1456        rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1457
1458        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1459        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1460        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1461        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1462        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1463        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1464        rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1465        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1466
1467        rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1468
1469        rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1470
1471        rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1472        rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1473        rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1474
1475        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1476
1477        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1478                return -EBUSY;
1479
1480        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1481
1482        /*
1483         * Invalidate all Shared Keys (SEC_CSR0),
1484         * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1485         */
1486        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1487        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1488        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1489
1490        rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1491        rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1492        rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1493        rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1494
1495        rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1496
1497        rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1498
1499        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1500
1501        /*
1502         * Clear all beacons
1503         * For the Beacon base registers we only need to clear
1504         * the first byte since that byte contains the VALID and OWNER
1505         * bits which (when set to 0) will invalidate the entire beacon.
1506         */
1507        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1508        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1509        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1510        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1511
1512        /*
1513         * We must clear the error counters.
1514         * These registers are cleared on read,
1515         * so we may pass a useless variable to store the value.
1516         */
1517        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1518        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1519        rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1520
1521        /*
1522         * Reset MAC and BBP registers.
1523         */
1524        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1525        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1526        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1527        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1528
1529        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1530        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1531        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1532        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1533
1534        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1535        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1536        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1537
1538        return 0;
1539}
1540
1541static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1542{
1543        unsigned int i;
1544        u8 value;
1545
1546        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1547                rt61pci_bbp_read(rt2x00dev, 0, &value);
1548                if ((value != 0xff) && (value != 0x00))
1549                        return 0;
1550                udelay(REGISTER_BUSY_DELAY);
1551        }
1552
1553        ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1554        return -EACCES;
1555}
1556
1557static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1558{
1559        unsigned int i;
1560        u16 eeprom;
1561        u8 reg_id;
1562        u8 value;
1563
1564        if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1565                return -EACCES;
1566
1567        rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1568        rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1569        rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1570        rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1571        rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1572        rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1573        rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1574        rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1575        rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1576        rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1577        rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1578        rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1579        rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1580        rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1581        rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1582        rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1583        rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1584        rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1585        rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1586        rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1587        rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1588        rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1589        rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1590        rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1591
1592        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1593                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1594
1595                if (eeprom != 0xffff && eeprom != 0x0000) {
1596                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1597                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1598                        rt61pci_bbp_write(rt2x00dev, reg_id, value);
1599                }
1600        }
1601
1602        return 0;
1603}
1604
1605/*
1606 * Device state switch handlers.
1607 */
1608static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1609                              enum dev_state state)
1610{
1611        u32 reg;
1612
1613        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1614        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1615                           (state == STATE_RADIO_RX_OFF) ||
1616                           (state == STATE_RADIO_RX_OFF_LINK));
1617        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1618}
1619
1620static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1621                               enum dev_state state)
1622{
1623        int mask = (state == STATE_RADIO_IRQ_OFF);
1624        u32 reg;
1625
1626        /*
1627         * When interrupts are being enabled, the interrupt registers
1628         * should clear the register to assure a clean state.
1629         */
1630        if (state == STATE_RADIO_IRQ_ON) {
1631                rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1632                rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1633
1634                rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1635                rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1636        }
1637
1638        /*
1639         * Only toggle the interrupts bits we are going to use.
1640         * Non-checked interrupt bits are disabled by default.
1641         */
1642        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1643        rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1644        rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1645        rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1646        rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1647        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1648
1649        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1650        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1651        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1652        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1653        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1654        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1655        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1656        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1657        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1658        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1659}
1660
1661static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1662{
1663        u32 reg;
1664
1665        /*
1666         * Initialize all registers.
1667         */
1668        if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1669                     rt61pci_init_registers(rt2x00dev) ||
1670                     rt61pci_init_bbp(rt2x00dev)))
1671                return -EIO;
1672
1673        /*
1674         * Enable RX.
1675         */
1676        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1677        rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1678        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1679
1680        return 0;
1681}
1682
1683static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1684{
1685        /*
1686         * Disable power
1687         */
1688        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1689}
1690
1691static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1692{
1693        u32 reg;
1694        unsigned int i;
1695        char put_to_sleep;
1696
1697        put_to_sleep = (state != STATE_AWAKE);
1698
1699        rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1700        rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1701        rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1702        rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1703
1704        /*
1705         * Device is not guaranteed to be in the requested state yet.
1706         * We must wait until the register indicates that the
1707         * device has entered the correct state.
1708         */
1709        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1710                rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1711                state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1712                if (state == !put_to_sleep)
1713                        return 0;
1714                msleep(10);
1715        }
1716
1717        return -EBUSY;
1718}
1719
1720static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1721                                    enum dev_state state)
1722{
1723        int retval = 0;
1724
1725        switch (state) {
1726        case STATE_RADIO_ON:
1727                retval = rt61pci_enable_radio(rt2x00dev);
1728                break;
1729        case STATE_RADIO_OFF:
1730                rt61pci_disable_radio(rt2x00dev);
1731                break;
1732        case STATE_RADIO_RX_ON:
1733        case STATE_RADIO_RX_ON_LINK:
1734        case STATE_RADIO_RX_OFF:
1735        case STATE_RADIO_RX_OFF_LINK:
1736                rt61pci_toggle_rx(rt2x00dev, state);
1737                break;
1738        case STATE_RADIO_IRQ_ON:
1739        case STATE_RADIO_IRQ_OFF:
1740                rt61pci_toggle_irq(rt2x00dev, state);
1741                break;
1742        case STATE_DEEP_SLEEP:
1743        case STATE_SLEEP:
1744        case STATE_STANDBY:
1745        case STATE_AWAKE:
1746                retval = rt61pci_set_state(rt2x00dev, state);
1747                break;
1748        default:
1749                retval = -ENOTSUPP;
1750                break;
1751        }
1752
1753        if (unlikely(retval))
1754                ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1755                      state, retval);
1756
1757        return retval;
1758}
1759
1760/*
1761 * TX descriptor initialization
1762 */
1763static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1764                                  struct sk_buff *skb,
1765                                  struct txentry_desc *txdesc)
1766{
1767        struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1768        __le32 *txd = skbdesc->desc;
1769        u32 word;
1770
1771        /*
1772         * Start writing the descriptor words.
1773         */
1774        rt2x00_desc_read(txd, 1, &word);
1775        rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1776        rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1777        rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1778        rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1779        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1780        rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1781                           test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1782        rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1783        rt2x00_desc_write(txd, 1, word);
1784
1785        rt2x00_desc_read(txd, 2, &word);
1786        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1787        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1788        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1789        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1790        rt2x00_desc_write(txd, 2, word);
1791
1792        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1793                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1794                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1795        }
1796
1797        rt2x00_desc_read(txd, 5, &word);
1798        rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1799        rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1800                           skbdesc->entry->entry_idx);
1801        rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1802                           TXPOWER_TO_DEV(rt2x00dev->tx_power));
1803        rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1804        rt2x00_desc_write(txd, 5, word);
1805
1806        rt2x00_desc_read(txd, 6, &word);
1807        rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1808                           skbdesc->skb_dma);
1809        rt2x00_desc_write(txd, 6, word);
1810
1811        if (skbdesc->desc_len > TXINFO_SIZE) {
1812                rt2x00_desc_read(txd, 11, &word);
1813                rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1814                rt2x00_desc_write(txd, 11, word);
1815        }
1816
1817        rt2x00_desc_read(txd, 0, &word);
1818        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1819        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1820        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1821                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1822        rt2x00_set_field32(&word, TXD_W0_ACK,
1823                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1824        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1825                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1826        rt2x00_set_field32(&word, TXD_W0_OFDM,
1827                           (txdesc->rate_mode == RATE_MODE_OFDM));
1828        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1829        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1830                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1831        rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1832                           test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1833        rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1834                           test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1835        rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1836        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1837        rt2x00_set_field32(&word, TXD_W0_BURST,
1838                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1839        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1840        rt2x00_desc_write(txd, 0, word);
1841}
1842
1843/*
1844 * TX data initialization
1845 */
1846static void rt61pci_write_beacon(struct queue_entry *entry)
1847{
1848        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1849        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1850        unsigned int beacon_base;
1851        u32 reg;
1852
1853        /*
1854         * Disable beaconing while we are reloading the beacon data,
1855         * otherwise we might be sending out invalid data.
1856         */
1857        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1858        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1859        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1860
1861        /*
1862         * Write entire beacon with descriptor to register.
1863         */
1864        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1865        rt2x00pci_register_multiwrite(rt2x00dev,
1866                                      beacon_base,
1867                                      skbdesc->desc, skbdesc->desc_len);
1868        rt2x00pci_register_multiwrite(rt2x00dev,
1869                                      beacon_base + skbdesc->desc_len,
1870                                      entry->skb->data, entry->skb->len);
1871
1872        /*
1873         * Clean up beacon skb.
1874         */
1875        dev_kfree_skb_any(entry->skb);
1876        entry->skb = NULL;
1877}
1878
1879static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1880                                  const enum data_queue_qid queue)
1881{
1882        u32 reg;
1883
1884        if (queue == QID_BEACON) {
1885                /*
1886                 * For Wi-Fi faily generated beacons between participating
1887                 * stations. Set TBTT phase adaptive adjustment step to 8us.
1888                 */
1889                rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1890
1891                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1892                if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1893                        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1894                        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1895                        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1896                        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1897                }
1898                return;
1899        }
1900
1901        rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1902        rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1903        rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1904        rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1905        rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1906        rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1907}
1908
1909static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1910                                  const enum data_queue_qid qid)
1911{
1912        u32 reg;
1913
1914        if (qid == QID_BEACON) {
1915                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1916                return;
1917        }
1918
1919        rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1920        rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1921        rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1922        rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1923        rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1924        rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1925}
1926
1927/*
1928 * RX control handlers
1929 */
1930static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1931{
1932        u8 offset = rt2x00dev->lna_gain;
1933        u8 lna;
1934
1935        lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1936        switch (lna) {
1937        case 3:
1938                offset += 90;
1939                break;
1940        case 2:
1941                offset += 74;
1942                break;
1943        case 1:
1944                offset += 64;
1945                break;
1946        default:
1947                return 0;
1948        }
1949
1950        if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1951                if (lna == 3 || lna == 2)
1952                        offset += 10;
1953        }
1954
1955        return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1956}
1957
1958static void rt61pci_fill_rxdone(struct queue_entry *entry,
1959                                struct rxdone_entry_desc *rxdesc)
1960{
1961        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1962        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1963        u32 word0;
1964        u32 word1;
1965
1966        rt2x00_desc_read(entry_priv->desc, 0, &word0);
1967        rt2x00_desc_read(entry_priv->desc, 1, &word1);
1968
1969        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1970                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1971
1972        if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1973                rxdesc->cipher =
1974                    rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1975                rxdesc->cipher_status =
1976                    rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1977        }
1978
1979        if (rxdesc->cipher != CIPHER_NONE) {
1980                _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1981                _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1982                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1983
1984                _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1985                rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1986
1987                /*
1988                 * Hardware has stripped IV/EIV data from 802.11 frame during
1989                 * decryption. It has provided the data seperately but rt2x00lib
1990                 * should decide if it should be reinserted.
1991                 */
1992                rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1993
1994                /*
1995                 * FIXME: Legacy driver indicates that the frame does
1996                 * contain the Michael Mic. Unfortunately, in rt2x00
1997                 * the MIC seems to be missing completely...
1998                 */
1999                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2000
2001                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2002                        rxdesc->flags |= RX_FLAG_DECRYPTED;
2003                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2004                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2005        }
2006
2007        /*
2008         * Obtain the status about this packet.
2009         * When frame was received with an OFDM bitrate,
2010         * the signal is the PLCP value. If it was received with
2011         * a CCK bitrate the signal is the rate in 100kbit/s.
2012         */
2013        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2014        rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2015        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2016
2017        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2018                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2019        else
2020                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2021        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2022                rxdesc->dev_flags |= RXDONE_MY_BSS;
2023}
2024
2025/*
2026 * Interrupt functions.
2027 */
2028static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2029{
2030        struct data_queue *queue;
2031        struct queue_entry *entry;
2032        struct queue_entry *entry_done;
2033        struct queue_entry_priv_pci *entry_priv;
2034        struct txdone_entry_desc txdesc;
2035        u32 word;
2036        u32 reg;
2037        u32 old_reg;
2038        int type;
2039        int index;
2040
2041        /*
2042         * During each loop we will compare the freshly read
2043         * STA_CSR4 register value with the value read from
2044         * the previous loop. If the 2 values are equal then
2045         * we should stop processing because the chance it
2046         * quite big that the device has been unplugged and
2047         * we risk going into an endless loop.
2048         */
2049        old_reg = 0;
2050
2051        while (1) {
2052                rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2053                if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2054                        break;
2055
2056                if (old_reg == reg)
2057                        break;
2058                old_reg = reg;
2059
2060                /*
2061                 * Skip this entry when it contains an invalid
2062                 * queue identication number.
2063                 */
2064                type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2065                queue = rt2x00queue_get_queue(rt2x00dev, type);
2066                if (unlikely(!queue))
2067                        continue;
2068
2069                /*
2070                 * Skip this entry when it contains an invalid
2071                 * index number.
2072                 */
2073                index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2074                if (unlikely(index >= queue->limit))
2075                        continue;
2076
2077                entry = &queue->entries[index];
2078                entry_priv = entry->priv_data;
2079                rt2x00_desc_read(entry_priv->desc, 0, &word);
2080
2081                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2082                    !rt2x00_get_field32(word, TXD_W0_VALID))
2083                        return;
2084
2085                entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2086                while (entry != entry_done) {
2087                        /* Catch up.
2088                         * Just report any entries we missed as failed.
2089                         */
2090                        WARNING(rt2x00dev,
2091                                "TX status report missed for entry %d\n",
2092                                entry_done->entry_idx);
2093
2094                        txdesc.flags = 0;
2095                        __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2096                        txdesc.retry = 0;
2097
2098                        rt2x00lib_txdone(entry_done, &txdesc);
2099                        entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2100                }
2101
2102                /*
2103                 * Obtain the status about this packet.
2104                 */
2105                txdesc.flags = 0;
2106                switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2107                case 0: /* Success, maybe with retry */
2108                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2109                        break;
2110                case 6: /* Failure, excessive retries */
2111                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2112                        /* Don't break, this is a failed frame! */
2113                default: /* Failure */
2114                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
2115                }
2116                txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2117
2118                rt2x00lib_txdone(entry, &txdesc);
2119        }
2120}
2121
2122static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2123{
2124        struct rt2x00_dev *rt2x00dev = dev_instance;
2125        u32 reg_mcu;
2126        u32 reg;
2127
2128        /*
2129         * Get the interrupt sources & saved to local variable.
2130         * Write register value back to clear pending interrupts.
2131         */
2132        rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2133        rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2134
2135        rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2136        rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2137
2138        if (!reg && !reg_mcu)
2139                return IRQ_NONE;
2140
2141        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2142                return IRQ_HANDLED;
2143
2144        /*
2145         * Handle interrupts, walk through all bits
2146         * and run the tasks, the bits are checked in order of
2147         * priority.
2148         */
2149
2150        /*
2151         * 1 - Rx ring done interrupt.
2152         */
2153        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2154                rt2x00pci_rxdone(rt2x00dev);
2155
2156        /*
2157         * 2 - Tx ring done interrupt.
2158         */
2159        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2160                rt61pci_txdone(rt2x00dev);
2161
2162        /*
2163         * 3 - Handle MCU command done.
2164         */
2165        if (reg_mcu)
2166                rt2x00pci_register_write(rt2x00dev,
2167                                         M2H_CMD_DONE_CSR, 0xffffffff);
2168
2169        return IRQ_HANDLED;
2170}
2171
2172/*
2173 * Device probe functions.
2174 */
2175static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2176{
2177        struct eeprom_93cx6 eeprom;
2178        u32 reg;
2179        u16 word;
2180        u8 *mac;
2181        s8 value;
2182
2183        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2184
2185        eeprom.data = rt2x00dev;
2186        eeprom.register_read = rt61pci_eepromregister_read;
2187        eeprom.register_write = rt61pci_eepromregister_write;
2188        eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2189            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2190        eeprom.reg_data_in = 0;
2191        eeprom.reg_data_out = 0;
2192        eeprom.reg_data_clock = 0;
2193        eeprom.reg_chip_select = 0;
2194
2195        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2196                               EEPROM_SIZE / sizeof(u16));
2197
2198        /*
2199         * Start validation of the data that has been read.
2200         */
2201        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2202        if (!is_valid_ether_addr(mac)) {
2203                random_ether_addr(mac);
2204                EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2205        }
2206
2207        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2208        if (word == 0xffff) {
2209                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2210                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2211                                   ANTENNA_B);
2212                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2213                                   ANTENNA_B);
2214                rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2215                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2216                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2217                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2218                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2219                EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2220        }
2221
2222        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2223        if (word == 0xffff) {
2224                rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2225                rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2226                rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2227                rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2228                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2229                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2230                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2231                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2232                EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2233        }
2234
2235        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2236        if (word == 0xffff) {
2237                rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2238                                   LED_MODE_DEFAULT);
2239                rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2240                EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2241        }
2242
2243        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2244        if (word == 0xffff) {
2245                rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2246                rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2247                rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2248                EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2249        }
2250
2251        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2252        if (word == 0xffff) {
2253                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2254                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2255                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2256                EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2257        } else {
2258                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2259                if (value < -10 || value > 10)
2260                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2261                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2262                if (value < -10 || value > 10)
2263                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2264                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2265        }
2266
2267        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2268        if (word == 0xffff) {
2269                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2270                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2271                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2272                EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2273        } else {
2274                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2275                if (value < -10 || value > 10)
2276                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2277                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2278                if (value < -10 || value > 10)
2279                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2280                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2281        }
2282
2283        return 0;
2284}
2285
2286static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2287{
2288        u32 reg;
2289        u16 value;
2290        u16 eeprom;
2291
2292        /*
2293         * Read EEPROM word for configuration.
2294         */
2295        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2296
2297        /*
2298         * Identify RF chipset.
2299         */
2300        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2301        rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2302        rt2x00_set_chip_rf(rt2x00dev, value, reg);
2303
2304        if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2305            !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2306            !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2307            !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2308                ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2309                return -ENODEV;
2310        }
2311
2312        /*
2313         * Determine number of antennas.
2314         */
2315        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2316                __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2317
2318        /*
2319         * Identify default antenna configuration.
2320         */
2321        rt2x00dev->default_ant.tx =
2322            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2323        rt2x00dev->default_ant.rx =
2324            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2325
2326        /*
2327         * Read the Frame type.
2328         */
2329        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2330                __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2331
2332        /*
2333         * Detect if this device has an hardware controlled radio.
2334         */
2335        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2336                __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2337
2338        /*
2339         * Read frequency offset and RF programming sequence.
2340         */
2341        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2342        if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2343                __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2344
2345        rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2346
2347        /*
2348         * Read external LNA informations.
2349         */
2350        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2351
2352        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2353                __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2354        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2355                __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2356
2357        /*
2358         * When working with a RF2529 chip without double antenna
2359         * the antenna settings should be gathered from the NIC
2360         * eeprom word.
2361         */
2362        if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2363            !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2364                rt2x00dev->default_ant.rx =
2365                    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2366                rt2x00dev->default_ant.tx =
2367                    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2368
2369                if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2370                        rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2371                if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2372                        rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2373        }
2374
2375        /*
2376         * Store led settings, for correct led behaviour.
2377         * If the eeprom value is invalid,
2378         * switch to default led mode.
2379         */
2380#ifdef CONFIG_RT2X00_LIB_LEDS
2381        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2382        value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2383
2384        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2385        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2386        if (value == LED_MODE_SIGNAL_STRENGTH)
2387                rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2388                                 LED_TYPE_QUALITY);
2389
2390        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2391        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2392                           rt2x00_get_field16(eeprom,
2393                                              EEPROM_LED_POLARITY_GPIO_0));
2394        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2395                           rt2x00_get_field16(eeprom,
2396                                              EEPROM_LED_POLARITY_GPIO_1));
2397        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2398                           rt2x00_get_field16(eeprom,
2399                                              EEPROM_LED_POLARITY_GPIO_2));
2400        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2401                           rt2x00_get_field16(eeprom,
2402                                              EEPROM_LED_POLARITY_GPIO_3));
2403        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2404                           rt2x00_get_field16(eeprom,
2405                                              EEPROM_LED_POLARITY_GPIO_4));
2406        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2407                           rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2408        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2409                           rt2x00_get_field16(eeprom,
2410                                              EEPROM_LED_POLARITY_RDY_G));
2411        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2412                           rt2x00_get_field16(eeprom,
2413                                              EEPROM_LED_POLARITY_RDY_A));
2414#endif /* CONFIG_RT2X00_LIB_LEDS */
2415
2416        return 0;
2417}
2418
2419/*
2420 * RF value list for RF5225 & RF5325
2421 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2422 */
2423static const struct rf_channel rf_vals_noseq[] = {
2424        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2425        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2426        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2427        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2428        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2429        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2430        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2431        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2432        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2433        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2434        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2435        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2436        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2437        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2438
2439        /* 802.11 UNI / HyperLan 2 */
2440        { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2441        { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2442        { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2443        { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2444        { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2445        { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2446        { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2447        { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2448
2449        /* 802.11 HyperLan 2 */
2450        { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2451        { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2452        { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2453        { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2454        { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2455        { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2456        { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2457        { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2458        { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2459        { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2460
2461        /* 802.11 UNII */
2462        { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2463        { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2464        { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2465        { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2466        { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2467        { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2468
2469        /* MMAC(Japan)J52 ch 34,38,42,46 */
2470        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2471        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2472        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2473        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2474};
2475
2476/*
2477 * RF value list for RF5225 & RF5325
2478 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2479 */
2480static const struct rf_channel rf_vals_seq[] = {
2481        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2482        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2483        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2484        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2485        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2486        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2487        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2488        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2489        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2490        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2491        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2492        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2493        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2494        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2495
2496        /* 802.11 UNI / HyperLan 2 */
2497        { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2498        { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2499        { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2500        { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2501        { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2502        { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2503        { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2504        { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2505
2506        /* 802.11 HyperLan 2 */
2507        { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2508        { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2509        { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2510        { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2511        { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2512        { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2513        { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2514        { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2515        { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2516        { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2517
2518        /* 802.11 UNII */
2519        { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2520        { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2521        { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2522        { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2523        { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2524        { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2525
2526        /* MMAC(Japan)J52 ch 34,38,42,46 */
2527        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2528        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2529        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2530        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2531};
2532
2533static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2534{
2535        struct hw_mode_spec *spec = &rt2x00dev->spec;
2536        struct channel_info *info;
2537        char *tx_power;
2538        unsigned int i;
2539
2540        /*
2541         * Initialize all hw fields.
2542         */
2543        rt2x00dev->hw->flags =
2544            IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2545            IEEE80211_HW_SIGNAL_DBM |
2546            IEEE80211_HW_SUPPORTS_PS |
2547            IEEE80211_HW_PS_NULLFUNC_STACK;
2548        rt2x00dev->hw->extra_tx_headroom = 0;
2549
2550        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2551        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2552                                rt2x00_eeprom_addr(rt2x00dev,
2553                                                   EEPROM_MAC_ADDR_0));
2554
2555        /*
2556         * Initialize hw_mode information.
2557         */
2558        spec->supported_bands = SUPPORT_BAND_2GHZ;
2559        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2560
2561        if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2562                spec->num_channels = 14;
2563                spec->channels = rf_vals_noseq;
2564        } else {
2565                spec->num_channels = 14;
2566                spec->channels = rf_vals_seq;
2567        }
2568
2569        if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2570            rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2571                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2572                spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2573        }
2574
2575        /*
2576         * Create channel information array
2577         */
2578        info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2579        if (!info)
2580                return -ENOMEM;
2581
2582        spec->channels_info = info;
2583
2584        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2585        for (i = 0; i < 14; i++)
2586                info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2587
2588        if (spec->num_channels > 14) {
2589                tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2590                for (i = 14; i < spec->num_channels; i++)
2591                        info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2592        }
2593
2594        return 0;
2595}
2596
2597static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2598{
2599        int retval;
2600
2601        /*
2602         * Disable power saving.
2603         */
2604        rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2605
2606        /*
2607         * Allocate eeprom data.
2608         */
2609        retval = rt61pci_validate_eeprom(rt2x00dev);
2610        if (retval)
2611                return retval;
2612
2613        retval = rt61pci_init_eeprom(rt2x00dev);
2614        if (retval)
2615                return retval;
2616
2617        /*
2618         * Initialize hw specifications.
2619         */
2620        retval = rt61pci_probe_hw_mode(rt2x00dev);
2621        if (retval)
2622                return retval;
2623
2624        /*
2625         * This device has multiple filters for control frames,
2626         * but has no a separate filter for PS Poll frames.
2627         */
2628        __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2629
2630        /*
2631         * This device requires firmware and DMA mapped skbs.
2632         */
2633        __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2634        __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2635        if (!modparam_nohwcrypt)
2636                __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2637
2638        /*
2639         * Set the rssi offset.
2640         */
2641        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2642
2643        return 0;
2644}
2645
2646/*
2647 * IEEE80211 stack callback functions.
2648 */
2649static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2650                           const struct ieee80211_tx_queue_params *params)
2651{
2652        struct rt2x00_dev *rt2x00dev = hw->priv;
2653        struct data_queue *queue;
2654        struct rt2x00_field32 field;
2655        int retval;
2656        u32 reg;
2657        u32 offset;
2658
2659        /*
2660         * First pass the configuration through rt2x00lib, that will
2661         * update the queue settings and validate the input. After that
2662         * we are free to update the registers based on the value
2663         * in the queue parameter.
2664         */
2665        retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2666        if (retval)
2667                return retval;
2668
2669        /*
2670         * We only need to perform additional register initialization
2671         * for WMM queues/
2672         */
2673        if (queue_idx >= 4)
2674                return 0;
2675
2676        queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2677
2678        /* Update WMM TXOP register */
2679        offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2680        field.bit_offset = (queue_idx & 1) * 16;
2681        field.bit_mask = 0xffff << field.bit_offset;
2682
2683        rt2x00pci_register_read(rt2x00dev, offset, &reg);
2684        rt2x00_set_field32(&reg, field, queue->txop);
2685        rt2x00pci_register_write(rt2x00dev, offset, reg);
2686
2687        /* Update WMM registers */
2688        field.bit_offset = queue_idx * 4;
2689        field.bit_mask = 0xf << field.bit_offset;
2690
2691        rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2692        rt2x00_set_field32(&reg, field, queue->aifs);
2693        rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2694
2695        rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2696        rt2x00_set_field32(&reg, field, queue->cw_min);
2697        rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2698
2699        rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2700        rt2x00_set_field32(&reg, field, queue->cw_max);
2701        rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2702
2703        return 0;
2704}
2705
2706static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2707{
2708        struct rt2x00_dev *rt2x00dev = hw->priv;
2709        u64 tsf;
2710        u32 reg;
2711
2712        rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2713        tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2714        rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2715        tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2716
2717        return tsf;
2718}
2719
2720static const struct ieee80211_ops rt61pci_mac80211_ops = {
2721        .tx                     = rt2x00mac_tx,
2722        .start                  = rt2x00mac_start,
2723        .stop                   = rt2x00mac_stop,
2724        .add_interface          = rt2x00mac_add_interface,
2725        .remove_interface       = rt2x00mac_remove_interface,
2726        .config                 = rt2x00mac_config,
2727        .configure_filter       = rt2x00mac_configure_filter,
2728        .set_tim                = rt2x00mac_set_tim,
2729        .set_key                = rt2x00mac_set_key,
2730        .get_stats              = rt2x00mac_get_stats,
2731        .bss_info_changed       = rt2x00mac_bss_info_changed,
2732        .conf_tx                = rt61pci_conf_tx,
2733        .get_tx_stats           = rt2x00mac_get_tx_stats,
2734        .get_tsf                = rt61pci_get_tsf,
2735        .rfkill_poll            = rt2x00mac_rfkill_poll,
2736};
2737
2738static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2739        .irq_handler            = rt61pci_interrupt,
2740        .probe_hw               = rt61pci_probe_hw,
2741        .get_firmware_name      = rt61pci_get_firmware_name,
2742        .check_firmware         = rt61pci_check_firmware,
2743        .load_firmware          = rt61pci_load_firmware,
2744        .initialize             = rt2x00pci_initialize,
2745        .uninitialize           = rt2x00pci_uninitialize,
2746        .get_entry_state        = rt61pci_get_entry_state,
2747        .clear_entry            = rt61pci_clear_entry,
2748        .set_device_state       = rt61pci_set_device_state,
2749        .rfkill_poll            = rt61pci_rfkill_poll,
2750        .link_stats             = rt61pci_link_stats,
2751        .reset_tuner            = rt61pci_reset_tuner,
2752        .link_tuner             = rt61pci_link_tuner,
2753        .write_tx_desc          = rt61pci_write_tx_desc,
2754        .write_tx_data          = rt2x00pci_write_tx_data,
2755        .write_beacon           = rt61pci_write_beacon,
2756        .kick_tx_queue          = rt61pci_kick_tx_queue,
2757        .kill_tx_queue          = rt61pci_kill_tx_queue,
2758        .fill_rxdone            = rt61pci_fill_rxdone,
2759        .config_shared_key      = rt61pci_config_shared_key,
2760        .config_pairwise_key    = rt61pci_config_pairwise_key,
2761        .config_filter          = rt61pci_config_filter,
2762        .config_intf            = rt61pci_config_intf,
2763        .config_erp             = rt61pci_config_erp,
2764        .config_ant             = rt61pci_config_ant,
2765        .config                 = rt61pci_config,
2766};
2767
2768static const struct data_queue_desc rt61pci_queue_rx = {
2769        .entry_num              = RX_ENTRIES,
2770        .data_size              = DATA_FRAME_SIZE,
2771        .desc_size              = RXD_DESC_SIZE,
2772        .priv_size              = sizeof(struct queue_entry_priv_pci),
2773};
2774
2775static const struct data_queue_desc rt61pci_queue_tx = {
2776        .entry_num              = TX_ENTRIES,
2777        .data_size              = DATA_FRAME_SIZE,
2778        .desc_size              = TXD_DESC_SIZE,
2779        .priv_size              = sizeof(struct queue_entry_priv_pci),
2780};
2781
2782static const struct data_queue_desc rt61pci_queue_bcn = {
2783        .entry_num              = 4 * BEACON_ENTRIES,
2784        .data_size              = 0, /* No DMA required for beacons */
2785        .desc_size              = TXINFO_SIZE,
2786        .priv_size              = sizeof(struct queue_entry_priv_pci),
2787};
2788
2789static const struct rt2x00_ops rt61pci_ops = {
2790        .name           = KBUILD_MODNAME,
2791        .max_sta_intf   = 1,
2792        .max_ap_intf    = 4,
2793        .eeprom_size    = EEPROM_SIZE,
2794        .rf_size        = RF_SIZE,
2795        .tx_queues      = NUM_TX_QUEUES,
2796        .rx             = &rt61pci_queue_rx,
2797        .tx             = &rt61pci_queue_tx,
2798        .bcn            = &rt61pci_queue_bcn,
2799        .lib            = &rt61pci_rt2x00_ops,
2800        .hw             = &rt61pci_mac80211_ops,
2801#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2802        .debugfs        = &rt61pci_rt2x00debug,
2803#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2804};
2805
2806/*
2807 * RT61pci module information.
2808 */
2809static struct pci_device_id rt61pci_device_table[] = {
2810        /* RT2561s */
2811        { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2812        /* RT2561 v2 */
2813        { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2814        /* RT2661 */
2815        { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2816        { 0, }
2817};
2818
2819MODULE_AUTHOR(DRV_PROJECT);
2820MODULE_VERSION(DRV_VERSION);
2821MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2822MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2823                        "PCI & PCMCIA chipset based cards");
2824MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2825MODULE_FIRMWARE(FIRMWARE_RT2561);
2826MODULE_FIRMWARE(FIRMWARE_RT2561s);
2827MODULE_FIRMWARE(FIRMWARE_RT2661);
2828MODULE_LICENSE("GPL");
2829
2830static struct pci_driver rt61pci_driver = {
2831        .name           = KBUILD_MODNAME,
2832        .id_table       = rt61pci_device_table,
2833        .probe          = rt2x00pci_probe,
2834        .remove         = __devexit_p(rt2x00pci_remove),
2835        .suspend        = rt2x00pci_suspend,
2836        .resume         = rt2x00pci_resume,
2837};
2838
2839static int __init rt61pci_init(void)
2840{
2841        return pci_register_driver(&rt61pci_driver);
2842}
2843
2844static void __exit rt61pci_exit(void)
2845{
2846        pci_unregister_driver(&rt61pci_driver);
2847}
2848
2849module_init(rt61pci_init);
2850module_exit(rt61pci_exit);
2851