linux/drivers/net/wireless/strip.c
<<
>>
Prefs
   1/*
   2 * Copyright 1996 The Board of Trustees of The Leland Stanford
   3 * Junior University. All Rights Reserved.
   4 *
   5 * Permission to use, copy, modify, and distribute this
   6 * software and its documentation for any purpose and without
   7 * fee is hereby granted, provided that the above copyright
   8 * notice appear in all copies.  Stanford University
   9 * makes no representations about the suitability of this
  10 * software for any purpose.  It is provided "as is" without
  11 * express or implied warranty.
  12 *
  13 * strip.c      This module implements Starmode Radio IP (STRIP)
  14 *              for kernel-based devices like TTY.  It interfaces between a
  15 *              raw TTY, and the kernel's INET protocol layers (via DDI).
  16 *
  17 * Version:     @(#)strip.c     1.3     July 1997
  18 *
  19 * Author:      Stuart Cheshire <cheshire@cs.stanford.edu>
  20 *
  21 * Fixes:       v0.9 12th Feb 1996 (SC)
  22 *              New byte stuffing (2+6 run-length encoding)
  23 *              New watchdog timer task
  24 *              New Protocol key (SIP0)
  25 *              
  26 *              v0.9.1 3rd March 1996 (SC)
  27 *              Changed to dynamic device allocation -- no more compile
  28 *              time (or boot time) limit on the number of STRIP devices.
  29 *              
  30 *              v0.9.2 13th March 1996 (SC)
  31 *              Uses arp cache lookups (but doesn't send arp packets yet)
  32 *              
  33 *              v0.9.3 17th April 1996 (SC)
  34 *              Fixed bug where STR_ERROR flag was getting set unneccessarily
  35 *              (causing otherwise good packets to be unneccessarily dropped)
  36 *              
  37 *              v0.9.4 27th April 1996 (SC)
  38 *              First attempt at using "&COMMAND" Starmode AT commands
  39 *              
  40 *              v0.9.5 29th May 1996 (SC)
  41 *              First attempt at sending (unicast) ARP packets
  42 *              
  43 *              v0.9.6 5th June 1996 (Elliot)
  44 *              Put "message level" tags in every "printk" statement
  45 *              
  46 *              v0.9.7 13th June 1996 (laik)
  47 *              Added support for the /proc fs
  48 *
  49 *              v0.9.8 July 1996 (Mema)
  50 *              Added packet logging
  51 *
  52 *              v1.0 November 1996 (SC)
  53 *              Fixed (severe) memory leaks in the /proc fs code
  54 *              Fixed race conditions in the logging code
  55 *
  56 *              v1.1 January 1997 (SC)
  57 *              Deleted packet logging (use tcpdump instead)
  58 *              Added support for Metricom Firmware v204 features
  59 *              (like message checksums)
  60 *
  61 *              v1.2 January 1997 (SC)
  62 *              Put portables list back in
  63 *
  64 *              v1.3 July 1997 (SC)
  65 *              Made STRIP driver set the radio's baud rate automatically.
  66 *              It is no longer necessarily to manually set the radio's
  67 *              rate permanently to 115200 -- the driver handles setting
  68 *              the rate automatically.
  69 */
  70
  71#ifdef MODULE
  72static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
  73#else
  74static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
  75#endif
  76
  77#define TICKLE_TIMERS 0
  78#define EXT_COUNTERS 1
  79
  80
  81/************************************************************************/
  82/* Header files                                                         */
  83
  84#include <linux/kernel.h>
  85#include <linux/module.h>
  86#include <linux/init.h>
  87#include <linux/bitops.h>
  88#include <asm/system.h>
  89#include <asm/uaccess.h>
  90
  91# include <linux/ctype.h>
  92#include <linux/string.h>
  93#include <linux/mm.h>
  94#include <linux/interrupt.h>
  95#include <linux/in.h>
  96#include <linux/tty.h>
  97#include <linux/errno.h>
  98#include <linux/netdevice.h>
  99#include <linux/inetdevice.h>
 100#include <linux/etherdevice.h>
 101#include <linux/skbuff.h>
 102#include <linux/if_arp.h>
 103#include <linux/if_strip.h>
 104#include <linux/proc_fs.h>
 105#include <linux/seq_file.h>
 106#include <linux/serial.h>
 107#include <linux/serialP.h>
 108#include <linux/rcupdate.h>
 109#include <net/arp.h>
 110#include <net/net_namespace.h>
 111
 112#include <linux/ip.h>
 113#include <linux/tcp.h>
 114#include <linux/time.h>
 115#include <linux/jiffies.h>
 116
 117/************************************************************************/
 118/* Useful structures and definitions                                    */
 119
 120/*
 121 * A MetricomKey identifies the protocol being carried inside a Metricom
 122 * Starmode packet.
 123 */
 124
 125typedef union {
 126        __u8 c[4];
 127        __u32 l;
 128} MetricomKey;
 129
 130/*
 131 * An IP address can be viewed as four bytes in memory (which is what it is) or as
 132 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
 133 */
 134
 135typedef union {
 136        __u8 b[4];
 137        __u32 l;
 138} IPaddr;
 139
 140/*
 141 * A MetricomAddressString is used to hold a printable representation of
 142 * a Metricom address.
 143 */
 144
 145typedef struct {
 146        __u8 c[24];
 147} MetricomAddressString;
 148
 149/* Encapsulation can expand packet of size x to 65/64x + 1
 150 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
 151 *                           1 1   1-18  1  4         ?         1
 152 * eg.                     <CR>*0000-1234*SIP0<encaps payload><CR>
 153 * We allow 31 bytes for the stars, the key, the address and the <CR>s
 154 */
 155#define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
 156
 157/*
 158 * A STRIP_Header is never really sent over the radio, but making a dummy
 159 * header for internal use within the kernel that looks like an Ethernet
 160 * header makes certain other software happier. For example, tcpdump
 161 * already understands Ethernet headers.
 162 */
 163
 164typedef struct {
 165        MetricomAddress dst_addr;       /* Destination address, e.g. "0000-1234"   */
 166        MetricomAddress src_addr;       /* Source address, e.g. "0000-5678"        */
 167        unsigned short protocol;        /* The protocol type, using Ethernet codes */
 168} STRIP_Header;
 169
 170typedef struct {
 171        char c[60];
 172} MetricomNode;
 173
 174#define NODE_TABLE_SIZE 32
 175typedef struct {
 176        struct timeval timestamp;
 177        int num_nodes;
 178        MetricomNode node[NODE_TABLE_SIZE];
 179} MetricomNodeTable;
 180
 181enum { FALSE = 0, TRUE = 1 };
 182
 183/*
 184 * Holds the radio's firmware version.
 185 */
 186typedef struct {
 187        char c[50];
 188} FirmwareVersion;
 189
 190/*
 191 * Holds the radio's serial number.
 192 */
 193typedef struct {
 194        char c[18];
 195} SerialNumber;
 196
 197/*
 198 * Holds the radio's battery voltage.
 199 */
 200typedef struct {
 201        char c[11];
 202} BatteryVoltage;
 203
 204typedef struct {
 205        char c[8];
 206} char8;
 207
 208enum {
 209        NoStructure = 0,        /* Really old firmware */
 210        StructuredMessages = 1, /* Parsable AT response msgs */
 211        ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
 212};
 213
 214struct strip {
 215        int magic;
 216        /*
 217         * These are pointers to the malloc()ed frame buffers.
 218         */
 219
 220        unsigned char *rx_buff; /* buffer for received IP packet */
 221        unsigned char *sx_buff; /* buffer for received serial data */
 222        int sx_count;           /* received serial data counter */
 223        int sx_size;            /* Serial buffer size           */
 224        unsigned char *tx_buff; /* transmitter buffer           */
 225        unsigned char *tx_head; /* pointer to next byte to XMIT */
 226        int tx_left;            /* bytes left in XMIT queue     */
 227        int tx_size;            /* Serial buffer size           */
 228
 229        /*
 230         * STRIP interface statistics.
 231         */
 232
 233        unsigned long rx_packets;       /* inbound frames counter       */
 234        unsigned long tx_packets;       /* outbound frames counter      */
 235        unsigned long rx_errors;        /* Parity, etc. errors          */
 236        unsigned long tx_errors;        /* Planned stuff                */
 237        unsigned long rx_dropped;       /* No memory for skb            */
 238        unsigned long tx_dropped;       /* When MTU change              */
 239        unsigned long rx_over_errors;   /* Frame bigger than STRIP buf. */
 240
 241        unsigned long pps_timer;        /* Timer to determine pps       */
 242        unsigned long rx_pps_count;     /* Counter to determine pps     */
 243        unsigned long tx_pps_count;     /* Counter to determine pps     */
 244        unsigned long sx_pps_count;     /* Counter to determine pps     */
 245        unsigned long rx_average_pps;   /* rx packets per second * 8    */
 246        unsigned long tx_average_pps;   /* tx packets per second * 8    */
 247        unsigned long sx_average_pps;   /* sent packets per second * 8  */
 248
 249#ifdef EXT_COUNTERS
 250        unsigned long rx_bytes;         /* total received bytes */
 251        unsigned long tx_bytes;         /* total received bytes */
 252        unsigned long rx_rbytes;        /* bytes thru radio i/f */
 253        unsigned long tx_rbytes;        /* bytes thru radio i/f */
 254        unsigned long rx_sbytes;        /* tot bytes thru serial i/f */
 255        unsigned long tx_sbytes;        /* tot bytes thru serial i/f */
 256        unsigned long rx_ebytes;        /* tot stat/err bytes */
 257        unsigned long tx_ebytes;        /* tot stat/err bytes */
 258#endif
 259
 260        /*
 261         * Internal variables.
 262         */
 263
 264        struct list_head  list;         /* Linked list of devices */
 265
 266        int discard;                    /* Set if serial error          */
 267        int working;                    /* Is radio working correctly?  */
 268        int firmware_level;             /* Message structuring level    */
 269        int next_command;               /* Next periodic command        */
 270        unsigned int user_baud;         /* The user-selected baud rate  */
 271        int mtu;                        /* Our mtu (to spot changes!)   */
 272        long watchdog_doprobe;          /* Next time to test the radio  */
 273        long watchdog_doreset;          /* Time to do next reset        */
 274        long gratuitous_arp;            /* Time to send next ARP refresh */
 275        long arp_interval;              /* Next ARP interval            */
 276        struct timer_list idle_timer;   /* For periodic wakeup calls    */
 277        MetricomAddress true_dev_addr;  /* True address of radio        */
 278        int manual_dev_addr;            /* Hack: See note below         */
 279
 280        FirmwareVersion firmware_version;       /* The radio's firmware version */
 281        SerialNumber serial_number;     /* The radio's serial number    */
 282        BatteryVoltage battery_voltage; /* The radio's battery voltage  */
 283
 284        /*
 285         * Other useful structures.
 286         */
 287
 288        struct tty_struct *tty;         /* ptr to TTY structure         */
 289        struct net_device *dev;         /* Our device structure         */
 290
 291        /*
 292         * Neighbour radio records
 293         */
 294
 295        MetricomNodeTable portables;
 296        MetricomNodeTable poletops;
 297};
 298
 299/*
 300 * Note: manual_dev_addr hack
 301 * 
 302 * It is not possible to change the hardware address of a Metricom radio,
 303 * or to send packets with a user-specified hardware source address, thus
 304 * trying to manually set a hardware source address is a questionable
 305 * thing to do.  However, if the user *does* manually set the hardware
 306 * source address of a STRIP interface, then the kernel will believe it,
 307 * and use it in certain places. For example, the hardware address listed
 308 * by ifconfig will be the manual address, not the true one.
 309 * (Both addresses are listed in /proc/net/strip.)
 310 * Also, ARP packets will be sent out giving the user-specified address as
 311 * the source address, not the real address. This is dangerous, because
 312 * it means you won't receive any replies -- the ARP replies will go to
 313 * the specified address, which will be some other radio. The case where
 314 * this is useful is when that other radio is also connected to the same
 315 * machine. This allows you to connect a pair of radios to one machine,
 316 * and to use one exclusively for inbound traffic, and the other
 317 * exclusively for outbound traffic. Pretty neat, huh?
 318 * 
 319 * Here's the full procedure to set this up:
 320 * 
 321 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
 322 *    and st1 for incoming packets
 323 * 
 324 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
 325 *    which is the real hardware address of st1 (inbound radio).
 326 *    Now when it sends out packets, it will masquerade as st1, and
 327 *    replies will be sent to that radio, which is exactly what we want.
 328 * 
 329 * 3. Set the route table entry ("route add default ..." or
 330 *    "route add -net ...", as appropriate) to send packets via the st0
 331 *    interface (outbound radio). Do not add any route which sends packets
 332 *    out via the st1 interface -- that radio is for inbound traffic only.
 333 * 
 334 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
 335 *    This tells the STRIP driver to "shut down" that interface and not
 336 *    send any packets through it. In particular, it stops sending the
 337 *    periodic gratuitous ARP packets that a STRIP interface normally sends.
 338 *    Also, when packets arrive on that interface, it will search the
 339 *    interface list to see if there is another interface who's manual
 340 *    hardware address matches its own real address (i.e. st0 in this
 341 *    example) and if so it will transfer ownership of the skbuff to
 342 *    that interface, so that it looks to the kernel as if the packet
 343 *    arrived on that interface. This is necessary because when the
 344 *    kernel sends an ARP packet on st0, it expects to get a reply on
 345 *    st0, and if it sees the reply come from st1 then it will ignore
 346 *    it (to be accurate, it puts the entry in the ARP table, but
 347 *    labelled in such a way that st0 can't use it).
 348 * 
 349 * Thanks to Petros Maniatis for coming up with the idea of splitting
 350 * inbound and outbound traffic between two interfaces, which turned
 351 * out to be really easy to implement, even if it is a bit of a hack.
 352 * 
 353 * Having set a manual address on an interface, you can restore it
 354 * to automatic operation (where the address is automatically kept
 355 * consistent with the real address of the radio) by setting a manual
 356 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
 357 * This 'turns off' manual override mode for the device address.
 358 * 
 359 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
 360 * radio addresses the packets were sent and received from, so that you
 361 * can see what is really going on with packets, and which interfaces
 362 * they are really going through.
 363 */
 364
 365
 366/************************************************************************/
 367/* Constants                                                            */
 368
 369/*
 370 * CommandString1 works on all radios
 371 * Other CommandStrings are only used with firmware that provides structured responses.
 372 * 
 373 * ats319=1 Enables Info message for node additions and deletions
 374 * ats319=2 Enables Info message for a new best node
 375 * ats319=4 Enables checksums
 376 * ats319=8 Enables ACK messages
 377 */
 378
 379static const int MaxCommandStringLength = 32;
 380static const int CompatibilityCommand = 1;
 381
 382static const char CommandString0[] = "*&COMMAND*ATS319=7";      /* Turn on checksums & info messages */
 383static const char CommandString1[] = "*&COMMAND*ATS305?";       /* Query radio name */
 384static const char CommandString2[] = "*&COMMAND*ATS325?";       /* Query battery voltage */
 385static const char CommandString3[] = "*&COMMAND*ATS300?";       /* Query version information */
 386static const char CommandString4[] = "*&COMMAND*ATS311?";       /* Query poletop list */
 387static const char CommandString5[] = "*&COMMAND*AT~LA";         /* Query portables list */
 388typedef struct {
 389        const char *string;
 390        long length;
 391} StringDescriptor;
 392
 393static const StringDescriptor CommandString[] = {
 394        {CommandString0, sizeof(CommandString0) - 1},
 395        {CommandString1, sizeof(CommandString1) - 1},
 396        {CommandString2, sizeof(CommandString2) - 1},
 397        {CommandString3, sizeof(CommandString3) - 1},
 398        {CommandString4, sizeof(CommandString4) - 1},
 399        {CommandString5, sizeof(CommandString5) - 1}
 400};
 401
 402#define GOT_ALL_RADIO_INFO(S)      \
 403    ((S)->firmware_version.c[0] && \
 404     (S)->battery_voltage.c[0]  && \
 405     memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
 406
 407static const char hextable[16] = "0123456789ABCDEF";
 408
 409static const MetricomAddress zero_address;
 410static const MetricomAddress broadcast_address =
 411    { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
 412
 413static const MetricomKey SIP0Key = { "SIP0" };
 414static const MetricomKey ARP0Key = { "ARP0" };
 415static const MetricomKey ATR_Key = { "ATR " };
 416static const MetricomKey ACK_Key = { "ACK_" };
 417static const MetricomKey INF_Key = { "INF_" };
 418static const MetricomKey ERR_Key = { "ERR_" };
 419
 420static const long MaxARPInterval = 60 * HZ;     /* One minute */
 421
 422/*
 423 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
 424 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
 425 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
 426 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
 427 * long, including IP header, UDP header, and NFS header. Setting the STRIP
 428 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
 429 */
 430static const unsigned short MAX_SEND_MTU = 1152;
 431static const unsigned short MAX_RECV_MTU = 1500;        /* Hoping for Ethernet sized packets in the future! */
 432static const unsigned short DEFAULT_STRIP_MTU = 1152;
 433static const int STRIP_MAGIC = 0x5303;
 434static const long LongTime = 0x7FFFFFFF;
 435
 436/************************************************************************/
 437/* Global variables                                                     */
 438
 439static LIST_HEAD(strip_list);
 440static DEFINE_SPINLOCK(strip_lock);
 441
 442/************************************************************************/
 443/* Macros                                                               */
 444
 445/* Returns TRUE if text T begins with prefix P */
 446#define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
 447
 448/* Returns TRUE if text T of length L is equal to string S */
 449#define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
 450
 451#define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' :      \
 452                    (X)>='a' && (X)<='f' ? (X)-'a'+10 :   \
 453                    (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
 454
 455#define READHEX16(X) ((__u16)(READHEX(X)))
 456
 457#define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
 458
 459#define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
 460
 461#define JIFFIE_TO_SEC(X) ((X) / HZ)
 462
 463
 464/************************************************************************/
 465/* Utility routines                                                     */
 466
 467static int arp_query(unsigned char *haddr, u32 paddr,
 468                     struct net_device *dev)
 469{
 470        struct neighbour *neighbor_entry;
 471        int ret = 0;
 472
 473        neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
 474
 475        if (neighbor_entry != NULL) {
 476                neighbor_entry->used = jiffies;
 477                if (neighbor_entry->nud_state & NUD_VALID) {
 478                        memcpy(haddr, neighbor_entry->ha, dev->addr_len);
 479                        ret = 1;
 480                }
 481                neigh_release(neighbor_entry);
 482        }
 483        return ret;
 484}
 485
 486static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
 487                     __u8 * end)
 488{
 489        static const int MAX_DumpData = 80;
 490        __u8 pkt_text[MAX_DumpData], *p = pkt_text;
 491
 492        *p++ = '\"';
 493
 494        while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
 495                if (*ptr == '\\') {
 496                        *p++ = '\\';
 497                        *p++ = '\\';
 498                } else {
 499                        if (*ptr >= 32 && *ptr <= 126) {
 500                                *p++ = *ptr;
 501                        } else {
 502                                sprintf(p, "\\%02X", *ptr);
 503                                p += 3;
 504                        }
 505                }
 506                ptr++;
 507        }
 508
 509        if (ptr == end)
 510                *p++ = '\"';
 511        *p++ = 0;
 512
 513        printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
 514}
 515
 516
 517/************************************************************************/
 518/* Byte stuffing/unstuffing routines                                    */
 519
 520/* Stuffing scheme:
 521 * 00    Unused (reserved character)
 522 * 01-3F Run of 2-64 different characters
 523 * 40-7F Run of 1-64 different characters plus a single zero at the end
 524 * 80-BF Run of 1-64 of the same character
 525 * C0-FF Run of 1-64 zeroes (ASCII 0)
 526 */
 527
 528typedef enum {
 529        Stuff_Diff = 0x00,
 530        Stuff_DiffZero = 0x40,
 531        Stuff_Same = 0x80,
 532        Stuff_Zero = 0xC0,
 533        Stuff_NoCode = 0xFF,    /* Special code, meaning no code selected */
 534
 535        Stuff_CodeMask = 0xC0,
 536        Stuff_CountMask = 0x3F,
 537        Stuff_MaxCount = 0x3F,
 538        Stuff_Magic = 0x0D      /* The value we are eliminating */
 539} StuffingCode;
 540
 541/* StuffData encodes the data starting at "src" for "length" bytes.
 542 * It writes it to the buffer pointed to by "dst" (which must be at least
 543 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
 544 * larger than the input for pathological input, but will usually be smaller.
 545 * StuffData returns the new value of the dst pointer as its result.
 546 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
 547 * between calls, allowing an encoded packet to be incrementally built up
 548 * from small parts. On the first call, the "__u8 *" pointed to should be
 549 * initialized to NULL; between subsequent calls the calling routine should
 550 * leave the value alone and simply pass it back unchanged so that the
 551 * encoder can recover its current state.
 552 */
 553
 554#define StuffData_FinishBlock(X) \
 555(*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
 556
 557static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
 558                       __u8 ** code_ptr_ptr)
 559{
 560        __u8 *end = src + length;
 561        __u8 *code_ptr = *code_ptr_ptr;
 562        __u8 code = Stuff_NoCode, count = 0;
 563
 564        if (!length)
 565                return (dst);
 566
 567        if (code_ptr) {
 568                /*
 569                 * Recover state from last call, if applicable
 570                 */
 571                code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
 572                count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
 573        }
 574
 575        while (src < end) {
 576                switch (code) {
 577                        /* Stuff_NoCode: If no current code, select one */
 578                case Stuff_NoCode:
 579                        /* Record where we're going to put this code */
 580                        code_ptr = dst++;
 581                        count = 0;      /* Reset the count (zero means one instance) */
 582                        /* Tentatively start a new block */
 583                        if (*src == 0) {
 584                                code = Stuff_Zero;
 585                                src++;
 586                        } else {
 587                                code = Stuff_Same;
 588                                *dst++ = *src++ ^ Stuff_Magic;
 589                        }
 590                        /* Note: We optimistically assume run of same -- */
 591                        /* which will be fixed later in Stuff_Same */
 592                        /* if it turns out not to be true. */
 593                        break;
 594
 595                        /* Stuff_Zero: We already have at least one zero encoded */
 596                case Stuff_Zero:
 597                        /* If another zero, count it, else finish this code block */
 598                        if (*src == 0) {
 599                                count++;
 600                                src++;
 601                        } else {
 602                                StuffData_FinishBlock(Stuff_Zero + count);
 603                        }
 604                        break;
 605
 606                        /* Stuff_Same: We already have at least one byte encoded */
 607                case Stuff_Same:
 608                        /* If another one the same, count it */
 609                        if ((*src ^ Stuff_Magic) == code_ptr[1]) {
 610                                count++;
 611                                src++;
 612                                break;
 613                        }
 614                        /* else, this byte does not match this block. */
 615                        /* If we already have two or more bytes encoded, finish this code block */
 616                        if (count) {
 617                                StuffData_FinishBlock(Stuff_Same + count);
 618                                break;
 619                        }
 620                        /* else, we only have one so far, so switch to Stuff_Diff code */
 621                        code = Stuff_Diff;
 622                        /* and fall through to Stuff_Diff case below
 623                         * Note cunning cleverness here: case Stuff_Diff compares 
 624                         * the current character with the previous two to see if it
 625                         * has a run of three the same. Won't this be an error if
 626                         * there aren't two previous characters stored to compare with?
 627                         * No. Because we know the current character is *not* the same
 628                         * as the previous one, the first test below will necessarily
 629                         * fail and the send half of the "if" won't be executed.
 630                         */
 631
 632                        /* Stuff_Diff: We have at least two *different* bytes encoded */
 633                case Stuff_Diff:
 634                        /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
 635                        if (*src == 0) {
 636                                StuffData_FinishBlock(Stuff_DiffZero +
 637                                                      count);
 638                        }
 639                        /* else, if we have three in a row, it is worth starting a Stuff_Same block */
 640                        else if ((*src ^ Stuff_Magic) == dst[-1]
 641                                 && dst[-1] == dst[-2]) {
 642                                /* Back off the last two characters we encoded */
 643                                code += count - 2;
 644                                /* Note: "Stuff_Diff + 0" is an illegal code */
 645                                if (code == Stuff_Diff + 0) {
 646                                        code = Stuff_Same + 0;
 647                                }
 648                                StuffData_FinishBlock(code);
 649                                code_ptr = dst - 2;
 650                                /* dst[-1] already holds the correct value */
 651                                count = 2;      /* 2 means three bytes encoded */
 652                                code = Stuff_Same;
 653                        }
 654                        /* else, another different byte, so add it to the block */
 655                        else {
 656                                *dst++ = *src ^ Stuff_Magic;
 657                                count++;
 658                        }
 659                        src++;  /* Consume the byte */
 660                        break;
 661                }
 662                if (count == Stuff_MaxCount) {
 663                        StuffData_FinishBlock(code + count);
 664                }
 665        }
 666        if (code == Stuff_NoCode) {
 667                *code_ptr_ptr = NULL;
 668        } else {
 669                *code_ptr_ptr = code_ptr;
 670                StuffData_FinishBlock(code + count);
 671        }
 672        return (dst);
 673}
 674
 675/*
 676 * UnStuffData decodes the data at "src", up to (but not including) "end".
 677 * It writes the decoded data into the buffer pointed to by "dst", up to a
 678 * maximum of "dst_length", and returns the new value of "src" so that a
 679 * follow-on call can read more data, continuing from where the first left off.
 680 * 
 681 * There are three types of results:
 682 * 1. The source data runs out before extracting "dst_length" bytes:
 683 *    UnStuffData returns NULL to indicate failure.
 684 * 2. The source data produces exactly "dst_length" bytes:
 685 *    UnStuffData returns new_src = end to indicate that all bytes were consumed.
 686 * 3. "dst_length" bytes are extracted, with more remaining.
 687 *    UnStuffData returns new_src < end to indicate that there are more bytes
 688 *    to be read.
 689 * 
 690 * Note: The decoding may be destructive, in that it may alter the source
 691 * data in the process of decoding it (this is necessary to allow a follow-on
 692 * call to resume correctly).
 693 */
 694
 695static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
 696                         __u32 dst_length)
 697{
 698        __u8 *dst_end = dst + dst_length;
 699        /* Sanity check */
 700        if (!src || !end || !dst || !dst_length)
 701                return (NULL);
 702        while (src < end && dst < dst_end) {
 703                int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
 704                switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
 705                case Stuff_Diff:
 706                        if (src + 1 + count >= end)
 707                                return (NULL);
 708                        do {
 709                                *dst++ = *++src ^ Stuff_Magic;
 710                        }
 711                        while (--count >= 0 && dst < dst_end);
 712                        if (count < 0)
 713                                src += 1;
 714                        else {
 715                                if (count == 0)
 716                                        *src = Stuff_Same ^ Stuff_Magic;
 717                                else
 718                                        *src =
 719                                            (Stuff_Diff +
 720                                             count) ^ Stuff_Magic;
 721                        }
 722                        break;
 723                case Stuff_DiffZero:
 724                        if (src + 1 + count >= end)
 725                                return (NULL);
 726                        do {
 727                                *dst++ = *++src ^ Stuff_Magic;
 728                        }
 729                        while (--count >= 0 && dst < dst_end);
 730                        if (count < 0)
 731                                *src = Stuff_Zero ^ Stuff_Magic;
 732                        else
 733                                *src =
 734                                    (Stuff_DiffZero + count) ^ Stuff_Magic;
 735                        break;
 736                case Stuff_Same:
 737                        if (src + 1 >= end)
 738                                return (NULL);
 739                        do {
 740                                *dst++ = src[1] ^ Stuff_Magic;
 741                        }
 742                        while (--count >= 0 && dst < dst_end);
 743                        if (count < 0)
 744                                src += 2;
 745                        else
 746                                *src = (Stuff_Same + count) ^ Stuff_Magic;
 747                        break;
 748                case Stuff_Zero:
 749                        do {
 750                                *dst++ = 0;
 751                        }
 752                        while (--count >= 0 && dst < dst_end);
 753                        if (count < 0)
 754                                src += 1;
 755                        else
 756                                *src = (Stuff_Zero + count) ^ Stuff_Magic;
 757                        break;
 758                }
 759        }
 760        if (dst < dst_end)
 761                return (NULL);
 762        else
 763                return (src);
 764}
 765
 766
 767/************************************************************************/
 768/* General routines for STRIP                                           */
 769
 770/*
 771 * set_baud sets the baud rate to the rate defined by baudcode
 772 */
 773static void set_baud(struct tty_struct *tty, speed_t baudrate)
 774{
 775        struct ktermios old_termios;
 776
 777        mutex_lock(&tty->termios_mutex);
 778        old_termios =*(tty->termios);
 779        tty_encode_baud_rate(tty, baudrate, baudrate);
 780        tty->ops->set_termios(tty, &old_termios);
 781        mutex_unlock(&tty->termios_mutex);
 782}
 783
 784/*
 785 * Convert a string to a Metricom Address.
 786 */
 787
 788#define IS_RADIO_ADDRESS(p) (                                                 \
 789  isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
 790  (p)[4] == '-' &&                                                            \
 791  isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8])    )
 792
 793static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
 794{
 795        if (!IS_RADIO_ADDRESS(p))
 796                return (1);
 797        addr->c[0] = 0;
 798        addr->c[1] = 0;
 799        addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
 800        addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
 801        addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
 802        addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
 803        return (0);
 804}
 805
 806/*
 807 * Convert a Metricom Address to a string.
 808 */
 809
 810static __u8 *radio_address_to_string(const MetricomAddress * addr,
 811                                     MetricomAddressString * p)
 812{
 813        sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
 814                addr->c[4], addr->c[5]);
 815        return (p->c);
 816}
 817
 818/*
 819 * Note: Must make sure sx_size is big enough to receive a stuffed
 820 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
 821 * big enough to receive a large radio neighbour list (currently 4K).
 822 */
 823
 824static int allocate_buffers(struct strip *strip_info, int mtu)
 825{
 826        struct net_device *dev = strip_info->dev;
 827        int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
 828        int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
 829        __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
 830        __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
 831        __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
 832        if (r && s && t) {
 833                strip_info->rx_buff = r;
 834                strip_info->sx_buff = s;
 835                strip_info->tx_buff = t;
 836                strip_info->sx_size = sx_size;
 837                strip_info->tx_size = tx_size;
 838                strip_info->mtu = dev->mtu = mtu;
 839                return (1);
 840        }
 841        kfree(r);
 842        kfree(s);
 843        kfree(t);
 844        return (0);
 845}
 846
 847/*
 848 * MTU has been changed by the IP layer. 
 849 * We could be in
 850 * an upcall from the tty driver, or in an ip packet queue.
 851 */
 852static int strip_change_mtu(struct net_device *dev, int new_mtu)
 853{
 854        struct strip *strip_info = netdev_priv(dev);
 855        int old_mtu = strip_info->mtu;
 856        unsigned char *orbuff = strip_info->rx_buff;
 857        unsigned char *osbuff = strip_info->sx_buff;
 858        unsigned char *otbuff = strip_info->tx_buff;
 859
 860        if (new_mtu > MAX_SEND_MTU) {
 861                printk(KERN_ERR
 862                       "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
 863                       strip_info->dev->name, MAX_SEND_MTU);
 864                return -EINVAL;
 865        }
 866
 867        spin_lock_bh(&strip_lock);
 868        if (!allocate_buffers(strip_info, new_mtu)) {
 869                printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
 870                       strip_info->dev->name);
 871                spin_unlock_bh(&strip_lock);
 872                return -ENOMEM;
 873        }
 874
 875        if (strip_info->sx_count) {
 876                if (strip_info->sx_count <= strip_info->sx_size)
 877                        memcpy(strip_info->sx_buff, osbuff,
 878                               strip_info->sx_count);
 879                else {
 880                        strip_info->discard = strip_info->sx_count;
 881                        strip_info->rx_over_errors++;
 882                }
 883        }
 884
 885        if (strip_info->tx_left) {
 886                if (strip_info->tx_left <= strip_info->tx_size)
 887                        memcpy(strip_info->tx_buff, strip_info->tx_head,
 888                               strip_info->tx_left);
 889                else {
 890                        strip_info->tx_left = 0;
 891                        strip_info->tx_dropped++;
 892                }
 893        }
 894        strip_info->tx_head = strip_info->tx_buff;
 895        spin_unlock_bh(&strip_lock);
 896
 897        printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
 898               strip_info->dev->name, old_mtu, strip_info->mtu);
 899
 900        kfree(orbuff);
 901        kfree(osbuff);
 902        kfree(otbuff);
 903        return 0;
 904}
 905
 906static void strip_unlock(struct strip *strip_info)
 907{
 908        /*
 909         * Set the timer to go off in one second.
 910         */
 911        strip_info->idle_timer.expires = jiffies + 1 * HZ;
 912        add_timer(&strip_info->idle_timer);
 913        netif_wake_queue(strip_info->dev);
 914}
 915
 916
 917
 918/*
 919 * If the time is in the near future, time_delta prints the number of
 920 * seconds to go into the buffer and returns the address of the buffer.
 921 * If the time is not in the near future, it returns the address of the
 922 * string "Not scheduled" The buffer must be long enough to contain the
 923 * ascii representation of the number plus 9 charactes for the " seconds"
 924 * and the null character.
 925 */
 926#ifdef CONFIG_PROC_FS
 927static char *time_delta(char buffer[], long time)
 928{
 929        time -= jiffies;
 930        if (time > LongTime / 2)
 931                return ("Not scheduled");
 932        if (time < 0)
 933                time = 0;       /* Don't print negative times */
 934        sprintf(buffer, "%ld seconds", time / HZ);
 935        return (buffer);
 936}
 937
 938/* get Nth element of the linked list */
 939static struct strip *strip_get_idx(loff_t pos) 
 940{
 941        struct strip *str;
 942        int i = 0;
 943
 944        list_for_each_entry_rcu(str, &strip_list, list) {
 945                if (pos == i)
 946                        return str;
 947                ++i;
 948        }
 949        return NULL;
 950}
 951
 952static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
 953        __acquires(RCU)
 954{
 955        rcu_read_lock();
 956        return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
 957}
 958
 959static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 960{
 961        struct list_head *l;
 962        struct strip *s;
 963
 964        ++*pos;
 965        if (v == SEQ_START_TOKEN)
 966                return strip_get_idx(1);
 967
 968        s = v;
 969        l = &s->list;
 970        list_for_each_continue_rcu(l, &strip_list) {
 971                return list_entry(l, struct strip, list);
 972        }
 973        return NULL;
 974}
 975
 976static void strip_seq_stop(struct seq_file *seq, void *v)
 977        __releases(RCU)
 978{
 979        rcu_read_unlock();
 980}
 981
 982static void strip_seq_neighbours(struct seq_file *seq,
 983                           const MetricomNodeTable * table,
 984                           const char *title)
 985{
 986        /* We wrap this in a do/while loop, so if the table changes */
 987        /* while we're reading it, we just go around and try again. */
 988        struct timeval t;
 989
 990        do {
 991                int i;
 992                t = table->timestamp;
 993                if (table->num_nodes)
 994                        seq_printf(seq, "\n %s\n", title);
 995                for (i = 0; i < table->num_nodes; i++) {
 996                        MetricomNode node;
 997
 998                        spin_lock_bh(&strip_lock);
 999                        node = table->node[i];
1000                        spin_unlock_bh(&strip_lock);
1001                        seq_printf(seq, "  %s\n", node.c);
1002                }
1003        } while (table->timestamp.tv_sec != t.tv_sec
1004                 || table->timestamp.tv_usec != t.tv_usec);
1005}
1006
1007/*
1008 * This function prints radio status information via the seq_file
1009 * interface.  The interface takes care of buffer size and over
1010 * run issues. 
1011 *
1012 * The buffer in seq_file is PAGESIZE (4K) 
1013 * so this routine should never print more or it will get truncated.
1014 * With the maximum of 32 portables and 32 poletops
1015 * reported, the routine outputs 3107 bytes into the buffer.
1016 */
1017static void strip_seq_status_info(struct seq_file *seq, 
1018                                  const struct strip *strip_info)
1019{
1020        char temp[32];
1021        MetricomAddressString addr_string;
1022
1023        /* First, we must copy all of our data to a safe place, */
1024        /* in case a serial interrupt comes in and changes it.  */
1025        int tx_left = strip_info->tx_left;
1026        unsigned long rx_average_pps = strip_info->rx_average_pps;
1027        unsigned long tx_average_pps = strip_info->tx_average_pps;
1028        unsigned long sx_average_pps = strip_info->sx_average_pps;
1029        int working = strip_info->working;
1030        int firmware_level = strip_info->firmware_level;
1031        long watchdog_doprobe = strip_info->watchdog_doprobe;
1032        long watchdog_doreset = strip_info->watchdog_doreset;
1033        long gratuitous_arp = strip_info->gratuitous_arp;
1034        long arp_interval = strip_info->arp_interval;
1035        FirmwareVersion firmware_version = strip_info->firmware_version;
1036        SerialNumber serial_number = strip_info->serial_number;
1037        BatteryVoltage battery_voltage = strip_info->battery_voltage;
1038        char *if_name = strip_info->dev->name;
1039        MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1040        MetricomAddress dev_dev_addr =
1041            *(MetricomAddress *) strip_info->dev->dev_addr;
1042        int manual_dev_addr = strip_info->manual_dev_addr;
1043#ifdef EXT_COUNTERS
1044        unsigned long rx_bytes = strip_info->rx_bytes;
1045        unsigned long tx_bytes = strip_info->tx_bytes;
1046        unsigned long rx_rbytes = strip_info->rx_rbytes;
1047        unsigned long tx_rbytes = strip_info->tx_rbytes;
1048        unsigned long rx_sbytes = strip_info->rx_sbytes;
1049        unsigned long tx_sbytes = strip_info->tx_sbytes;
1050        unsigned long rx_ebytes = strip_info->rx_ebytes;
1051        unsigned long tx_ebytes = strip_info->tx_ebytes;
1052#endif
1053
1054        seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
1055        seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1056        radio_address_to_string(&true_dev_addr, &addr_string);
1057        seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
1058        if (manual_dev_addr) {
1059                radio_address_to_string(&dev_dev_addr, &addr_string);
1060                seq_printf(seq, " Device address:\t%s\n", addr_string.c);
1061        }
1062        seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
1063                     !firmware_level ? "Should be upgraded" :
1064                     firmware_version.c);
1065        if (firmware_level >= ChecksummedMessages)
1066                seq_printf(seq, " (Checksums Enabled)");
1067        seq_printf(seq, "\n");
1068        seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
1069        seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
1070        seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
1071        seq_printf(seq, " Receive packet rate:   %ld packets per second\n",
1072                     rx_average_pps / 8);
1073        seq_printf(seq, " Transmit packet rate:  %ld packets per second\n",
1074                     tx_average_pps / 8);
1075        seq_printf(seq, " Sent packet rate:      %ld packets per second\n",
1076                     sx_average_pps / 8);
1077        seq_printf(seq, " Next watchdog probe:\t%s\n",
1078                     time_delta(temp, watchdog_doprobe));
1079        seq_printf(seq, " Next watchdog reset:\t%s\n",
1080                     time_delta(temp, watchdog_doreset));
1081        seq_printf(seq, " Next gratuitous ARP:\t");
1082
1083        if (!memcmp
1084            (strip_info->dev->dev_addr, zero_address.c,
1085             sizeof(zero_address)))
1086                seq_printf(seq, "Disabled\n");
1087        else {
1088                seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
1089                seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
1090                             JIFFIE_TO_SEC(arp_interval));
1091        }
1092
1093        if (working) {
1094#ifdef EXT_COUNTERS
1095                seq_printf(seq, "\n");
1096                seq_printf(seq,
1097                             " Total bytes:         \trx:\t%lu\ttx:\t%lu\n",
1098                             rx_bytes, tx_bytes);
1099                seq_printf(seq,
1100                             "  thru radio:         \trx:\t%lu\ttx:\t%lu\n",
1101                             rx_rbytes, tx_rbytes);
1102                seq_printf(seq,
1103                             "  thru serial port:   \trx:\t%lu\ttx:\t%lu\n",
1104                             rx_sbytes, tx_sbytes);
1105                seq_printf(seq,
1106                             " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1107                             rx_ebytes, tx_ebytes);
1108#endif
1109                strip_seq_neighbours(seq, &strip_info->poletops,
1110                                        "Poletops:");
1111                strip_seq_neighbours(seq, &strip_info->portables,
1112                                        "Portables:");
1113        }
1114}
1115
1116/*
1117 * This function is exports status information from the STRIP driver through
1118 * the /proc file system.
1119 */
1120static int strip_seq_show(struct seq_file *seq, void *v)
1121{
1122        if (v == SEQ_START_TOKEN)
1123                seq_printf(seq, "strip_version: %s\n", StripVersion);
1124        else
1125                strip_seq_status_info(seq, (const struct strip *)v);
1126        return 0;
1127}
1128
1129
1130static const struct seq_operations strip_seq_ops = {
1131        .start = strip_seq_start,
1132        .next  = strip_seq_next,
1133        .stop  = strip_seq_stop,
1134        .show  = strip_seq_show,
1135};
1136
1137static int strip_seq_open(struct inode *inode, struct file *file)
1138{
1139        return seq_open(file, &strip_seq_ops);
1140}
1141
1142static const struct file_operations strip_seq_fops = {
1143        .owner   = THIS_MODULE,
1144        .open    = strip_seq_open,
1145        .read    = seq_read,
1146        .llseek  = seq_lseek,
1147        .release = seq_release,
1148};
1149#endif
1150
1151
1152
1153/************************************************************************/
1154/* Sending routines                                                     */
1155
1156static void ResetRadio(struct strip *strip_info)
1157{
1158        struct tty_struct *tty = strip_info->tty;
1159        static const char init[] = "ate0q1dt**starmode\r**";
1160        StringDescriptor s = { init, sizeof(init) - 1 };
1161
1162        /* 
1163         * If the radio isn't working anymore,
1164         * we should clear the old status information.
1165         */
1166        if (strip_info->working) {
1167                printk(KERN_INFO "%s: No response: Resetting radio.\n",
1168                       strip_info->dev->name);
1169                strip_info->firmware_version.c[0] = '\0';
1170                strip_info->serial_number.c[0] = '\0';
1171                strip_info->battery_voltage.c[0] = '\0';
1172                strip_info->portables.num_nodes = 0;
1173                do_gettimeofday(&strip_info->portables.timestamp);
1174                strip_info->poletops.num_nodes = 0;
1175                do_gettimeofday(&strip_info->poletops.timestamp);
1176        }
1177
1178        strip_info->pps_timer = jiffies;
1179        strip_info->rx_pps_count = 0;
1180        strip_info->tx_pps_count = 0;
1181        strip_info->sx_pps_count = 0;
1182        strip_info->rx_average_pps = 0;
1183        strip_info->tx_average_pps = 0;
1184        strip_info->sx_average_pps = 0;
1185
1186        /* Mark radio address as unknown */
1187        *(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
1188        if (!strip_info->manual_dev_addr)
1189                *(MetricomAddress *) strip_info->dev->dev_addr =
1190                    zero_address;
1191        strip_info->working = FALSE;
1192        strip_info->firmware_level = NoStructure;
1193        strip_info->next_command = CompatibilityCommand;
1194        strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1195        strip_info->watchdog_doreset = jiffies + 1 * HZ;
1196
1197        /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1198        if (strip_info->user_baud > 38400) {
1199                /*
1200                 * Subtle stuff: Pay attention :-)
1201                 * If the serial port is currently at the user's selected (>38.4) rate,
1202                 * then we temporarily switch to 19.2 and issue the ATS304 command
1203                 * to tell the radio to switch to the user's selected rate.
1204                 * If the serial port is not currently at that rate, that means we just
1205                 * issued the ATS304 command last time through, so this time we restore
1206                 * the user's selected rate and issue the normal starmode reset string.
1207                 */
1208                if (strip_info->user_baud == tty_get_baud_rate(tty)) {
1209                        static const char b0[] = "ate0q1s304=57600\r";
1210                        static const char b1[] = "ate0q1s304=115200\r";
1211                        static const StringDescriptor baudstring[2] =
1212                            { {b0, sizeof(b0) - 1}
1213                        , {b1, sizeof(b1) - 1}
1214                        };
1215                        set_baud(tty, 19200);
1216                        if (strip_info->user_baud == 57600)
1217                                s = baudstring[0];
1218                        else if (strip_info->user_baud == 115200)
1219                                s = baudstring[1];
1220                        else
1221                                s = baudstring[1];      /* For now */
1222                } else
1223                        set_baud(tty, strip_info->user_baud);
1224        }
1225
1226        tty->ops->write(tty, s.string, s.length);
1227#ifdef EXT_COUNTERS
1228        strip_info->tx_ebytes += s.length;
1229#endif
1230}
1231
1232/*
1233 * Called by the driver when there's room for more data.  If we have
1234 * more packets to send, we send them here.
1235 */
1236
1237static void strip_write_some_more(struct tty_struct *tty)
1238{
1239        struct strip *strip_info = tty->disc_data;
1240
1241        /* First make sure we're connected. */
1242        if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1243            !netif_running(strip_info->dev))
1244                return;
1245
1246        if (strip_info->tx_left > 0) {
1247                int num_written =
1248                    tty->ops->write(tty, strip_info->tx_head,
1249                                      strip_info->tx_left);
1250                strip_info->tx_left -= num_written;
1251                strip_info->tx_head += num_written;
1252#ifdef EXT_COUNTERS
1253                strip_info->tx_sbytes += num_written;
1254#endif
1255        } else {                /* Else start transmission of another packet */
1256
1257                clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
1258                strip_unlock(strip_info);
1259        }
1260}
1261
1262static __u8 *add_checksum(__u8 * buffer, __u8 * end)
1263{
1264        __u16 sum = 0;
1265        __u8 *p = buffer;
1266        while (p < end)
1267                sum += *p++;
1268        end[3] = hextable[sum & 0xF];
1269        sum >>= 4;
1270        end[2] = hextable[sum & 0xF];
1271        sum >>= 4;
1272        end[1] = hextable[sum & 0xF];
1273        sum >>= 4;
1274        end[0] = hextable[sum & 0xF];
1275        return (end + 4);
1276}
1277
1278static unsigned char *strip_make_packet(unsigned char *buffer,
1279                                        struct strip *strip_info,
1280                                        struct sk_buff *skb)
1281{
1282        __u8 *ptr = buffer;
1283        __u8 *stuffstate = NULL;
1284        STRIP_Header *header = (STRIP_Header *) skb->data;
1285        MetricomAddress haddr = header->dst_addr;
1286        int len = skb->len - sizeof(STRIP_Header);
1287        MetricomKey key;
1288
1289        /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1290
1291        if (header->protocol == htons(ETH_P_IP))
1292                key = SIP0Key;
1293        else if (header->protocol == htons(ETH_P_ARP))
1294                key = ARP0Key;
1295        else {
1296                printk(KERN_ERR
1297                       "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1298                       strip_info->dev->name, ntohs(header->protocol));
1299                return (NULL);
1300        }
1301
1302        if (len > strip_info->mtu) {
1303                printk(KERN_ERR
1304                       "%s: Dropping oversized transmit packet: %d bytes\n",
1305                       strip_info->dev->name, len);
1306                return (NULL);
1307        }
1308
1309        /*
1310         * If we're sending to ourselves, discard the packet.
1311         * (Metricom radios choke if they try to send a packet to their own address.)
1312         */
1313        if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
1314                printk(KERN_ERR "%s: Dropping packet addressed to self\n",
1315                       strip_info->dev->name);
1316                return (NULL);
1317        }
1318
1319        /*
1320         * If this is a broadcast packet, send it to our designated Metricom
1321         * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1322         */
1323        if (haddr.c[0] == 0xFF) {
1324                __be32 brd = 0;
1325                struct in_device *in_dev;
1326
1327                rcu_read_lock();
1328                in_dev = __in_dev_get_rcu(strip_info->dev);
1329                if (in_dev == NULL) {
1330                        rcu_read_unlock();
1331                        return NULL;
1332                }
1333                if (in_dev->ifa_list)
1334                        brd = in_dev->ifa_list->ifa_broadcast;
1335                rcu_read_unlock();
1336
1337                /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1338                if (!arp_query(haddr.c, brd, strip_info->dev)) {
1339                        printk(KERN_ERR
1340                               "%s: Unable to send packet (no broadcast hub configured)\n",
1341                               strip_info->dev->name);
1342                        return (NULL);
1343                }
1344                /*
1345                 * If we are the broadcast hub, don't bother sending to ourselves.
1346                 * (Metricom radios choke if they try to send a packet to their own address.)
1347                 */
1348                if (!memcmp
1349                    (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1350                        return (NULL);
1351        }
1352
1353        *ptr++ = 0x0D;
1354        *ptr++ = '*';
1355        *ptr++ = hextable[haddr.c[2] >> 4];
1356        *ptr++ = hextable[haddr.c[2] & 0xF];
1357        *ptr++ = hextable[haddr.c[3] >> 4];
1358        *ptr++ = hextable[haddr.c[3] & 0xF];
1359        *ptr++ = '-';
1360        *ptr++ = hextable[haddr.c[4] >> 4];
1361        *ptr++ = hextable[haddr.c[4] & 0xF];
1362        *ptr++ = hextable[haddr.c[5] >> 4];
1363        *ptr++ = hextable[haddr.c[5] & 0xF];
1364        *ptr++ = '*';
1365        *ptr++ = key.c[0];
1366        *ptr++ = key.c[1];
1367        *ptr++ = key.c[2];
1368        *ptr++ = key.c[3];
1369
1370        ptr =
1371            StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
1372                      &stuffstate);
1373
1374        if (strip_info->firmware_level >= ChecksummedMessages)
1375                ptr = add_checksum(buffer + 1, ptr);
1376
1377        *ptr++ = 0x0D;
1378        return (ptr);
1379}
1380
1381static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1382{
1383        MetricomAddress haddr;
1384        unsigned char *ptr = strip_info->tx_buff;
1385        int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
1386        int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
1387            && !doreset;
1388        __be32 addr, brd;
1389
1390        /*
1391         * 1. If we have a packet, encapsulate it and put it in the buffer
1392         */
1393        if (skb) {
1394                char *newptr = strip_make_packet(ptr, strip_info, skb);
1395                strip_info->tx_pps_count++;
1396                if (!newptr)
1397                        strip_info->tx_dropped++;
1398                else {
1399                        ptr = newptr;
1400                        strip_info->sx_pps_count++;
1401                        strip_info->tx_packets++;       /* Count another successful packet */
1402#ifdef EXT_COUNTERS
1403                        strip_info->tx_bytes += skb->len;
1404                        strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1405#endif
1406                        /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1407                        /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1408                }
1409        }
1410
1411        /*
1412         * 2. If it is time for another tickle, tack it on, after the packet
1413         */
1414        if (doprobe) {
1415                StringDescriptor ts = CommandString[strip_info->next_command];
1416#if TICKLE_TIMERS
1417                {
1418                        struct timeval tv;
1419                        do_gettimeofday(&tv);
1420                        printk(KERN_INFO "**** Sending tickle string %d      at %02d.%06d\n",
1421                               strip_info->next_command, tv.tv_sec % 100,
1422                               tv.tv_usec);
1423                }
1424#endif
1425                if (ptr == strip_info->tx_buff)
1426                        *ptr++ = 0x0D;
1427
1428                *ptr++ = '*';   /* First send "**" to provoke an error message */
1429                *ptr++ = '*';
1430
1431                /* Then add the command */
1432                memcpy(ptr, ts.string, ts.length);
1433
1434                /* Add a checksum ? */
1435                if (strip_info->firmware_level < ChecksummedMessages)
1436                        ptr += ts.length;
1437                else
1438                        ptr = add_checksum(ptr, ptr + ts.length);
1439
1440                *ptr++ = 0x0D;  /* Terminate the command with a <CR> */
1441
1442                /* Cycle to next periodic command? */
1443                if (strip_info->firmware_level >= StructuredMessages)
1444                        if (++strip_info->next_command >=
1445                            ARRAY_SIZE(CommandString))
1446                                strip_info->next_command = 0;
1447#ifdef EXT_COUNTERS
1448                strip_info->tx_ebytes += ts.length;
1449#endif
1450                strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1451                strip_info->watchdog_doreset = jiffies + 1 * HZ;
1452                /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1453        }
1454
1455        /*
1456         * 3. Set up the strip_info ready to send the data (if any).
1457         */
1458        strip_info->tx_head = strip_info->tx_buff;
1459        strip_info->tx_left = ptr - strip_info->tx_buff;
1460        set_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags);
1461        /*
1462         * 4. Debugging check to make sure we're not overflowing the buffer.
1463         */
1464        if (strip_info->tx_size - strip_info->tx_left < 20)
1465                printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
1466                       strip_info->dev->name, strip_info->tx_left,
1467                       strip_info->tx_size - strip_info->tx_left);
1468
1469        /*
1470         * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1471         * the buffer, strip_write_some_more will send it after the reset has finished
1472         */
1473        if (doreset) {
1474                ResetRadio(strip_info);
1475                return;
1476        }
1477
1478        if (1) {
1479                struct in_device *in_dev;
1480
1481                brd = addr = 0;
1482                rcu_read_lock();
1483                in_dev = __in_dev_get_rcu(strip_info->dev);
1484                if (in_dev) {
1485                        if (in_dev->ifa_list) {
1486                                brd = in_dev->ifa_list->ifa_broadcast;
1487                                addr = in_dev->ifa_list->ifa_local;
1488                        }
1489                }
1490                rcu_read_unlock();
1491        }
1492
1493
1494        /*
1495         * 6. If it is time for a periodic ARP, queue one up to be sent.
1496         * We only do this if:
1497         *  1. The radio is working
1498         *  2. It's time to send another periodic ARP
1499         *  3. We really know what our address is (and it is not manually set to zero)
1500         *  4. We have a designated broadcast address configured
1501         * If we queue up an ARP packet when we don't have a designated broadcast
1502         * address configured, then the packet will just have to be discarded in
1503         * strip_make_packet. This is not fatal, but it causes misleading information
1504         * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1505         * being sent, when in fact they are not, because they are all being dropped
1506         * in the strip_make_packet routine.
1507         */
1508        if (strip_info->working
1509            && (long) jiffies - strip_info->gratuitous_arp >= 0
1510            && memcmp(strip_info->dev->dev_addr, zero_address.c,
1511                      sizeof(zero_address))
1512            && arp_query(haddr.c, brd, strip_info->dev)) {
1513                /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1514                   strip_info->dev->name, strip_info->arp_interval / HZ); */
1515                strip_info->gratuitous_arp =
1516                    jiffies + strip_info->arp_interval;
1517                strip_info->arp_interval *= 2;
1518                if (strip_info->arp_interval > MaxARPInterval)
1519                        strip_info->arp_interval = MaxARPInterval;
1520                if (addr)
1521                        arp_send(ARPOP_REPLY, ETH_P_ARP, addr,  /* Target address of ARP packet is our address */
1522                                 strip_info->dev,       /* Device to send packet on */
1523                                 addr,  /* Source IP address this ARP packet comes from */
1524                                 NULL,  /* Destination HW address is NULL (broadcast it) */
1525                                 strip_info->dev->dev_addr,     /* Source HW address is our HW address */
1526                                 strip_info->dev->dev_addr);    /* Target HW address is our HW address (redundant) */
1527        }
1528
1529        /*
1530         * 7. All ready. Start the transmission
1531         */
1532        strip_write_some_more(strip_info->tty);
1533}
1534
1535/* Encapsulate a datagram and kick it into a TTY queue. */
1536static netdev_tx_t strip_xmit(struct sk_buff *skb, struct net_device *dev)
1537{
1538        struct strip *strip_info = netdev_priv(dev);
1539
1540        if (!netif_running(dev)) {
1541                printk(KERN_ERR "%s: xmit call when iface is down\n",
1542                       dev->name);
1543                return NETDEV_TX_BUSY;
1544        }
1545
1546        netif_stop_queue(dev);
1547
1548        del_timer(&strip_info->idle_timer);
1549
1550
1551        if (time_after(jiffies, strip_info->pps_timer + HZ)) {
1552                unsigned long t = jiffies - strip_info->pps_timer;
1553                unsigned long rx_pps_count =
1554                        DIV_ROUND_CLOSEST(strip_info->rx_pps_count*HZ*8, t);
1555                unsigned long tx_pps_count =
1556                        DIV_ROUND_CLOSEST(strip_info->tx_pps_count*HZ*8, t);
1557                unsigned long sx_pps_count =
1558                        DIV_ROUND_CLOSEST(strip_info->sx_pps_count*HZ*8, t);
1559
1560                strip_info->pps_timer = jiffies;
1561                strip_info->rx_pps_count = 0;
1562                strip_info->tx_pps_count = 0;
1563                strip_info->sx_pps_count = 0;
1564
1565                strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1566                strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1567                strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1568
1569                if (rx_pps_count / 8 >= 10)
1570                        printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1571                               strip_info->dev->name, rx_pps_count / 8);
1572                if (tx_pps_count / 8 >= 10)
1573                        printk(KERN_INFO "%s: WARNING: Tx        %ld packets per second.\n",
1574                               strip_info->dev->name, tx_pps_count / 8);
1575                if (sx_pps_count / 8 >= 10)
1576                        printk(KERN_INFO "%s: WARNING: Sending   %ld packets per second.\n",
1577                               strip_info->dev->name, sx_pps_count / 8);
1578        }
1579
1580        spin_lock_bh(&strip_lock);
1581
1582        strip_send(strip_info, skb);
1583
1584        spin_unlock_bh(&strip_lock);
1585
1586        if (skb)
1587                dev_kfree_skb(skb);
1588        return NETDEV_TX_OK;
1589}
1590
1591/*
1592 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1593 * to send for an extended period of time, the watchdog processing still gets
1594 * done to ensure that the radio stays in Starmode
1595 */
1596
1597static void strip_IdleTask(unsigned long parameter)
1598{
1599        strip_xmit(NULL, (struct net_device *) parameter);
1600}
1601
1602/*
1603 * Create the MAC header for an arbitrary protocol layer
1604 *
1605 * saddr!=NULL        means use this specific address (n/a for Metricom)
1606 * saddr==NULL        means use default device source address
1607 * daddr!=NULL        means use this destination address
1608 * daddr==NULL        means leave destination address alone
1609 *                 (e.g. unresolved arp -- kernel will call
1610 *                 rebuild_header later to fill in the address)
1611 */
1612
1613static int strip_header(struct sk_buff *skb, struct net_device *dev,
1614                        unsigned short type, const void *daddr,
1615                        const void *saddr, unsigned len)
1616{
1617        struct strip *strip_info = netdev_priv(dev);
1618        STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
1619
1620        /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1621           type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1622
1623        header->src_addr = strip_info->true_dev_addr;
1624        header->protocol = htons(type);
1625
1626        /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1627
1628        if (!daddr)
1629                return (-dev->hard_header_len);
1630
1631        header->dst_addr = *(MetricomAddress *) daddr;
1632        return (dev->hard_header_len);
1633}
1634
1635/*
1636 * Rebuild the MAC header. This is called after an ARP
1637 * (or in future other address resolution) has completed on this
1638 * sk_buff. We now let ARP fill in the other fields.
1639 * I think this should return zero if packet is ready to send,
1640 * or non-zero if it needs more time to do an address lookup
1641 */
1642
1643static int strip_rebuild_header(struct sk_buff *skb)
1644{
1645#ifdef CONFIG_INET
1646        STRIP_Header *header = (STRIP_Header *) skb->data;
1647
1648        /* Arp find returns zero if if knows the address, */
1649        /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1650        return arp_find(header->dst_addr.c, skb) ? 1 : 0;
1651#else
1652        return 0;
1653#endif
1654}
1655
1656
1657/************************************************************************/
1658/* Receiving routines                                                   */
1659
1660/*
1661 * This function parses the response to the ATS300? command,
1662 * extracting the radio version and serial number.
1663 */
1664static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
1665{
1666        __u8 *p, *value_begin, *value_end;
1667        int len;
1668
1669        /* Determine the beginning of the second line of the payload */
1670        p = ptr;
1671        while (p < end && *p != 10)
1672                p++;
1673        if (p >= end)
1674                return;
1675        p++;
1676        value_begin = p;
1677
1678        /* Determine the end of line */
1679        while (p < end && *p != 10)
1680                p++;
1681        if (p >= end)
1682                return;
1683        value_end = p;
1684        p++;
1685
1686        len = value_end - value_begin;
1687        len = min_t(int, len, sizeof(FirmwareVersion) - 1);
1688        if (strip_info->firmware_version.c[0] == 0)
1689                printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1690                       strip_info->dev->name, len, value_begin);
1691        sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1692
1693        /* Look for the first colon */
1694        while (p < end && *p != ':')
1695                p++;
1696        if (p >= end)
1697                return;
1698        /* Skip over the space */
1699        p += 2;
1700        len = sizeof(SerialNumber) - 1;
1701        if (p + len <= end) {
1702                sprintf(strip_info->serial_number.c, "%.*s", len, p);
1703        } else {
1704                printk(KERN_DEBUG
1705                       "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1706                       end - p, len);
1707        }
1708}
1709
1710/*
1711 * This function parses the response to the ATS325? command,
1712 * extracting the radio battery voltage.
1713 */
1714static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
1715{
1716        int len;
1717
1718        len = sizeof(BatteryVoltage) - 1;
1719        if (ptr + len <= end) {
1720                sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1721        } else {
1722                printk(KERN_DEBUG
1723                       "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1724                       end - ptr, len);
1725        }
1726}
1727
1728/*
1729 * This function parses the responses to the AT~LA and ATS311 commands,
1730 * which list the radio's neighbours.
1731 */
1732static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
1733{
1734        table->num_nodes = 0;
1735        while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
1736                MetricomNode *node = &table->node[table->num_nodes++];
1737                char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1738                while (ptr < end && *ptr <= 32)
1739                        ptr++;
1740                while (ptr < end && dst < limit && *ptr != 10)
1741                        *dst++ = *ptr++;
1742                *dst++ = 0;
1743                while (ptr < end && ptr[-1] != 10)
1744                        ptr++;
1745        }
1746        do_gettimeofday(&table->timestamp);
1747}
1748
1749static int get_radio_address(struct strip *strip_info, __u8 * p)
1750{
1751        MetricomAddress addr;
1752
1753        if (string_to_radio_address(&addr, p))
1754                return (1);
1755
1756        /* See if our radio address has changed */
1757        if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
1758                MetricomAddressString addr_string;
1759                radio_address_to_string(&addr, &addr_string);
1760                printk(KERN_INFO "%s: Radio address = %s\n",
1761                       strip_info->dev->name, addr_string.c);
1762                strip_info->true_dev_addr = addr;
1763                if (!strip_info->manual_dev_addr)
1764                        *(MetricomAddress *) strip_info->dev->dev_addr =
1765                            addr;
1766                /* Give the radio a few seconds to get its head straight, then send an arp */
1767                strip_info->gratuitous_arp = jiffies + 15 * HZ;
1768                strip_info->arp_interval = 1 * HZ;
1769        }
1770        return (0);
1771}
1772
1773static int verify_checksum(struct strip *strip_info)
1774{
1775        __u8 *p = strip_info->sx_buff;
1776        __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1777        u_short sum =
1778            (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1779            (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1780        while (p < end)
1781                sum -= *p++;
1782        if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
1783                strip_info->firmware_level = ChecksummedMessages;
1784                printk(KERN_INFO "%s: Radio provides message checksums\n",
1785                       strip_info->dev->name);
1786        }
1787        return (sum == 0);
1788}
1789
1790static void RecvErr(char *msg, struct strip *strip_info)
1791{
1792        __u8 *ptr = strip_info->sx_buff;
1793        __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1794        DumpData(msg, strip_info, ptr, end);
1795        strip_info->rx_errors++;
1796}
1797
1798static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
1799                            const __u8 * msg, u_long len)
1800{
1801        if (has_prefix(msg, len, "001")) {      /* Not in StarMode! */
1802                RecvErr("Error Msg:", strip_info);
1803                printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1804                       strip_info->dev->name, sendername);
1805        }
1806
1807        else if (has_prefix(msg, len, "002")) { /* Remap handle */
1808                /* We ignore "Remap handle" messages for now */
1809        }
1810
1811        else if (has_prefix(msg, len, "003")) { /* Can't resolve name */
1812                RecvErr("Error Msg:", strip_info);
1813                printk(KERN_INFO "%s: Destination radio name is unknown\n",
1814                       strip_info->dev->name);
1815        }
1816
1817        else if (has_prefix(msg, len, "004")) { /* Name too small or missing */
1818                strip_info->watchdog_doreset = jiffies + LongTime;
1819#if TICKLE_TIMERS
1820                {
1821                        struct timeval tv;
1822                        do_gettimeofday(&tv);
1823                        printk(KERN_INFO
1824                               "**** Got ERR_004 response         at %02d.%06d\n",
1825                               tv.tv_sec % 100, tv.tv_usec);
1826                }
1827#endif
1828                if (!strip_info->working) {
1829                        strip_info->working = TRUE;
1830                        printk(KERN_INFO "%s: Radio now in starmode\n",
1831                               strip_info->dev->name);
1832                        /*
1833                         * If the radio has just entered a working state, we should do our first
1834                         * probe ASAP, so that we find out our radio address etc. without delay.
1835                         */
1836                        strip_info->watchdog_doprobe = jiffies;
1837                }
1838                if (strip_info->firmware_level == NoStructure && sendername) {
1839                        strip_info->firmware_level = StructuredMessages;
1840                        strip_info->next_command = 0;   /* Try to enable checksums ASAP */
1841                        printk(KERN_INFO
1842                               "%s: Radio provides structured messages\n",
1843                               strip_info->dev->name);
1844                }
1845                if (strip_info->firmware_level >= StructuredMessages) {
1846                        /*
1847                         * If this message has a valid checksum on the end, then the call to verify_checksum
1848                         * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1849                         * code from verify_checksum is ignored here.)
1850                         */
1851                        verify_checksum(strip_info);
1852                        /*
1853                         * If the radio has structured messages but we don't yet have all our information about it,
1854                         * we should do probes without delay, until we have gathered all the information
1855                         */
1856                        if (!GOT_ALL_RADIO_INFO(strip_info))
1857                                strip_info->watchdog_doprobe = jiffies;
1858                }
1859        }
1860
1861        else if (has_prefix(msg, len, "005"))   /* Bad count specification */
1862                RecvErr("Error Msg:", strip_info);
1863
1864        else if (has_prefix(msg, len, "006"))   /* Header too big */
1865                RecvErr("Error Msg:", strip_info);
1866
1867        else if (has_prefix(msg, len, "007")) { /* Body too big */
1868                RecvErr("Error Msg:", strip_info);
1869                printk(KERN_ERR
1870                       "%s: Error! Packet size too big for radio.\n",
1871                       strip_info->dev->name);
1872        }
1873
1874        else if (has_prefix(msg, len, "008")) { /* Bad character in name */
1875                RecvErr("Error Msg:", strip_info);
1876                printk(KERN_ERR
1877                       "%s: Radio name contains illegal character\n",
1878                       strip_info->dev->name);
1879        }
1880
1881        else if (has_prefix(msg, len, "009"))   /* No count or line terminator */
1882                RecvErr("Error Msg:", strip_info);
1883
1884        else if (has_prefix(msg, len, "010"))   /* Invalid checksum */
1885                RecvErr("Error Msg:", strip_info);
1886
1887        else if (has_prefix(msg, len, "011"))   /* Checksum didn't match */
1888                RecvErr("Error Msg:", strip_info);
1889
1890        else if (has_prefix(msg, len, "012"))   /* Failed to transmit packet */
1891                RecvErr("Error Msg:", strip_info);
1892
1893        else
1894                RecvErr("Error Msg:", strip_info);
1895}
1896
1897static void process_AT_response(struct strip *strip_info, __u8 * ptr,
1898                                __u8 * end)
1899{
1900        u_long len;
1901        __u8 *p = ptr;
1902        while (p < end && p[-1] != 10)
1903                p++;            /* Skip past first newline character */
1904        /* Now ptr points to the AT command, and p points to the text of the response. */
1905        len = p - ptr;
1906
1907#if TICKLE_TIMERS
1908        {
1909                struct timeval tv;
1910                do_gettimeofday(&tv);
1911                printk(KERN_INFO "**** Got AT response %.7s      at %02d.%06d\n",
1912                       ptr, tv.tv_sec % 100, tv.tv_usec);
1913        }
1914#endif
1915
1916        if (has_prefix(ptr, len, "ATS300?"))
1917                get_radio_version(strip_info, p, end);
1918        else if (has_prefix(ptr, len, "ATS305?"))
1919                get_radio_address(strip_info, p);
1920        else if (has_prefix(ptr, len, "ATS311?"))
1921                get_radio_neighbours(&strip_info->poletops, p, end);
1922        else if (has_prefix(ptr, len, "ATS319=7"))
1923                verify_checksum(strip_info);
1924        else if (has_prefix(ptr, len, "ATS325?"))
1925                get_radio_voltage(strip_info, p, end);
1926        else if (has_prefix(ptr, len, "AT~LA"))
1927                get_radio_neighbours(&strip_info->portables, p, end);
1928        else
1929                RecvErr("Unknown AT Response:", strip_info);
1930}
1931
1932static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
1933{
1934        /* Currently we don't do anything with ACKs from the radio */
1935}
1936
1937static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
1938{
1939        if (ptr + 16 > end)
1940                RecvErr("Bad Info Msg:", strip_info);
1941}
1942
1943static struct net_device *get_strip_dev(struct strip *strip_info)
1944{
1945        /* If our hardware address is *manually set* to zero, and we know our */
1946        /* real radio hardware address, try to find another strip device that has been */
1947        /* manually set to that address that we can 'transfer ownership' of this packet to  */
1948        if (strip_info->manual_dev_addr &&
1949            !memcmp(strip_info->dev->dev_addr, zero_address.c,
1950                    sizeof(zero_address))
1951            && memcmp(&strip_info->true_dev_addr, zero_address.c,
1952                      sizeof(zero_address))) {
1953                struct net_device *dev;
1954                read_lock_bh(&dev_base_lock);
1955                for_each_netdev(&init_net, dev) {
1956                        if (dev->type == strip_info->dev->type &&
1957                            !memcmp(dev->dev_addr,
1958                                    &strip_info->true_dev_addr,
1959                                    sizeof(MetricomAddress))) {
1960                                printk(KERN_INFO
1961                                       "%s: Transferred packet ownership to %s.\n",
1962                                       strip_info->dev->name, dev->name);
1963                                read_unlock_bh(&dev_base_lock);
1964                                return (dev);
1965                        }
1966                }
1967                read_unlock_bh(&dev_base_lock);
1968        }
1969        return (strip_info->dev);
1970}
1971
1972/*
1973 * Send one completely decapsulated datagram to the next layer.
1974 */
1975
1976static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
1977                           __u16 packetlen)
1978{
1979        struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
1980        if (!skb) {
1981                printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
1982                       strip_info->dev->name);
1983                strip_info->rx_dropped++;
1984        } else {
1985                memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
1986                       sizeof(STRIP_Header));
1987                memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
1988                       packetlen);
1989                skb->dev = get_strip_dev(strip_info);
1990                skb->protocol = header->protocol;
1991                skb_reset_mac_header(skb);
1992
1993                /* Having put a fake header on the front of the sk_buff for the */
1994                /* benefit of tools like tcpdump, skb_pull now 'consumes' that  */
1995                /* fake header before we hand the packet up to the next layer.  */
1996                skb_pull(skb, sizeof(STRIP_Header));
1997
1998                /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
1999                strip_info->rx_packets++;
2000                strip_info->rx_pps_count++;
2001#ifdef EXT_COUNTERS
2002                strip_info->rx_bytes += packetlen;
2003#endif
2004                netif_rx(skb);
2005        }
2006}
2007
2008static void process_IP_packet(struct strip *strip_info,
2009                              STRIP_Header * header, __u8 * ptr,
2010                              __u8 * end)
2011{
2012        __u16 packetlen;
2013
2014        /* Decode start of the IP packet header */
2015        ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2016        if (!ptr) {
2017                RecvErr("IP Packet too short", strip_info);
2018                return;
2019        }
2020
2021        packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2022
2023        if (packetlen > MAX_RECV_MTU) {
2024                printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2025                       strip_info->dev->name, packetlen);
2026                strip_info->rx_dropped++;
2027                return;
2028        }
2029
2030        /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2031
2032        /* Decode remainder of the IP packet */
2033        ptr =
2034            UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
2035        if (!ptr) {
2036                RecvErr("IP Packet too short", strip_info);
2037                return;
2038        }
2039
2040        if (ptr < end) {
2041                RecvErr("IP Packet too long", strip_info);
2042                return;
2043        }
2044
2045        header->protocol = htons(ETH_P_IP);
2046
2047        deliver_packet(strip_info, header, packetlen);
2048}
2049
2050static void process_ARP_packet(struct strip *strip_info,
2051                               STRIP_Header * header, __u8 * ptr,
2052                               __u8 * end)
2053{
2054        __u16 packetlen;
2055        struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
2056
2057        /* Decode start of the ARP packet */
2058        ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2059        if (!ptr) {
2060                RecvErr("ARP Packet too short", strip_info);
2061                return;
2062        }
2063
2064        packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2065
2066        if (packetlen > MAX_RECV_MTU) {
2067                printk(KERN_INFO
2068                       "%s: Dropping oversized received ARP packet: %d bytes\n",
2069                       strip_info->dev->name, packetlen);
2070                strip_info->rx_dropped++;
2071                return;
2072        }
2073
2074        /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2075           strip_info->dev->name, packetlen,
2076           ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2077
2078        /* Decode remainder of the ARP packet */
2079        ptr =
2080            UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
2081        if (!ptr) {
2082                RecvErr("ARP Packet too short", strip_info);
2083                return;
2084        }
2085
2086        if (ptr < end) {
2087                RecvErr("ARP Packet too long", strip_info);
2088                return;
2089        }
2090
2091        header->protocol = htons(ETH_P_ARP);
2092
2093        deliver_packet(strip_info, header, packetlen);
2094}
2095
2096/*
2097 * process_text_message processes a <CR>-terminated block of data received
2098 * from the radio that doesn't begin with a '*' character. All normal
2099 * Starmode communication messages with the radio begin with a '*',
2100 * so any text that does not indicates a serial port error, a radio that
2101 * is in Hayes command mode instead of Starmode, or a radio with really
2102 * old firmware that doesn't frame its Starmode responses properly.
2103 */
2104static void process_text_message(struct strip *strip_info)
2105{
2106        __u8 *msg = strip_info->sx_buff;
2107        int len = strip_info->sx_count;
2108
2109        /* Check for anything that looks like it might be our radio name */
2110        /* (This is here for backwards compatibility with old firmware)  */
2111        if (len == 9 && get_radio_address(strip_info, msg) == 0)
2112                return;
2113
2114        if (text_equal(msg, len, "OK"))
2115                return;         /* Ignore 'OK' responses from prior commands */
2116        if (text_equal(msg, len, "ERROR"))
2117                return;         /* Ignore 'ERROR' messages */
2118        if (has_prefix(msg, len, "ate0q1"))
2119                return;         /* Ignore character echo back from the radio */
2120
2121        /* Catch other error messages */
2122        /* (This is here for backwards compatibility with old firmware) */
2123        if (has_prefix(msg, len, "ERR_")) {
2124                RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
2125                return;
2126        }
2127
2128        RecvErr("No initial *", strip_info);
2129}
2130
2131/*
2132 * process_message processes a <CR>-terminated block of data received
2133 * from the radio. If the radio is not in Starmode or has old firmware,
2134 * it may be a line of text in response to an AT command. Ideally, with
2135 * a current radio that's properly in Starmode, all data received should
2136 * be properly framed and checksummed radio message blocks, containing
2137 * either a starmode packet, or a other communication from the radio
2138 * firmware, like "INF_" Info messages and &COMMAND responses.
2139 */
2140static void process_message(struct strip *strip_info)
2141{
2142        STRIP_Header header = { zero_address, zero_address, 0 };
2143        __u8 *ptr = strip_info->sx_buff;
2144        __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2145        __u8 sendername[32], *sptr = sendername;
2146        MetricomKey key;
2147
2148        /*HexDump("Receiving", strip_info, ptr, end); */
2149
2150        /* Check for start of address marker, and then skip over it */
2151        if (*ptr == '*')
2152                ptr++;
2153        else {
2154                process_text_message(strip_info);
2155                return;
2156        }
2157
2158        /* Copy out the return address */
2159        while (ptr < end && *ptr != '*'
2160               && sptr < ARRAY_END(sendername) - 1)
2161                *sptr++ = *ptr++;
2162        *sptr = 0;              /* Null terminate the sender name */
2163
2164        /* Check for end of address marker, and skip over it */
2165        if (ptr >= end || *ptr != '*') {
2166                RecvErr("No second *", strip_info);
2167                return;
2168        }
2169        ptr++;                  /* Skip the second '*' */
2170
2171        /* If the sender name is "&COMMAND", ignore this 'packet'       */
2172        /* (This is here for backwards compatibility with old firmware) */
2173        if (!strcmp(sendername, "&COMMAND")) {
2174                strip_info->firmware_level = NoStructure;
2175                strip_info->next_command = CompatibilityCommand;
2176                return;
2177        }
2178
2179        if (ptr + 4 > end) {
2180                RecvErr("No proto key", strip_info);
2181                return;
2182        }
2183
2184        /* Get the protocol key out of the buffer */
2185        key.c[0] = *ptr++;
2186        key.c[1] = *ptr++;
2187        key.c[2] = *ptr++;
2188        key.c[3] = *ptr++;
2189
2190        /* If we're using checksums, verify the checksum at the end of the packet */
2191        if (strip_info->firmware_level >= ChecksummedMessages) {
2192                end -= 4;       /* Chop the last four bytes off the packet (they're the checksum) */
2193                if (ptr > end) {
2194                        RecvErr("Missing Checksum", strip_info);
2195                        return;
2196                }
2197                if (!verify_checksum(strip_info)) {
2198                        RecvErr("Bad Checksum", strip_info);
2199                        return;
2200                }
2201        }
2202
2203        /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2204
2205        /*
2206         * Fill in (pseudo) source and destination addresses in the packet.
2207         * We assume that the destination address was our address (the radio does not
2208         * tell us this). If the radio supplies a source address, then we use it.
2209         */
2210        header.dst_addr = strip_info->true_dev_addr;
2211        string_to_radio_address(&header.src_addr, sendername);
2212
2213#ifdef EXT_COUNTERS
2214        if (key.l == SIP0Key.l) {
2215                strip_info->rx_rbytes += (end - ptr);
2216                process_IP_packet(strip_info, &header, ptr, end);
2217        } else if (key.l == ARP0Key.l) {
2218                strip_info->rx_rbytes += (end - ptr);
2219                process_ARP_packet(strip_info, &header, ptr, end);
2220        } else if (key.l == ATR_Key.l) {
2221                strip_info->rx_ebytes += (end - ptr);
2222                process_AT_response(strip_info, ptr, end);
2223        } else if (key.l == ACK_Key.l) {
2224                strip_info->rx_ebytes += (end - ptr);
2225                process_ACK(strip_info, ptr, end);
2226        } else if (key.l == INF_Key.l) {
2227                strip_info->rx_ebytes += (end - ptr);
2228                process_Info(strip_info, ptr, end);
2229        } else if (key.l == ERR_Key.l) {
2230                strip_info->rx_ebytes += (end - ptr);
2231                RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2232        } else
2233                RecvErr("Unrecognized protocol key", strip_info);
2234#else
2235        if (key.l == SIP0Key.l)
2236                process_IP_packet(strip_info, &header, ptr, end);
2237        else if (key.l == ARP0Key.l)
2238                process_ARP_packet(strip_info, &header, ptr, end);
2239        else if (key.l == ATR_Key.l)
2240                process_AT_response(strip_info, ptr, end);
2241        else if (key.l == ACK_Key.l)
2242                process_ACK(strip_info, ptr, end);
2243        else if (key.l == INF_Key.l)
2244                process_Info(strip_info, ptr, end);
2245        else if (key.l == ERR_Key.l)
2246                RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2247        else
2248                RecvErr("Unrecognized protocol key", strip_info);
2249#endif
2250}
2251
2252#define TTYERROR(X) ((X) == TTY_BREAK   ? "Break"            : \
2253                     (X) == TTY_FRAME   ? "Framing Error"    : \
2254                     (X) == TTY_PARITY  ? "Parity Error"     : \
2255                     (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2256
2257/*
2258 * Handle the 'receiver data ready' interrupt.
2259 * This function is called by the 'tty_io' module in the kernel when
2260 * a block of STRIP data has been received, which can now be decapsulated
2261 * and sent on to some IP layer for further processing.
2262 */
2263
2264static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
2265                  char *fp, int count)
2266{
2267        struct strip *strip_info = tty->disc_data;
2268        const unsigned char *end = cp + count;
2269
2270        if (!strip_info || strip_info->magic != STRIP_MAGIC
2271            || !netif_running(strip_info->dev))
2272                return;
2273
2274        spin_lock_bh(&strip_lock);
2275#if 0
2276        {
2277                struct timeval tv;
2278                do_gettimeofday(&tv);
2279                printk(KERN_INFO
2280                       "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2281                       count, tv.tv_sec % 100, tv.tv_usec);
2282        }
2283#endif
2284
2285#ifdef EXT_COUNTERS
2286        strip_info->rx_sbytes += count;
2287#endif
2288
2289        /* Read the characters out of the buffer */
2290        while (cp < end) {
2291                if (fp && *fp)
2292                        printk(KERN_INFO "%s: %s on serial port\n",
2293                               strip_info->dev->name, TTYERROR(*fp));
2294                if (fp && *fp++ && !strip_info->discard) {      /* If there's a serial error, record it */
2295                        /* If we have some characters in the buffer, discard them */
2296                        strip_info->discard = strip_info->sx_count;
2297                        strip_info->rx_errors++;
2298                }
2299
2300                /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2301                if (strip_info->sx_count > 0 || *cp >= ' ') {
2302                        if (*cp == 0x0D) {      /* If end of packet, decide what to do with it */
2303                                if (strip_info->sx_count > 3000)
2304                                        printk(KERN_INFO
2305                                               "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2306                                               strip_info->dev->name,
2307                                               strip_info->sx_count,
2308                                               end - cp - 1,
2309                                               strip_info->
2310                                               discard ? " (discarded)" :
2311                                               "");
2312                                if (strip_info->sx_count >
2313                                    strip_info->sx_size) {
2314                                        strip_info->rx_over_errors++;
2315                                        printk(KERN_INFO
2316                                               "%s: sx_buff overflow (%d bytes total)\n",
2317                                               strip_info->dev->name,
2318                                               strip_info->sx_count);
2319                                } else if (strip_info->discard)
2320                                        printk(KERN_INFO
2321                                               "%s: Discarding bad packet (%d/%d)\n",
2322                                               strip_info->dev->name,
2323                                               strip_info->discard,
2324                                               strip_info->sx_count);
2325                                else
2326                                        process_message(strip_info);
2327                                strip_info->discard = 0;
2328                                strip_info->sx_count = 0;
2329                        } else {
2330                                /* Make sure we have space in the buffer */
2331                                if (strip_info->sx_count <
2332                                    strip_info->sx_size)
2333                                        strip_info->sx_buff[strip_info->
2334                                                            sx_count] =
2335                                            *cp;
2336                                strip_info->sx_count++;
2337                        }
2338                }
2339                cp++;
2340        }
2341        spin_unlock_bh(&strip_lock);
2342}
2343
2344
2345/************************************************************************/
2346/* General control routines                                             */
2347
2348static int set_mac_address(struct strip *strip_info,
2349                           MetricomAddress * addr)
2350{
2351        /*
2352         * We're using a manually specified address if the address is set
2353         * to anything other than all ones. Setting the address to all ones
2354         * disables manual mode and goes back to automatic address determination
2355         * (tracking the true address that the radio has).
2356         */
2357        strip_info->manual_dev_addr =
2358            memcmp(addr->c, broadcast_address.c,
2359                   sizeof(broadcast_address));
2360        if (strip_info->manual_dev_addr)
2361                *(MetricomAddress *) strip_info->dev->dev_addr = *addr;
2362        else
2363                *(MetricomAddress *) strip_info->dev->dev_addr =
2364                    strip_info->true_dev_addr;
2365        return 0;
2366}
2367
2368static int strip_set_mac_address(struct net_device *dev, void *addr)
2369{
2370        struct strip *strip_info = netdev_priv(dev);
2371        struct sockaddr *sa = addr;
2372        printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2373        set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
2374        return 0;
2375}
2376
2377static struct net_device_stats *strip_get_stats(struct net_device *dev)
2378{
2379        struct strip *strip_info = netdev_priv(dev);
2380        static struct net_device_stats stats;
2381
2382        memset(&stats, 0, sizeof(struct net_device_stats));
2383
2384        stats.rx_packets = strip_info->rx_packets;
2385        stats.tx_packets = strip_info->tx_packets;
2386        stats.rx_dropped = strip_info->rx_dropped;
2387        stats.tx_dropped = strip_info->tx_dropped;
2388        stats.tx_errors = strip_info->tx_errors;
2389        stats.rx_errors = strip_info->rx_errors;
2390        stats.rx_over_errors = strip_info->rx_over_errors;
2391        return (&stats);
2392}
2393
2394
2395/************************************************************************/
2396/* Opening and closing                                                  */
2397
2398/*
2399 * Here's the order things happen:
2400 * When the user runs "slattach -p strip ..."
2401 *  1. The TTY module calls strip_open;;
2402 *  2. strip_open calls strip_alloc
2403 *  3.                  strip_alloc calls register_netdev
2404 *  4.                  register_netdev calls strip_dev_init
2405 *  5. then strip_open finishes setting up the strip_info
2406 *
2407 * When the user runs "ifconfig st<x> up address netmask ..."
2408 *  6. strip_open_low gets called
2409 *
2410 * When the user runs "ifconfig st<x> down"
2411 *  7. strip_close_low gets called
2412 *
2413 * When the user kills the slattach process
2414 *  8. strip_close gets called
2415 *  9. strip_close calls dev_close
2416 * 10. if the device is still up, then dev_close calls strip_close_low
2417 * 11. strip_close calls strip_free
2418 */
2419
2420/* Open the low-level part of the STRIP channel. Easy! */
2421
2422static int strip_open_low(struct net_device *dev)
2423{
2424        struct strip *strip_info = netdev_priv(dev);
2425
2426        if (strip_info->tty == NULL)
2427                return (-ENODEV);
2428
2429        if (!allocate_buffers(strip_info, dev->mtu))
2430                return (-ENOMEM);
2431
2432        strip_info->sx_count = 0;
2433        strip_info->tx_left = 0;
2434
2435        strip_info->discard = 0;
2436        strip_info->working = FALSE;
2437        strip_info->firmware_level = NoStructure;
2438        strip_info->next_command = CompatibilityCommand;
2439        strip_info->user_baud = tty_get_baud_rate(strip_info->tty);
2440
2441        printk(KERN_INFO "%s: Initializing Radio.\n",
2442               strip_info->dev->name);
2443        ResetRadio(strip_info);
2444        strip_info->idle_timer.expires = jiffies + 1 * HZ;
2445        add_timer(&strip_info->idle_timer);
2446        netif_wake_queue(dev);
2447        return (0);
2448}
2449
2450
2451/*
2452 * Close the low-level part of the STRIP channel. Easy!
2453 */
2454
2455static int strip_close_low(struct net_device *dev)
2456{
2457        struct strip *strip_info = netdev_priv(dev);
2458
2459        if (strip_info->tty == NULL)
2460                return -EBUSY;
2461        clear_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags);
2462        netif_stop_queue(dev);
2463
2464        /*
2465         * Free all STRIP frame buffers.
2466         */
2467        kfree(strip_info->rx_buff);
2468        strip_info->rx_buff = NULL;
2469        kfree(strip_info->sx_buff);
2470        strip_info->sx_buff = NULL;
2471        kfree(strip_info->tx_buff);
2472        strip_info->tx_buff = NULL;
2473
2474        del_timer(&strip_info->idle_timer);
2475        return 0;
2476}
2477
2478static const struct header_ops strip_header_ops = {
2479        .create = strip_header,
2480        .rebuild = strip_rebuild_header,
2481};
2482
2483
2484static const struct net_device_ops strip_netdev_ops = {
2485        .ndo_open       = strip_open_low,
2486        .ndo_stop       = strip_close_low,
2487        .ndo_start_xmit = strip_xmit,
2488        .ndo_set_mac_address = strip_set_mac_address,
2489        .ndo_get_stats  = strip_get_stats,
2490        .ndo_change_mtu = strip_change_mtu,
2491};
2492
2493/*
2494 * This routine is called by DDI when the
2495 * (dynamically assigned) device is registered
2496 */
2497
2498static void strip_dev_setup(struct net_device *dev)
2499{
2500        /*
2501         * Finish setting up the DEVICE info.
2502         */
2503
2504        dev->trans_start = 0;
2505        dev->tx_queue_len = 30; /* Drop after 30 frames queued */
2506
2507        dev->flags = 0;
2508        dev->mtu = DEFAULT_STRIP_MTU;
2509        dev->type = ARPHRD_METRICOM;    /* dtang */
2510        dev->hard_header_len = sizeof(STRIP_Header);
2511        /*
2512         *  netdev_priv(dev) Already holds a pointer to our struct strip
2513         */
2514
2515        *(MetricomAddress *)dev->broadcast = broadcast_address;
2516        dev->dev_addr[0] = 0;
2517        dev->addr_len = sizeof(MetricomAddress);
2518
2519        dev->header_ops = &strip_header_ops,
2520        dev->netdev_ops = &strip_netdev_ops;
2521}
2522
2523/*
2524 * Free a STRIP channel.
2525 */
2526
2527static void strip_free(struct strip *strip_info)
2528{
2529        spin_lock_bh(&strip_lock);
2530        list_del_rcu(&strip_info->list);
2531        spin_unlock_bh(&strip_lock);
2532
2533        strip_info->magic = 0;
2534
2535        free_netdev(strip_info->dev);
2536}
2537
2538
2539/*
2540 * Allocate a new free STRIP channel
2541 */
2542static struct strip *strip_alloc(void)
2543{
2544        struct list_head *n;
2545        struct net_device *dev;
2546        struct strip *strip_info;
2547
2548        dev = alloc_netdev(sizeof(struct strip), "st%d",
2549                           strip_dev_setup);
2550
2551        if (!dev)
2552                return NULL;    /* If no more memory, return */
2553
2554
2555        strip_info = netdev_priv(dev);
2556        strip_info->dev = dev;
2557
2558        strip_info->magic = STRIP_MAGIC;
2559        strip_info->tty = NULL;
2560
2561        strip_info->gratuitous_arp = jiffies + LongTime;
2562        strip_info->arp_interval = 0;
2563        init_timer(&strip_info->idle_timer);
2564        strip_info->idle_timer.data = (long) dev;
2565        strip_info->idle_timer.function = strip_IdleTask;
2566
2567
2568        spin_lock_bh(&strip_lock);
2569 rescan:
2570        /*
2571         * Search the list to find where to put our new entry
2572         * (and in the process decide what channel number it is
2573         * going to be)
2574         */
2575        list_for_each(n, &strip_list) {
2576                struct strip *s = hlist_entry(n, struct strip, list);
2577
2578                if (s->dev->base_addr == dev->base_addr) {
2579                        ++dev->base_addr;
2580                        goto rescan;
2581                }
2582        }
2583
2584        sprintf(dev->name, "st%ld", dev->base_addr);
2585
2586        list_add_tail_rcu(&strip_info->list, &strip_list);
2587        spin_unlock_bh(&strip_lock);
2588
2589        return strip_info;
2590}
2591
2592/*
2593 * Open the high-level part of the STRIP channel.
2594 * This function is called by the TTY module when the
2595 * STRIP line discipline is called for.  Because we are
2596 * sure the tty line exists, we only have to link it to
2597 * a free STRIP channel...
2598 */
2599
2600static int strip_open(struct tty_struct *tty)
2601{
2602        struct strip *strip_info = tty->disc_data;
2603
2604        /*
2605         * First make sure we're not already connected.
2606         */
2607
2608        if (strip_info && strip_info->magic == STRIP_MAGIC)
2609                return -EEXIST;
2610
2611        /*
2612         * We need a write method.
2613         */
2614
2615        if (tty->ops->write == NULL || tty->ops->set_termios == NULL)
2616                return -EOPNOTSUPP;
2617
2618        /*
2619         * OK.  Find a free STRIP channel to use.
2620         */
2621        if ((strip_info = strip_alloc()) == NULL)
2622                return -ENFILE;
2623
2624        /*
2625         * Register our newly created device so it can be ifconfig'd
2626         * strip_dev_init() will be called as a side-effect
2627         */
2628
2629        if (register_netdev(strip_info->dev) != 0) {
2630                printk(KERN_ERR "strip: register_netdev() failed.\n");
2631                strip_free(strip_info);
2632                return -ENFILE;
2633        }
2634
2635        strip_info->tty = tty;
2636        tty->disc_data = strip_info;
2637        tty->receive_room = 65536;
2638
2639        tty_driver_flush_buffer(tty);
2640
2641        /*
2642         * Restore default settings
2643         */
2644
2645        strip_info->dev->type = ARPHRD_METRICOM;        /* dtang */
2646
2647        /*
2648         * Set tty options
2649         */
2650
2651        tty->termios->c_iflag |= IGNBRK | IGNPAR;       /* Ignore breaks and parity errors. */
2652        tty->termios->c_cflag |= CLOCAL;        /* Ignore modem control signals. */
2653        tty->termios->c_cflag &= ~HUPCL;        /* Don't close on hup */
2654
2655        printk(KERN_INFO "STRIP: device \"%s\" activated\n",
2656               strip_info->dev->name);
2657
2658        /*
2659         * Done.  We have linked the TTY line to a channel.
2660         */
2661        return (strip_info->dev->base_addr);
2662}
2663
2664/*
2665 * Close down a STRIP channel.
2666 * This means flushing out any pending queues, and then restoring the
2667 * TTY line discipline to what it was before it got hooked to STRIP
2668 * (which usually is TTY again).
2669 */
2670
2671static void strip_close(struct tty_struct *tty)
2672{
2673        struct strip *strip_info = tty->disc_data;
2674
2675        /*
2676         * First make sure we're connected.
2677         */
2678
2679        if (!strip_info || strip_info->magic != STRIP_MAGIC)
2680                return;
2681
2682        unregister_netdev(strip_info->dev);
2683
2684        tty->disc_data = NULL;
2685        strip_info->tty = NULL;
2686        printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
2687               strip_info->dev->name);
2688        strip_free(strip_info);
2689        tty->disc_data = NULL;
2690}
2691
2692
2693/************************************************************************/
2694/* Perform I/O control calls on an active STRIP channel.                */
2695
2696static int strip_ioctl(struct tty_struct *tty, struct file *file,
2697                       unsigned int cmd, unsigned long arg)
2698{
2699        struct strip *strip_info = tty->disc_data;
2700
2701        /*
2702         * First make sure we're connected.
2703         */
2704
2705        if (!strip_info || strip_info->magic != STRIP_MAGIC)
2706                return -EINVAL;
2707
2708        switch (cmd) {
2709        case SIOCGIFNAME:
2710                if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
2711                        return -EFAULT;
2712                break;
2713        case SIOCSIFHWADDR:
2714        {
2715                MetricomAddress addr;
2716                //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2717                if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
2718                        return -EFAULT;
2719                return set_mac_address(strip_info, &addr);
2720        }
2721        default:
2722                return tty_mode_ioctl(tty, file, cmd, arg);
2723                break;
2724        }
2725        return 0;
2726}
2727
2728
2729/************************************************************************/
2730/* Initialization                                                       */
2731
2732static struct tty_ldisc_ops strip_ldisc = {
2733        .magic = TTY_LDISC_MAGIC,
2734        .name = "strip",
2735        .owner = THIS_MODULE,
2736        .open = strip_open,
2737        .close = strip_close,
2738        .ioctl = strip_ioctl,
2739        .receive_buf = strip_receive_buf,
2740        .write_wakeup = strip_write_some_more,
2741};
2742
2743/*
2744 * Initialize the STRIP driver.
2745 * This routine is called at boot time, to bootstrap the multi-channel
2746 * STRIP driver
2747 */
2748
2749static char signon[] __initdata =
2750    KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2751
2752static int __init strip_init_driver(void)
2753{
2754        int status;
2755
2756        printk(signon, StripVersion);
2757
2758        
2759        /*
2760         * Fill in our line protocol discipline, and register it
2761         */
2762        if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2763                printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
2764                       status);
2765
2766        /*
2767         * Register the status file with /proc
2768         */
2769        proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops);
2770
2771        return status;
2772}
2773
2774module_init(strip_init_driver);
2775
2776static const char signoff[] __exitdata =
2777    KERN_INFO "STRIP: Module Unloaded\n";
2778
2779static void __exit strip_exit_driver(void)
2780{
2781        int i;
2782        struct list_head *p,*n;
2783
2784        /* module ref count rules assure that all entries are unregistered */
2785        list_for_each_safe(p, n, &strip_list) {
2786                struct strip *s = list_entry(p, struct strip, list);
2787                strip_free(s);
2788        }
2789
2790        /* Unregister with the /proc/net file here. */
2791        proc_net_remove(&init_net, "strip");
2792
2793        if ((i = tty_unregister_ldisc(N_STRIP)))
2794                printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2795
2796        printk(signoff);
2797}
2798
2799module_exit(strip_exit_driver);
2800
2801MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2802MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2803MODULE_LICENSE("Dual BSD/GPL");
2804
2805MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");
2806