linux/drivers/parport/parport_ip32.c
<<
>>
Prefs
   1/* Low-level parallel port routines for built-in port on SGI IP32
   2 *
   3 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
   4 *
   5 * Based on parport_pc.c by
   6 *      Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
   7 *      Andrea Arcangeli, et al.
   8 *
   9 * Thanks to Ilya A. Volynets-Evenbakh for his help.
  10 *
  11 * Copyright (C) 2005, 2006 Arnaud Giersch.
  12 *
  13 * This program is free software; you can redistribute it and/or modify it
  14 * under the terms of the GNU General Public License as published by the Free
  15 * Software Foundation; either version 2 of the License, or (at your option)
  16 * any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but WITHOUT
  19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  20 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  21 * more details.
  22 *
  23 * You should have received a copy of the GNU General Public License along
  24 * with this program; if not, write to the Free Software Foundation, Inc., 59
  25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  26 */
  27
  28/* Current status:
  29 *
  30 *      Basic SPP and PS2 modes are supported.
  31 *      Support for parallel port IRQ is present.
  32 *      Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
  33 *      supported.
  34 *      SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
  35 *      or without interrupt support.
  36 *
  37 *      Hardware ECP mode is not fully implemented (ecp_read_data and
  38 *      ecp_write_addr are actually missing).
  39 *
  40 * To do:
  41 *
  42 *      Fully implement ECP mode.
  43 *      EPP and ECP mode need to be tested.  I currently do not own any
  44 *      peripheral supporting these extended mode, and cannot test them.
  45 *      If DMA mode works well, decide if support for PIO FIFO modes should be
  46 *      dropped.
  47 *      Use the io{read,write} family functions when they become available in
  48 *      the linux-mips.org tree.  Note: the MIPS specific functions readsb()
  49 *      and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
  50 *      respectively.
  51 */
  52
  53/* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
  54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
  55 * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
  56 * FIFO buffer and supports DMA transfers.
  57 *
  58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
  59 *
  60 * Theoretically, we could simply use the parport_pc module.  It is however
  61 * not so simple.  The parport_pc code assumes that the parallel port
  62 * registers are port-mapped.  On the O2, they are memory-mapped.
  63 * Furthermore, each register is replicated on 256 consecutive addresses (as
  64 * it is for the built-in serial ports on the same chip).
  65 */
  66
  67/*--- Some configuration defines ---------------------------------------*/
  68
  69/* DEBUG_PARPORT_IP32
  70 *      0       disable debug
  71 *      1       standard level: pr_debug1 is enabled
  72 *      2       parport_ip32_dump_state is enabled
  73 *      >=3     verbose level: pr_debug is enabled
  74 */
  75#if !defined(DEBUG_PARPORT_IP32)
  76#       define DEBUG_PARPORT_IP32  0    /* 0 (disabled) for production */
  77#endif
  78
  79/*----------------------------------------------------------------------*/
  80
  81/* Setup DEBUG macros.  This is done before any includes, just in case we
  82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
  83 */
  84#if DEBUG_PARPORT_IP32 == 1
  85#       warning DEBUG_PARPORT_IP32 == 1
  86#elif DEBUG_PARPORT_IP32 == 2
  87#       warning DEBUG_PARPORT_IP32 == 2
  88#elif DEBUG_PARPORT_IP32 >= 3
  89#       warning DEBUG_PARPORT_IP32 >= 3
  90#       if !defined(DEBUG)
  91#               define DEBUG /* enable pr_debug() in kernel.h */
  92#       endif
  93#endif
  94
  95#include <linux/completion.h>
  96#include <linux/delay.h>
  97#include <linux/dma-mapping.h>
  98#include <linux/err.h>
  99#include <linux/init.h>
 100#include <linux/interrupt.h>
 101#include <linux/jiffies.h>
 102#include <linux/kernel.h>
 103#include <linux/module.h>
 104#include <linux/parport.h>
 105#include <linux/sched.h>
 106#include <linux/spinlock.h>
 107#include <linux/stddef.h>
 108#include <linux/types.h>
 109#include <asm/io.h>
 110#include <asm/ip32/ip32_ints.h>
 111#include <asm/ip32/mace.h>
 112
 113/*--- Global variables -------------------------------------------------*/
 114
 115/* Verbose probing on by default for debugging. */
 116#if DEBUG_PARPORT_IP32 >= 1
 117#       define DEFAULT_VERBOSE_PROBING  1
 118#else
 119#       define DEFAULT_VERBOSE_PROBING  0
 120#endif
 121
 122/* Default prefix for printk */
 123#define PPIP32 "parport_ip32: "
 124
 125/*
 126 * These are the module parameters:
 127 * @features:           bit mask of features to enable/disable
 128 *                      (all enabled by default)
 129 * @verbose_probing:    log chit-chat during initialization
 130 */
 131#define PARPORT_IP32_ENABLE_IRQ (1U << 0)
 132#define PARPORT_IP32_ENABLE_DMA (1U << 1)
 133#define PARPORT_IP32_ENABLE_SPP (1U << 2)
 134#define PARPORT_IP32_ENABLE_EPP (1U << 3)
 135#define PARPORT_IP32_ENABLE_ECP (1U << 4)
 136static unsigned int features =  ~0U;
 137static int verbose_probing =    DEFAULT_VERBOSE_PROBING;
 138
 139/* We do not support more than one port. */
 140static struct parport *this_port = NULL;
 141
 142/* Timing constants for FIFO modes.  */
 143#define FIFO_NFAULT_TIMEOUT     100     /* milliseconds */
 144#define FIFO_POLLING_INTERVAL   50      /* microseconds */
 145
 146/*--- I/O register definitions -----------------------------------------*/
 147
 148/**
 149 * struct parport_ip32_regs - virtual addresses of parallel port registers
 150 * @data:       Data Register
 151 * @dsr:        Device Status Register
 152 * @dcr:        Device Control Register
 153 * @eppAddr:    EPP Address Register
 154 * @eppData0:   EPP Data Register 0
 155 * @eppData1:   EPP Data Register 1
 156 * @eppData2:   EPP Data Register 2
 157 * @eppData3:   EPP Data Register 3
 158 * @ecpAFifo:   ECP Address FIFO
 159 * @fifo:       General FIFO register.  The same address is used for:
 160 *              - cFifo, the Parallel Port DATA FIFO
 161 *              - ecpDFifo, the ECP Data FIFO
 162 *              - tFifo, the ECP Test FIFO
 163 * @cnfgA:      Configuration Register A
 164 * @cnfgB:      Configuration Register B
 165 * @ecr:        Extended Control Register
 166 */
 167struct parport_ip32_regs {
 168        void __iomem *data;
 169        void __iomem *dsr;
 170        void __iomem *dcr;
 171        void __iomem *eppAddr;
 172        void __iomem *eppData0;
 173        void __iomem *eppData1;
 174        void __iomem *eppData2;
 175        void __iomem *eppData3;
 176        void __iomem *ecpAFifo;
 177        void __iomem *fifo;
 178        void __iomem *cnfgA;
 179        void __iomem *cnfgB;
 180        void __iomem *ecr;
 181};
 182
 183/* Device Status Register */
 184#define DSR_nBUSY               (1U << 7)       /* PARPORT_STATUS_BUSY */
 185#define DSR_nACK                (1U << 6)       /* PARPORT_STATUS_ACK */
 186#define DSR_PERROR              (1U << 5)       /* PARPORT_STATUS_PAPEROUT */
 187#define DSR_SELECT              (1U << 4)       /* PARPORT_STATUS_SELECT */
 188#define DSR_nFAULT              (1U << 3)       /* PARPORT_STATUS_ERROR */
 189#define DSR_nPRINT              (1U << 2)       /* specific to TL16PIR552 */
 190/* #define DSR_reserved         (1U << 1) */
 191#define DSR_TIMEOUT             (1U << 0)       /* EPP timeout */
 192
 193/* Device Control Register */
 194/* #define DCR_reserved         (1U << 7) | (1U <<  6) */
 195#define DCR_DIR                 (1U << 5)       /* direction */
 196#define DCR_IRQ                 (1U << 4)       /* interrupt on nAck */
 197#define DCR_SELECT              (1U << 3)       /* PARPORT_CONTROL_SELECT */
 198#define DCR_nINIT               (1U << 2)       /* PARPORT_CONTROL_INIT */
 199#define DCR_AUTOFD              (1U << 1)       /* PARPORT_CONTROL_AUTOFD */
 200#define DCR_STROBE              (1U << 0)       /* PARPORT_CONTROL_STROBE */
 201
 202/* ECP Configuration Register A */
 203#define CNFGA_IRQ               (1U << 7)
 204#define CNFGA_ID_MASK           ((1U << 6) | (1U << 5) | (1U << 4))
 205#define CNFGA_ID_SHIFT          4
 206#define CNFGA_ID_16             (00U << CNFGA_ID_SHIFT)
 207#define CNFGA_ID_8              (01U << CNFGA_ID_SHIFT)
 208#define CNFGA_ID_32             (02U << CNFGA_ID_SHIFT)
 209/* #define CNFGA_reserved       (1U << 3) */
 210#define CNFGA_nBYTEINTRANS      (1U << 2)
 211#define CNFGA_PWORDLEFT         ((1U << 1) | (1U << 0))
 212
 213/* ECP Configuration Register B */
 214#define CNFGB_COMPRESS          (1U << 7)
 215#define CNFGB_INTRVAL           (1U << 6)
 216#define CNFGB_IRQ_MASK          ((1U << 5) | (1U << 4) | (1U << 3))
 217#define CNFGB_IRQ_SHIFT         3
 218#define CNFGB_DMA_MASK          ((1U << 2) | (1U << 1) | (1U << 0))
 219#define CNFGB_DMA_SHIFT         0
 220
 221/* Extended Control Register */
 222#define ECR_MODE_MASK           ((1U << 7) | (1U << 6) | (1U << 5))
 223#define ECR_MODE_SHIFT          5
 224#define ECR_MODE_SPP            (00U << ECR_MODE_SHIFT)
 225#define ECR_MODE_PS2            (01U << ECR_MODE_SHIFT)
 226#define ECR_MODE_PPF            (02U << ECR_MODE_SHIFT)
 227#define ECR_MODE_ECP            (03U << ECR_MODE_SHIFT)
 228#define ECR_MODE_EPP            (04U << ECR_MODE_SHIFT)
 229/* #define ECR_MODE_reserved    (05U << ECR_MODE_SHIFT) */
 230#define ECR_MODE_TST            (06U << ECR_MODE_SHIFT)
 231#define ECR_MODE_CFG            (07U << ECR_MODE_SHIFT)
 232#define ECR_nERRINTR            (1U << 4)
 233#define ECR_DMAEN               (1U << 3)
 234#define ECR_SERVINTR            (1U << 2)
 235#define ECR_F_FULL              (1U << 1)
 236#define ECR_F_EMPTY             (1U << 0)
 237
 238/*--- Private data -----------------------------------------------------*/
 239
 240/**
 241 * enum parport_ip32_irq_mode - operation mode of interrupt handler
 242 * @PARPORT_IP32_IRQ_FWD:       forward interrupt to the upper parport layer
 243 * @PARPORT_IP32_IRQ_HERE:      interrupt is handled locally
 244 */
 245enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
 246
 247/**
 248 * struct parport_ip32_private - private stuff for &struct parport
 249 * @regs:               register addresses
 250 * @dcr_cache:          cached contents of DCR
 251 * @dcr_writable:       bit mask of writable DCR bits
 252 * @pword:              number of bytes per PWord
 253 * @fifo_depth:         number of PWords that FIFO will hold
 254 * @readIntrThreshold:  minimum number of PWords we can read
 255 *                      if we get an interrupt
 256 * @writeIntrThreshold: minimum number of PWords we can write
 257 *                      if we get an interrupt
 258 * @irq_mode:           operation mode of interrupt handler for this port
 259 * @irq_complete:       mutex used to wait for an interrupt to occur
 260 */
 261struct parport_ip32_private {
 262        struct parport_ip32_regs        regs;
 263        unsigned int                    dcr_cache;
 264        unsigned int                    dcr_writable;
 265        unsigned int                    pword;
 266        unsigned int                    fifo_depth;
 267        unsigned int                    readIntrThreshold;
 268        unsigned int                    writeIntrThreshold;
 269        enum parport_ip32_irq_mode      irq_mode;
 270        struct completion               irq_complete;
 271};
 272
 273/*--- Debug code -------------------------------------------------------*/
 274
 275/*
 276 * pr_debug1 - print debug messages
 277 *
 278 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
 279 */
 280#if DEBUG_PARPORT_IP32 >= 1
 281#       define pr_debug1(...)   printk(KERN_DEBUG __VA_ARGS__)
 282#else /* DEBUG_PARPORT_IP32 < 1 */
 283#       define pr_debug1(...)   do { } while (0)
 284#endif
 285
 286/*
 287 * pr_trace, pr_trace1 - trace function calls
 288 * @p:          pointer to &struct parport
 289 * @fmt:        printk format string
 290 * @...:        parameters for format string
 291 *
 292 * Macros used to trace function calls.  The given string is formatted after
 293 * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
 294 * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
 295 * directly.
 296 */
 297#define __pr_trace(pr, p, fmt, ...)                                     \
 298        pr("%s: %s" fmt "\n",                                           \
 299           ({ const struct parport *__p = (p);                          \
 300                   __p ? __p->name : "parport_ip32"; }),                \
 301           __func__ , ##__VA_ARGS__)
 302#define pr_trace(p, fmt, ...)   __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
 303#define pr_trace1(p, fmt, ...)  __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
 304
 305/*
 306 * __pr_probe, pr_probe - print message if @verbose_probing is true
 307 * @p:          pointer to &struct parport
 308 * @fmt:        printk format string
 309 * @...:        parameters for format string
 310 *
 311 * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
 312 */
 313#define __pr_probe(...)                                                 \
 314        do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
 315#define pr_probe(p, fmt, ...)                                           \
 316        __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
 317
 318/*
 319 * parport_ip32_dump_state - print register status of parport
 320 * @p:          pointer to &struct parport
 321 * @str:        string to add in message
 322 * @show_ecp_config:    shall we dump ECP configuration registers too?
 323 *
 324 * This function is only here for debugging purpose, and should be used with
 325 * care.  Reading the parallel port registers may have undesired side effects.
 326 * Especially if @show_ecp_config is true, the parallel port is resetted.
 327 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
 328 */
 329#if DEBUG_PARPORT_IP32 >= 2
 330static void parport_ip32_dump_state(struct parport *p, char *str,
 331                                    unsigned int show_ecp_config)
 332{
 333        struct parport_ip32_private * const priv = p->physport->private_data;
 334        unsigned int i;
 335
 336        printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
 337        {
 338                static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
 339                                                     "ECP", "EPP", "???",
 340                                                     "TST", "CFG"};
 341                unsigned int ecr = readb(priv->regs.ecr);
 342                printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
 343                printk(" %s",
 344                       ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
 345                if (ecr & ECR_nERRINTR)
 346                        printk(",nErrIntrEn");
 347                if (ecr & ECR_DMAEN)
 348                        printk(",dmaEn");
 349                if (ecr & ECR_SERVINTR)
 350                        printk(",serviceIntr");
 351                if (ecr & ECR_F_FULL)
 352                        printk(",f_full");
 353                if (ecr & ECR_F_EMPTY)
 354                        printk(",f_empty");
 355                printk("\n");
 356        }
 357        if (show_ecp_config) {
 358                unsigned int oecr, cnfgA, cnfgB;
 359                oecr = readb(priv->regs.ecr);
 360                writeb(ECR_MODE_PS2, priv->regs.ecr);
 361                writeb(ECR_MODE_CFG, priv->regs.ecr);
 362                cnfgA = readb(priv->regs.cnfgA);
 363                cnfgB = readb(priv->regs.cnfgB);
 364                writeb(ECR_MODE_PS2, priv->regs.ecr);
 365                writeb(oecr, priv->regs.ecr);
 366                printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
 367                printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
 368                switch (cnfgA & CNFGA_ID_MASK) {
 369                case CNFGA_ID_8:
 370                        printk(",8 bits");
 371                        break;
 372                case CNFGA_ID_16:
 373                        printk(",16 bits");
 374                        break;
 375                case CNFGA_ID_32:
 376                        printk(",32 bits");
 377                        break;
 378                default:
 379                        printk(",unknown ID");
 380                        break;
 381                }
 382                if (!(cnfgA & CNFGA_nBYTEINTRANS))
 383                        printk(",ByteInTrans");
 384                if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
 385                        printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
 386                               ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
 387                printk("\n");
 388                printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
 389                printk(" irq=%u,dma=%u",
 390                       (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
 391                       (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
 392                printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
 393                if (cnfgB & CNFGB_COMPRESS)
 394                        printk(",compress");
 395                printk("\n");
 396        }
 397        for (i = 0; i < 2; i++) {
 398                unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
 399                printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
 400                       i ? "soft" : "hard", dcr);
 401                printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
 402                if (dcr & DCR_IRQ)
 403                        printk(",ackIntEn");
 404                if (!(dcr & DCR_SELECT))
 405                        printk(",nSelectIn");
 406                if (dcr & DCR_nINIT)
 407                        printk(",nInit");
 408                if (!(dcr & DCR_AUTOFD))
 409                        printk(",nAutoFD");
 410                if (!(dcr & DCR_STROBE))
 411                        printk(",nStrobe");
 412                printk("\n");
 413        }
 414#define sep (f++ ? ',' : ' ')
 415        {
 416                unsigned int f = 0;
 417                unsigned int dsr = readb(priv->regs.dsr);
 418                printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
 419                if (!(dsr & DSR_nBUSY))
 420                        printk("%cBusy", sep);
 421                if (dsr & DSR_nACK)
 422                        printk("%cnAck", sep);
 423                if (dsr & DSR_PERROR)
 424                        printk("%cPError", sep);
 425                if (dsr & DSR_SELECT)
 426                        printk("%cSelect", sep);
 427                if (dsr & DSR_nFAULT)
 428                        printk("%cnFault", sep);
 429                if (!(dsr & DSR_nPRINT))
 430                        printk("%c(Print)", sep);
 431                if (dsr & DSR_TIMEOUT)
 432                        printk("%cTimeout", sep);
 433                printk("\n");
 434        }
 435#undef sep
 436}
 437#else /* DEBUG_PARPORT_IP32 < 2 */
 438#define parport_ip32_dump_state(...)    do { } while (0)
 439#endif
 440
 441/*
 442 * CHECK_EXTRA_BITS - track and log extra bits
 443 * @p:          pointer to &struct parport
 444 * @b:          byte to inspect
 445 * @m:          bit mask of authorized bits
 446 *
 447 * This is used to track and log extra bits that should not be there in
 448 * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
 449 * defined if %DEBUG_PARPORT_IP32 >= 1.
 450 */
 451#if DEBUG_PARPORT_IP32 >= 1
 452#define CHECK_EXTRA_BITS(p, b, m)                                       \
 453        do {                                                            \
 454                unsigned int __b = (b), __m = (m);                      \
 455                if (__b & ~__m)                                         \
 456                        pr_debug1(PPIP32 "%s: extra bits in %s(%s): "   \
 457                                  "0x%02x/0x%02x\n",                    \
 458                                  (p)->name, __func__, #b, __b, __m);   \
 459        } while (0)
 460#else /* DEBUG_PARPORT_IP32 < 1 */
 461#define CHECK_EXTRA_BITS(...)   do { } while (0)
 462#endif
 463
 464/*--- IP32 parallel port DMA operations --------------------------------*/
 465
 466/**
 467 * struct parport_ip32_dma_data - private data needed for DMA operation
 468 * @dir:        DMA direction (from or to device)
 469 * @buf:        buffer physical address
 470 * @len:        buffer length
 471 * @next:       address of next bytes to DMA transfer
 472 * @left:       number of bytes remaining
 473 * @ctx:        next context to write (0: context_a; 1: context_b)
 474 * @irq_on:     are the DMA IRQs currently enabled?
 475 * @lock:       spinlock to protect access to the structure
 476 */
 477struct parport_ip32_dma_data {
 478        enum dma_data_direction         dir;
 479        dma_addr_t                      buf;
 480        dma_addr_t                      next;
 481        size_t                          len;
 482        size_t                          left;
 483        unsigned int                    ctx;
 484        unsigned int                    irq_on;
 485        spinlock_t                      lock;
 486};
 487static struct parport_ip32_dma_data parport_ip32_dma;
 488
 489/**
 490 * parport_ip32_dma_setup_context - setup next DMA context
 491 * @limit:      maximum data size for the context
 492 *
 493 * The alignment constraints must be verified in caller function, and the
 494 * parameter @limit must be set accordingly.
 495 */
 496static void parport_ip32_dma_setup_context(unsigned int limit)
 497{
 498        unsigned long flags;
 499
 500        spin_lock_irqsave(&parport_ip32_dma.lock, flags);
 501        if (parport_ip32_dma.left > 0) {
 502                /* Note: ctxreg is "volatile" here only because
 503                 * mace->perif.ctrl.parport.context_a and context_b are
 504                 * "volatile".  */
 505                volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
 506                        &mace->perif.ctrl.parport.context_a :
 507                        &mace->perif.ctrl.parport.context_b;
 508                u64 count;
 509                u64 ctxval;
 510                if (parport_ip32_dma.left <= limit) {
 511                        count = parport_ip32_dma.left;
 512                        ctxval = MACEPAR_CONTEXT_LASTFLAG;
 513                } else {
 514                        count = limit;
 515                        ctxval = 0;
 516                }
 517
 518                pr_trace(NULL,
 519                         "(%u): 0x%04x:0x%04x, %u -> %u%s",
 520                         limit,
 521                         (unsigned int)parport_ip32_dma.buf,
 522                         (unsigned int)parport_ip32_dma.next,
 523                         (unsigned int)count,
 524                         parport_ip32_dma.ctx, ctxval ? "*" : "");
 525
 526                ctxval |= parport_ip32_dma.next &
 527                        MACEPAR_CONTEXT_BASEADDR_MASK;
 528                ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
 529                        MACEPAR_CONTEXT_DATALEN_MASK;
 530                writeq(ctxval, ctxreg);
 531                parport_ip32_dma.next += count;
 532                parport_ip32_dma.left -= count;
 533                parport_ip32_dma.ctx ^= 1U;
 534        }
 535        /* If there is nothing more to send, disable IRQs to avoid to
 536         * face an IRQ storm which can lock the machine.  Disable them
 537         * only once. */
 538        if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
 539                pr_debug(PPIP32 "IRQ off (ctx)\n");
 540                disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
 541                disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
 542                parport_ip32_dma.irq_on = 0;
 543        }
 544        spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
 545}
 546
 547/**
 548 * parport_ip32_dma_interrupt - DMA interrupt handler
 549 * @irq:        interrupt number
 550 * @dev_id:     unused
 551 */
 552static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
 553{
 554        if (parport_ip32_dma.left)
 555                pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
 556        parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
 557        return IRQ_HANDLED;
 558}
 559
 560#if DEBUG_PARPORT_IP32
 561static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
 562{
 563        pr_trace1(NULL, "(%d)", irq);
 564        return IRQ_HANDLED;
 565}
 566#endif
 567
 568/**
 569 * parport_ip32_dma_start - begins a DMA transfer
 570 * @dir:        DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
 571 * @addr:       pointer to data buffer
 572 * @count:      buffer size
 573 *
 574 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
 575 * correctly balanced.
 576 */
 577static int parport_ip32_dma_start(enum dma_data_direction dir,
 578                                  void *addr, size_t count)
 579{
 580        unsigned int limit;
 581        u64 ctrl;
 582
 583        pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
 584
 585        /* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
 586         * be 64 bytes aligned. */
 587        BUG_ON(dir != DMA_TO_DEVICE);
 588
 589        /* Reset DMA controller */
 590        ctrl = MACEPAR_CTLSTAT_RESET;
 591        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 592
 593        /* DMA IRQs should normally be enabled */
 594        if (!parport_ip32_dma.irq_on) {
 595                WARN_ON(1);
 596                enable_irq(MACEISA_PAR_CTXA_IRQ);
 597                enable_irq(MACEISA_PAR_CTXB_IRQ);
 598                parport_ip32_dma.irq_on = 1;
 599        }
 600
 601        /* Prepare DMA pointers */
 602        parport_ip32_dma.dir = dir;
 603        parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
 604        parport_ip32_dma.len = count;
 605        parport_ip32_dma.next = parport_ip32_dma.buf;
 606        parport_ip32_dma.left = parport_ip32_dma.len;
 607        parport_ip32_dma.ctx = 0;
 608
 609        /* Setup DMA direction and first two contexts */
 610        ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
 611        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 612        /* Single transfer should not cross a 4K page boundary */
 613        limit = MACEPAR_CONTEXT_DATA_BOUND -
 614                (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
 615        parport_ip32_dma_setup_context(limit);
 616        parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
 617
 618        /* Real start of DMA transfer */
 619        ctrl |= MACEPAR_CTLSTAT_ENABLE;
 620        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 621
 622        return 0;
 623}
 624
 625/**
 626 * parport_ip32_dma_stop - ends a running DMA transfer
 627 *
 628 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
 629 * correctly balanced.
 630 */
 631static void parport_ip32_dma_stop(void)
 632{
 633        u64 ctx_a;
 634        u64 ctx_b;
 635        u64 ctrl;
 636        u64 diag;
 637        size_t res[2];  /* {[0] = res_a, [1] = res_b} */
 638
 639        pr_trace(NULL, "()");
 640
 641        /* Disable IRQs */
 642        spin_lock_irq(&parport_ip32_dma.lock);
 643        if (parport_ip32_dma.irq_on) {
 644                pr_debug(PPIP32 "IRQ off (stop)\n");
 645                disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
 646                disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
 647                parport_ip32_dma.irq_on = 0;
 648        }
 649        spin_unlock_irq(&parport_ip32_dma.lock);
 650        /* Force IRQ synchronization, even if the IRQs were disabled
 651         * elsewhere. */
 652        synchronize_irq(MACEISA_PAR_CTXA_IRQ);
 653        synchronize_irq(MACEISA_PAR_CTXB_IRQ);
 654
 655        /* Stop DMA transfer */
 656        ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
 657        ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
 658        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 659
 660        /* Adjust residue (parport_ip32_dma.left) */
 661        ctx_a = readq(&mace->perif.ctrl.parport.context_a);
 662        ctx_b = readq(&mace->perif.ctrl.parport.context_b);
 663        ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
 664        diag = readq(&mace->perif.ctrl.parport.diagnostic);
 665        res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
 666                1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
 667                     MACEPAR_CONTEXT_DATALEN_SHIFT) :
 668                0;
 669        res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
 670                1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
 671                     MACEPAR_CONTEXT_DATALEN_SHIFT) :
 672                0;
 673        if (diag & MACEPAR_DIAG_DMACTIVE)
 674                res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
 675                        1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
 676                             MACEPAR_DIAG_CTRSHIFT);
 677        parport_ip32_dma.left += res[0] + res[1];
 678
 679        /* Reset DMA controller, and re-enable IRQs */
 680        ctrl = MACEPAR_CTLSTAT_RESET;
 681        writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
 682        pr_debug(PPIP32 "IRQ on (stop)\n");
 683        enable_irq(MACEISA_PAR_CTXA_IRQ);
 684        enable_irq(MACEISA_PAR_CTXB_IRQ);
 685        parport_ip32_dma.irq_on = 1;
 686
 687        dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
 688                         parport_ip32_dma.dir);
 689}
 690
 691/**
 692 * parport_ip32_dma_get_residue - get residue from last DMA transfer
 693 *
 694 * Returns the number of bytes remaining from last DMA transfer.
 695 */
 696static inline size_t parport_ip32_dma_get_residue(void)
 697{
 698        return parport_ip32_dma.left;
 699}
 700
 701/**
 702 * parport_ip32_dma_register - initialize DMA engine
 703 *
 704 * Returns zero for success.
 705 */
 706static int parport_ip32_dma_register(void)
 707{
 708        int err;
 709
 710        spin_lock_init(&parport_ip32_dma.lock);
 711        parport_ip32_dma.irq_on = 1;
 712
 713        /* Reset DMA controller */
 714        writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
 715
 716        /* Request IRQs */
 717        err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
 718                          0, "parport_ip32", NULL);
 719        if (err)
 720                goto fail_a;
 721        err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
 722                          0, "parport_ip32", NULL);
 723        if (err)
 724                goto fail_b;
 725#if DEBUG_PARPORT_IP32
 726        /* FIXME - what is this IRQ for? */
 727        err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
 728                          0, "parport_ip32", NULL);
 729        if (err)
 730                goto fail_merr;
 731#endif
 732        return 0;
 733
 734#if DEBUG_PARPORT_IP32
 735fail_merr:
 736        free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
 737#endif
 738fail_b:
 739        free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
 740fail_a:
 741        return err;
 742}
 743
 744/**
 745 * parport_ip32_dma_unregister - release and free resources for DMA engine
 746 */
 747static void parport_ip32_dma_unregister(void)
 748{
 749#if DEBUG_PARPORT_IP32
 750        free_irq(MACEISA_PAR_MERR_IRQ, NULL);
 751#endif
 752        free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
 753        free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
 754}
 755
 756/*--- Interrupt handlers and associates --------------------------------*/
 757
 758/**
 759 * parport_ip32_wakeup - wakes up code waiting for an interrupt
 760 * @p:          pointer to &struct parport
 761 */
 762static inline void parport_ip32_wakeup(struct parport *p)
 763{
 764        struct parport_ip32_private * const priv = p->physport->private_data;
 765        complete(&priv->irq_complete);
 766}
 767
 768/**
 769 * parport_ip32_interrupt - interrupt handler
 770 * @irq:        interrupt number
 771 * @dev_id:     pointer to &struct parport
 772 *
 773 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
 774 * %PARPORT_IP32_IRQ_FWD.
 775 */
 776static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
 777{
 778        struct parport * const p = dev_id;
 779        struct parport_ip32_private * const priv = p->physport->private_data;
 780        enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
 781
 782        switch (irq_mode) {
 783        case PARPORT_IP32_IRQ_FWD:
 784                return parport_irq_handler(irq, dev_id);
 785
 786        case PARPORT_IP32_IRQ_HERE:
 787                parport_ip32_wakeup(p);
 788                break;
 789        }
 790
 791        return IRQ_HANDLED;
 792}
 793
 794/*--- Some utility function to manipulate ECR register -----------------*/
 795
 796/**
 797 * parport_ip32_read_econtrol - read contents of the ECR register
 798 * @p:          pointer to &struct parport
 799 */
 800static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
 801{
 802        struct parport_ip32_private * const priv = p->physport->private_data;
 803        return readb(priv->regs.ecr);
 804}
 805
 806/**
 807 * parport_ip32_write_econtrol - write new contents to the ECR register
 808 * @p:          pointer to &struct parport
 809 * @c:          new value to write
 810 */
 811static inline void parport_ip32_write_econtrol(struct parport *p,
 812                                               unsigned int c)
 813{
 814        struct parport_ip32_private * const priv = p->physport->private_data;
 815        writeb(c, priv->regs.ecr);
 816}
 817
 818/**
 819 * parport_ip32_frob_econtrol - change bits from the ECR register
 820 * @p:          pointer to &struct parport
 821 * @mask:       bit mask of bits to change
 822 * @val:        new value for changed bits
 823 *
 824 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
 825 * in @val, and write the result to the ECR.
 826 */
 827static inline void parport_ip32_frob_econtrol(struct parport *p,
 828                                              unsigned int mask,
 829                                              unsigned int val)
 830{
 831        unsigned int c;
 832        c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
 833        parport_ip32_write_econtrol(p, c);
 834}
 835
 836/**
 837 * parport_ip32_set_mode - change mode of ECP port
 838 * @p:          pointer to &struct parport
 839 * @mode:       new mode to write in ECR
 840 *
 841 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
 842 * mode @mode.  Go through PS2 mode if needed.
 843 */
 844static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
 845{
 846        unsigned int omode;
 847
 848        mode &= ECR_MODE_MASK;
 849        omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
 850
 851        if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
 852              || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
 853                /* We have to go through PS2 mode */
 854                unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
 855                parport_ip32_write_econtrol(p, ecr);
 856        }
 857        parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
 858}
 859
 860/*--- Basic functions needed for parport -------------------------------*/
 861
 862/**
 863 * parport_ip32_read_data - return current contents of the DATA register
 864 * @p:          pointer to &struct parport
 865 */
 866static inline unsigned char parport_ip32_read_data(struct parport *p)
 867{
 868        struct parport_ip32_private * const priv = p->physport->private_data;
 869        return readb(priv->regs.data);
 870}
 871
 872/**
 873 * parport_ip32_write_data - set new contents for the DATA register
 874 * @p:          pointer to &struct parport
 875 * @d:          new value to write
 876 */
 877static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
 878{
 879        struct parport_ip32_private * const priv = p->physport->private_data;
 880        writeb(d, priv->regs.data);
 881}
 882
 883/**
 884 * parport_ip32_read_status - return current contents of the DSR register
 885 * @p:          pointer to &struct parport
 886 */
 887static inline unsigned char parport_ip32_read_status(struct parport *p)
 888{
 889        struct parport_ip32_private * const priv = p->physport->private_data;
 890        return readb(priv->regs.dsr);
 891}
 892
 893/**
 894 * __parport_ip32_read_control - return cached contents of the DCR register
 895 * @p:          pointer to &struct parport
 896 */
 897static inline unsigned int __parport_ip32_read_control(struct parport *p)
 898{
 899        struct parport_ip32_private * const priv = p->physport->private_data;
 900        return priv->dcr_cache; /* use soft copy */
 901}
 902
 903/**
 904 * __parport_ip32_write_control - set new contents for the DCR register
 905 * @p:          pointer to &struct parport
 906 * @c:          new value to write
 907 */
 908static inline void __parport_ip32_write_control(struct parport *p,
 909                                                unsigned int c)
 910{
 911        struct parport_ip32_private * const priv = p->physport->private_data;
 912        CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
 913        c &= priv->dcr_writable; /* only writable bits */
 914        writeb(c, priv->regs.dcr);
 915        priv->dcr_cache = c;            /* update soft copy */
 916}
 917
 918/**
 919 * __parport_ip32_frob_control - change bits from the DCR register
 920 * @p:          pointer to &struct parport
 921 * @mask:       bit mask of bits to change
 922 * @val:        new value for changed bits
 923 *
 924 * This is equivalent to read from the DCR, mask out the bits in @mask,
 925 * exclusive-or with the bits in @val, and write the result to the DCR.
 926 * Actually, the cached contents of the DCR is used.
 927 */
 928static inline void __parport_ip32_frob_control(struct parport *p,
 929                                               unsigned int mask,
 930                                               unsigned int val)
 931{
 932        unsigned int c;
 933        c = (__parport_ip32_read_control(p) & ~mask) ^ val;
 934        __parport_ip32_write_control(p, c);
 935}
 936
 937/**
 938 * parport_ip32_read_control - return cached contents of the DCR register
 939 * @p:          pointer to &struct parport
 940 *
 941 * The return value is masked so as to only return the value of %DCR_STROBE,
 942 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 943 */
 944static inline unsigned char parport_ip32_read_control(struct parport *p)
 945{
 946        const unsigned int rm =
 947                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 948        return __parport_ip32_read_control(p) & rm;
 949}
 950
 951/**
 952 * parport_ip32_write_control - set new contents for the DCR register
 953 * @p:          pointer to &struct parport
 954 * @c:          new value to write
 955 *
 956 * The value is masked so as to only change the value of %DCR_STROBE,
 957 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 958 */
 959static inline void parport_ip32_write_control(struct parport *p,
 960                                              unsigned char c)
 961{
 962        const unsigned int wm =
 963                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 964        CHECK_EXTRA_BITS(p, c, wm);
 965        __parport_ip32_frob_control(p, wm, c & wm);
 966}
 967
 968/**
 969 * parport_ip32_frob_control - change bits from the DCR register
 970 * @p:          pointer to &struct parport
 971 * @mask:       bit mask of bits to change
 972 * @val:        new value for changed bits
 973 *
 974 * This differs from __parport_ip32_frob_control() in that it only allows to
 975 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
 976 */
 977static inline unsigned char parport_ip32_frob_control(struct parport *p,
 978                                                      unsigned char mask,
 979                                                      unsigned char val)
 980{
 981        const unsigned int wm =
 982                DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
 983        CHECK_EXTRA_BITS(p, mask, wm);
 984        CHECK_EXTRA_BITS(p, val, wm);
 985        __parport_ip32_frob_control(p, mask & wm, val & wm);
 986        return parport_ip32_read_control(p);
 987}
 988
 989/**
 990 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
 991 * @p:          pointer to &struct parport
 992 */
 993static inline void parport_ip32_disable_irq(struct parport *p)
 994{
 995        __parport_ip32_frob_control(p, DCR_IRQ, 0);
 996}
 997
 998/**
 999 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
1000 * @p:          pointer to &struct parport
1001 */
1002static inline void parport_ip32_enable_irq(struct parport *p)
1003{
1004        __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1005}
1006
1007/**
1008 * parport_ip32_data_forward - enable host-to-peripheral communications
1009 * @p:          pointer to &struct parport
1010 *
1011 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1012 */
1013static inline void parport_ip32_data_forward(struct parport *p)
1014{
1015        __parport_ip32_frob_control(p, DCR_DIR, 0);
1016}
1017
1018/**
1019 * parport_ip32_data_reverse - enable peripheral-to-host communications
1020 * @p:          pointer to &struct parport
1021 *
1022 * Place the data bus in a high impedance state, if @p->modes has the
1023 * PARPORT_MODE_TRISTATE bit set.
1024 */
1025static inline void parport_ip32_data_reverse(struct parport *p)
1026{
1027        __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1028}
1029
1030/**
1031 * parport_ip32_init_state - for core parport code
1032 * @dev:        pointer to &struct pardevice
1033 * @s:          pointer to &struct parport_state to initialize
1034 */
1035static void parport_ip32_init_state(struct pardevice *dev,
1036                                    struct parport_state *s)
1037{
1038        s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1039        s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1040}
1041
1042/**
1043 * parport_ip32_save_state - for core parport code
1044 * @p:          pointer to &struct parport
1045 * @s:          pointer to &struct parport_state to save state to
1046 */
1047static void parport_ip32_save_state(struct parport *p,
1048                                    struct parport_state *s)
1049{
1050        s->u.ip32.dcr = __parport_ip32_read_control(p);
1051        s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1052}
1053
1054/**
1055 * parport_ip32_restore_state - for core parport code
1056 * @p:          pointer to &struct parport
1057 * @s:          pointer to &struct parport_state to restore state from
1058 */
1059static void parport_ip32_restore_state(struct parport *p,
1060                                       struct parport_state *s)
1061{
1062        parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1063        parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1064        __parport_ip32_write_control(p, s->u.ip32.dcr);
1065}
1066
1067/*--- EPP mode functions -----------------------------------------------*/
1068
1069/**
1070 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1071 * @p:          pointer to &struct parport
1072 *
1073 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1074 */
1075static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1076{
1077        struct parport_ip32_private * const priv = p->physport->private_data;
1078        unsigned int cleared;
1079
1080        if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1081                cleared = 1;
1082        else {
1083                unsigned int r;
1084                /* To clear timeout some chips require double read */
1085                parport_ip32_read_status(p);
1086                r = parport_ip32_read_status(p);
1087                /* Some reset by writing 1 */
1088                writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1089                /* Others by writing 0 */
1090                writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1091
1092                r = parport_ip32_read_status(p);
1093                cleared = !(r & DSR_TIMEOUT);
1094        }
1095
1096        pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1097        return cleared;
1098}
1099
1100/**
1101 * parport_ip32_epp_read - generic EPP read function
1102 * @eppreg:     I/O register to read from
1103 * @p:          pointer to &struct parport
1104 * @buf:        buffer to store read data
1105 * @len:        length of buffer @buf
1106 * @flags:      may be PARPORT_EPP_FAST
1107 */
1108static size_t parport_ip32_epp_read(void __iomem *eppreg,
1109                                    struct parport *p, void *buf,
1110                                    size_t len, int flags)
1111{
1112        struct parport_ip32_private * const priv = p->physport->private_data;
1113        size_t got;
1114        parport_ip32_set_mode(p, ECR_MODE_EPP);
1115        parport_ip32_data_reverse(p);
1116        parport_ip32_write_control(p, DCR_nINIT);
1117        if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1118                readsb(eppreg, buf, len);
1119                if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1120                        parport_ip32_clear_epp_timeout(p);
1121                        return -EIO;
1122                }
1123                got = len;
1124        } else {
1125                u8 *bufp = buf;
1126                for (got = 0; got < len; got++) {
1127                        *bufp++ = readb(eppreg);
1128                        if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1129                                parport_ip32_clear_epp_timeout(p);
1130                                break;
1131                        }
1132                }
1133        }
1134        parport_ip32_data_forward(p);
1135        parport_ip32_set_mode(p, ECR_MODE_PS2);
1136        return got;
1137}
1138
1139/**
1140 * parport_ip32_epp_write - generic EPP write function
1141 * @eppreg:     I/O register to write to
1142 * @p:          pointer to &struct parport
1143 * @buf:        buffer of data to write
1144 * @len:        length of buffer @buf
1145 * @flags:      may be PARPORT_EPP_FAST
1146 */
1147static size_t parport_ip32_epp_write(void __iomem *eppreg,
1148                                     struct parport *p, const void *buf,
1149                                     size_t len, int flags)
1150{
1151        struct parport_ip32_private * const priv = p->physport->private_data;
1152        size_t written;
1153        parport_ip32_set_mode(p, ECR_MODE_EPP);
1154        parport_ip32_data_forward(p);
1155        parport_ip32_write_control(p, DCR_nINIT);
1156        if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1157                writesb(eppreg, buf, len);
1158                if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1159                        parport_ip32_clear_epp_timeout(p);
1160                        return -EIO;
1161                }
1162                written = len;
1163        } else {
1164                const u8 *bufp = buf;
1165                for (written = 0; written < len; written++) {
1166                        writeb(*bufp++, eppreg);
1167                        if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1168                                parport_ip32_clear_epp_timeout(p);
1169                                break;
1170                        }
1171                }
1172        }
1173        parport_ip32_set_mode(p, ECR_MODE_PS2);
1174        return written;
1175}
1176
1177/**
1178 * parport_ip32_epp_read_data - read a block of data in EPP mode
1179 * @p:          pointer to &struct parport
1180 * @buf:        buffer to store read data
1181 * @len:        length of buffer @buf
1182 * @flags:      may be PARPORT_EPP_FAST
1183 */
1184static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1185                                         size_t len, int flags)
1186{
1187        struct parport_ip32_private * const priv = p->physport->private_data;
1188        return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1189}
1190
1191/**
1192 * parport_ip32_epp_write_data - write a block of data in EPP mode
1193 * @p:          pointer to &struct parport
1194 * @buf:        buffer of data to write
1195 * @len:        length of buffer @buf
1196 * @flags:      may be PARPORT_EPP_FAST
1197 */
1198static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1199                                          size_t len, int flags)
1200{
1201        struct parport_ip32_private * const priv = p->physport->private_data;
1202        return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1203}
1204
1205/**
1206 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1207 * @p:          pointer to &struct parport
1208 * @buf:        buffer to store read data
1209 * @len:        length of buffer @buf
1210 * @flags:      may be PARPORT_EPP_FAST
1211 */
1212static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1213                                         size_t len, int flags)
1214{
1215        struct parport_ip32_private * const priv = p->physport->private_data;
1216        return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1217}
1218
1219/**
1220 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1221 * @p:          pointer to &struct parport
1222 * @buf:        buffer of data to write
1223 * @len:        length of buffer @buf
1224 * @flags:      may be PARPORT_EPP_FAST
1225 */
1226static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1227                                          size_t len, int flags)
1228{
1229        struct parport_ip32_private * const priv = p->physport->private_data;
1230        return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1231}
1232
1233/*--- ECP mode functions (FIFO) ----------------------------------------*/
1234
1235/**
1236 * parport_ip32_fifo_wait_break - check if the waiting function should return
1237 * @p:          pointer to &struct parport
1238 * @expire:     timeout expiring date, in jiffies
1239 *
1240 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1241 * immediately or not.  The break conditions are:
1242 *      - expired timeout;
1243 *      - a pending signal;
1244 *      - nFault asserted low.
1245 * This function also calls cond_resched().
1246 */
1247static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1248                                                 unsigned long expire)
1249{
1250        cond_resched();
1251        if (time_after(jiffies, expire)) {
1252                pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1253                return 1;
1254        }
1255        if (signal_pending(current)) {
1256                pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1257                return 1;
1258        }
1259        if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1260                pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1261                return 1;
1262        }
1263        return 0;
1264}
1265
1266/**
1267 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1268 * @p:          pointer to &struct parport
1269 *
1270 * Returns the number of bytes that can safely be written in the FIFO.  A
1271 * return value of zero means that the calling function should terminate as
1272 * fast as possible.
1273 */
1274static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1275{
1276        struct parport_ip32_private * const priv = p->physport->private_data;
1277        struct parport * const physport = p->physport;
1278        unsigned long expire;
1279        unsigned int count;
1280        unsigned int ecr;
1281
1282        expire = jiffies + physport->cad->timeout;
1283        count = 0;
1284        while (1) {
1285                if (parport_ip32_fifo_wait_break(p, expire))
1286                        break;
1287
1288                /* Check FIFO state.  We do nothing when the FIFO is nor full,
1289                 * nor empty.  It appears that the FIFO full bit is not always
1290                 * reliable, the FIFO state is sometimes wrongly reported, and
1291                 * the chip gets confused if we give it another byte. */
1292                ecr = parport_ip32_read_econtrol(p);
1293                if (ecr & ECR_F_EMPTY) {
1294                        /* FIFO is empty, fill it up */
1295                        count = priv->fifo_depth;
1296                        break;
1297                }
1298
1299                /* Wait a moment... */
1300                udelay(FIFO_POLLING_INTERVAL);
1301        } /* while (1) */
1302
1303        return count;
1304}
1305
1306/**
1307 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1308 * @p:          pointer to &struct parport
1309 *
1310 * Returns the number of bytes that can safely be written in the FIFO.  A
1311 * return value of zero means that the calling function should terminate as
1312 * fast as possible.
1313 */
1314static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1315{
1316        static unsigned int lost_interrupt = 0;
1317        struct parport_ip32_private * const priv = p->physport->private_data;
1318        struct parport * const physport = p->physport;
1319        unsigned long nfault_timeout;
1320        unsigned long expire;
1321        unsigned int count;
1322        unsigned int ecr;
1323
1324        nfault_timeout = min((unsigned long)physport->cad->timeout,
1325                             msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1326        expire = jiffies + physport->cad->timeout;
1327        count = 0;
1328        while (1) {
1329                if (parport_ip32_fifo_wait_break(p, expire))
1330                        break;
1331
1332                /* Initialize mutex used to take interrupts into account */
1333                INIT_COMPLETION(priv->irq_complete);
1334
1335                /* Enable serviceIntr */
1336                parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1337
1338                /* Enabling serviceIntr while the FIFO is empty does not
1339                 * always generate an interrupt, so check for emptiness
1340                 * now. */
1341                ecr = parport_ip32_read_econtrol(p);
1342                if (!(ecr & ECR_F_EMPTY)) {
1343                        /* FIFO is not empty: wait for an interrupt or a
1344                         * timeout to occur */
1345                        wait_for_completion_interruptible_timeout(
1346                                &priv->irq_complete, nfault_timeout);
1347                        ecr = parport_ip32_read_econtrol(p);
1348                        if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1349                            && !lost_interrupt) {
1350                                printk(KERN_WARNING PPIP32
1351                                       "%s: lost interrupt in %s\n",
1352                                       p->name, __func__);
1353                                lost_interrupt = 1;
1354                        }
1355                }
1356
1357                /* Disable serviceIntr */
1358                parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1359
1360                /* Check FIFO state */
1361                if (ecr & ECR_F_EMPTY) {
1362                        /* FIFO is empty, fill it up */
1363                        count = priv->fifo_depth;
1364                        break;
1365                } else if (ecr & ECR_SERVINTR) {
1366                        /* FIFO is not empty, but we know that can safely push
1367                         * writeIntrThreshold bytes into it */
1368                        count = priv->writeIntrThreshold;
1369                        break;
1370                }
1371                /* FIFO is not empty, and we did not get any interrupt.
1372                 * Either it's time to check for nFault, or a signal is
1373                 * pending.  This is verified in
1374                 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1375        } /* while (1) */
1376
1377        return count;
1378}
1379
1380/**
1381 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1382 * @p:          pointer to &struct parport
1383 * @buf:        buffer of data to write
1384 * @len:        length of buffer @buf
1385 *
1386 * Uses PIO to write the contents of the buffer @buf into the parallel port
1387 * FIFO.  Returns the number of bytes that were actually written.  It can work
1388 * with or without the help of interrupts.  The parallel port must be
1389 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1390 */
1391static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1392                                                const void *buf, size_t len)
1393{
1394        struct parport_ip32_private * const priv = p->physport->private_data;
1395        const u8 *bufp = buf;
1396        size_t left = len;
1397
1398        priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1399
1400        while (left > 0) {
1401                unsigned int count;
1402
1403                count = (p->irq == PARPORT_IRQ_NONE) ?
1404                        parport_ip32_fwp_wait_polling(p) :
1405                        parport_ip32_fwp_wait_interrupt(p);
1406                if (count == 0)
1407                        break;  /* Transmission should be stopped */
1408                if (count > left)
1409                        count = left;
1410                if (count == 1) {
1411                        writeb(*bufp, priv->regs.fifo);
1412                        bufp++, left--;
1413                } else {
1414                        writesb(priv->regs.fifo, bufp, count);
1415                        bufp += count, left -= count;
1416                }
1417        }
1418
1419        priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1420
1421        return len - left;
1422}
1423
1424/**
1425 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1426 * @p:          pointer to &struct parport
1427 * @buf:        buffer of data to write
1428 * @len:        length of buffer @buf
1429 *
1430 * Uses DMA to write the contents of the buffer @buf into the parallel port
1431 * FIFO.  Returns the number of bytes that were actually written.  The
1432 * parallel port must be correctly initialized before calling
1433 * parport_ip32_fifo_write_block_dma().
1434 */
1435static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1436                                                const void *buf, size_t len)
1437{
1438        struct parport_ip32_private * const priv = p->physport->private_data;
1439        struct parport * const physport = p->physport;
1440        unsigned long nfault_timeout;
1441        unsigned long expire;
1442        size_t written;
1443        unsigned int ecr;
1444
1445        priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1446
1447        parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1448        INIT_COMPLETION(priv->irq_complete);
1449        parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1450
1451        nfault_timeout = min((unsigned long)physport->cad->timeout,
1452                             msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1453        expire = jiffies + physport->cad->timeout;
1454        while (1) {
1455                if (parport_ip32_fifo_wait_break(p, expire))
1456                        break;
1457                wait_for_completion_interruptible_timeout(&priv->irq_complete,
1458                                                          nfault_timeout);
1459                ecr = parport_ip32_read_econtrol(p);
1460                if (ecr & ECR_SERVINTR)
1461                        break;  /* DMA transfer just finished */
1462        }
1463        parport_ip32_dma_stop();
1464        written = len - parport_ip32_dma_get_residue();
1465
1466        priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1467
1468        return written;
1469}
1470
1471/**
1472 * parport_ip32_fifo_write_block - write a block of data
1473 * @p:          pointer to &struct parport
1474 * @buf:        buffer of data to write
1475 * @len:        length of buffer @buf
1476 *
1477 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1478 * p FIFO.  Returns the number of bytes that were actually written.
1479 */
1480static size_t parport_ip32_fifo_write_block(struct parport *p,
1481                                            const void *buf, size_t len)
1482{
1483        size_t written = 0;
1484        if (len)
1485                /* FIXME - Maybe some threshold value should be set for @len
1486                 * under which we revert to PIO mode? */
1487                written = (p->modes & PARPORT_MODE_DMA) ?
1488                        parport_ip32_fifo_write_block_dma(p, buf, len) :
1489                        parport_ip32_fifo_write_block_pio(p, buf, len);
1490        return written;
1491}
1492
1493/**
1494 * parport_ip32_drain_fifo - wait for FIFO to empty
1495 * @p:          pointer to &struct parport
1496 * @timeout:    timeout, in jiffies
1497 *
1498 * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1499 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1500 */
1501static unsigned int parport_ip32_drain_fifo(struct parport *p,
1502                                            unsigned long timeout)
1503{
1504        unsigned long expire = jiffies + timeout;
1505        unsigned int polling_interval;
1506        unsigned int counter;
1507
1508        /* Busy wait for approx. 200us */
1509        for (counter = 0; counter < 40; counter++) {
1510                if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1511                        break;
1512                if (time_after(jiffies, expire))
1513                        break;
1514                if (signal_pending(current))
1515                        break;
1516                udelay(5);
1517        }
1518        /* Poll slowly.  Polling interval starts with 1 millisecond, and is
1519         * increased exponentially until 128.  */
1520        polling_interval = 1; /* msecs */
1521        while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1522                if (time_after_eq(jiffies, expire))
1523                        break;
1524                msleep_interruptible(polling_interval);
1525                if (signal_pending(current))
1526                        break;
1527                if (polling_interval < 128)
1528                        polling_interval *= 2;
1529        }
1530
1531        return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1532}
1533
1534/**
1535 * parport_ip32_get_fifo_residue - reset FIFO
1536 * @p:          pointer to &struct parport
1537 * @mode:       current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1538 *
1539 * This function resets FIFO, and returns the number of bytes remaining in it.
1540 */
1541static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1542                                                  unsigned int mode)
1543{
1544        struct parport_ip32_private * const priv = p->physport->private_data;
1545        unsigned int residue;
1546        unsigned int cnfga;
1547
1548        /* FIXME - We are missing one byte if the printer is off-line.  I
1549         * don't know how to detect this.  It looks that the full bit is not
1550         * always reliable.  For the moment, the problem is avoided in most
1551         * cases by testing for BUSY in parport_ip32_compat_write_data().
1552         */
1553        if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1554                residue = 0;
1555        else {
1556                pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1557
1558                /* Stop all transfers.
1559                 *
1560                 * Microsoft's document instructs to drive DCR_STROBE to 0,
1561                 * but it doesn't work (at least in Compatibility mode, not
1562                 * tested in ECP mode).  Switching directly to Test mode (as
1563                 * in parport_pc) is not an option: it does confuse the port,
1564                 * ECP service interrupts are no more working after that.  A
1565                 * hard reset is then needed to revert to a sane state.
1566                 *
1567                 * Let's hope that the FIFO is really stuck and that the
1568                 * peripheral doesn't wake up now.
1569                 */
1570                parport_ip32_frob_control(p, DCR_STROBE, 0);
1571
1572                /* Fill up FIFO */
1573                for (residue = priv->fifo_depth; residue > 0; residue--) {
1574                        if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1575                                break;
1576                        writeb(0x00, priv->regs.fifo);
1577                }
1578        }
1579        if (residue)
1580                pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1581                          p->name, residue,
1582                          (residue == 1) ? " was" : "s were");
1583
1584        /* Now reset the FIFO */
1585        parport_ip32_set_mode(p, ECR_MODE_PS2);
1586
1587        /* Host recovery for ECP mode */
1588        if (mode == ECR_MODE_ECP) {
1589                parport_ip32_data_reverse(p);
1590                parport_ip32_frob_control(p, DCR_nINIT, 0);
1591                if (parport_wait_peripheral(p, DSR_PERROR, 0))
1592                        pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1593                                  p->name, __func__);
1594                parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1595                parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1596                if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1597                        pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1598                                  p->name, __func__);
1599        }
1600
1601        /* Adjust residue if needed */
1602        parport_ip32_set_mode(p, ECR_MODE_CFG);
1603        cnfga = readb(priv->regs.cnfgA);
1604        if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1605                pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1606                          p->name, cnfga);
1607                pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1608                          p->name);
1609                residue++;
1610        }
1611
1612        /* Don't care about partial PWords since we do not support
1613         * PWord != 1 byte. */
1614
1615        /* Back to forward PS2 mode. */
1616        parport_ip32_set_mode(p, ECR_MODE_PS2);
1617        parport_ip32_data_forward(p);
1618
1619        return residue;
1620}
1621
1622/**
1623 * parport_ip32_compat_write_data - write a block of data in SPP mode
1624 * @p:          pointer to &struct parport
1625 * @buf:        buffer of data to write
1626 * @len:        length of buffer @buf
1627 * @flags:      ignored
1628 */
1629static size_t parport_ip32_compat_write_data(struct parport *p,
1630                                             const void *buf, size_t len,
1631                                             int flags)
1632{
1633        static unsigned int ready_before = 1;
1634        struct parport_ip32_private * const priv = p->physport->private_data;
1635        struct parport * const physport = p->physport;
1636        size_t written = 0;
1637
1638        /* Special case: a timeout of zero means we cannot call schedule().
1639         * Also if O_NONBLOCK is set then use the default implementation. */
1640        if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1641                return parport_ieee1284_write_compat(p, buf, len, flags);
1642
1643        /* Reset FIFO, go in forward mode, and disable ackIntEn */
1644        parport_ip32_set_mode(p, ECR_MODE_PS2);
1645        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1646        parport_ip32_data_forward(p);
1647        parport_ip32_disable_irq(p);
1648        parport_ip32_set_mode(p, ECR_MODE_PPF);
1649        physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1650
1651        /* Wait for peripheral to become ready */
1652        if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1653                                       DSR_nBUSY | DSR_nFAULT)) {
1654                /* Avoid to flood the logs */
1655                if (ready_before)
1656                        printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1657                               p->name, __func__);
1658                ready_before = 0;
1659                goto stop;
1660        }
1661        ready_before = 1;
1662
1663        written = parport_ip32_fifo_write_block(p, buf, len);
1664
1665        /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1666        parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1667
1668        /* Check for a potential residue */
1669        written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1670
1671        /* Then, wait for BUSY to get low. */
1672        if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1673                printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1674                       p->name, __func__);
1675
1676stop:
1677        /* Reset FIFO */
1678        parport_ip32_set_mode(p, ECR_MODE_PS2);
1679        physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1680
1681        return written;
1682}
1683
1684/*
1685 * FIXME - Insert here parport_ip32_ecp_read_data().
1686 */
1687
1688/**
1689 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1690 * @p:          pointer to &struct parport
1691 * @buf:        buffer of data to write
1692 * @len:        length of buffer @buf
1693 * @flags:      ignored
1694 */
1695static size_t parport_ip32_ecp_write_data(struct parport *p,
1696                                          const void *buf, size_t len,
1697                                          int flags)
1698{
1699        static unsigned int ready_before = 1;
1700        struct parport_ip32_private * const priv = p->physport->private_data;
1701        struct parport * const physport = p->physport;
1702        size_t written = 0;
1703
1704        /* Special case: a timeout of zero means we cannot call schedule().
1705         * Also if O_NONBLOCK is set then use the default implementation. */
1706        if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1707                return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1708
1709        /* Negotiate to forward mode if necessary. */
1710        if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1711                /* Event 47: Set nInit high. */
1712                parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1713                                             DCR_nINIT | DCR_AUTOFD);
1714
1715                /* Event 49: PError goes high. */
1716                if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1717                        printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1718                               p->name, __func__);
1719                        physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1720                        return 0;
1721                }
1722        }
1723
1724        /* Reset FIFO, go in forward mode, and disable ackIntEn */
1725        parport_ip32_set_mode(p, ECR_MODE_PS2);
1726        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1727        parport_ip32_data_forward(p);
1728        parport_ip32_disable_irq(p);
1729        parport_ip32_set_mode(p, ECR_MODE_ECP);
1730        physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1731
1732        /* Wait for peripheral to become ready */
1733        if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1734                                       DSR_nBUSY | DSR_nFAULT)) {
1735                /* Avoid to flood the logs */
1736                if (ready_before)
1737                        printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1738                               p->name, __func__);
1739                ready_before = 0;
1740                goto stop;
1741        }
1742        ready_before = 1;
1743
1744        written = parport_ip32_fifo_write_block(p, buf, len);
1745
1746        /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1747        parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1748
1749        /* Check for a potential residue */
1750        written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1751
1752        /* Then, wait for BUSY to get low. */
1753        if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1754                printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1755                       p->name, __func__);
1756
1757stop:
1758        /* Reset FIFO */
1759        parport_ip32_set_mode(p, ECR_MODE_PS2);
1760        physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1761
1762        return written;
1763}
1764
1765/*
1766 * FIXME - Insert here parport_ip32_ecp_write_addr().
1767 */
1768
1769/*--- Default parport operations ---------------------------------------*/
1770
1771static __initdata struct parport_operations parport_ip32_ops = {
1772        .write_data             = parport_ip32_write_data,
1773        .read_data              = parport_ip32_read_data,
1774
1775        .write_control          = parport_ip32_write_control,
1776        .read_control           = parport_ip32_read_control,
1777        .frob_control           = parport_ip32_frob_control,
1778
1779        .read_status            = parport_ip32_read_status,
1780
1781        .enable_irq             = parport_ip32_enable_irq,
1782        .disable_irq            = parport_ip32_disable_irq,
1783
1784        .data_forward           = parport_ip32_data_forward,
1785        .data_reverse           = parport_ip32_data_reverse,
1786
1787        .init_state             = parport_ip32_init_state,
1788        .save_state             = parport_ip32_save_state,
1789        .restore_state          = parport_ip32_restore_state,
1790
1791        .epp_write_data         = parport_ieee1284_epp_write_data,
1792        .epp_read_data          = parport_ieee1284_epp_read_data,
1793        .epp_write_addr         = parport_ieee1284_epp_write_addr,
1794        .epp_read_addr          = parport_ieee1284_epp_read_addr,
1795
1796        .ecp_write_data         = parport_ieee1284_ecp_write_data,
1797        .ecp_read_data          = parport_ieee1284_ecp_read_data,
1798        .ecp_write_addr         = parport_ieee1284_ecp_write_addr,
1799
1800        .compat_write_data      = parport_ieee1284_write_compat,
1801        .nibble_read_data       = parport_ieee1284_read_nibble,
1802        .byte_read_data         = parport_ieee1284_read_byte,
1803
1804        .owner                  = THIS_MODULE,
1805};
1806
1807/*--- Device detection -------------------------------------------------*/
1808
1809/**
1810 * parport_ip32_ecp_supported - check for an ECP port
1811 * @p:          pointer to the &parport structure
1812 *
1813 * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1814 * checks if an Extended Control Register seems to be present.  On successful
1815 * return, the port is placed in SPP mode.
1816 */
1817static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1818{
1819        struct parport_ip32_private * const priv = p->physport->private_data;
1820        unsigned int ecr;
1821
1822        ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1823        writeb(ecr, priv->regs.ecr);
1824        if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1825                goto fail;
1826
1827        pr_probe(p, "Found working ECR register\n");
1828        parport_ip32_set_mode(p, ECR_MODE_SPP);
1829        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1830        return 1;
1831
1832fail:
1833        pr_probe(p, "ECR register not found\n");
1834        return 0;
1835}
1836
1837/**
1838 * parport_ip32_fifo_supported - check for FIFO parameters
1839 * @p:          pointer to the &parport structure
1840 *
1841 * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1842 * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1843 * On return, the port is placed in SPP mode.
1844 */
1845static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1846{
1847        struct parport_ip32_private * const priv = p->physport->private_data;
1848        unsigned int configa, configb;
1849        unsigned int pword;
1850        unsigned int i;
1851
1852        /* Configuration mode */
1853        parport_ip32_set_mode(p, ECR_MODE_CFG);
1854        configa = readb(priv->regs.cnfgA);
1855        configb = readb(priv->regs.cnfgB);
1856
1857        /* Find out PWord size */
1858        switch (configa & CNFGA_ID_MASK) {
1859        case CNFGA_ID_8:
1860                pword = 1;
1861                break;
1862        case CNFGA_ID_16:
1863                pword = 2;
1864                break;
1865        case CNFGA_ID_32:
1866                pword = 4;
1867                break;
1868        default:
1869                pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1870                         (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1871                goto fail;
1872                break;
1873        }
1874        if (pword != 1) {
1875                pr_probe(p, "Unsupported PWord size: %u\n", pword);
1876                goto fail;
1877        }
1878        priv->pword = pword;
1879        pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1880
1881        /* Check for compression support */
1882        writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1883        if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1884                pr_probe(p, "Hardware compression detected (unsupported)\n");
1885        writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1886
1887        /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1888        parport_ip32_set_mode(p, ECR_MODE_TST);
1889
1890        /* FIFO must be empty now */
1891        if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1892                pr_probe(p, "FIFO not reset\n");
1893                goto fail;
1894        }
1895
1896        /* Find out FIFO depth. */
1897        priv->fifo_depth = 0;
1898        for (i = 0; i < 1024; i++) {
1899                if (readb(priv->regs.ecr) & ECR_F_FULL) {
1900                        /* FIFO full */
1901                        priv->fifo_depth = i;
1902                        break;
1903                }
1904                writeb((u8)i, priv->regs.fifo);
1905        }
1906        if (i >= 1024) {
1907                pr_probe(p, "Can't fill FIFO\n");
1908                goto fail;
1909        }
1910        if (!priv->fifo_depth) {
1911                pr_probe(p, "Can't get FIFO depth\n");
1912                goto fail;
1913        }
1914        pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1915
1916        /* Enable interrupts */
1917        parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1918
1919        /* Find out writeIntrThreshold: number of PWords we know we can write
1920         * if we get an interrupt. */
1921        priv->writeIntrThreshold = 0;
1922        for (i = 0; i < priv->fifo_depth; i++) {
1923                if (readb(priv->regs.fifo) != (u8)i) {
1924                        pr_probe(p, "Invalid data in FIFO\n");
1925                        goto fail;
1926                }
1927                if (!priv->writeIntrThreshold
1928                    && readb(priv->regs.ecr) & ECR_SERVINTR)
1929                        /* writeIntrThreshold reached */
1930                        priv->writeIntrThreshold = i + 1;
1931                if (i + 1 < priv->fifo_depth
1932                    && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1933                        /* FIFO empty before the last byte? */
1934                        pr_probe(p, "Data lost in FIFO\n");
1935                        goto fail;
1936                }
1937        }
1938        if (!priv->writeIntrThreshold) {
1939                pr_probe(p, "Can't get writeIntrThreshold\n");
1940                goto fail;
1941        }
1942        pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1943
1944        /* FIFO must be empty now */
1945        if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1946                pr_probe(p, "Can't empty FIFO\n");
1947                goto fail;
1948        }
1949
1950        /* Reset FIFO */
1951        parport_ip32_set_mode(p, ECR_MODE_PS2);
1952        /* Set reverse direction (must be in PS2 mode) */
1953        parport_ip32_data_reverse(p);
1954        /* Test FIFO, no interrupt, no DMA */
1955        parport_ip32_set_mode(p, ECR_MODE_TST);
1956        /* Enable interrupts */
1957        parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1958
1959        /* Find out readIntrThreshold: number of PWords we can read if we get
1960         * an interrupt. */
1961        priv->readIntrThreshold = 0;
1962        for (i = 0; i < priv->fifo_depth; i++) {
1963                writeb(0xaa, priv->regs.fifo);
1964                if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1965                        /* readIntrThreshold reached */
1966                        priv->readIntrThreshold = i + 1;
1967                        break;
1968                }
1969        }
1970        if (!priv->readIntrThreshold) {
1971                pr_probe(p, "Can't get readIntrThreshold\n");
1972                goto fail;
1973        }
1974        pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1975
1976        /* Reset ECR */
1977        parport_ip32_set_mode(p, ECR_MODE_PS2);
1978        parport_ip32_data_forward(p);
1979        parport_ip32_set_mode(p, ECR_MODE_SPP);
1980        return 1;
1981
1982fail:
1983        priv->fifo_depth = 0;
1984        parport_ip32_set_mode(p, ECR_MODE_SPP);
1985        return 0;
1986}
1987
1988/*--- Initialization code ----------------------------------------------*/
1989
1990/**
1991 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1992 * @regs:       pointer to &struct parport_ip32_regs to fill
1993 * @base:       base address of standard and EPP registers
1994 * @base_hi:    base address of ECP registers
1995 * @regshift:   how much to shift register offset by
1996 *
1997 * Compute register addresses, according to the ISA standard.  The addresses
1998 * of the standard and EPP registers are computed from address @base.  The
1999 * addresses of the ECP registers are computed from address @base_hi.
2000 */
2001static void __init
2002parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
2003                                void __iomem *base, void __iomem *base_hi,
2004                                unsigned int regshift)
2005{
2006#define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
2007#define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2008        *regs = (struct parport_ip32_regs){
2009                .data           = r_base(0),
2010                .dsr            = r_base(1),
2011                .dcr            = r_base(2),
2012                .eppAddr        = r_base(3),
2013                .eppData0       = r_base(4),
2014                .eppData1       = r_base(5),
2015                .eppData2       = r_base(6),
2016                .eppData3       = r_base(7),
2017                .ecpAFifo       = r_base(0),
2018                .fifo           = r_base_hi(0),
2019                .cnfgA          = r_base_hi(0),
2020                .cnfgB          = r_base_hi(1),
2021                .ecr            = r_base_hi(2)
2022        };
2023#undef r_base_hi
2024#undef r_base
2025}
2026
2027/**
2028 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2029 *
2030 * Returns the new allocated &parport structure.  On error, an error code is
2031 * encoded in return value with the ERR_PTR function.
2032 */
2033static __init struct parport *parport_ip32_probe_port(void)
2034{
2035        struct parport_ip32_regs regs;
2036        struct parport_ip32_private *priv = NULL;
2037        struct parport_operations *ops = NULL;
2038        struct parport *p = NULL;
2039        int err;
2040
2041        parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2042                                        &mace->isa.ecp1284, 8 /* regshift */);
2043
2044        ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2045        priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2046        p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2047        if (ops == NULL || priv == NULL || p == NULL) {
2048                err = -ENOMEM;
2049                goto fail;
2050        }
2051        p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2052        p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2053        p->private_data = priv;
2054
2055        *ops = parport_ip32_ops;
2056        *priv = (struct parport_ip32_private){
2057                .regs                   = regs,
2058                .dcr_writable           = DCR_DIR | DCR_SELECT | DCR_nINIT |
2059                                          DCR_AUTOFD | DCR_STROBE,
2060                .irq_mode               = PARPORT_IP32_IRQ_FWD,
2061        };
2062        init_completion(&priv->irq_complete);
2063
2064        /* Probe port. */
2065        if (!parport_ip32_ecp_supported(p)) {
2066                err = -ENODEV;
2067                goto fail;
2068        }
2069        parport_ip32_dump_state(p, "begin init", 0);
2070
2071        /* We found what looks like a working ECR register.  Simply assume
2072         * that all modes are correctly supported.  Enable basic modes. */
2073        p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2074        p->modes |= PARPORT_MODE_TRISTATE;
2075
2076        if (!parport_ip32_fifo_supported(p)) {
2077                printk(KERN_WARNING PPIP32
2078                       "%s: error: FIFO disabled\n", p->name);
2079                /* Disable hardware modes depending on a working FIFO. */
2080                features &= ~PARPORT_IP32_ENABLE_SPP;
2081                features &= ~PARPORT_IP32_ENABLE_ECP;
2082                /* DMA is not needed if FIFO is not supported.  */
2083                features &= ~PARPORT_IP32_ENABLE_DMA;
2084        }
2085
2086        /* Request IRQ */
2087        if (features & PARPORT_IP32_ENABLE_IRQ) {
2088                int irq = MACEISA_PARALLEL_IRQ;
2089                if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2090                        printk(KERN_WARNING PPIP32
2091                               "%s: error: IRQ disabled\n", p->name);
2092                        /* DMA cannot work without interrupts. */
2093                        features &= ~PARPORT_IP32_ENABLE_DMA;
2094                } else {
2095                        pr_probe(p, "Interrupt support enabled\n");
2096                        p->irq = irq;
2097                        priv->dcr_writable |= DCR_IRQ;
2098                }
2099        }
2100
2101        /* Allocate DMA resources */
2102        if (features & PARPORT_IP32_ENABLE_DMA) {
2103                if (parport_ip32_dma_register())
2104                        printk(KERN_WARNING PPIP32
2105                               "%s: error: DMA disabled\n", p->name);
2106                else {
2107                        pr_probe(p, "DMA support enabled\n");
2108                        p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2109                        p->modes |= PARPORT_MODE_DMA;
2110                }
2111        }
2112
2113        if (features & PARPORT_IP32_ENABLE_SPP) {
2114                /* Enable compatibility FIFO mode */
2115                p->ops->compat_write_data = parport_ip32_compat_write_data;
2116                p->modes |= PARPORT_MODE_COMPAT;
2117                pr_probe(p, "Hardware support for SPP mode enabled\n");
2118        }
2119        if (features & PARPORT_IP32_ENABLE_EPP) {
2120                /* Set up access functions to use EPP hardware. */
2121                p->ops->epp_read_data = parport_ip32_epp_read_data;
2122                p->ops->epp_write_data = parport_ip32_epp_write_data;
2123                p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2124                p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2125                p->modes |= PARPORT_MODE_EPP;
2126                pr_probe(p, "Hardware support for EPP mode enabled\n");
2127        }
2128        if (features & PARPORT_IP32_ENABLE_ECP) {
2129                /* Enable ECP FIFO mode */
2130                p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2131                /* FIXME - not implemented */
2132/*              p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2133/*              p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2134                p->modes |= PARPORT_MODE_ECP;
2135                pr_probe(p, "Hardware support for ECP mode enabled\n");
2136        }
2137
2138        /* Initialize the port with sensible values */
2139        parport_ip32_set_mode(p, ECR_MODE_PS2);
2140        parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2141        parport_ip32_data_forward(p);
2142        parport_ip32_disable_irq(p);
2143        parport_ip32_write_data(p, 0x00);
2144        parport_ip32_dump_state(p, "end init", 0);
2145
2146        /* Print out what we found */
2147        printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2148               p->name, p->base, p->base_hi);
2149        if (p->irq != PARPORT_IRQ_NONE)
2150                printk(", irq %d", p->irq);
2151        printk(" [");
2152#define printmode(x)    if (p->modes & PARPORT_MODE_##x)                \
2153                                printk("%s%s", f++ ? "," : "", #x)
2154        {
2155                unsigned int f = 0;
2156                printmode(PCSPP);
2157                printmode(TRISTATE);
2158                printmode(COMPAT);
2159                printmode(EPP);
2160                printmode(ECP);
2161                printmode(DMA);
2162        }
2163#undef printmode
2164        printk("]\n");
2165
2166        parport_announce_port(p);
2167        return p;
2168
2169fail:
2170        if (p)
2171                parport_put_port(p);
2172        kfree(priv);
2173        kfree(ops);
2174        return ERR_PTR(err);
2175}
2176
2177/**
2178 * parport_ip32_unregister_port - unregister a parallel port
2179 * @p:          pointer to the &struct parport
2180 *
2181 * Unregisters a parallel port and free previously allocated resources
2182 * (memory, IRQ, ...).
2183 */
2184static __exit void parport_ip32_unregister_port(struct parport *p)
2185{
2186        struct parport_ip32_private * const priv = p->physport->private_data;
2187        struct parport_operations *ops = p->ops;
2188
2189        parport_remove_port(p);
2190        if (p->modes & PARPORT_MODE_DMA)
2191                parport_ip32_dma_unregister();
2192        if (p->irq != PARPORT_IRQ_NONE)
2193                free_irq(p->irq, p);
2194        parport_put_port(p);
2195        kfree(priv);
2196        kfree(ops);
2197}
2198
2199/**
2200 * parport_ip32_init - module initialization function
2201 */
2202static int __init parport_ip32_init(void)
2203{
2204        pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2205        pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__);
2206        this_port = parport_ip32_probe_port();
2207        return IS_ERR(this_port) ? PTR_ERR(this_port) : 0;
2208}
2209
2210/**
2211 * parport_ip32_exit - module termination function
2212 */
2213static void __exit parport_ip32_exit(void)
2214{
2215        parport_ip32_unregister_port(this_port);
2216}
2217
2218/*--- Module stuff -----------------------------------------------------*/
2219
2220MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2221MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2222MODULE_LICENSE("GPL");
2223MODULE_VERSION("0.6");          /* update in parport_ip32_init() too */
2224
2225module_init(parport_ip32_init);
2226module_exit(parport_ip32_exit);
2227
2228module_param(verbose_probing, bool, S_IRUGO);
2229MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2230
2231module_param(features, uint, S_IRUGO);
2232MODULE_PARM_DESC(features,
2233                 "Bit mask of features to enable"
2234                 ", bit 0: IRQ support"
2235                 ", bit 1: DMA support"
2236                 ", bit 2: hardware SPP mode"
2237                 ", bit 3: hardware EPP mode"
2238                 ", bit 4: hardware ECP mode");
2239
2240/*--- Inform (X)Emacs about preferred coding style ---------------------*/
2241/*
2242 * Local Variables:
2243 * mode: c
2244 * c-file-style: "linux"
2245 * indent-tabs-mode: t
2246 * tab-width: 8
2247 * fill-column: 78
2248 * ispell-local-dictionary: "american"
2249 * End:
2250 */
2251