linux/drivers/pci/hotplug/cpqphp_ctrl.c
<<
>>
Prefs
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/wait.h>
  37#include <linux/pci.h>
  38#include <linux/pci_hotplug.h>
  39#include <linux/kthread.h>
  40#include "cpqphp.h"
  41
  42static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
  43                        u8 behind_bridge, struct resource_lists *resources);
  44static int configure_new_function(struct controller* ctrl, struct pci_func *func,
  45                        u8 behind_bridge, struct resource_lists *resources);
  46static void interrupt_event_handler(struct controller *ctrl);
  47
  48
  49static struct task_struct *cpqhp_event_thread;
  50static unsigned long pushbutton_pending;        /* = 0 */
  51
  52/* delay is in jiffies to wait for */
  53static void long_delay(int delay)
  54{
  55        /*
  56         * XXX(hch): if someone is bored please convert all callers
  57         * to call msleep_interruptible directly.  They really want
  58         * to specify timeouts in natural units and spend a lot of
  59         * effort converting them to jiffies..
  60         */
  61        msleep_interruptible(jiffies_to_msecs(delay));
  62}
  63
  64
  65/* FIXME: The following line needs to be somewhere else... */
  66#define WRONG_BUS_FREQUENCY 0x07
  67static u8 handle_switch_change(u8 change, struct controller * ctrl)
  68{
  69        int hp_slot;
  70        u8 rc = 0;
  71        u16 temp_word;
  72        struct pci_func *func;
  73        struct event_info *taskInfo;
  74
  75        if (!change)
  76                return 0;
  77
  78        /* Switch Change */
  79        dbg("cpqsbd:  Switch interrupt received.\n");
  80
  81        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  82                if (change & (0x1L << hp_slot)) {
  83                        /*
  84                         * this one changed.
  85                         */
  86                        func = cpqhp_slot_find(ctrl->bus,
  87                                (hp_slot + ctrl->slot_device_offset), 0);
  88
  89                        /* this is the structure that tells the worker thread
  90                         * what to do
  91                         */
  92                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  93                        ctrl->next_event = (ctrl->next_event + 1) % 10;
  94                        taskInfo->hp_slot = hp_slot;
  95
  96                        rc++;
  97
  98                        temp_word = ctrl->ctrl_int_comp >> 16;
  99                        func->presence_save = (temp_word >> hp_slot) & 0x01;
 100                        func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 101
 102                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
 103                                /*
 104                                 * Switch opened
 105                                 */
 106
 107                                func->switch_save = 0;
 108
 109                                taskInfo->event_type = INT_SWITCH_OPEN;
 110                        } else {
 111                                /*
 112                                 * Switch closed
 113                                 */
 114
 115                                func->switch_save = 0x10;
 116
 117                                taskInfo->event_type = INT_SWITCH_CLOSE;
 118                        }
 119                }
 120        }
 121
 122        return rc;
 123}
 124
 125/**
 126 * cpqhp_find_slot - find the struct slot of given device
 127 * @ctrl: scan lots of this controller
 128 * @device: the device id to find
 129 */
 130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 131{
 132        struct slot *slot = ctrl->slot;
 133
 134        while (slot && (slot->device != device))
 135                slot = slot->next;
 136
 137        return slot;
 138}
 139
 140
 141static u8 handle_presence_change(u16 change, struct controller * ctrl)
 142{
 143        int hp_slot;
 144        u8 rc = 0;
 145        u8 temp_byte;
 146        u16 temp_word;
 147        struct pci_func *func;
 148        struct event_info *taskInfo;
 149        struct slot *p_slot;
 150
 151        if (!change)
 152                return 0;
 153
 154        /*
 155         * Presence Change
 156         */
 157        dbg("cpqsbd:  Presence/Notify input change.\n");
 158        dbg("         Changed bits are 0x%4.4x\n", change );
 159
 160        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 161                if (change & (0x0101 << hp_slot)) {
 162                        /*
 163                         * this one changed.
 164                         */
 165                        func = cpqhp_slot_find(ctrl->bus,
 166                                (hp_slot + ctrl->slot_device_offset), 0);
 167
 168                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 169                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 170                        taskInfo->hp_slot = hp_slot;
 171
 172                        rc++;
 173
 174                        p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 175                        if (!p_slot)
 176                                return 0;
 177
 178                        /* If the switch closed, must be a button
 179                         * If not in button mode, nevermind
 180                         */
 181                        if (func->switch_save && (ctrl->push_button == 1)) {
 182                                temp_word = ctrl->ctrl_int_comp >> 16;
 183                                temp_byte = (temp_word >> hp_slot) & 0x01;
 184                                temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 185
 186                                if (temp_byte != func->presence_save) {
 187                                        /*
 188                                         * button Pressed (doesn't do anything)
 189                                         */
 190                                        dbg("hp_slot %d button pressed\n", hp_slot);
 191                                        taskInfo->event_type = INT_BUTTON_PRESS;
 192                                } else {
 193                                        /*
 194                                         * button Released - TAKE ACTION!!!!
 195                                         */
 196                                        dbg("hp_slot %d button released\n", hp_slot);
 197                                        taskInfo->event_type = INT_BUTTON_RELEASE;
 198
 199                                        /* Cancel if we are still blinking */
 200                                        if ((p_slot->state == BLINKINGON_STATE)
 201                                            || (p_slot->state == BLINKINGOFF_STATE)) {
 202                                                taskInfo->event_type = INT_BUTTON_CANCEL;
 203                                                dbg("hp_slot %d button cancel\n", hp_slot);
 204                                        } else if ((p_slot->state == POWERON_STATE)
 205                                                   || (p_slot->state == POWEROFF_STATE)) {
 206                                                /* info(msg_button_ignore, p_slot->number); */
 207                                                taskInfo->event_type = INT_BUTTON_IGNORE;
 208                                                dbg("hp_slot %d button ignore\n", hp_slot);
 209                                        }
 210                                }
 211                        } else {
 212                                /* Switch is open, assume a presence change
 213                                 * Save the presence state
 214                                 */
 215                                temp_word = ctrl->ctrl_int_comp >> 16;
 216                                func->presence_save = (temp_word >> hp_slot) & 0x01;
 217                                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 218
 219                                if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 220                                    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 221                                        /* Present */
 222                                        taskInfo->event_type = INT_PRESENCE_ON;
 223                                } else {
 224                                        /* Not Present */
 225                                        taskInfo->event_type = INT_PRESENCE_OFF;
 226                                }
 227                        }
 228                }
 229        }
 230
 231        return rc;
 232}
 233
 234
 235static u8 handle_power_fault(u8 change, struct controller * ctrl)
 236{
 237        int hp_slot;
 238        u8 rc = 0;
 239        struct pci_func *func;
 240        struct event_info *taskInfo;
 241
 242        if (!change)
 243                return 0;
 244
 245        /*
 246         * power fault
 247         */
 248
 249        info("power fault interrupt\n");
 250
 251        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 252                if (change & (0x01 << hp_slot)) {
 253                        /*
 254                         * this one changed.
 255                         */
 256                        func = cpqhp_slot_find(ctrl->bus,
 257                                (hp_slot + ctrl->slot_device_offset), 0);
 258
 259                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 260                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 261                        taskInfo->hp_slot = hp_slot;
 262
 263                        rc++;
 264
 265                        if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 266                                /*
 267                                 * power fault Cleared
 268                                 */
 269                                func->status = 0x00;
 270
 271                                taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 272                        } else {
 273                                /*
 274                                 * power fault
 275                                 */
 276                                taskInfo->event_type = INT_POWER_FAULT;
 277
 278                                if (ctrl->rev < 4) {
 279                                        amber_LED_on (ctrl, hp_slot);
 280                                        green_LED_off (ctrl, hp_slot);
 281                                        set_SOGO (ctrl);
 282
 283                                        /* this is a fatal condition, we want
 284                                         * to crash the machine to protect from
 285                                         * data corruption. simulated_NMI
 286                                         * shouldn't ever return */
 287                                        /* FIXME
 288                                        simulated_NMI(hp_slot, ctrl); */
 289
 290                                        /* The following code causes a software
 291                                         * crash just in case simulated_NMI did
 292                                         * return */
 293                                        /*FIXME
 294                                        panic(msg_power_fault); */
 295                                } else {
 296                                        /* set power fault status for this board */
 297                                        func->status = 0xFF;
 298                                        info("power fault bit %x set\n", hp_slot);
 299                                }
 300                        }
 301                }
 302        }
 303
 304        return rc;
 305}
 306
 307
 308/**
 309 * sort_by_size - sort nodes on the list by their length, smallest first.
 310 * @head: list to sort
 311 */
 312static int sort_by_size(struct pci_resource **head)
 313{
 314        struct pci_resource *current_res;
 315        struct pci_resource *next_res;
 316        int out_of_order = 1;
 317
 318        if (!(*head))
 319                return 1;
 320
 321        if (!((*head)->next))
 322                return 0;
 323
 324        while (out_of_order) {
 325                out_of_order = 0;
 326
 327                /* Special case for swapping list head */
 328                if (((*head)->next) &&
 329                    ((*head)->length > (*head)->next->length)) {
 330                        out_of_order++;
 331                        current_res = *head;
 332                        *head = (*head)->next;
 333                        current_res->next = (*head)->next;
 334                        (*head)->next = current_res;
 335                }
 336
 337                current_res = *head;
 338
 339                while (current_res->next && current_res->next->next) {
 340                        if (current_res->next->length > current_res->next->next->length) {
 341                                out_of_order++;
 342                                next_res = current_res->next;
 343                                current_res->next = current_res->next->next;
 344                                current_res = current_res->next;
 345                                next_res->next = current_res->next;
 346                                current_res->next = next_res;
 347                        } else
 348                                current_res = current_res->next;
 349                }
 350        }  /* End of out_of_order loop */
 351
 352        return 0;
 353}
 354
 355
 356/**
 357 * sort_by_max_size - sort nodes on the list by their length, largest first.
 358 * @head: list to sort
 359 */
 360static int sort_by_max_size(struct pci_resource **head)
 361{
 362        struct pci_resource *current_res;
 363        struct pci_resource *next_res;
 364        int out_of_order = 1;
 365
 366        if (!(*head))
 367                return 1;
 368
 369        if (!((*head)->next))
 370                return 0;
 371
 372        while (out_of_order) {
 373                out_of_order = 0;
 374
 375                /* Special case for swapping list head */
 376                if (((*head)->next) &&
 377                    ((*head)->length < (*head)->next->length)) {
 378                        out_of_order++;
 379                        current_res = *head;
 380                        *head = (*head)->next;
 381                        current_res->next = (*head)->next;
 382                        (*head)->next = current_res;
 383                }
 384
 385                current_res = *head;
 386
 387                while (current_res->next && current_res->next->next) {
 388                        if (current_res->next->length < current_res->next->next->length) {
 389                                out_of_order++;
 390                                next_res = current_res->next;
 391                                current_res->next = current_res->next->next;
 392                                current_res = current_res->next;
 393                                next_res->next = current_res->next;
 394                                current_res->next = next_res;
 395                        } else
 396                                current_res = current_res->next;
 397                }
 398        }  /* End of out_of_order loop */
 399
 400        return 0;
 401}
 402
 403
 404/**
 405 * do_pre_bridge_resource_split - find node of resources that are unused
 406 * @head: new list head
 407 * @orig_head: original list head
 408 * @alignment: max node size (?)
 409 */
 410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 411                                struct pci_resource **orig_head, u32 alignment)
 412{
 413        struct pci_resource *prevnode = NULL;
 414        struct pci_resource *node;
 415        struct pci_resource *split_node;
 416        u32 rc;
 417        u32 temp_dword;
 418        dbg("do_pre_bridge_resource_split\n");
 419
 420        if (!(*head) || !(*orig_head))
 421                return NULL;
 422
 423        rc = cpqhp_resource_sort_and_combine(head);
 424
 425        if (rc)
 426                return NULL;
 427
 428        if ((*head)->base != (*orig_head)->base)
 429                return NULL;
 430
 431        if ((*head)->length == (*orig_head)->length)
 432                return NULL;
 433
 434
 435        /* If we got here, there the bridge requires some of the resource, but
 436         * we may be able to split some off of the front
 437         */
 438
 439        node = *head;
 440
 441        if (node->length & (alignment -1)) {
 442                /* this one isn't an aligned length, so we'll make a new entry
 443                 * and split it up.
 444                 */
 445                split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 446
 447                if (!split_node)
 448                        return NULL;
 449
 450                temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 451
 452                split_node->base = node->base;
 453                split_node->length = temp_dword;
 454
 455                node->length -= temp_dword;
 456                node->base += split_node->length;
 457
 458                /* Put it in the list */
 459                *head = split_node;
 460                split_node->next = node;
 461        }
 462
 463        if (node->length < alignment)
 464                return NULL;
 465
 466        /* Now unlink it */
 467        if (*head == node) {
 468                *head = node->next;
 469        } else {
 470                prevnode = *head;
 471                while (prevnode->next != node)
 472                        prevnode = prevnode->next;
 473
 474                prevnode->next = node->next;
 475        }
 476        node->next = NULL;
 477
 478        return node;
 479}
 480
 481
 482/**
 483 * do_bridge_resource_split - find one node of resources that aren't in use
 484 * @head: list head
 485 * @alignment: max node size (?)
 486 */
 487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 488{
 489        struct pci_resource *prevnode = NULL;
 490        struct pci_resource *node;
 491        u32 rc;
 492        u32 temp_dword;
 493
 494        rc = cpqhp_resource_sort_and_combine(head);
 495
 496        if (rc)
 497                return NULL;
 498
 499        node = *head;
 500
 501        while (node->next) {
 502                prevnode = node;
 503                node = node->next;
 504                kfree(prevnode);
 505        }
 506
 507        if (node->length < alignment)
 508                goto error;
 509
 510        if (node->base & (alignment - 1)) {
 511                /* Short circuit if adjusted size is too small */
 512                temp_dword = (node->base | (alignment-1)) + 1;
 513                if ((node->length - (temp_dword - node->base)) < alignment)
 514                        goto error;
 515
 516                node->length -= (temp_dword - node->base);
 517                node->base = temp_dword;
 518        }
 519
 520        if (node->length & (alignment - 1))
 521                /* There's stuff in use after this node */
 522                goto error;
 523
 524        return node;
 525error:
 526        kfree(node);
 527        return NULL;
 528}
 529
 530
 531/**
 532 * get_io_resource - find first node of given size not in ISA aliasing window.
 533 * @head: list to search
 534 * @size: size of node to find, must be a power of two.
 535 *
 536 * Description: This function sorts the resource list by size and then returns
 537 * returns the first node of "size" length that is not in the ISA aliasing
 538 * window.  If it finds a node larger than "size" it will split it up.
 539 */
 540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 541{
 542        struct pci_resource *prevnode;
 543        struct pci_resource *node;
 544        struct pci_resource *split_node;
 545        u32 temp_dword;
 546
 547        if (!(*head))
 548                return NULL;
 549
 550        if (cpqhp_resource_sort_and_combine(head))
 551                return NULL;
 552
 553        if (sort_by_size(head))
 554                return NULL;
 555
 556        for (node = *head; node; node = node->next) {
 557                if (node->length < size)
 558                        continue;
 559
 560                if (node->base & (size - 1)) {
 561                        /* this one isn't base aligned properly
 562                         * so we'll make a new entry and split it up
 563                         */
 564                        temp_dword = (node->base | (size-1)) + 1;
 565
 566                        /* Short circuit if adjusted size is too small */
 567                        if ((node->length - (temp_dword - node->base)) < size)
 568                                continue;
 569
 570                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 571
 572                        if (!split_node)
 573                                return NULL;
 574
 575                        split_node->base = node->base;
 576                        split_node->length = temp_dword - node->base;
 577                        node->base = temp_dword;
 578                        node->length -= split_node->length;
 579
 580                        /* Put it in the list */
 581                        split_node->next = node->next;
 582                        node->next = split_node;
 583                } /* End of non-aligned base */
 584
 585                /* Don't need to check if too small since we already did */
 586                if (node->length > size) {
 587                        /* this one is longer than we need
 588                         * so we'll make a new entry and split it up
 589                         */
 590                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 591
 592                        if (!split_node)
 593                                return NULL;
 594
 595                        split_node->base = node->base + size;
 596                        split_node->length = node->length - size;
 597                        node->length = size;
 598
 599                        /* Put it in the list */
 600                        split_node->next = node->next;
 601                        node->next = split_node;
 602                }  /* End of too big on top end */
 603
 604                /* For IO make sure it's not in the ISA aliasing space */
 605                if (node->base & 0x300L)
 606                        continue;
 607
 608                /* If we got here, then it is the right size
 609                 * Now take it out of the list and break
 610                 */
 611                if (*head == node) {
 612                        *head = node->next;
 613                } else {
 614                        prevnode = *head;
 615                        while (prevnode->next != node)
 616                                prevnode = prevnode->next;
 617
 618                        prevnode->next = node->next;
 619                }
 620                node->next = NULL;
 621                break;
 622        }
 623
 624        return node;
 625}
 626
 627
 628/**
 629 * get_max_resource - get largest node which has at least the given size.
 630 * @head: the list to search the node in
 631 * @size: the minimum size of the node to find
 632 *
 633 * Description: Gets the largest node that is at least "size" big from the
 634 * list pointed to by head.  It aligns the node on top and bottom
 635 * to "size" alignment before returning it.
 636 */
 637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 638{
 639        struct pci_resource *max;
 640        struct pci_resource *temp;
 641        struct pci_resource *split_node;
 642        u32 temp_dword;
 643
 644        if (cpqhp_resource_sort_and_combine(head))
 645                return NULL;
 646
 647        if (sort_by_max_size(head))
 648                return NULL;
 649
 650        for (max = *head; max; max = max->next) {
 651                /* If not big enough we could probably just bail,
 652                 * instead we'll continue to the next.
 653                 */
 654                if (max->length < size)
 655                        continue;
 656
 657                if (max->base & (size - 1)) {
 658                        /* this one isn't base aligned properly
 659                         * so we'll make a new entry and split it up
 660                         */
 661                        temp_dword = (max->base | (size-1)) + 1;
 662
 663                        /* Short circuit if adjusted size is too small */
 664                        if ((max->length - (temp_dword - max->base)) < size)
 665                                continue;
 666
 667                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 668
 669                        if (!split_node)
 670                                return NULL;
 671
 672                        split_node->base = max->base;
 673                        split_node->length = temp_dword - max->base;
 674                        max->base = temp_dword;
 675                        max->length -= split_node->length;
 676
 677                        split_node->next = max->next;
 678                        max->next = split_node;
 679                }
 680
 681                if ((max->base + max->length) & (size - 1)) {
 682                        /* this one isn't end aligned properly at the top
 683                         * so we'll make a new entry and split it up
 684                         */
 685                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 686
 687                        if (!split_node)
 688                                return NULL;
 689                        temp_dword = ((max->base + max->length) & ~(size - 1));
 690                        split_node->base = temp_dword;
 691                        split_node->length = max->length + max->base
 692                                             - split_node->base;
 693                        max->length -= split_node->length;
 694
 695                        split_node->next = max->next;
 696                        max->next = split_node;
 697                }
 698
 699                /* Make sure it didn't shrink too much when we aligned it */
 700                if (max->length < size)
 701                        continue;
 702
 703                /* Now take it out of the list */
 704                temp = *head;
 705                if (temp == max) {
 706                        *head = max->next;
 707                } else {
 708                        while (temp && temp->next != max) {
 709                                temp = temp->next;
 710                        }
 711
 712                        temp->next = max->next;
 713                }
 714
 715                max->next = NULL;
 716                break;
 717        }
 718
 719        return max;
 720}
 721
 722
 723/**
 724 * get_resource - find resource of given size and split up larger ones.
 725 * @head: the list to search for resources
 726 * @size: the size limit to use
 727 *
 728 * Description: This function sorts the resource list by size and then
 729 * returns the first node of "size" length.  If it finds a node
 730 * larger than "size" it will split it up.
 731 *
 732 * size must be a power of two.
 733 */
 734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 735{
 736        struct pci_resource *prevnode;
 737        struct pci_resource *node;
 738        struct pci_resource *split_node;
 739        u32 temp_dword;
 740
 741        if (cpqhp_resource_sort_and_combine(head))
 742                return NULL;
 743
 744        if (sort_by_size(head))
 745                return NULL;
 746
 747        for (node = *head; node; node = node->next) {
 748                dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 749                    __func__, size, node, node->base, node->length);
 750                if (node->length < size)
 751                        continue;
 752
 753                if (node->base & (size - 1)) {
 754                        dbg("%s: not aligned\n", __func__);
 755                        /* this one isn't base aligned properly
 756                         * so we'll make a new entry and split it up
 757                         */
 758                        temp_dword = (node->base | (size-1)) + 1;
 759
 760                        /* Short circuit if adjusted size is too small */
 761                        if ((node->length - (temp_dword - node->base)) < size)
 762                                continue;
 763
 764                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 765
 766                        if (!split_node)
 767                                return NULL;
 768
 769                        split_node->base = node->base;
 770                        split_node->length = temp_dword - node->base;
 771                        node->base = temp_dword;
 772                        node->length -= split_node->length;
 773
 774                        split_node->next = node->next;
 775                        node->next = split_node;
 776                } /* End of non-aligned base */
 777
 778                /* Don't need to check if too small since we already did */
 779                if (node->length > size) {
 780                        dbg("%s: too big\n", __func__);
 781                        /* this one is longer than we need
 782                         * so we'll make a new entry and split it up
 783                         */
 784                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 785
 786                        if (!split_node)
 787                                return NULL;
 788
 789                        split_node->base = node->base + size;
 790                        split_node->length = node->length - size;
 791                        node->length = size;
 792
 793                        /* Put it in the list */
 794                        split_node->next = node->next;
 795                        node->next = split_node;
 796                }  /* End of too big on top end */
 797
 798                dbg("%s: got one!!!\n", __func__);
 799                /* If we got here, then it is the right size
 800                 * Now take it out of the list */
 801                if (*head == node) {
 802                        *head = node->next;
 803                } else {
 804                        prevnode = *head;
 805                        while (prevnode->next != node)
 806                                prevnode = prevnode->next;
 807
 808                        prevnode->next = node->next;
 809                }
 810                node->next = NULL;
 811                break;
 812        }
 813        return node;
 814}
 815
 816
 817/**
 818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 819 * @head: the list to sort and clean up
 820 *
 821 * Description: Sorts all of the nodes in the list in ascending order by
 822 * their base addresses.  Also does garbage collection by
 823 * combining adjacent nodes.
 824 *
 825 * Returns %0 if success.
 826 */
 827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 828{
 829        struct pci_resource *node1;
 830        struct pci_resource *node2;
 831        int out_of_order = 1;
 832
 833        dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 834
 835        if (!(*head))
 836                return 1;
 837
 838        dbg("*head->next = %p\n",(*head)->next);
 839
 840        if (!(*head)->next)
 841                return 0;       /* only one item on the list, already sorted! */
 842
 843        dbg("*head->base = 0x%x\n",(*head)->base);
 844        dbg("*head->next->base = 0x%x\n",(*head)->next->base);
 845        while (out_of_order) {
 846                out_of_order = 0;
 847
 848                /* Special case for swapping list head */
 849                if (((*head)->next) &&
 850                    ((*head)->base > (*head)->next->base)) {
 851                        node1 = *head;
 852                        (*head) = (*head)->next;
 853                        node1->next = (*head)->next;
 854                        (*head)->next = node1;
 855                        out_of_order++;
 856                }
 857
 858                node1 = (*head);
 859
 860                while (node1->next && node1->next->next) {
 861                        if (node1->next->base > node1->next->next->base) {
 862                                out_of_order++;
 863                                node2 = node1->next;
 864                                node1->next = node1->next->next;
 865                                node1 = node1->next;
 866                                node2->next = node1->next;
 867                                node1->next = node2;
 868                        } else
 869                                node1 = node1->next;
 870                }
 871        }  /* End of out_of_order loop */
 872
 873        node1 = *head;
 874
 875        while (node1 && node1->next) {
 876                if ((node1->base + node1->length) == node1->next->base) {
 877                        /* Combine */
 878                        dbg("8..\n");
 879                        node1->length += node1->next->length;
 880                        node2 = node1->next;
 881                        node1->next = node1->next->next;
 882                        kfree(node2);
 883                } else
 884                        node1 = node1->next;
 885        }
 886
 887        return 0;
 888}
 889
 890
 891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 892{
 893        struct controller *ctrl = data;
 894        u8 schedule_flag = 0;
 895        u8 reset;
 896        u16 misc;
 897        u32 Diff;
 898        u32 temp_dword;
 899
 900
 901        misc = readw(ctrl->hpc_reg + MISC);
 902        /*
 903         * Check to see if it was our interrupt
 904         */
 905        if (!(misc & 0x000C)) {
 906                return IRQ_NONE;
 907        }
 908
 909        if (misc & 0x0004) {
 910                /*
 911                 * Serial Output interrupt Pending
 912                 */
 913
 914                /* Clear the interrupt */
 915                misc |= 0x0004;
 916                writew(misc, ctrl->hpc_reg + MISC);
 917
 918                /* Read to clear posted writes */
 919                misc = readw(ctrl->hpc_reg + MISC);
 920
 921                dbg ("%s - waking up\n", __func__);
 922                wake_up_interruptible(&ctrl->queue);
 923        }
 924
 925        if (misc & 0x0008) {
 926                /* General-interrupt-input interrupt Pending */
 927                Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 928
 929                ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 930
 931                /* Clear the interrupt */
 932                writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 933
 934                /* Read it back to clear any posted writes */
 935                temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 936
 937                if (!Diff)
 938                        /* Clear all interrupts */
 939                        writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 940
 941                schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 942                schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 943                schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 944        }
 945
 946        reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 947        if (reset & 0x40) {
 948                /* Bus reset has completed */
 949                reset &= 0xCF;
 950                writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 951                reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 952                wake_up_interruptible(&ctrl->queue);
 953        }
 954
 955        if (schedule_flag) {
 956                wake_up_process(cpqhp_event_thread);
 957                dbg("Waking even thread");
 958        }
 959        return IRQ_HANDLED;
 960}
 961
 962
 963/**
 964 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 965 * @busnumber: bus where new node is to be located
 966 *
 967 * Returns pointer to the new node or %NULL if unsuccessful.
 968 */
 969struct pci_func *cpqhp_slot_create(u8 busnumber)
 970{
 971        struct pci_func *new_slot;
 972        struct pci_func *next;
 973
 974        new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 975        if (new_slot == NULL)
 976                return new_slot;
 977
 978        new_slot->next = NULL;
 979        new_slot->configured = 1;
 980
 981        if (cpqhp_slot_list[busnumber] == NULL) {
 982                cpqhp_slot_list[busnumber] = new_slot;
 983        } else {
 984                next = cpqhp_slot_list[busnumber];
 985                while (next->next != NULL)
 986                        next = next->next;
 987                next->next = new_slot;
 988        }
 989        return new_slot;
 990}
 991
 992
 993/**
 994 * slot_remove - Removes a node from the linked list of slots.
 995 * @old_slot: slot to remove
 996 *
 997 * Returns %0 if successful, !0 otherwise.
 998 */
 999static int slot_remove(struct pci_func * old_slot)
1000{
1001        struct pci_func *next;
1002
1003        if (old_slot == NULL)
1004                return 1;
1005
1006        next = cpqhp_slot_list[old_slot->bus];
1007        if (next == NULL)
1008                return 1;
1009
1010        if (next == old_slot) {
1011                cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012                cpqhp_destroy_board_resources(old_slot);
1013                kfree(old_slot);
1014                return 0;
1015        }
1016
1017        while ((next->next != old_slot) && (next->next != NULL))
1018                next = next->next;
1019
1020        if (next->next == old_slot) {
1021                next->next = old_slot->next;
1022                cpqhp_destroy_board_resources(old_slot);
1023                kfree(old_slot);
1024                return 0;
1025        } else
1026                return 2;
1027}
1028
1029
1030/**
1031 * bridge_slot_remove - Removes a node from the linked list of slots.
1032 * @bridge: bridge to remove
1033 *
1034 * Returns %0 if successful, !0 otherwise.
1035 */
1036static int bridge_slot_remove(struct pci_func *bridge)
1037{
1038        u8 subordinateBus, secondaryBus;
1039        u8 tempBus;
1040        struct pci_func *next;
1041
1042        secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043        subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044
1045        for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046                next = cpqhp_slot_list[tempBus];
1047
1048                while (!slot_remove(next))
1049                        next = cpqhp_slot_list[tempBus];
1050        }
1051
1052        next = cpqhp_slot_list[bridge->bus];
1053
1054        if (next == NULL)
1055                return 1;
1056
1057        if (next == bridge) {
1058                cpqhp_slot_list[bridge->bus] = bridge->next;
1059                goto out;
1060        }
1061
1062        while ((next->next != bridge) && (next->next != NULL))
1063                next = next->next;
1064
1065        if (next->next != bridge)
1066                return 2;
1067        next->next = bridge->next;
1068out:
1069        kfree(bridge);
1070        return 0;
1071}
1072
1073
1074/**
1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076 * @bus: bus to find
1077 * @device: device to find
1078 * @index: is %0 for first function found, %1 for the second...
1079 *
1080 * Returns pointer to the node if successful, %NULL otherwise.
1081 */
1082struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083{
1084        int found = -1;
1085        struct pci_func *func;
1086
1087        func = cpqhp_slot_list[bus];
1088
1089        if ((func == NULL) || ((func->device == device) && (index == 0)))
1090                return func;
1091
1092        if (func->device == device)
1093                found++;
1094
1095        while (func->next != NULL) {
1096                func = func->next;
1097
1098                if (func->device == device)
1099                        found++;
1100
1101                if (found == index)
1102                        return func;
1103        }
1104
1105        return NULL;
1106}
1107
1108
1109/* DJZ: I don't think is_bridge will work as is.
1110 * FIXME */
1111static int is_bridge(struct pci_func * func)
1112{
1113        /* Check the header type */
1114        if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115                return 1;
1116        else
1117                return 0;
1118}
1119
1120
1121/**
1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123 * @ctrl: controller to change frequency/mode for.
1124 * @adapter_speed: the speed of the adapter we want to match.
1125 * @hp_slot: the slot number where the adapter is installed.
1126 *
1127 * Returns %0 if we successfully change frequency and/or mode to match the
1128 * adapter speed.
1129 */
1130static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131{
1132        struct slot *slot;
1133        u8 reg;
1134        u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1135        u16 reg16;
1136        u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1137
1138        if (ctrl->speed == adapter_speed)
1139                return 0;
1140
1141        /* We don't allow freq/mode changes if we find another adapter running
1142         * in another slot on this controller
1143         */
1144        for(slot = ctrl->slot; slot; slot = slot->next) {
1145                if (slot->device == (hp_slot + ctrl->slot_device_offset))
1146                        continue;
1147                if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1148                        continue;
1149                if (slot->hotplug_slot->info->adapter_status == 0)
1150                        continue;
1151                /* If another adapter is running on the same segment but at a
1152                 * lower speed/mode, we allow the new adapter to function at
1153                 * this rate if supported
1154                 */
1155                if (ctrl->speed < adapter_speed)
1156                        return 0;
1157
1158                return 1;
1159        }
1160
1161        /* If the controller doesn't support freq/mode changes and the
1162         * controller is running at a higher mode, we bail
1163         */
1164        if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1165                return 1;
1166
1167        /* But we allow the adapter to run at a lower rate if possible */
1168        if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1169                return 0;
1170
1171        /* We try to set the max speed supported by both the adapter and
1172         * controller
1173         */
1174        if (ctrl->speed_capability < adapter_speed) {
1175                if (ctrl->speed == ctrl->speed_capability)
1176                        return 0;
1177                adapter_speed = ctrl->speed_capability;
1178        }
1179
1180        writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1181        writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1182
1183        set_SOGO(ctrl);
1184        wait_for_ctrl_irq(ctrl);
1185
1186        if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1187                reg = 0xF5;
1188        else
1189                reg = 0xF4;
1190        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1191
1192        reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1193        reg16 &= ~0x000F;
1194        switch(adapter_speed) {
1195                case(PCI_SPEED_133MHz_PCIX):
1196                        reg = 0x75;
1197                        reg16 |= 0xB;
1198                        break;
1199                case(PCI_SPEED_100MHz_PCIX):
1200                        reg = 0x74;
1201                        reg16 |= 0xA;
1202                        break;
1203                case(PCI_SPEED_66MHz_PCIX):
1204                        reg = 0x73;
1205                        reg16 |= 0x9;
1206                        break;
1207                case(PCI_SPEED_66MHz):
1208                        reg = 0x73;
1209                        reg16 |= 0x1;
1210                        break;
1211                default: /* 33MHz PCI 2.2 */
1212                        reg = 0x71;
1213                        break;
1214
1215        }
1216        reg16 |= 0xB << 12;
1217        writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1218
1219        mdelay(5);
1220
1221        /* Reenable interrupts */
1222        writel(0, ctrl->hpc_reg + INT_MASK);
1223
1224        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1225
1226        /* Restart state machine */
1227        reg = ~0xF;
1228        pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1229        pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1230
1231        /* Only if mode change...*/
1232        if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1233                ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
1234                        set_SOGO(ctrl);
1235
1236        wait_for_ctrl_irq(ctrl);
1237        mdelay(1100);
1238
1239        /* Restore LED/Slot state */
1240        writel(leds, ctrl->hpc_reg + LED_CONTROL);
1241        writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1242
1243        set_SOGO(ctrl);
1244        wait_for_ctrl_irq(ctrl);
1245
1246        ctrl->speed = adapter_speed;
1247        slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1248
1249        info("Successfully changed frequency/mode for adapter in slot %d\n",
1250                        slot->number);
1251        return 0;
1252}
1253
1254/* the following routines constitute the bulk of the
1255 * hotplug controller logic
1256 */
1257
1258
1259/**
1260 * board_replaced - Called after a board has been replaced in the system.
1261 * @func: PCI device/function information
1262 * @ctrl: hotplug controller
1263 *
1264 * This is only used if we don't have resources for hot add.
1265 * Turns power on for the board.
1266 * Checks to see if board is the same.
1267 * If board is same, reconfigures it.
1268 * If board isn't same, turns it back off.
1269 */
1270static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1271{
1272        u8 hp_slot;
1273        u8 temp_byte;
1274        u8 adapter_speed;
1275        u32 rc = 0;
1276
1277        hp_slot = func->device - ctrl->slot_device_offset;
1278
1279        /*
1280         * The switch is open.
1281         */
1282        if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1283                rc = INTERLOCK_OPEN;
1284        /*
1285         * The board is already on
1286         */
1287        else if (is_slot_enabled (ctrl, hp_slot))
1288                rc = CARD_FUNCTIONING;
1289        else {
1290                mutex_lock(&ctrl->crit_sect);
1291
1292                /* turn on board without attaching to the bus */
1293                enable_slot_power (ctrl, hp_slot);
1294
1295                set_SOGO(ctrl);
1296
1297                /* Wait for SOBS to be unset */
1298                wait_for_ctrl_irq (ctrl);
1299
1300                /* Change bits in slot power register to force another shift out
1301                 * NOTE: this is to work around the timer bug */
1302                temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1303                writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1304                writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1305
1306                set_SOGO(ctrl);
1307
1308                /* Wait for SOBS to be unset */
1309                wait_for_ctrl_irq (ctrl);
1310
1311                adapter_speed = get_adapter_speed(ctrl, hp_slot);
1312                if (ctrl->speed != adapter_speed)
1313                        if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1314                                rc = WRONG_BUS_FREQUENCY;
1315
1316                /* turn off board without attaching to the bus */
1317                disable_slot_power (ctrl, hp_slot);
1318
1319                set_SOGO(ctrl);
1320
1321                /* Wait for SOBS to be unset */
1322                wait_for_ctrl_irq (ctrl);
1323
1324                mutex_unlock(&ctrl->crit_sect);
1325
1326                if (rc)
1327                        return rc;
1328
1329                mutex_lock(&ctrl->crit_sect);
1330
1331                slot_enable (ctrl, hp_slot);
1332                green_LED_blink (ctrl, hp_slot);
1333
1334                amber_LED_off (ctrl, hp_slot);
1335
1336                set_SOGO(ctrl);
1337
1338                /* Wait for SOBS to be unset */
1339                wait_for_ctrl_irq (ctrl);
1340
1341                mutex_unlock(&ctrl->crit_sect);
1342
1343                /* Wait for ~1 second because of hot plug spec */
1344                long_delay(1*HZ);
1345
1346                /* Check for a power fault */
1347                if (func->status == 0xFF) {
1348                        /* power fault occurred, but it was benign */
1349                        rc = POWER_FAILURE;
1350                        func->status = 0;
1351                } else
1352                        rc = cpqhp_valid_replace(ctrl, func);
1353
1354                if (!rc) {
1355                        /* It must be the same board */
1356
1357                        rc = cpqhp_configure_board(ctrl, func);
1358
1359                        /* If configuration fails, turn it off
1360                         * Get slot won't work for devices behind
1361                         * bridges, but in this case it will always be
1362                         * called for the "base" bus/dev/func of an
1363                         * adapter.
1364                         */
1365
1366                        mutex_lock(&ctrl->crit_sect);
1367
1368                        amber_LED_on (ctrl, hp_slot);
1369                        green_LED_off (ctrl, hp_slot);
1370                        slot_disable (ctrl, hp_slot);
1371
1372                        set_SOGO(ctrl);
1373
1374                        /* Wait for SOBS to be unset */
1375                        wait_for_ctrl_irq (ctrl);
1376
1377                        mutex_unlock(&ctrl->crit_sect);
1378
1379                        if (rc)
1380                                return rc;
1381                        else
1382                                return 1;
1383
1384                } else {
1385                        /* Something is wrong
1386
1387                         * Get slot won't work for devices behind bridges, but
1388                         * in this case it will always be called for the "base"
1389                         * bus/dev/func of an adapter.
1390                         */
1391
1392                        mutex_lock(&ctrl->crit_sect);
1393
1394                        amber_LED_on (ctrl, hp_slot);
1395                        green_LED_off (ctrl, hp_slot);
1396                        slot_disable (ctrl, hp_slot);
1397
1398                        set_SOGO(ctrl);
1399
1400                        /* Wait for SOBS to be unset */
1401                        wait_for_ctrl_irq (ctrl);
1402
1403                        mutex_unlock(&ctrl->crit_sect);
1404                }
1405
1406        }
1407        return rc;
1408
1409}
1410
1411
1412/**
1413 * board_added - Called after a board has been added to the system.
1414 * @func: PCI device/function info
1415 * @ctrl: hotplug controller
1416 *
1417 * Turns power on for the board.
1418 * Configures board.
1419 */
1420static u32 board_added(struct pci_func *func, struct controller *ctrl)
1421{
1422        u8 hp_slot;
1423        u8 temp_byte;
1424        u8 adapter_speed;
1425        int index;
1426        u32 temp_register = 0xFFFFFFFF;
1427        u32 rc = 0;
1428        struct pci_func *new_slot = NULL;
1429        struct slot *p_slot;
1430        struct resource_lists res_lists;
1431
1432        hp_slot = func->device - ctrl->slot_device_offset;
1433        dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1434            __func__, func->device, ctrl->slot_device_offset, hp_slot);
1435
1436        mutex_lock(&ctrl->crit_sect);
1437
1438        /* turn on board without attaching to the bus */
1439        enable_slot_power(ctrl, hp_slot);
1440
1441        set_SOGO(ctrl);
1442
1443        /* Wait for SOBS to be unset */
1444        wait_for_ctrl_irq (ctrl);
1445
1446        /* Change bits in slot power register to force another shift out
1447         * NOTE: this is to work around the timer bug
1448         */
1449        temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1450        writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1451        writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1452
1453        set_SOGO(ctrl);
1454
1455        /* Wait for SOBS to be unset */
1456        wait_for_ctrl_irq (ctrl);
1457
1458        adapter_speed = get_adapter_speed(ctrl, hp_slot);
1459        if (ctrl->speed != adapter_speed)
1460                if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1461                        rc = WRONG_BUS_FREQUENCY;
1462
1463        /* turn off board without attaching to the bus */
1464        disable_slot_power (ctrl, hp_slot);
1465
1466        set_SOGO(ctrl);
1467
1468        /* Wait for SOBS to be unset */
1469        wait_for_ctrl_irq(ctrl);
1470
1471        mutex_unlock(&ctrl->crit_sect);
1472
1473        if (rc)
1474                return rc;
1475
1476        p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1477
1478        /* turn on board and blink green LED */
1479
1480        dbg("%s: before down\n", __func__);
1481        mutex_lock(&ctrl->crit_sect);
1482        dbg("%s: after down\n", __func__);
1483
1484        dbg("%s: before slot_enable\n", __func__);
1485        slot_enable (ctrl, hp_slot);
1486
1487        dbg("%s: before green_LED_blink\n", __func__);
1488        green_LED_blink (ctrl, hp_slot);
1489
1490        dbg("%s: before amber_LED_blink\n", __func__);
1491        amber_LED_off (ctrl, hp_slot);
1492
1493        dbg("%s: before set_SOGO\n", __func__);
1494        set_SOGO(ctrl);
1495
1496        /* Wait for SOBS to be unset */
1497        dbg("%s: before wait_for_ctrl_irq\n", __func__);
1498        wait_for_ctrl_irq (ctrl);
1499        dbg("%s: after wait_for_ctrl_irq\n", __func__);
1500
1501        dbg("%s: before up\n", __func__);
1502        mutex_unlock(&ctrl->crit_sect);
1503        dbg("%s: after up\n", __func__);
1504
1505        /* Wait for ~1 second because of hot plug spec */
1506        dbg("%s: before long_delay\n", __func__);
1507        long_delay(1*HZ);
1508        dbg("%s: after long_delay\n", __func__);
1509
1510        dbg("%s: func status = %x\n", __func__, func->status);
1511        /* Check for a power fault */
1512        if (func->status == 0xFF) {
1513                /* power fault occurred, but it was benign */
1514                temp_register = 0xFFFFFFFF;
1515                dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1516                rc = POWER_FAILURE;
1517                func->status = 0;
1518        } else {
1519                /* Get vendor/device ID u32 */
1520                ctrl->pci_bus->number = func->bus;
1521                rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1522                dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1523                dbg("%s: temp_register is %x\n", __func__, temp_register);
1524
1525                if (rc != 0) {
1526                        /* Something's wrong here */
1527                        temp_register = 0xFFFFFFFF;
1528                        dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1529                }
1530                /* Preset return code.  It will be changed later if things go okay. */
1531                rc = NO_ADAPTER_PRESENT;
1532        }
1533
1534        /* All F's is an empty slot or an invalid board */
1535        if (temp_register != 0xFFFFFFFF) {
1536                res_lists.io_head = ctrl->io_head;
1537                res_lists.mem_head = ctrl->mem_head;
1538                res_lists.p_mem_head = ctrl->p_mem_head;
1539                res_lists.bus_head = ctrl->bus_head;
1540                res_lists.irqs = NULL;
1541
1542                rc = configure_new_device(ctrl, func, 0, &res_lists);
1543
1544                dbg("%s: back from configure_new_device\n", __func__);
1545                ctrl->io_head = res_lists.io_head;
1546                ctrl->mem_head = res_lists.mem_head;
1547                ctrl->p_mem_head = res_lists.p_mem_head;
1548                ctrl->bus_head = res_lists.bus_head;
1549
1550                cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1551                cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1552                cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1553                cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1554
1555                if (rc) {
1556                        mutex_lock(&ctrl->crit_sect);
1557
1558                        amber_LED_on (ctrl, hp_slot);
1559                        green_LED_off (ctrl, hp_slot);
1560                        slot_disable (ctrl, hp_slot);
1561
1562                        set_SOGO(ctrl);
1563
1564                        /* Wait for SOBS to be unset */
1565                        wait_for_ctrl_irq (ctrl);
1566
1567                        mutex_unlock(&ctrl->crit_sect);
1568                        return rc;
1569                } else {
1570                        cpqhp_save_slot_config(ctrl, func);
1571                }
1572
1573
1574                func->status = 0;
1575                func->switch_save = 0x10;
1576                func->is_a_board = 0x01;
1577
1578                /* next, we will instantiate the linux pci_dev structures (with
1579                 * appropriate driver notification, if already present) */
1580                dbg("%s: configure linux pci_dev structure\n", __func__);
1581                index = 0;
1582                do {
1583                        new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1584                        if (new_slot && !new_slot->pci_dev)
1585                                cpqhp_configure_device(ctrl, new_slot);
1586                } while (new_slot);
1587
1588                mutex_lock(&ctrl->crit_sect);
1589
1590                green_LED_on (ctrl, hp_slot);
1591
1592                set_SOGO(ctrl);
1593
1594                /* Wait for SOBS to be unset */
1595                wait_for_ctrl_irq (ctrl);
1596
1597                mutex_unlock(&ctrl->crit_sect);
1598        } else {
1599                mutex_lock(&ctrl->crit_sect);
1600
1601                amber_LED_on (ctrl, hp_slot);
1602                green_LED_off (ctrl, hp_slot);
1603                slot_disable (ctrl, hp_slot);
1604
1605                set_SOGO(ctrl);
1606
1607                /* Wait for SOBS to be unset */
1608                wait_for_ctrl_irq (ctrl);
1609
1610                mutex_unlock(&ctrl->crit_sect);
1611
1612                return rc;
1613        }
1614        return 0;
1615}
1616
1617
1618/**
1619 * remove_board - Turns off slot and LEDs
1620 * @func: PCI device/function info
1621 * @replace_flag: whether replacing or adding a new device
1622 * @ctrl: target controller
1623 */
1624static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1625{
1626        int index;
1627        u8 skip = 0;
1628        u8 device;
1629        u8 hp_slot;
1630        u8 temp_byte;
1631        u32 rc;
1632        struct resource_lists res_lists;
1633        struct pci_func *temp_func;
1634
1635        if (cpqhp_unconfigure_device(func))
1636                return 1;
1637
1638        device = func->device;
1639
1640        hp_slot = func->device - ctrl->slot_device_offset;
1641        dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1642
1643        /* When we get here, it is safe to change base address registers.
1644         * We will attempt to save the base address register lengths */
1645        if (replace_flag || !ctrl->add_support)
1646                rc = cpqhp_save_base_addr_length(ctrl, func);
1647        else if (!func->bus_head && !func->mem_head &&
1648                 !func->p_mem_head && !func->io_head) {
1649                /* Here we check to see if we've saved any of the board's
1650                 * resources already.  If so, we'll skip the attempt to
1651                 * determine what's being used. */
1652                index = 0;
1653                temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1654                while (temp_func) {
1655                        if (temp_func->bus_head || temp_func->mem_head
1656                            || temp_func->p_mem_head || temp_func->io_head) {
1657                                skip = 1;
1658                                break;
1659                        }
1660                        temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1661                }
1662
1663                if (!skip)
1664                        rc = cpqhp_save_used_resources(ctrl, func);
1665        }
1666        /* Change status to shutdown */
1667        if (func->is_a_board)
1668                func->status = 0x01;
1669        func->configured = 0;
1670
1671        mutex_lock(&ctrl->crit_sect);
1672
1673        green_LED_off (ctrl, hp_slot);
1674        slot_disable (ctrl, hp_slot);
1675
1676        set_SOGO(ctrl);
1677
1678        /* turn off SERR for slot */
1679        temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1680        temp_byte &= ~(0x01 << hp_slot);
1681        writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1682
1683        /* Wait for SOBS to be unset */
1684        wait_for_ctrl_irq (ctrl);
1685
1686        mutex_unlock(&ctrl->crit_sect);
1687
1688        if (!replace_flag && ctrl->add_support) {
1689                while (func) {
1690                        res_lists.io_head = ctrl->io_head;
1691                        res_lists.mem_head = ctrl->mem_head;
1692                        res_lists.p_mem_head = ctrl->p_mem_head;
1693                        res_lists.bus_head = ctrl->bus_head;
1694
1695                        cpqhp_return_board_resources(func, &res_lists);
1696
1697                        ctrl->io_head = res_lists.io_head;
1698                        ctrl->mem_head = res_lists.mem_head;
1699                        ctrl->p_mem_head = res_lists.p_mem_head;
1700                        ctrl->bus_head = res_lists.bus_head;
1701
1702                        cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1703                        cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1704                        cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1705                        cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1706
1707                        if (is_bridge(func)) {
1708                                bridge_slot_remove(func);
1709                        } else
1710                                slot_remove(func);
1711
1712                        func = cpqhp_slot_find(ctrl->bus, device, 0);
1713                }
1714
1715                /* Setup slot structure with entry for empty slot */
1716                func = cpqhp_slot_create(ctrl->bus);
1717
1718                if (func == NULL)
1719                        return 1;
1720
1721                func->bus = ctrl->bus;
1722                func->device = device;
1723                func->function = 0;
1724                func->configured = 0;
1725                func->switch_save = 0x10;
1726                func->is_a_board = 0;
1727                func->p_task_event = NULL;
1728        }
1729
1730        return 0;
1731}
1732
1733static void pushbutton_helper_thread(unsigned long data)
1734{
1735        pushbutton_pending = data;
1736        wake_up_process(cpqhp_event_thread);
1737}
1738
1739
1740/* this is the main worker thread */
1741static int event_thread(void* data)
1742{
1743        struct controller *ctrl;
1744
1745        while (1) {
1746                dbg("!!!!event_thread sleeping\n");
1747                set_current_state(TASK_INTERRUPTIBLE);
1748                schedule();
1749
1750                if (kthread_should_stop())
1751                        break;
1752                /* Do stuff here */
1753                if (pushbutton_pending)
1754                        cpqhp_pushbutton_thread(pushbutton_pending);
1755                else
1756                        for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1757                                interrupt_event_handler(ctrl);
1758        }
1759        dbg("event_thread signals exit\n");
1760        return 0;
1761}
1762
1763int cpqhp_event_start_thread(void)
1764{
1765        cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1766        if (IS_ERR(cpqhp_event_thread)) {
1767                err ("Can't start up our event thread\n");
1768                return PTR_ERR(cpqhp_event_thread);
1769        }
1770
1771        return 0;
1772}
1773
1774
1775void cpqhp_event_stop_thread(void)
1776{
1777        kthread_stop(cpqhp_event_thread);
1778}
1779
1780
1781static int update_slot_info(struct controller *ctrl, struct slot *slot)
1782{
1783        struct hotplug_slot_info *info;
1784        int result;
1785
1786        info = kmalloc(sizeof(*info), GFP_KERNEL);
1787        if (!info)
1788                return -ENOMEM;
1789
1790        info->power_status = get_slot_enabled(ctrl, slot);
1791        info->attention_status = cpq_get_attention_status(ctrl, slot);
1792        info->latch_status = cpq_get_latch_status(ctrl, slot);
1793        info->adapter_status = get_presence_status(ctrl, slot);
1794        result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1795        kfree (info);
1796        return result;
1797}
1798
1799static void interrupt_event_handler(struct controller *ctrl)
1800{
1801        int loop = 0;
1802        int change = 1;
1803        struct pci_func *func;
1804        u8 hp_slot;
1805        struct slot *p_slot;
1806
1807        while (change) {
1808                change = 0;
1809
1810                for (loop = 0; loop < 10; loop++) {
1811                        /* dbg("loop %d\n", loop); */
1812                        if (ctrl->event_queue[loop].event_type != 0) {
1813                                hp_slot = ctrl->event_queue[loop].hp_slot;
1814
1815                                func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1816                                if (!func)
1817                                        return;
1818
1819                                p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1820                                if (!p_slot)
1821                                        return;
1822
1823                                dbg("hp_slot %d, func %p, p_slot %p\n",
1824                                    hp_slot, func, p_slot);
1825
1826                                if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1827                                        dbg("button pressed\n");
1828                                } else if (ctrl->event_queue[loop].event_type == 
1829                                           INT_BUTTON_CANCEL) {
1830                                        dbg("button cancel\n");
1831                                        del_timer(&p_slot->task_event);
1832
1833                                        mutex_lock(&ctrl->crit_sect);
1834
1835                                        if (p_slot->state == BLINKINGOFF_STATE) {
1836                                                /* slot is on */
1837                                                dbg("turn on green LED\n");
1838                                                green_LED_on (ctrl, hp_slot);
1839                                        } else if (p_slot->state == BLINKINGON_STATE) {
1840                                                /* slot is off */
1841                                                dbg("turn off green LED\n");
1842                                                green_LED_off (ctrl, hp_slot);
1843                                        }
1844
1845                                        info(msg_button_cancel, p_slot->number);
1846
1847                                        p_slot->state = STATIC_STATE;
1848
1849                                        amber_LED_off (ctrl, hp_slot);
1850
1851                                        set_SOGO(ctrl);
1852
1853                                        /* Wait for SOBS to be unset */
1854                                        wait_for_ctrl_irq (ctrl);
1855
1856                                        mutex_unlock(&ctrl->crit_sect);
1857                                }
1858                                /*** button Released (No action on press...) */
1859                                else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1860                                        dbg("button release\n");
1861
1862                                        if (is_slot_enabled (ctrl, hp_slot)) {
1863                                                dbg("slot is on\n");
1864                                                p_slot->state = BLINKINGOFF_STATE;
1865                                                info(msg_button_off, p_slot->number);
1866                                        } else {
1867                                                dbg("slot is off\n");
1868                                                p_slot->state = BLINKINGON_STATE;
1869                                                info(msg_button_on, p_slot->number);
1870                                        }
1871                                        mutex_lock(&ctrl->crit_sect);
1872
1873                                        dbg("blink green LED and turn off amber\n");
1874
1875                                        amber_LED_off (ctrl, hp_slot);
1876                                        green_LED_blink (ctrl, hp_slot);
1877
1878                                        set_SOGO(ctrl);
1879
1880                                        /* Wait for SOBS to be unset */
1881                                        wait_for_ctrl_irq (ctrl);
1882
1883                                        mutex_unlock(&ctrl->crit_sect);
1884                                        init_timer(&p_slot->task_event);
1885                                        p_slot->hp_slot = hp_slot;
1886                                        p_slot->ctrl = ctrl;
1887/*                                      p_slot->physical_slot = physical_slot; */
1888                                        p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1889                                        p_slot->task_event.function = pushbutton_helper_thread;
1890                                        p_slot->task_event.data = (u32) p_slot;
1891
1892                                        dbg("add_timer p_slot = %p\n", p_slot);
1893                                        add_timer(&p_slot->task_event);
1894                                }
1895                                /***********POWER FAULT */
1896                                else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1897                                        dbg("power fault\n");
1898                                } else {
1899                                        /* refresh notification */
1900                                        if (p_slot)
1901                                                update_slot_info(ctrl, p_slot);
1902                                }
1903
1904                                ctrl->event_queue[loop].event_type = 0;
1905
1906                                change = 1;
1907                        }
1908                }               /* End of FOR loop */
1909        }
1910
1911        return;
1912}
1913
1914
1915/**
1916 * cpqhp_pushbutton_thread - handle pushbutton events
1917 * @slot: target slot (struct)
1918 *
1919 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1920 * Handles all pending events and exits.
1921 */
1922void cpqhp_pushbutton_thread(unsigned long slot)
1923{
1924        u8 hp_slot;
1925        u8 device;
1926        struct pci_func *func;
1927        struct slot *p_slot = (struct slot *) slot;
1928        struct controller *ctrl = (struct controller *) p_slot->ctrl;
1929
1930        pushbutton_pending = 0;
1931        hp_slot = p_slot->hp_slot;
1932
1933        device = p_slot->device;
1934
1935        if (is_slot_enabled(ctrl, hp_slot)) {
1936                p_slot->state = POWEROFF_STATE;
1937                /* power Down board */
1938                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1939                dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1940                if (!func) {
1941                        dbg("Error! func NULL in %s\n", __func__);
1942                        return ;
1943                }
1944
1945                if (cpqhp_process_SS(ctrl, func) != 0) {
1946                        amber_LED_on(ctrl, hp_slot);
1947                        green_LED_on(ctrl, hp_slot);
1948
1949                        set_SOGO(ctrl);
1950
1951                        /* Wait for SOBS to be unset */
1952                        wait_for_ctrl_irq(ctrl);
1953                }
1954
1955                p_slot->state = STATIC_STATE;
1956        } else {
1957                p_slot->state = POWERON_STATE;
1958                /* slot is off */
1959
1960                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1961                dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1962                if (!func) {
1963                        dbg("Error! func NULL in %s\n", __func__);
1964                        return ;
1965                }
1966
1967                if (ctrl != NULL) {
1968                        if (cpqhp_process_SI(ctrl, func) != 0) {
1969                                amber_LED_on(ctrl, hp_slot);
1970                                green_LED_off(ctrl, hp_slot);
1971
1972                                set_SOGO(ctrl);
1973
1974                                /* Wait for SOBS to be unset */
1975                                wait_for_ctrl_irq (ctrl);
1976                        }
1977                }
1978
1979                p_slot->state = STATIC_STATE;
1980        }
1981
1982        return;
1983}
1984
1985
1986int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1987{
1988        u8 device, hp_slot;
1989        u16 temp_word;
1990        u32 tempdword;
1991        int rc;
1992        struct slot* p_slot;
1993        int physical_slot = 0;
1994
1995        tempdword = 0;
1996
1997        device = func->device;
1998        hp_slot = device - ctrl->slot_device_offset;
1999        p_slot = cpqhp_find_slot(ctrl, device);
2000        if (p_slot)
2001                physical_slot = p_slot->number;
2002
2003        /* Check to see if the interlock is closed */
2004        tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2005
2006        if (tempdword & (0x01 << hp_slot)) {
2007                return 1;
2008        }
2009
2010        if (func->is_a_board) {
2011                rc = board_replaced(func, ctrl);
2012        } else {
2013                /* add board */
2014                slot_remove(func);
2015
2016                func = cpqhp_slot_create(ctrl->bus);
2017                if (func == NULL)
2018                        return 1;
2019
2020                func->bus = ctrl->bus;
2021                func->device = device;
2022                func->function = 0;
2023                func->configured = 0;
2024                func->is_a_board = 1;
2025
2026                /* We have to save the presence info for these slots */
2027                temp_word = ctrl->ctrl_int_comp >> 16;
2028                func->presence_save = (temp_word >> hp_slot) & 0x01;
2029                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2030
2031                if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2032                        func->switch_save = 0;
2033                } else {
2034                        func->switch_save = 0x10;
2035                }
2036
2037                rc = board_added(func, ctrl);
2038                if (rc) {
2039                        if (is_bridge(func)) {
2040                                bridge_slot_remove(func);
2041                        } else
2042                                slot_remove(func);
2043
2044                        /* Setup slot structure with entry for empty slot */
2045                        func = cpqhp_slot_create(ctrl->bus);
2046
2047                        if (func == NULL)
2048                                return 1;
2049
2050                        func->bus = ctrl->bus;
2051                        func->device = device;
2052                        func->function = 0;
2053                        func->configured = 0;
2054                        func->is_a_board = 0;
2055
2056                        /* We have to save the presence info for these slots */
2057                        temp_word = ctrl->ctrl_int_comp >> 16;
2058                        func->presence_save = (temp_word >> hp_slot) & 0x01;
2059                        func->presence_save |=
2060                        (temp_word >> (hp_slot + 7)) & 0x02;
2061
2062                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2063                                func->switch_save = 0;
2064                        } else {
2065                                func->switch_save = 0x10;
2066                        }
2067                }
2068        }
2069
2070        if (rc) {
2071                dbg("%s: rc = %d\n", __func__, rc);
2072        }
2073
2074        if (p_slot)
2075                update_slot_info(ctrl, p_slot);
2076
2077        return rc;
2078}
2079
2080
2081int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2082{
2083        u8 device, class_code, header_type, BCR;
2084        u8 index = 0;
2085        u8 replace_flag;
2086        u32 rc = 0;
2087        unsigned int devfn;
2088        struct slot* p_slot;
2089        struct pci_bus *pci_bus = ctrl->pci_bus;
2090        int physical_slot=0;
2091
2092        device = func->device;
2093        func = cpqhp_slot_find(ctrl->bus, device, index++);
2094        p_slot = cpqhp_find_slot(ctrl, device);
2095        if (p_slot) {
2096                physical_slot = p_slot->number;
2097        }
2098
2099        /* Make sure there are no video controllers here */
2100        while (func && !rc) {
2101                pci_bus->number = func->bus;
2102                devfn = PCI_DEVFN(func->device, func->function);
2103
2104                /* Check the Class Code */
2105                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2106                if (rc)
2107                        return rc;
2108
2109                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2110                        /* Display/Video adapter (not supported) */
2111                        rc = REMOVE_NOT_SUPPORTED;
2112                } else {
2113                        /* See if it's a bridge */
2114                        rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2115                        if (rc)
2116                                return rc;
2117
2118                        /* If it's a bridge, check the VGA Enable bit */
2119                        if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2120                                rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2121                                if (rc)
2122                                        return rc;
2123
2124                                /* If the VGA Enable bit is set, remove isn't
2125                                 * supported */
2126                                if (BCR & PCI_BRIDGE_CTL_VGA)
2127                                        rc = REMOVE_NOT_SUPPORTED;
2128                        }
2129                }
2130
2131                func = cpqhp_slot_find(ctrl->bus, device, index++);
2132        }
2133
2134        func = cpqhp_slot_find(ctrl->bus, device, 0);
2135        if ((func != NULL) && !rc) {
2136                /* FIXME: Replace flag should be passed into process_SS */
2137                replace_flag = !(ctrl->add_support);
2138                rc = remove_board(func, replace_flag, ctrl);
2139        } else if (!rc) {
2140                rc = 1;
2141        }
2142
2143        if (p_slot)
2144                update_slot_info(ctrl, p_slot);
2145
2146        return rc;
2147}
2148
2149/**
2150 * switch_leds - switch the leds, go from one site to the other.
2151 * @ctrl: controller to use
2152 * @num_of_slots: number of slots to use
2153 * @work_LED: LED control value
2154 * @direction: 1 to start from the left side, 0 to start right.
2155 */
2156static void switch_leds(struct controller *ctrl, const int num_of_slots,
2157                        u32 *work_LED, const int direction)
2158{
2159        int loop;
2160
2161        for (loop = 0; loop < num_of_slots; loop++) {
2162                if (direction)
2163                        *work_LED = *work_LED >> 1;
2164                else
2165                        *work_LED = *work_LED << 1;
2166                writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2167
2168                set_SOGO(ctrl);
2169
2170                /* Wait for SOGO interrupt */
2171                wait_for_ctrl_irq(ctrl);
2172
2173                /* Get ready for next iteration */
2174                long_delay((2*HZ)/10);
2175        }
2176}
2177
2178/**
2179 * cpqhp_hardware_test - runs hardware tests
2180 * @ctrl: target controller
2181 * @test_num: the number written to the "test" file in sysfs.
2182 *
2183 * For hot plug ctrl folks to play with.
2184 */
2185int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2186{
2187        u32 save_LED;
2188        u32 work_LED;
2189        int loop;
2190        int num_of_slots;
2191
2192        num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2193
2194        switch (test_num) {
2195        case 1:
2196                /* Do stuff here! */
2197
2198                /* Do that funky LED thing */
2199                /* so we can restore them later */
2200                save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2201                work_LED = 0x01010101;
2202                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2204                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2205                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2206
2207                work_LED = 0x01010000;
2208                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2209                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2210                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2211                work_LED = 0x00000101;
2212                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2213                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2214                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2215
2216                work_LED = 0x01010000;
2217                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2218                for (loop = 0; loop < num_of_slots; loop++) {
2219                        set_SOGO(ctrl);
2220
2221                        /* Wait for SOGO interrupt */
2222                        wait_for_ctrl_irq (ctrl);
2223
2224                        /* Get ready for next iteration */
2225                        long_delay((3*HZ)/10);
2226                        work_LED = work_LED >> 16;
2227                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2228
2229                        set_SOGO(ctrl);
2230
2231                        /* Wait for SOGO interrupt */
2232                        wait_for_ctrl_irq (ctrl);
2233
2234                        /* Get ready for next iteration */
2235                        long_delay((3*HZ)/10);
2236                        work_LED = work_LED << 16;
2237                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2238                        work_LED = work_LED << 1;
2239                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2240                }
2241
2242                /* put it back the way it was */
2243                writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2244
2245                set_SOGO(ctrl);
2246
2247                /* Wait for SOBS to be unset */
2248                wait_for_ctrl_irq (ctrl);
2249                break;
2250        case 2:
2251                /* Do other stuff here! */
2252                break;
2253        case 3:
2254                /* and more... */
2255                break;
2256        }
2257        return 0;
2258}
2259
2260
2261/**
2262 * configure_new_device - Configures the PCI header information of one board.
2263 * @ctrl: pointer to controller structure
2264 * @func: pointer to function structure
2265 * @behind_bridge: 1 if this is a recursive call, 0 if not
2266 * @resources: pointer to set of resource lists
2267 *
2268 * Returns 0 if success.
2269 */
2270static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2271                                 u8 behind_bridge, struct resource_lists * resources)
2272{
2273        u8 temp_byte, function, max_functions, stop_it;
2274        int rc;
2275        u32 ID;
2276        struct pci_func *new_slot;
2277        int index;
2278
2279        new_slot = func;
2280
2281        dbg("%s\n", __func__);
2282        /* Check for Multi-function device */
2283        ctrl->pci_bus->number = func->bus;
2284        rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2285        if (rc) {
2286                dbg("%s: rc = %d\n", __func__, rc);
2287                return rc;
2288        }
2289
2290        if (temp_byte & 0x80)   /* Multi-function device */
2291                max_functions = 8;
2292        else
2293                max_functions = 1;
2294
2295        function = 0;
2296
2297        do {
2298                rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2299
2300                if (rc) {
2301                        dbg("configure_new_function failed %d\n",rc);
2302                        index = 0;
2303
2304                        while (new_slot) {
2305                                new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2306
2307                                if (new_slot)
2308                                        cpqhp_return_board_resources(new_slot, resources);
2309                        }
2310
2311                        return rc;
2312                }
2313
2314                function++;
2315
2316                stop_it = 0;
2317
2318                /* The following loop skips to the next present function
2319                 * and creates a board structure */
2320
2321                while ((function < max_functions) && (!stop_it)) {
2322                        pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2323
2324                        if (ID == 0xFFFFFFFF) {
2325                                function++;
2326                        } else {
2327                                /* Setup slot structure. */
2328                                new_slot = cpqhp_slot_create(func->bus);
2329
2330                                if (new_slot == NULL)
2331                                        return 1;
2332
2333                                new_slot->bus = func->bus;
2334                                new_slot->device = func->device;
2335                                new_slot->function = function;
2336                                new_slot->is_a_board = 1;
2337                                new_slot->status = 0;
2338
2339                                stop_it++;
2340                        }
2341                }
2342
2343        } while (function < max_functions);
2344        dbg("returning from configure_new_device\n");
2345
2346        return 0;
2347}
2348
2349
2350/*
2351 * Configuration logic that involves the hotplug data structures and
2352 * their bookkeeping
2353 */
2354
2355
2356/**
2357 * configure_new_function - Configures the PCI header information of one device
2358 * @ctrl: pointer to controller structure
2359 * @func: pointer to function structure
2360 * @behind_bridge: 1 if this is a recursive call, 0 if not
2361 * @resources: pointer to set of resource lists
2362 *
2363 * Calls itself recursively for bridged devices.
2364 * Returns 0 if success.
2365 */
2366static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2367                                   u8 behind_bridge,
2368                                   struct resource_lists *resources)
2369{
2370        int cloop;
2371        u8 IRQ = 0;
2372        u8 temp_byte;
2373        u8 device;
2374        u8 class_code;
2375        u16 command;
2376        u16 temp_word;
2377        u32 temp_dword;
2378        u32 rc;
2379        u32 temp_register;
2380        u32 base;
2381        u32 ID;
2382        unsigned int devfn;
2383        struct pci_resource *mem_node;
2384        struct pci_resource *p_mem_node;
2385        struct pci_resource *io_node;
2386        struct pci_resource *bus_node;
2387        struct pci_resource *hold_mem_node;
2388        struct pci_resource *hold_p_mem_node;
2389        struct pci_resource *hold_IO_node;
2390        struct pci_resource *hold_bus_node;
2391        struct irq_mapping irqs;
2392        struct pci_func *new_slot;
2393        struct pci_bus *pci_bus;
2394        struct resource_lists temp_resources;
2395
2396        pci_bus = ctrl->pci_bus;
2397        pci_bus->number = func->bus;
2398        devfn = PCI_DEVFN(func->device, func->function);
2399
2400        /* Check for Bridge */
2401        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2402        if (rc)
2403                return rc;
2404
2405        if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2406                /* set Primary bus */
2407                dbg("set Primary bus = %d\n", func->bus);
2408                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2409                if (rc)
2410                        return rc;
2411
2412                /* find range of busses to use */
2413                dbg("find ranges of buses to use\n");
2414                bus_node = get_max_resource(&(resources->bus_head), 1);
2415
2416                /* If we don't have any busses to allocate, we can't continue */
2417                if (!bus_node)
2418                        return -ENOMEM;
2419
2420                /* set Secondary bus */
2421                temp_byte = bus_node->base;
2422                dbg("set Secondary bus = %d\n", bus_node->base);
2423                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2424                if (rc)
2425                        return rc;
2426
2427                /* set subordinate bus */
2428                temp_byte = bus_node->base + bus_node->length - 1;
2429                dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2430                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2431                if (rc)
2432                        return rc;
2433
2434                /* set subordinate Latency Timer and base Latency Timer */
2435                temp_byte = 0x40;
2436                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2437                if (rc)
2438                        return rc;
2439                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2440                if (rc)
2441                        return rc;
2442
2443                /* set Cache Line size */
2444                temp_byte = 0x08;
2445                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2446                if (rc)
2447                        return rc;
2448
2449                /* Setup the IO, memory, and prefetchable windows */
2450                io_node = get_max_resource(&(resources->io_head), 0x1000);
2451                if (!io_node)
2452                        return -ENOMEM;
2453                mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2454                if (!mem_node)
2455                        return -ENOMEM;
2456                p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2457                if (!p_mem_node)
2458                        return -ENOMEM;
2459                dbg("Setup the IO, memory, and prefetchable windows\n");
2460                dbg("io_node\n");
2461                dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2462                                        io_node->length, io_node->next);
2463                dbg("mem_node\n");
2464                dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2465                                        mem_node->length, mem_node->next);
2466                dbg("p_mem_node\n");
2467                dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2468                                        p_mem_node->length, p_mem_node->next);
2469
2470                /* set up the IRQ info */
2471                if (!resources->irqs) {
2472                        irqs.barber_pole = 0;
2473                        irqs.interrupt[0] = 0;
2474                        irqs.interrupt[1] = 0;
2475                        irqs.interrupt[2] = 0;
2476                        irqs.interrupt[3] = 0;
2477                        irqs.valid_INT = 0;
2478                } else {
2479                        irqs.barber_pole = resources->irqs->barber_pole;
2480                        irqs.interrupt[0] = resources->irqs->interrupt[0];
2481                        irqs.interrupt[1] = resources->irqs->interrupt[1];
2482                        irqs.interrupt[2] = resources->irqs->interrupt[2];
2483                        irqs.interrupt[3] = resources->irqs->interrupt[3];
2484                        irqs.valid_INT = resources->irqs->valid_INT;
2485                }
2486
2487                /* set up resource lists that are now aligned on top and bottom
2488                 * for anything behind the bridge. */
2489                temp_resources.bus_head = bus_node;
2490                temp_resources.io_head = io_node;
2491                temp_resources.mem_head = mem_node;
2492                temp_resources.p_mem_head = p_mem_node;
2493                temp_resources.irqs = &irqs;
2494
2495                /* Make copies of the nodes we are going to pass down so that
2496                 * if there is a problem,we can just use these to free resources
2497                 */
2498                hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2499                hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2500                hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2501                hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2502
2503                if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2504                        kfree(hold_bus_node);
2505                        kfree(hold_IO_node);
2506                        kfree(hold_mem_node);
2507                        kfree(hold_p_mem_node);
2508
2509                        return 1;
2510                }
2511
2512                memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2513
2514                bus_node->base += 1;
2515                bus_node->length -= 1;
2516                bus_node->next = NULL;
2517
2518                /* If we have IO resources copy them and fill in the bridge's
2519                 * IO range registers */
2520                if (io_node) {
2521                        memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2522                        io_node->next = NULL;
2523
2524                        /* set IO base and Limit registers */
2525                        temp_byte = io_node->base >> 8;
2526                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2527
2528                        temp_byte = (io_node->base + io_node->length - 1) >> 8;
2529                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2530                } else {
2531                        kfree(hold_IO_node);
2532                        hold_IO_node = NULL;
2533                }
2534
2535                /* If we have memory resources copy them and fill in the
2536                 * bridge's memory range registers.  Otherwise, fill in the
2537                 * range registers with values that disable them. */
2538                if (mem_node) {
2539                        memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2540                        mem_node->next = NULL;
2541
2542                        /* set Mem base and Limit registers */
2543                        temp_word = mem_node->base >> 16;
2544                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2545
2546                        temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2547                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2548                } else {
2549                        temp_word = 0xFFFF;
2550                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2551
2552                        temp_word = 0x0000;
2553                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2554
2555                        kfree(hold_mem_node);
2556                        hold_mem_node = NULL;
2557                }
2558
2559                memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2560                p_mem_node->next = NULL;
2561
2562                /* set Pre Mem base and Limit registers */
2563                temp_word = p_mem_node->base >> 16;
2564                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2565
2566                temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2567                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2568
2569                /* Adjust this to compensate for extra adjustment in first loop
2570                 */
2571                irqs.barber_pole--;
2572
2573                rc = 0;
2574
2575                /* Here we actually find the devices and configure them */
2576                for (device = 0; (device <= 0x1F) && !rc; device++) {
2577                        irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2578
2579                        ID = 0xFFFFFFFF;
2580                        pci_bus->number = hold_bus_node->base;
2581                        pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2582                        pci_bus->number = func->bus;
2583
2584                        if (ID != 0xFFFFFFFF) {   /*  device present */
2585                                /* Setup slot structure. */
2586                                new_slot = cpqhp_slot_create(hold_bus_node->base);
2587
2588                                if (new_slot == NULL) {
2589                                        rc = -ENOMEM;
2590                                        continue;
2591                                }
2592
2593                                new_slot->bus = hold_bus_node->base;
2594                                new_slot->device = device;
2595                                new_slot->function = 0;
2596                                new_slot->is_a_board = 1;
2597                                new_slot->status = 0;
2598
2599                                rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2600                                dbg("configure_new_device rc=0x%x\n",rc);
2601                        }       /* End of IF (device in slot?) */
2602                }               /* End of FOR loop */
2603
2604                if (rc)
2605                        goto free_and_out;
2606                /* save the interrupt routing information */
2607                if (resources->irqs) {
2608                        resources->irqs->interrupt[0] = irqs.interrupt[0];
2609                        resources->irqs->interrupt[1] = irqs.interrupt[1];
2610                        resources->irqs->interrupt[2] = irqs.interrupt[2];
2611                        resources->irqs->interrupt[3] = irqs.interrupt[3];
2612                        resources->irqs->valid_INT = irqs.valid_INT;
2613                } else if (!behind_bridge) {
2614                        /* We need to hook up the interrupts here */
2615                        for (cloop = 0; cloop < 4; cloop++) {
2616                                if (irqs.valid_INT & (0x01 << cloop)) {
2617                                        rc = cpqhp_set_irq(func->bus, func->device,
2618                                                           cloop + 1, irqs.interrupt[cloop]);
2619                                        if (rc)
2620                                                goto free_and_out;
2621                                }
2622                        }       /* end of for loop */
2623                }
2624                /* Return unused bus resources
2625                 * First use the temporary node to store information for
2626                 * the board */
2627                if (hold_bus_node && bus_node && temp_resources.bus_head) {
2628                        hold_bus_node->length = bus_node->base - hold_bus_node->base;
2629
2630                        hold_bus_node->next = func->bus_head;
2631                        func->bus_head = hold_bus_node;
2632
2633                        temp_byte = temp_resources.bus_head->base - 1;
2634
2635                        /* set subordinate bus */
2636                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2637
2638                        if (temp_resources.bus_head->length == 0) {
2639                                kfree(temp_resources.bus_head);
2640                                temp_resources.bus_head = NULL;
2641                        } else {
2642                                return_resource(&(resources->bus_head), temp_resources.bus_head);
2643                        }
2644                }
2645
2646                /* If we have IO space available and there is some left,
2647                 * return the unused portion */
2648                if (hold_IO_node && temp_resources.io_head) {
2649                        io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2650                                                               &hold_IO_node, 0x1000);
2651
2652                        /* Check if we were able to split something off */
2653                        if (io_node) {
2654                                hold_IO_node->base = io_node->base + io_node->length;
2655
2656                                temp_byte = (hold_IO_node->base) >> 8;
2657                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2658
2659                                return_resource(&(resources->io_head), io_node);
2660                        }
2661
2662                        io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2663
2664                        /* Check if we were able to split something off */
2665                        if (io_node) {
2666                                /* First use the temporary node to store
2667                                 * information for the board */
2668                                hold_IO_node->length = io_node->base - hold_IO_node->base;
2669
2670                                /* If we used any, add it to the board's list */
2671                                if (hold_IO_node->length) {
2672                                        hold_IO_node->next = func->io_head;
2673                                        func->io_head = hold_IO_node;
2674
2675                                        temp_byte = (io_node->base - 1) >> 8;
2676                                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2677
2678                                        return_resource(&(resources->io_head), io_node);
2679                                } else {
2680                                        /* it doesn't need any IO */
2681                                        temp_word = 0x0000;
2682                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2683
2684                                        return_resource(&(resources->io_head), io_node);
2685                                        kfree(hold_IO_node);
2686                                }
2687                        } else {
2688                                /* it used most of the range */
2689                                hold_IO_node->next = func->io_head;
2690                                func->io_head = hold_IO_node;
2691                        }
2692                } else if (hold_IO_node) {
2693                        /* it used the whole range */
2694                        hold_IO_node->next = func->io_head;
2695                        func->io_head = hold_IO_node;
2696                }
2697                /* If we have memory space available and there is some left,
2698                 * return the unused portion */
2699                if (hold_mem_node && temp_resources.mem_head) {
2700                        mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2701                                                                &hold_mem_node, 0x100000);
2702
2703                        /* Check if we were able to split something off */
2704                        if (mem_node) {
2705                                hold_mem_node->base = mem_node->base + mem_node->length;
2706
2707                                temp_word = (hold_mem_node->base) >> 16;
2708                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2709
2710                                return_resource(&(resources->mem_head), mem_node);
2711                        }
2712
2713                        mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2714
2715                        /* Check if we were able to split something off */
2716                        if (mem_node) {
2717                                /* First use the temporary node to store
2718                                 * information for the board */
2719                                hold_mem_node->length = mem_node->base - hold_mem_node->base;
2720
2721                                if (hold_mem_node->length) {
2722                                        hold_mem_node->next = func->mem_head;
2723                                        func->mem_head = hold_mem_node;
2724
2725                                        /* configure end address */
2726                                        temp_word = (mem_node->base - 1) >> 16;
2727                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2728
2729                                        /* Return unused resources to the pool */
2730                                        return_resource(&(resources->mem_head), mem_node);
2731                                } else {
2732                                        /* it doesn't need any Mem */
2733                                        temp_word = 0x0000;
2734                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2735
2736                                        return_resource(&(resources->mem_head), mem_node);
2737                                        kfree(hold_mem_node);
2738                                }
2739                        } else {
2740                                /* it used most of the range */
2741                                hold_mem_node->next = func->mem_head;
2742                                func->mem_head = hold_mem_node;
2743                        }
2744                } else if (hold_mem_node) {
2745                        /* it used the whole range */
2746                        hold_mem_node->next = func->mem_head;
2747                        func->mem_head = hold_mem_node;
2748                }
2749                /* If we have prefetchable memory space available and there
2750                 * is some left at the end, return the unused portion */
2751                if (hold_p_mem_node && temp_resources.p_mem_head) {
2752                        p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2753                                                                  &hold_p_mem_node, 0x100000);
2754
2755                        /* Check if we were able to split something off */
2756                        if (p_mem_node) {
2757                                hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2758
2759                                temp_word = (hold_p_mem_node->base) >> 16;
2760                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2761
2762                                return_resource(&(resources->p_mem_head), p_mem_node);
2763                        }
2764
2765                        p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2766
2767                        /* Check if we were able to split something off */
2768                        if (p_mem_node) {
2769                                /* First use the temporary node to store
2770                                 * information for the board */
2771                                hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2772
2773                                /* If we used any, add it to the board's list */
2774                                if (hold_p_mem_node->length) {
2775                                        hold_p_mem_node->next = func->p_mem_head;
2776                                        func->p_mem_head = hold_p_mem_node;
2777
2778                                        temp_word = (p_mem_node->base - 1) >> 16;
2779                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2780
2781                                        return_resource(&(resources->p_mem_head), p_mem_node);
2782                                } else {
2783                                        /* it doesn't need any PMem */
2784                                        temp_word = 0x0000;
2785                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2786
2787                                        return_resource(&(resources->p_mem_head), p_mem_node);
2788                                        kfree(hold_p_mem_node);
2789                                }
2790                        } else {
2791                                /* it used the most of the range */
2792                                hold_p_mem_node->next = func->p_mem_head;
2793                                func->p_mem_head = hold_p_mem_node;
2794                        }
2795                } else if (hold_p_mem_node) {
2796                        /* it used the whole range */
2797                        hold_p_mem_node->next = func->p_mem_head;
2798                        func->p_mem_head = hold_p_mem_node;
2799                }
2800                /* We should be configuring an IRQ and the bridge's base address
2801                 * registers if it needs them.  Although we have never seen such
2802                 * a device */
2803
2804                /* enable card */
2805                command = 0x0157;       /* = PCI_COMMAND_IO |
2806                                         *   PCI_COMMAND_MEMORY |
2807                                         *   PCI_COMMAND_MASTER |
2808                                         *   PCI_COMMAND_INVALIDATE |
2809                                         *   PCI_COMMAND_PARITY |
2810                                         *   PCI_COMMAND_SERR */
2811                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2812
2813                /* set Bridge Control Register */
2814                command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2815                                         *   PCI_BRIDGE_CTL_SERR |
2816                                         *   PCI_BRIDGE_CTL_NO_ISA */
2817                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2818        } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2819                /* Standard device */
2820                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2821
2822                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2823                        /* Display (video) adapter (not supported) */
2824                        return DEVICE_TYPE_NOT_SUPPORTED;
2825                }
2826                /* Figure out IO and memory needs */
2827                for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2828                        temp_register = 0xFFFFFFFF;
2829
2830                        dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2831                        rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2832
2833                        rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2834                        dbg("CND: base = 0x%x\n", temp_register);
2835
2836                        if (temp_register) {      /* If this register is implemented */
2837                                if ((temp_register & 0x03L) == 0x01) {
2838                                        /* Map IO */
2839
2840                                        /* set base = amount of IO space */
2841                                        base = temp_register & 0xFFFFFFFC;
2842                                        base = ~base + 1;
2843
2844                                        dbg("CND:      length = 0x%x\n", base);
2845                                        io_node = get_io_resource(&(resources->io_head), base);
2846                                        dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2847                                            io_node->base, io_node->length, io_node->next);
2848                                        dbg("func (%p) io_head (%p)\n", func, func->io_head);
2849
2850                                        /* allocate the resource to the board */
2851                                        if (io_node) {
2852                                                base = io_node->base;
2853
2854                                                io_node->next = func->io_head;
2855                                                func->io_head = io_node;
2856                                        } else
2857                                                return -ENOMEM;
2858                                } else if ((temp_register & 0x0BL) == 0x08) {
2859                                        /* Map prefetchable memory */
2860                                        base = temp_register & 0xFFFFFFF0;
2861                                        base = ~base + 1;
2862
2863                                        dbg("CND:      length = 0x%x\n", base);
2864                                        p_mem_node = get_resource(&(resources->p_mem_head), base);
2865
2866                                        /* allocate the resource to the board */
2867                                        if (p_mem_node) {
2868                                                base = p_mem_node->base;
2869
2870                                                p_mem_node->next = func->p_mem_head;
2871                                                func->p_mem_head = p_mem_node;
2872                                        } else
2873                                                return -ENOMEM;
2874                                } else if ((temp_register & 0x0BL) == 0x00) {
2875                                        /* Map memory */
2876                                        base = temp_register & 0xFFFFFFF0;
2877                                        base = ~base + 1;
2878
2879                                        dbg("CND:      length = 0x%x\n", base);
2880                                        mem_node = get_resource(&(resources->mem_head), base);
2881
2882                                        /* allocate the resource to the board */
2883                                        if (mem_node) {
2884                                                base = mem_node->base;
2885
2886                                                mem_node->next = func->mem_head;
2887                                                func->mem_head = mem_node;
2888                                        } else
2889                                                return -ENOMEM;
2890                                } else if ((temp_register & 0x0BL) == 0x04) {
2891                                        /* Map memory */
2892                                        base = temp_register & 0xFFFFFFF0;
2893                                        base = ~base + 1;
2894
2895                                        dbg("CND:      length = 0x%x\n", base);
2896                                        mem_node = get_resource(&(resources->mem_head), base);
2897
2898                                        /* allocate the resource to the board */
2899                                        if (mem_node) {
2900                                                base = mem_node->base;
2901
2902                                                mem_node->next = func->mem_head;
2903                                                func->mem_head = mem_node;
2904                                        } else
2905                                                return -ENOMEM;
2906                                } else if ((temp_register & 0x0BL) == 0x06) {
2907                                        /* Those bits are reserved, we can't handle this */
2908                                        return 1;
2909                                } else {
2910                                        /* Requesting space below 1M */
2911                                        return NOT_ENOUGH_RESOURCES;
2912                                }
2913
2914                                rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2915
2916                                /* Check for 64-bit base */
2917                                if ((temp_register & 0x07L) == 0x04) {
2918                                        cloop += 4;
2919
2920                                        /* Upper 32 bits of address always zero
2921                                         * on today's systems */
2922                                        /* FIXME this is probably not true on
2923                                         * Alpha and ia64??? */
2924                                        base = 0;
2925                                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2926                                }
2927                        }
2928                }               /* End of base register loop */
2929                if (cpqhp_legacy_mode) {
2930                        /* Figure out which interrupt pin this function uses */
2931                        rc = pci_bus_read_config_byte (pci_bus, devfn,
2932                                PCI_INTERRUPT_PIN, &temp_byte);
2933
2934                        /* If this function needs an interrupt and we are behind
2935                         * a bridge and the pin is tied to something that's
2936                         * alread mapped, set this one the same */
2937                        if (temp_byte && resources->irqs &&
2938                            (resources->irqs->valid_INT &
2939                             (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2940                                /* We have to share with something already set up */
2941                                IRQ = resources->irqs->interrupt[(temp_byte +
2942                                        resources->irqs->barber_pole - 1) & 0x03];
2943                        } else {
2944                                /* Program IRQ based on card type */
2945                                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2946
2947                                if (class_code == PCI_BASE_CLASS_STORAGE)
2948                                        IRQ = cpqhp_disk_irq;
2949                                else
2950                                        IRQ = cpqhp_nic_irq;
2951                        }
2952
2953                        /* IRQ Line */
2954                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2955                }
2956
2957                if (!behind_bridge) {
2958                        rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2959                        if (rc)
2960                                return 1;
2961                } else {
2962                        /* TBD - this code may also belong in the other clause
2963                         * of this If statement */
2964                        resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2965                        resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2966                }
2967
2968                /* Latency Timer */
2969                temp_byte = 0x40;
2970                rc = pci_bus_write_config_byte(pci_bus, devfn,
2971                                        PCI_LATENCY_TIMER, temp_byte);
2972
2973                /* Cache Line size */
2974                temp_byte = 0x08;
2975                rc = pci_bus_write_config_byte(pci_bus, devfn,
2976                                        PCI_CACHE_LINE_SIZE, temp_byte);
2977
2978                /* disable ROM base Address */
2979                temp_dword = 0x00L;
2980                rc = pci_bus_write_config_word(pci_bus, devfn,
2981                                        PCI_ROM_ADDRESS, temp_dword);
2982
2983                /* enable card */
2984                temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2985                                         *   PCI_COMMAND_MEMORY |
2986                                         *   PCI_COMMAND_MASTER |
2987                                         *   PCI_COMMAND_INVALIDATE |
2988                                         *   PCI_COMMAND_PARITY |
2989                                         *   PCI_COMMAND_SERR */
2990                rc = pci_bus_write_config_word (pci_bus, devfn,
2991                                        PCI_COMMAND, temp_word);
2992        } else {                /* End of Not-A-Bridge else */
2993                /* It's some strange type of PCI adapter (Cardbus?) */
2994                return DEVICE_TYPE_NOT_SUPPORTED;
2995        }
2996
2997        func->configured = 1;
2998
2999        return 0;
3000free_and_out:
3001        cpqhp_destroy_resource_list (&temp_resources);
3002
3003        return_resource(&(resources-> bus_head), hold_bus_node);
3004        return_resource(&(resources-> io_head), hold_IO_node);
3005        return_resource(&(resources-> mem_head), hold_mem_node);
3006        return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3007        return rc;
3008}
3009