linux/drivers/regulator/core.c
<<
>>
Prefs
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
  19#include <linux/err.h>
  20#include <linux/mutex.h>
  21#include <linux/suspend.h>
  22#include <linux/regulator/consumer.h>
  23#include <linux/regulator/driver.h>
  24#include <linux/regulator/machine.h>
  25
  26#define REGULATOR_VERSION "0.5"
  27
  28static DEFINE_MUTEX(regulator_list_mutex);
  29static LIST_HEAD(regulator_list);
  30static LIST_HEAD(regulator_map_list);
  31static int has_full_constraints;
  32
  33/*
  34 * struct regulator_map
  35 *
  36 * Used to provide symbolic supply names to devices.
  37 */
  38struct regulator_map {
  39        struct list_head list;
  40        const char *dev_name;   /* The dev_name() for the consumer */
  41        const char *supply;
  42        struct regulator_dev *regulator;
  43};
  44
  45/*
  46 * struct regulator
  47 *
  48 * One for each consumer device.
  49 */
  50struct regulator {
  51        struct device *dev;
  52        struct list_head list;
  53        int uA_load;
  54        int min_uV;
  55        int max_uV;
  56        char *supply_name;
  57        struct device_attribute dev_attr;
  58        struct regulator_dev *rdev;
  59};
  60
  61static int _regulator_is_enabled(struct regulator_dev *rdev);
  62static int _regulator_disable(struct regulator_dev *rdev);
  63static int _regulator_get_voltage(struct regulator_dev *rdev);
  64static int _regulator_get_current_limit(struct regulator_dev *rdev);
  65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  66static void _notifier_call_chain(struct regulator_dev *rdev,
  67                                  unsigned long event, void *data);
  68
  69/* gets the regulator for a given consumer device */
  70static struct regulator *get_device_regulator(struct device *dev)
  71{
  72        struct regulator *regulator = NULL;
  73        struct regulator_dev *rdev;
  74
  75        mutex_lock(&regulator_list_mutex);
  76        list_for_each_entry(rdev, &regulator_list, list) {
  77                mutex_lock(&rdev->mutex);
  78                list_for_each_entry(regulator, &rdev->consumer_list, list) {
  79                        if (regulator->dev == dev) {
  80                                mutex_unlock(&rdev->mutex);
  81                                mutex_unlock(&regulator_list_mutex);
  82                                return regulator;
  83                        }
  84                }
  85                mutex_unlock(&rdev->mutex);
  86        }
  87        mutex_unlock(&regulator_list_mutex);
  88        return NULL;
  89}
  90
  91/* Platform voltage constraint check */
  92static int regulator_check_voltage(struct regulator_dev *rdev,
  93                                   int *min_uV, int *max_uV)
  94{
  95        BUG_ON(*min_uV > *max_uV);
  96
  97        if (!rdev->constraints) {
  98                printk(KERN_ERR "%s: no constraints for %s\n", __func__,
  99                       rdev->desc->name);
 100                return -ENODEV;
 101        }
 102        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 103                printk(KERN_ERR "%s: operation not allowed for %s\n",
 104                       __func__, rdev->desc->name);
 105                return -EPERM;
 106        }
 107
 108        if (*max_uV > rdev->constraints->max_uV)
 109                *max_uV = rdev->constraints->max_uV;
 110        if (*min_uV < rdev->constraints->min_uV)
 111                *min_uV = rdev->constraints->min_uV;
 112
 113        if (*min_uV > *max_uV)
 114                return -EINVAL;
 115
 116        return 0;
 117}
 118
 119/* current constraint check */
 120static int regulator_check_current_limit(struct regulator_dev *rdev,
 121                                        int *min_uA, int *max_uA)
 122{
 123        BUG_ON(*min_uA > *max_uA);
 124
 125        if (!rdev->constraints) {
 126                printk(KERN_ERR "%s: no constraints for %s\n", __func__,
 127                       rdev->desc->name);
 128                return -ENODEV;
 129        }
 130        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 131                printk(KERN_ERR "%s: operation not allowed for %s\n",
 132                       __func__, rdev->desc->name);
 133                return -EPERM;
 134        }
 135
 136        if (*max_uA > rdev->constraints->max_uA)
 137                *max_uA = rdev->constraints->max_uA;
 138        if (*min_uA < rdev->constraints->min_uA)
 139                *min_uA = rdev->constraints->min_uA;
 140
 141        if (*min_uA > *max_uA)
 142                return -EINVAL;
 143
 144        return 0;
 145}
 146
 147/* operating mode constraint check */
 148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
 149{
 150        switch (mode) {
 151        case REGULATOR_MODE_FAST:
 152        case REGULATOR_MODE_NORMAL:
 153        case REGULATOR_MODE_IDLE:
 154        case REGULATOR_MODE_STANDBY:
 155                break;
 156        default:
 157                return -EINVAL;
 158        }
 159
 160        if (!rdev->constraints) {
 161                printk(KERN_ERR "%s: no constraints for %s\n", __func__,
 162                       rdev->desc->name);
 163                return -ENODEV;
 164        }
 165        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 166                printk(KERN_ERR "%s: operation not allowed for %s\n",
 167                       __func__, rdev->desc->name);
 168                return -EPERM;
 169        }
 170        if (!(rdev->constraints->valid_modes_mask & mode)) {
 171                printk(KERN_ERR "%s: invalid mode %x for %s\n",
 172                       __func__, mode, rdev->desc->name);
 173                return -EINVAL;
 174        }
 175        return 0;
 176}
 177
 178/* dynamic regulator mode switching constraint check */
 179static int regulator_check_drms(struct regulator_dev *rdev)
 180{
 181        if (!rdev->constraints) {
 182                printk(KERN_ERR "%s: no constraints for %s\n", __func__,
 183                       rdev->desc->name);
 184                return -ENODEV;
 185        }
 186        if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 187                printk(KERN_ERR "%s: operation not allowed for %s\n",
 188                       __func__, rdev->desc->name);
 189                return -EPERM;
 190        }
 191        return 0;
 192}
 193
 194static ssize_t device_requested_uA_show(struct device *dev,
 195                             struct device_attribute *attr, char *buf)
 196{
 197        struct regulator *regulator;
 198
 199        regulator = get_device_regulator(dev);
 200        if (regulator == NULL)
 201                return 0;
 202
 203        return sprintf(buf, "%d\n", regulator->uA_load);
 204}
 205
 206static ssize_t regulator_uV_show(struct device *dev,
 207                                struct device_attribute *attr, char *buf)
 208{
 209        struct regulator_dev *rdev = dev_get_drvdata(dev);
 210        ssize_t ret;
 211
 212        mutex_lock(&rdev->mutex);
 213        ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 214        mutex_unlock(&rdev->mutex);
 215
 216        return ret;
 217}
 218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 219
 220static ssize_t regulator_uA_show(struct device *dev,
 221                                struct device_attribute *attr, char *buf)
 222{
 223        struct regulator_dev *rdev = dev_get_drvdata(dev);
 224
 225        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 226}
 227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 228
 229static ssize_t regulator_name_show(struct device *dev,
 230                             struct device_attribute *attr, char *buf)
 231{
 232        struct regulator_dev *rdev = dev_get_drvdata(dev);
 233        const char *name;
 234
 235        if (rdev->constraints && rdev->constraints->name)
 236                name = rdev->constraints->name;
 237        else if (rdev->desc->name)
 238                name = rdev->desc->name;
 239        else
 240                name = "";
 241
 242        return sprintf(buf, "%s\n", name);
 243}
 244
 245static ssize_t regulator_print_opmode(char *buf, int mode)
 246{
 247        switch (mode) {
 248        case REGULATOR_MODE_FAST:
 249                return sprintf(buf, "fast\n");
 250        case REGULATOR_MODE_NORMAL:
 251                return sprintf(buf, "normal\n");
 252        case REGULATOR_MODE_IDLE:
 253                return sprintf(buf, "idle\n");
 254        case REGULATOR_MODE_STANDBY:
 255                return sprintf(buf, "standby\n");
 256        }
 257        return sprintf(buf, "unknown\n");
 258}
 259
 260static ssize_t regulator_opmode_show(struct device *dev,
 261                                    struct device_attribute *attr, char *buf)
 262{
 263        struct regulator_dev *rdev = dev_get_drvdata(dev);
 264
 265        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 266}
 267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 268
 269static ssize_t regulator_print_state(char *buf, int state)
 270{
 271        if (state > 0)
 272                return sprintf(buf, "enabled\n");
 273        else if (state == 0)
 274                return sprintf(buf, "disabled\n");
 275        else
 276                return sprintf(buf, "unknown\n");
 277}
 278
 279static ssize_t regulator_state_show(struct device *dev,
 280                                   struct device_attribute *attr, char *buf)
 281{
 282        struct regulator_dev *rdev = dev_get_drvdata(dev);
 283        ssize_t ret;
 284
 285        mutex_lock(&rdev->mutex);
 286        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 287        mutex_unlock(&rdev->mutex);
 288
 289        return ret;
 290}
 291static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 292
 293static ssize_t regulator_status_show(struct device *dev,
 294                                   struct device_attribute *attr, char *buf)
 295{
 296        struct regulator_dev *rdev = dev_get_drvdata(dev);
 297        int status;
 298        char *label;
 299
 300        status = rdev->desc->ops->get_status(rdev);
 301        if (status < 0)
 302                return status;
 303
 304        switch (status) {
 305        case REGULATOR_STATUS_OFF:
 306                label = "off";
 307                break;
 308        case REGULATOR_STATUS_ON:
 309                label = "on";
 310                break;
 311        case REGULATOR_STATUS_ERROR:
 312                label = "error";
 313                break;
 314        case REGULATOR_STATUS_FAST:
 315                label = "fast";
 316                break;
 317        case REGULATOR_STATUS_NORMAL:
 318                label = "normal";
 319                break;
 320        case REGULATOR_STATUS_IDLE:
 321                label = "idle";
 322                break;
 323        case REGULATOR_STATUS_STANDBY:
 324                label = "standby";
 325                break;
 326        default:
 327                return -ERANGE;
 328        }
 329
 330        return sprintf(buf, "%s\n", label);
 331}
 332static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 333
 334static ssize_t regulator_min_uA_show(struct device *dev,
 335                                    struct device_attribute *attr, char *buf)
 336{
 337        struct regulator_dev *rdev = dev_get_drvdata(dev);
 338
 339        if (!rdev->constraints)
 340                return sprintf(buf, "constraint not defined\n");
 341
 342        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 343}
 344static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 345
 346static ssize_t regulator_max_uA_show(struct device *dev,
 347                                    struct device_attribute *attr, char *buf)
 348{
 349        struct regulator_dev *rdev = dev_get_drvdata(dev);
 350
 351        if (!rdev->constraints)
 352                return sprintf(buf, "constraint not defined\n");
 353
 354        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 355}
 356static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 357
 358static ssize_t regulator_min_uV_show(struct device *dev,
 359                                    struct device_attribute *attr, char *buf)
 360{
 361        struct regulator_dev *rdev = dev_get_drvdata(dev);
 362
 363        if (!rdev->constraints)
 364                return sprintf(buf, "constraint not defined\n");
 365
 366        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 367}
 368static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 369
 370static ssize_t regulator_max_uV_show(struct device *dev,
 371                                    struct device_attribute *attr, char *buf)
 372{
 373        struct regulator_dev *rdev = dev_get_drvdata(dev);
 374
 375        if (!rdev->constraints)
 376                return sprintf(buf, "constraint not defined\n");
 377
 378        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 379}
 380static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 381
 382static ssize_t regulator_total_uA_show(struct device *dev,
 383                                      struct device_attribute *attr, char *buf)
 384{
 385        struct regulator_dev *rdev = dev_get_drvdata(dev);
 386        struct regulator *regulator;
 387        int uA = 0;
 388
 389        mutex_lock(&rdev->mutex);
 390        list_for_each_entry(regulator, &rdev->consumer_list, list)
 391            uA += regulator->uA_load;
 392        mutex_unlock(&rdev->mutex);
 393        return sprintf(buf, "%d\n", uA);
 394}
 395static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 396
 397static ssize_t regulator_num_users_show(struct device *dev,
 398                                      struct device_attribute *attr, char *buf)
 399{
 400        struct regulator_dev *rdev = dev_get_drvdata(dev);
 401        return sprintf(buf, "%d\n", rdev->use_count);
 402}
 403
 404static ssize_t regulator_type_show(struct device *dev,
 405                                  struct device_attribute *attr, char *buf)
 406{
 407        struct regulator_dev *rdev = dev_get_drvdata(dev);
 408
 409        switch (rdev->desc->type) {
 410        case REGULATOR_VOLTAGE:
 411                return sprintf(buf, "voltage\n");
 412        case REGULATOR_CURRENT:
 413                return sprintf(buf, "current\n");
 414        }
 415        return sprintf(buf, "unknown\n");
 416}
 417
 418static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 419                                struct device_attribute *attr, char *buf)
 420{
 421        struct regulator_dev *rdev = dev_get_drvdata(dev);
 422
 423        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 424}
 425static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 426                regulator_suspend_mem_uV_show, NULL);
 427
 428static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 429                                struct device_attribute *attr, char *buf)
 430{
 431        struct regulator_dev *rdev = dev_get_drvdata(dev);
 432
 433        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 434}
 435static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 436                regulator_suspend_disk_uV_show, NULL);
 437
 438static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 439                                struct device_attribute *attr, char *buf)
 440{
 441        struct regulator_dev *rdev = dev_get_drvdata(dev);
 442
 443        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 444}
 445static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 446                regulator_suspend_standby_uV_show, NULL);
 447
 448static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 449                                struct device_attribute *attr, char *buf)
 450{
 451        struct regulator_dev *rdev = dev_get_drvdata(dev);
 452
 453        return regulator_print_opmode(buf,
 454                rdev->constraints->state_mem.mode);
 455}
 456static DEVICE_ATTR(suspend_mem_mode, 0444,
 457                regulator_suspend_mem_mode_show, NULL);
 458
 459static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 460                                struct device_attribute *attr, char *buf)
 461{
 462        struct regulator_dev *rdev = dev_get_drvdata(dev);
 463
 464        return regulator_print_opmode(buf,
 465                rdev->constraints->state_disk.mode);
 466}
 467static DEVICE_ATTR(suspend_disk_mode, 0444,
 468                regulator_suspend_disk_mode_show, NULL);
 469
 470static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 471                                struct device_attribute *attr, char *buf)
 472{
 473        struct regulator_dev *rdev = dev_get_drvdata(dev);
 474
 475        return regulator_print_opmode(buf,
 476                rdev->constraints->state_standby.mode);
 477}
 478static DEVICE_ATTR(suspend_standby_mode, 0444,
 479                regulator_suspend_standby_mode_show, NULL);
 480
 481static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 482                                   struct device_attribute *attr, char *buf)
 483{
 484        struct regulator_dev *rdev = dev_get_drvdata(dev);
 485
 486        return regulator_print_state(buf,
 487                        rdev->constraints->state_mem.enabled);
 488}
 489static DEVICE_ATTR(suspend_mem_state, 0444,
 490                regulator_suspend_mem_state_show, NULL);
 491
 492static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 493                                   struct device_attribute *attr, char *buf)
 494{
 495        struct regulator_dev *rdev = dev_get_drvdata(dev);
 496
 497        return regulator_print_state(buf,
 498                        rdev->constraints->state_disk.enabled);
 499}
 500static DEVICE_ATTR(suspend_disk_state, 0444,
 501                regulator_suspend_disk_state_show, NULL);
 502
 503static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 504                                   struct device_attribute *attr, char *buf)
 505{
 506        struct regulator_dev *rdev = dev_get_drvdata(dev);
 507
 508        return regulator_print_state(buf,
 509                        rdev->constraints->state_standby.enabled);
 510}
 511static DEVICE_ATTR(suspend_standby_state, 0444,
 512                regulator_suspend_standby_state_show, NULL);
 513
 514
 515/*
 516 * These are the only attributes are present for all regulators.
 517 * Other attributes are a function of regulator functionality.
 518 */
 519static struct device_attribute regulator_dev_attrs[] = {
 520        __ATTR(name, 0444, regulator_name_show, NULL),
 521        __ATTR(num_users, 0444, regulator_num_users_show, NULL),
 522        __ATTR(type, 0444, regulator_type_show, NULL),
 523        __ATTR_NULL,
 524};
 525
 526static void regulator_dev_release(struct device *dev)
 527{
 528        struct regulator_dev *rdev = dev_get_drvdata(dev);
 529        kfree(rdev);
 530}
 531
 532static struct class regulator_class = {
 533        .name = "regulator",
 534        .dev_release = regulator_dev_release,
 535        .dev_attrs = regulator_dev_attrs,
 536};
 537
 538/* Calculate the new optimum regulator operating mode based on the new total
 539 * consumer load. All locks held by caller */
 540static void drms_uA_update(struct regulator_dev *rdev)
 541{
 542        struct regulator *sibling;
 543        int current_uA = 0, output_uV, input_uV, err;
 544        unsigned int mode;
 545
 546        err = regulator_check_drms(rdev);
 547        if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 548            !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
 549                return;
 550
 551        /* get output voltage */
 552        output_uV = rdev->desc->ops->get_voltage(rdev);
 553        if (output_uV <= 0)
 554                return;
 555
 556        /* get input voltage */
 557        if (rdev->supply && rdev->supply->desc->ops->get_voltage)
 558                input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
 559        else
 560                input_uV = rdev->constraints->input_uV;
 561        if (input_uV <= 0)
 562                return;
 563
 564        /* calc total requested load */
 565        list_for_each_entry(sibling, &rdev->consumer_list, list)
 566            current_uA += sibling->uA_load;
 567
 568        /* now get the optimum mode for our new total regulator load */
 569        mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 570                                                  output_uV, current_uA);
 571
 572        /* check the new mode is allowed */
 573        err = regulator_check_mode(rdev, mode);
 574        if (err == 0)
 575                rdev->desc->ops->set_mode(rdev, mode);
 576}
 577
 578static int suspend_set_state(struct regulator_dev *rdev,
 579        struct regulator_state *rstate)
 580{
 581        int ret = 0;
 582
 583        /* enable & disable are mandatory for suspend control */
 584        if (!rdev->desc->ops->set_suspend_enable ||
 585                !rdev->desc->ops->set_suspend_disable) {
 586                printk(KERN_ERR "%s: no way to set suspend state\n",
 587                        __func__);
 588                return -EINVAL;
 589        }
 590
 591        if (rstate->enabled)
 592                ret = rdev->desc->ops->set_suspend_enable(rdev);
 593        else
 594                ret = rdev->desc->ops->set_suspend_disable(rdev);
 595        if (ret < 0) {
 596                printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
 597                return ret;
 598        }
 599
 600        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 601                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 602                if (ret < 0) {
 603                        printk(KERN_ERR "%s: failed to set voltage\n",
 604                                __func__);
 605                        return ret;
 606                }
 607        }
 608
 609        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 610                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 611                if (ret < 0) {
 612                        printk(KERN_ERR "%s: failed to set mode\n", __func__);
 613                        return ret;
 614                }
 615        }
 616        return ret;
 617}
 618
 619/* locks held by caller */
 620static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 621{
 622        if (!rdev->constraints)
 623                return -EINVAL;
 624
 625        switch (state) {
 626        case PM_SUSPEND_STANDBY:
 627                return suspend_set_state(rdev,
 628                        &rdev->constraints->state_standby);
 629        case PM_SUSPEND_MEM:
 630                return suspend_set_state(rdev,
 631                        &rdev->constraints->state_mem);
 632        case PM_SUSPEND_MAX:
 633                return suspend_set_state(rdev,
 634                        &rdev->constraints->state_disk);
 635        default:
 636                return -EINVAL;
 637        }
 638}
 639
 640static void print_constraints(struct regulator_dev *rdev)
 641{
 642        struct regulation_constraints *constraints = rdev->constraints;
 643        char buf[80];
 644        int count;
 645
 646        if (rdev->desc->type == REGULATOR_VOLTAGE) {
 647                if (constraints->min_uV == constraints->max_uV)
 648                        count = sprintf(buf, "%d mV ",
 649                                        constraints->min_uV / 1000);
 650                else
 651                        count = sprintf(buf, "%d <--> %d mV ",
 652                                        constraints->min_uV / 1000,
 653                                        constraints->max_uV / 1000);
 654        } else {
 655                if (constraints->min_uA == constraints->max_uA)
 656                        count = sprintf(buf, "%d mA ",
 657                                        constraints->min_uA / 1000);
 658                else
 659                        count = sprintf(buf, "%d <--> %d mA ",
 660                                        constraints->min_uA / 1000,
 661                                        constraints->max_uA / 1000);
 662        }
 663        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 664                count += sprintf(buf + count, "fast ");
 665        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 666                count += sprintf(buf + count, "normal ");
 667        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 668                count += sprintf(buf + count, "idle ");
 669        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 670                count += sprintf(buf + count, "standby");
 671
 672        printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
 673}
 674
 675/**
 676 * set_machine_constraints - sets regulator constraints
 677 * @rdev: regulator source
 678 * @constraints: constraints to apply
 679 *
 680 * Allows platform initialisation code to define and constrain
 681 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 682 * Constraints *must* be set by platform code in order for some
 683 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 684 * set_mode.
 685 */
 686static int set_machine_constraints(struct regulator_dev *rdev,
 687        struct regulation_constraints *constraints)
 688{
 689        int ret = 0;
 690        const char *name;
 691        struct regulator_ops *ops = rdev->desc->ops;
 692
 693        if (constraints->name)
 694                name = constraints->name;
 695        else if (rdev->desc->name)
 696                name = rdev->desc->name;
 697        else
 698                name = "regulator";
 699
 700        /* constrain machine-level voltage specs to fit
 701         * the actual range supported by this regulator.
 702         */
 703        if (ops->list_voltage && rdev->desc->n_voltages) {
 704                int     count = rdev->desc->n_voltages;
 705                int     i;
 706                int     min_uV = INT_MAX;
 707                int     max_uV = INT_MIN;
 708                int     cmin = constraints->min_uV;
 709                int     cmax = constraints->max_uV;
 710
 711                /* it's safe to autoconfigure fixed-voltage supplies
 712                   and the constraints are used by list_voltage. */
 713                if (count == 1 && !cmin) {
 714                        cmin = 1;
 715                        cmax = INT_MAX;
 716                        constraints->min_uV = cmin;
 717                        constraints->max_uV = cmax;
 718                }
 719
 720                /* voltage constraints are optional */
 721                if ((cmin == 0) && (cmax == 0))
 722                        goto out;
 723
 724                /* else require explicit machine-level constraints */
 725                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 726                        pr_err("%s: %s '%s' voltage constraints\n",
 727                                       __func__, "invalid", name);
 728                        ret = -EINVAL;
 729                        goto out;
 730                }
 731
 732                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 733                for (i = 0; i < count; i++) {
 734                        int     value;
 735
 736                        value = ops->list_voltage(rdev, i);
 737                        if (value <= 0)
 738                                continue;
 739
 740                        /* maybe adjust [min_uV..max_uV] */
 741                        if (value >= cmin && value < min_uV)
 742                                min_uV = value;
 743                        if (value <= cmax && value > max_uV)
 744                                max_uV = value;
 745                }
 746
 747                /* final: [min_uV..max_uV] valid iff constraints valid */
 748                if (max_uV < min_uV) {
 749                        pr_err("%s: %s '%s' voltage constraints\n",
 750                                       __func__, "unsupportable", name);
 751                        ret = -EINVAL;
 752                        goto out;
 753                }
 754
 755                /* use regulator's subset of machine constraints */
 756                if (constraints->min_uV < min_uV) {
 757                        pr_debug("%s: override '%s' %s, %d -> %d\n",
 758                                       __func__, name, "min_uV",
 759                                        constraints->min_uV, min_uV);
 760                        constraints->min_uV = min_uV;
 761                }
 762                if (constraints->max_uV > max_uV) {
 763                        pr_debug("%s: override '%s' %s, %d -> %d\n",
 764                                       __func__, name, "max_uV",
 765                                        constraints->max_uV, max_uV);
 766                        constraints->max_uV = max_uV;
 767                }
 768        }
 769
 770        rdev->constraints = constraints;
 771
 772        /* do we need to apply the constraint voltage */
 773        if (rdev->constraints->apply_uV &&
 774                rdev->constraints->min_uV == rdev->constraints->max_uV &&
 775                ops->set_voltage) {
 776                ret = ops->set_voltage(rdev,
 777                        rdev->constraints->min_uV, rdev->constraints->max_uV);
 778                        if (ret < 0) {
 779                                printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
 780                                       __func__,
 781                                       rdev->constraints->min_uV, name);
 782                                rdev->constraints = NULL;
 783                                goto out;
 784                        }
 785        }
 786
 787        /* do we need to setup our suspend state */
 788        if (constraints->initial_state) {
 789                ret = suspend_prepare(rdev, constraints->initial_state);
 790                if (ret < 0) {
 791                        printk(KERN_ERR "%s: failed to set suspend state for %s\n",
 792                               __func__, name);
 793                        rdev->constraints = NULL;
 794                        goto out;
 795                }
 796        }
 797
 798        if (constraints->initial_mode) {
 799                if (!ops->set_mode) {
 800                        printk(KERN_ERR "%s: no set_mode operation for %s\n",
 801                               __func__, name);
 802                        ret = -EINVAL;
 803                        goto out;
 804                }
 805
 806                ret = ops->set_mode(rdev, constraints->initial_mode);
 807                if (ret < 0) {
 808                        printk(KERN_ERR
 809                               "%s: failed to set initial mode for %s: %d\n",
 810                               __func__, name, ret);
 811                        goto out;
 812                }
 813        }
 814
 815        /* If the constraints say the regulator should be on at this point
 816         * and we have control then make sure it is enabled.
 817         */
 818        if ((constraints->always_on || constraints->boot_on) && ops->enable) {
 819                ret = ops->enable(rdev);
 820                if (ret < 0) {
 821                        printk(KERN_ERR "%s: failed to enable %s\n",
 822                               __func__, name);
 823                        rdev->constraints = NULL;
 824                        goto out;
 825                }
 826        }
 827
 828        print_constraints(rdev);
 829out:
 830        return ret;
 831}
 832
 833/**
 834 * set_supply - set regulator supply regulator
 835 * @rdev: regulator name
 836 * @supply_rdev: supply regulator name
 837 *
 838 * Called by platform initialisation code to set the supply regulator for this
 839 * regulator. This ensures that a regulators supply will also be enabled by the
 840 * core if it's child is enabled.
 841 */
 842static int set_supply(struct regulator_dev *rdev,
 843        struct regulator_dev *supply_rdev)
 844{
 845        int err;
 846
 847        err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
 848                                "supply");
 849        if (err) {
 850                printk(KERN_ERR
 851                       "%s: could not add device link %s err %d\n",
 852                       __func__, supply_rdev->dev.kobj.name, err);
 853                       goto out;
 854        }
 855        rdev->supply = supply_rdev;
 856        list_add(&rdev->slist, &supply_rdev->supply_list);
 857out:
 858        return err;
 859}
 860
 861/**
 862 * set_consumer_device_supply: Bind a regulator to a symbolic supply
 863 * @rdev:         regulator source
 864 * @consumer_dev: device the supply applies to
 865 * @consumer_dev_name: dev_name() string for device supply applies to
 866 * @supply:       symbolic name for supply
 867 *
 868 * Allows platform initialisation code to map physical regulator
 869 * sources to symbolic names for supplies for use by devices.  Devices
 870 * should use these symbolic names to request regulators, avoiding the
 871 * need to provide board-specific regulator names as platform data.
 872 *
 873 * Only one of consumer_dev and consumer_dev_name may be specified.
 874 */
 875static int set_consumer_device_supply(struct regulator_dev *rdev,
 876        struct device *consumer_dev, const char *consumer_dev_name,
 877        const char *supply)
 878{
 879        struct regulator_map *node;
 880        int has_dev;
 881
 882        if (consumer_dev && consumer_dev_name)
 883                return -EINVAL;
 884
 885        if (!consumer_dev_name && consumer_dev)
 886                consumer_dev_name = dev_name(consumer_dev);
 887
 888        if (supply == NULL)
 889                return -EINVAL;
 890
 891        if (consumer_dev_name != NULL)
 892                has_dev = 1;
 893        else
 894                has_dev = 0;
 895
 896        list_for_each_entry(node, &regulator_map_list, list) {
 897                if (consumer_dev_name != node->dev_name)
 898                        continue;
 899                if (strcmp(node->supply, supply) != 0)
 900                        continue;
 901
 902                dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
 903                                dev_name(&node->regulator->dev),
 904                                node->regulator->desc->name,
 905                                supply,
 906                                dev_name(&rdev->dev), rdev->desc->name);
 907                return -EBUSY;
 908        }
 909
 910        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
 911        if (node == NULL)
 912                return -ENOMEM;
 913
 914        node->regulator = rdev;
 915        node->supply = supply;
 916
 917        if (has_dev) {
 918                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
 919                if (node->dev_name == NULL) {
 920                        kfree(node);
 921                        return -ENOMEM;
 922                }
 923        }
 924
 925        list_add(&node->list, &regulator_map_list);
 926        return 0;
 927}
 928
 929static void unset_consumer_device_supply(struct regulator_dev *rdev,
 930        const char *consumer_dev_name, struct device *consumer_dev)
 931{
 932        struct regulator_map *node, *n;
 933
 934        if (consumer_dev && !consumer_dev_name)
 935                consumer_dev_name = dev_name(consumer_dev);
 936
 937        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
 938                if (rdev != node->regulator)
 939                        continue;
 940
 941                if (consumer_dev_name && node->dev_name &&
 942                    strcmp(consumer_dev_name, node->dev_name))
 943                        continue;
 944
 945                list_del(&node->list);
 946                kfree(node->dev_name);
 947                kfree(node);
 948                return;
 949        }
 950}
 951
 952static void unset_regulator_supplies(struct regulator_dev *rdev)
 953{
 954        struct regulator_map *node, *n;
 955
 956        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
 957                if (rdev == node->regulator) {
 958                        list_del(&node->list);
 959                        kfree(node->dev_name);
 960                        kfree(node);
 961                        return;
 962                }
 963        }
 964}
 965
 966#define REG_STR_SIZE    32
 967
 968static struct regulator *create_regulator(struct regulator_dev *rdev,
 969                                          struct device *dev,
 970                                          const char *supply_name)
 971{
 972        struct regulator *regulator;
 973        char buf[REG_STR_SIZE];
 974        int err, size;
 975
 976        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
 977        if (regulator == NULL)
 978                return NULL;
 979
 980        mutex_lock(&rdev->mutex);
 981        regulator->rdev = rdev;
 982        list_add(&regulator->list, &rdev->consumer_list);
 983
 984        if (dev) {
 985                /* create a 'requested_microamps_name' sysfs entry */
 986                size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
 987                        supply_name);
 988                if (size >= REG_STR_SIZE)
 989                        goto overflow_err;
 990
 991                regulator->dev = dev;
 992                regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
 993                if (regulator->dev_attr.attr.name == NULL)
 994                        goto attr_name_err;
 995
 996                regulator->dev_attr.attr.owner = THIS_MODULE;
 997                regulator->dev_attr.attr.mode = 0444;
 998                regulator->dev_attr.show = device_requested_uA_show;
 999                err = device_create_file(dev, &regulator->dev_attr);
1000                if (err < 0) {
1001                        printk(KERN_WARNING "%s: could not add regulator_dev"
1002                                " load sysfs\n", __func__);
1003                        goto attr_name_err;
1004                }
1005
1006                /* also add a link to the device sysfs entry */
1007                size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008                                 dev->kobj.name, supply_name);
1009                if (size >= REG_STR_SIZE)
1010                        goto attr_err;
1011
1012                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013                if (regulator->supply_name == NULL)
1014                        goto attr_err;
1015
1016                err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017                                        buf);
1018                if (err) {
1019                        printk(KERN_WARNING
1020                               "%s: could not add device link %s err %d\n",
1021                               __func__, dev->kobj.name, err);
1022                        device_remove_file(dev, &regulator->dev_attr);
1023                        goto link_name_err;
1024                }
1025        }
1026        mutex_unlock(&rdev->mutex);
1027        return regulator;
1028link_name_err:
1029        kfree(regulator->supply_name);
1030attr_err:
1031        device_remove_file(regulator->dev, &regulator->dev_attr);
1032attr_name_err:
1033        kfree(regulator->dev_attr.attr.name);
1034overflow_err:
1035        list_del(&regulator->list);
1036        kfree(regulator);
1037        mutex_unlock(&rdev->mutex);
1038        return NULL;
1039}
1040
1041/* Internal regulator request function */
1042static struct regulator *_regulator_get(struct device *dev, const char *id,
1043                                        int exclusive)
1044{
1045        struct regulator_dev *rdev;
1046        struct regulator_map *map;
1047        struct regulator *regulator = ERR_PTR(-ENODEV);
1048        const char *devname = NULL;
1049        int ret;
1050
1051        if (id == NULL) {
1052                printk(KERN_ERR "regulator: get() with no identifier\n");
1053                return regulator;
1054        }
1055
1056        if (dev)
1057                devname = dev_name(dev);
1058
1059        mutex_lock(&regulator_list_mutex);
1060
1061        list_for_each_entry(map, &regulator_map_list, list) {
1062                /* If the mapping has a device set up it must match */
1063                if (map->dev_name &&
1064                    (!devname || strcmp(map->dev_name, devname)))
1065                        continue;
1066
1067                if (strcmp(map->supply, id) == 0) {
1068                        rdev = map->regulator;
1069                        goto found;
1070                }
1071        }
1072        mutex_unlock(&regulator_list_mutex);
1073        return regulator;
1074
1075found:
1076        if (rdev->exclusive) {
1077                regulator = ERR_PTR(-EPERM);
1078                goto out;
1079        }
1080
1081        if (exclusive && rdev->open_count) {
1082                regulator = ERR_PTR(-EBUSY);
1083                goto out;
1084        }
1085
1086        if (!try_module_get(rdev->owner))
1087                goto out;
1088
1089        regulator = create_regulator(rdev, dev, id);
1090        if (regulator == NULL) {
1091                regulator = ERR_PTR(-ENOMEM);
1092                module_put(rdev->owner);
1093        }
1094
1095        rdev->open_count++;
1096        if (exclusive) {
1097                rdev->exclusive = 1;
1098
1099                ret = _regulator_is_enabled(rdev);
1100                if (ret > 0)
1101                        rdev->use_count = 1;
1102                else
1103                        rdev->use_count = 0;
1104        }
1105
1106out:
1107        mutex_unlock(&regulator_list_mutex);
1108
1109        return regulator;
1110}
1111
1112/**
1113 * regulator_get - lookup and obtain a reference to a regulator.
1114 * @dev: device for regulator "consumer"
1115 * @id: Supply name or regulator ID.
1116 *
1117 * Returns a struct regulator corresponding to the regulator producer,
1118 * or IS_ERR() condition containing errno.
1119 *
1120 * Use of supply names configured via regulator_set_device_supply() is
1121 * strongly encouraged.  It is recommended that the supply name used
1122 * should match the name used for the supply and/or the relevant
1123 * device pins in the datasheet.
1124 */
1125struct regulator *regulator_get(struct device *dev, const char *id)
1126{
1127        return _regulator_get(dev, id, 0);
1128}
1129EXPORT_SYMBOL_GPL(regulator_get);
1130
1131/**
1132 * regulator_get_exclusive - obtain exclusive access to a regulator.
1133 * @dev: device for regulator "consumer"
1134 * @id: Supply name or regulator ID.
1135 *
1136 * Returns a struct regulator corresponding to the regulator producer,
1137 * or IS_ERR() condition containing errno.  Other consumers will be
1138 * unable to obtain this reference is held and the use count for the
1139 * regulator will be initialised to reflect the current state of the
1140 * regulator.
1141 *
1142 * This is intended for use by consumers which cannot tolerate shared
1143 * use of the regulator such as those which need to force the
1144 * regulator off for correct operation of the hardware they are
1145 * controlling.
1146 *
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged.  It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1151 */
1152struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153{
1154        return _regulator_get(dev, id, 1);
1155}
1156EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157
1158/**
1159 * regulator_put - "free" the regulator source
1160 * @regulator: regulator source
1161 *
1162 * Note: drivers must ensure that all regulator_enable calls made on this
1163 * regulator source are balanced by regulator_disable calls prior to calling
1164 * this function.
1165 */
1166void regulator_put(struct regulator *regulator)
1167{
1168        struct regulator_dev *rdev;
1169
1170        if (regulator == NULL || IS_ERR(regulator))
1171                return;
1172
1173        mutex_lock(&regulator_list_mutex);
1174        rdev = regulator->rdev;
1175
1176        /* remove any sysfs entries */
1177        if (regulator->dev) {
1178                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179                kfree(regulator->supply_name);
1180                device_remove_file(regulator->dev, &regulator->dev_attr);
1181                kfree(regulator->dev_attr.attr.name);
1182        }
1183        list_del(&regulator->list);
1184        kfree(regulator);
1185
1186        rdev->open_count--;
1187        rdev->exclusive = 0;
1188
1189        module_put(rdev->owner);
1190        mutex_unlock(&regulator_list_mutex);
1191}
1192EXPORT_SYMBOL_GPL(regulator_put);
1193
1194static int _regulator_can_change_status(struct regulator_dev *rdev)
1195{
1196        if (!rdev->constraints)
1197                return 0;
1198
1199        if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200                return 1;
1201        else
1202                return 0;
1203}
1204
1205/* locks held by regulator_enable() */
1206static int _regulator_enable(struct regulator_dev *rdev)
1207{
1208        int ret;
1209
1210        /* do we need to enable the supply regulator first */
1211        if (rdev->supply) {
1212                ret = _regulator_enable(rdev->supply);
1213                if (ret < 0) {
1214                        printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215                               __func__, rdev->desc->name, ret);
1216                        return ret;
1217                }
1218        }
1219
1220        /* check voltage and requested load before enabling */
1221        if (rdev->constraints &&
1222            (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223                drms_uA_update(rdev);
1224
1225        if (rdev->use_count == 0) {
1226                /* The regulator may on if it's not switchable or left on */
1227                ret = _regulator_is_enabled(rdev);
1228                if (ret == -EINVAL || ret == 0) {
1229                        if (!_regulator_can_change_status(rdev))
1230                                return -EPERM;
1231
1232                        if (rdev->desc->ops->enable) {
1233                                ret = rdev->desc->ops->enable(rdev);
1234                                if (ret < 0)
1235                                        return ret;
1236                        } else {
1237                                return -EINVAL;
1238                        }
1239                } else if (ret < 0) {
1240                        printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241                               __func__, rdev->desc->name, ret);
1242                        return ret;
1243                }
1244                /* Fallthrough on positive return values - already enabled */
1245        }
1246
1247        rdev->use_count++;
1248
1249        return 0;
1250}
1251
1252/**
1253 * regulator_enable - enable regulator output
1254 * @regulator: regulator source
1255 *
1256 * Request that the regulator be enabled with the regulator output at
1257 * the predefined voltage or current value.  Calls to regulator_enable()
1258 * must be balanced with calls to regulator_disable().
1259 *
1260 * NOTE: the output value can be set by other drivers, boot loader or may be
1261 * hardwired in the regulator.
1262 */
1263int regulator_enable(struct regulator *regulator)
1264{
1265        struct regulator_dev *rdev = regulator->rdev;
1266        int ret = 0;
1267
1268        mutex_lock(&rdev->mutex);
1269        ret = _regulator_enable(rdev);
1270        mutex_unlock(&rdev->mutex);
1271        return ret;
1272}
1273EXPORT_SYMBOL_GPL(regulator_enable);
1274
1275/* locks held by regulator_disable() */
1276static int _regulator_disable(struct regulator_dev *rdev)
1277{
1278        int ret = 0;
1279
1280        if (WARN(rdev->use_count <= 0,
1281                        "unbalanced disables for %s\n",
1282                        rdev->desc->name))
1283                return -EIO;
1284
1285        /* are we the last user and permitted to disable ? */
1286        if (rdev->use_count == 1 &&
1287            (rdev->constraints && !rdev->constraints->always_on)) {
1288
1289                /* we are last user */
1290                if (_regulator_can_change_status(rdev) &&
1291                    rdev->desc->ops->disable) {
1292                        ret = rdev->desc->ops->disable(rdev);
1293                        if (ret < 0) {
1294                                printk(KERN_ERR "%s: failed to disable %s\n",
1295                                       __func__, rdev->desc->name);
1296                                return ret;
1297                        }
1298                }
1299
1300                /* decrease our supplies ref count and disable if required */
1301                if (rdev->supply)
1302                        _regulator_disable(rdev->supply);
1303
1304                rdev->use_count = 0;
1305        } else if (rdev->use_count > 1) {
1306
1307                if (rdev->constraints &&
1308                        (rdev->constraints->valid_ops_mask &
1309                        REGULATOR_CHANGE_DRMS))
1310                        drms_uA_update(rdev);
1311
1312                rdev->use_count--;
1313        }
1314        return ret;
1315}
1316
1317/**
1318 * regulator_disable - disable regulator output
1319 * @regulator: regulator source
1320 *
1321 * Disable the regulator output voltage or current.  Calls to
1322 * regulator_enable() must be balanced with calls to
1323 * regulator_disable().
1324 *
1325 * NOTE: this will only disable the regulator output if no other consumer
1326 * devices have it enabled, the regulator device supports disabling and
1327 * machine constraints permit this operation.
1328 */
1329int regulator_disable(struct regulator *regulator)
1330{
1331        struct regulator_dev *rdev = regulator->rdev;
1332        int ret = 0;
1333
1334        mutex_lock(&rdev->mutex);
1335        ret = _regulator_disable(rdev);
1336        mutex_unlock(&rdev->mutex);
1337        return ret;
1338}
1339EXPORT_SYMBOL_GPL(regulator_disable);
1340
1341/* locks held by regulator_force_disable() */
1342static int _regulator_force_disable(struct regulator_dev *rdev)
1343{
1344        int ret = 0;
1345
1346        /* force disable */
1347        if (rdev->desc->ops->disable) {
1348                /* ah well, who wants to live forever... */
1349                ret = rdev->desc->ops->disable(rdev);
1350                if (ret < 0) {
1351                        printk(KERN_ERR "%s: failed to force disable %s\n",
1352                               __func__, rdev->desc->name);
1353                        return ret;
1354                }
1355                /* notify other consumers that power has been forced off */
1356                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1357                        NULL);
1358        }
1359
1360        /* decrease our supplies ref count and disable if required */
1361        if (rdev->supply)
1362                _regulator_disable(rdev->supply);
1363
1364        rdev->use_count = 0;
1365        return ret;
1366}
1367
1368/**
1369 * regulator_force_disable - force disable regulator output
1370 * @regulator: regulator source
1371 *
1372 * Forcibly disable the regulator output voltage or current.
1373 * NOTE: this *will* disable the regulator output even if other consumer
1374 * devices have it enabled. This should be used for situations when device
1375 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1376 */
1377int regulator_force_disable(struct regulator *regulator)
1378{
1379        int ret;
1380
1381        mutex_lock(&regulator->rdev->mutex);
1382        regulator->uA_load = 0;
1383        ret = _regulator_force_disable(regulator->rdev);
1384        mutex_unlock(&regulator->rdev->mutex);
1385        return ret;
1386}
1387EXPORT_SYMBOL_GPL(regulator_force_disable);
1388
1389static int _regulator_is_enabled(struct regulator_dev *rdev)
1390{
1391        /* sanity check */
1392        if (!rdev->desc->ops->is_enabled)
1393                return -EINVAL;
1394
1395        return rdev->desc->ops->is_enabled(rdev);
1396}
1397
1398/**
1399 * regulator_is_enabled - is the regulator output enabled
1400 * @regulator: regulator source
1401 *
1402 * Returns positive if the regulator driver backing the source/client
1403 * has requested that the device be enabled, zero if it hasn't, else a
1404 * negative errno code.
1405 *
1406 * Note that the device backing this regulator handle can have multiple
1407 * users, so it might be enabled even if regulator_enable() was never
1408 * called for this particular source.
1409 */
1410int regulator_is_enabled(struct regulator *regulator)
1411{
1412        int ret;
1413
1414        mutex_lock(&regulator->rdev->mutex);
1415        ret = _regulator_is_enabled(regulator->rdev);
1416        mutex_unlock(&regulator->rdev->mutex);
1417
1418        return ret;
1419}
1420EXPORT_SYMBOL_GPL(regulator_is_enabled);
1421
1422/**
1423 * regulator_count_voltages - count regulator_list_voltage() selectors
1424 * @regulator: regulator source
1425 *
1426 * Returns number of selectors, or negative errno.  Selectors are
1427 * numbered starting at zero, and typically correspond to bitfields
1428 * in hardware registers.
1429 */
1430int regulator_count_voltages(struct regulator *regulator)
1431{
1432        struct regulator_dev    *rdev = regulator->rdev;
1433
1434        return rdev->desc->n_voltages ? : -EINVAL;
1435}
1436EXPORT_SYMBOL_GPL(regulator_count_voltages);
1437
1438/**
1439 * regulator_list_voltage - enumerate supported voltages
1440 * @regulator: regulator source
1441 * @selector: identify voltage to list
1442 * Context: can sleep
1443 *
1444 * Returns a voltage that can be passed to @regulator_set_voltage(),
1445 * zero if this selector code can't be used on this sytem, or a
1446 * negative errno.
1447 */
1448int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1449{
1450        struct regulator_dev    *rdev = regulator->rdev;
1451        struct regulator_ops    *ops = rdev->desc->ops;
1452        int                     ret;
1453
1454        if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1455                return -EINVAL;
1456
1457        mutex_lock(&rdev->mutex);
1458        ret = ops->list_voltage(rdev, selector);
1459        mutex_unlock(&rdev->mutex);
1460
1461        if (ret > 0) {
1462                if (ret < rdev->constraints->min_uV)
1463                        ret = 0;
1464                else if (ret > rdev->constraints->max_uV)
1465                        ret = 0;
1466        }
1467
1468        return ret;
1469}
1470EXPORT_SYMBOL_GPL(regulator_list_voltage);
1471
1472/**
1473 * regulator_is_supported_voltage - check if a voltage range can be supported
1474 *
1475 * @regulator: Regulator to check.
1476 * @min_uV: Minimum required voltage in uV.
1477 * @max_uV: Maximum required voltage in uV.
1478 *
1479 * Returns a boolean or a negative error code.
1480 */
1481int regulator_is_supported_voltage(struct regulator *regulator,
1482                                   int min_uV, int max_uV)
1483{
1484        int i, voltages, ret;
1485
1486        ret = regulator_count_voltages(regulator);
1487        if (ret < 0)
1488                return ret;
1489        voltages = ret;
1490
1491        for (i = 0; i < voltages; i++) {
1492                ret = regulator_list_voltage(regulator, i);
1493
1494                if (ret >= min_uV && ret <= max_uV)
1495                        return 1;
1496        }
1497
1498        return 0;
1499}
1500
1501/**
1502 * regulator_set_voltage - set regulator output voltage
1503 * @regulator: regulator source
1504 * @min_uV: Minimum required voltage in uV
1505 * @max_uV: Maximum acceptable voltage in uV
1506 *
1507 * Sets a voltage regulator to the desired output voltage. This can be set
1508 * during any regulator state. IOW, regulator can be disabled or enabled.
1509 *
1510 * If the regulator is enabled then the voltage will change to the new value
1511 * immediately otherwise if the regulator is disabled the regulator will
1512 * output at the new voltage when enabled.
1513 *
1514 * NOTE: If the regulator is shared between several devices then the lowest
1515 * request voltage that meets the system constraints will be used.
1516 * Regulator system constraints must be set for this regulator before
1517 * calling this function otherwise this call will fail.
1518 */
1519int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1520{
1521        struct regulator_dev *rdev = regulator->rdev;
1522        int ret;
1523
1524        mutex_lock(&rdev->mutex);
1525
1526        /* sanity check */
1527        if (!rdev->desc->ops->set_voltage) {
1528                ret = -EINVAL;
1529                goto out;
1530        }
1531
1532        /* constraints check */
1533        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1534        if (ret < 0)
1535                goto out;
1536        regulator->min_uV = min_uV;
1537        regulator->max_uV = max_uV;
1538        ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1539
1540out:
1541        _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1542        mutex_unlock(&rdev->mutex);
1543        return ret;
1544}
1545EXPORT_SYMBOL_GPL(regulator_set_voltage);
1546
1547static int _regulator_get_voltage(struct regulator_dev *rdev)
1548{
1549        /* sanity check */
1550        if (rdev->desc->ops->get_voltage)
1551                return rdev->desc->ops->get_voltage(rdev);
1552        else
1553                return -EINVAL;
1554}
1555
1556/**
1557 * regulator_get_voltage - get regulator output voltage
1558 * @regulator: regulator source
1559 *
1560 * This returns the current regulator voltage in uV.
1561 *
1562 * NOTE: If the regulator is disabled it will return the voltage value. This
1563 * function should not be used to determine regulator state.
1564 */
1565int regulator_get_voltage(struct regulator *regulator)
1566{
1567        int ret;
1568
1569        mutex_lock(&regulator->rdev->mutex);
1570
1571        ret = _regulator_get_voltage(regulator->rdev);
1572
1573        mutex_unlock(&regulator->rdev->mutex);
1574
1575        return ret;
1576}
1577EXPORT_SYMBOL_GPL(regulator_get_voltage);
1578
1579/**
1580 * regulator_set_current_limit - set regulator output current limit
1581 * @regulator: regulator source
1582 * @min_uA: Minimuum supported current in uA
1583 * @max_uA: Maximum supported current in uA
1584 *
1585 * Sets current sink to the desired output current. This can be set during
1586 * any regulator state. IOW, regulator can be disabled or enabled.
1587 *
1588 * If the regulator is enabled then the current will change to the new value
1589 * immediately otherwise if the regulator is disabled the regulator will
1590 * output at the new current when enabled.
1591 *
1592 * NOTE: Regulator system constraints must be set for this regulator before
1593 * calling this function otherwise this call will fail.
1594 */
1595int regulator_set_current_limit(struct regulator *regulator,
1596                               int min_uA, int max_uA)
1597{
1598        struct regulator_dev *rdev = regulator->rdev;
1599        int ret;
1600
1601        mutex_lock(&rdev->mutex);
1602
1603        /* sanity check */
1604        if (!rdev->desc->ops->set_current_limit) {
1605                ret = -EINVAL;
1606                goto out;
1607        }
1608
1609        /* constraints check */
1610        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1611        if (ret < 0)
1612                goto out;
1613
1614        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1615out:
1616        mutex_unlock(&rdev->mutex);
1617        return ret;
1618}
1619EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1620
1621static int _regulator_get_current_limit(struct regulator_dev *rdev)
1622{
1623        int ret;
1624
1625        mutex_lock(&rdev->mutex);
1626
1627        /* sanity check */
1628        if (!rdev->desc->ops->get_current_limit) {
1629                ret = -EINVAL;
1630                goto out;
1631        }
1632
1633        ret = rdev->desc->ops->get_current_limit(rdev);
1634out:
1635        mutex_unlock(&rdev->mutex);
1636        return ret;
1637}
1638
1639/**
1640 * regulator_get_current_limit - get regulator output current
1641 * @regulator: regulator source
1642 *
1643 * This returns the current supplied by the specified current sink in uA.
1644 *
1645 * NOTE: If the regulator is disabled it will return the current value. This
1646 * function should not be used to determine regulator state.
1647 */
1648int regulator_get_current_limit(struct regulator *regulator)
1649{
1650        return _regulator_get_current_limit(regulator->rdev);
1651}
1652EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1653
1654/**
1655 * regulator_set_mode - set regulator operating mode
1656 * @regulator: regulator source
1657 * @mode: operating mode - one of the REGULATOR_MODE constants
1658 *
1659 * Set regulator operating mode to increase regulator efficiency or improve
1660 * regulation performance.
1661 *
1662 * NOTE: Regulator system constraints must be set for this regulator before
1663 * calling this function otherwise this call will fail.
1664 */
1665int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1666{
1667        struct regulator_dev *rdev = regulator->rdev;
1668        int ret;
1669
1670        mutex_lock(&rdev->mutex);
1671
1672        /* sanity check */
1673        if (!rdev->desc->ops->set_mode) {
1674                ret = -EINVAL;
1675                goto out;
1676        }
1677
1678        /* constraints check */
1679        ret = regulator_check_mode(rdev, mode);
1680        if (ret < 0)
1681                goto out;
1682
1683        ret = rdev->desc->ops->set_mode(rdev, mode);
1684out:
1685        mutex_unlock(&rdev->mutex);
1686        return ret;
1687}
1688EXPORT_SYMBOL_GPL(regulator_set_mode);
1689
1690static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1691{
1692        int ret;
1693
1694        mutex_lock(&rdev->mutex);
1695
1696        /* sanity check */
1697        if (!rdev->desc->ops->get_mode) {
1698                ret = -EINVAL;
1699                goto out;
1700        }
1701
1702        ret = rdev->desc->ops->get_mode(rdev);
1703out:
1704        mutex_unlock(&rdev->mutex);
1705        return ret;
1706}
1707
1708/**
1709 * regulator_get_mode - get regulator operating mode
1710 * @regulator: regulator source
1711 *
1712 * Get the current regulator operating mode.
1713 */
1714unsigned int regulator_get_mode(struct regulator *regulator)
1715{
1716        return _regulator_get_mode(regulator->rdev);
1717}
1718EXPORT_SYMBOL_GPL(regulator_get_mode);
1719
1720/**
1721 * regulator_set_optimum_mode - set regulator optimum operating mode
1722 * @regulator: regulator source
1723 * @uA_load: load current
1724 *
1725 * Notifies the regulator core of a new device load. This is then used by
1726 * DRMS (if enabled by constraints) to set the most efficient regulator
1727 * operating mode for the new regulator loading.
1728 *
1729 * Consumer devices notify their supply regulator of the maximum power
1730 * they will require (can be taken from device datasheet in the power
1731 * consumption tables) when they change operational status and hence power
1732 * state. Examples of operational state changes that can affect power
1733 * consumption are :-
1734 *
1735 *    o Device is opened / closed.
1736 *    o Device I/O is about to begin or has just finished.
1737 *    o Device is idling in between work.
1738 *
1739 * This information is also exported via sysfs to userspace.
1740 *
1741 * DRMS will sum the total requested load on the regulator and change
1742 * to the most efficient operating mode if platform constraints allow.
1743 *
1744 * Returns the new regulator mode or error.
1745 */
1746int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1747{
1748        struct regulator_dev *rdev = regulator->rdev;
1749        struct regulator *consumer;
1750        int ret, output_uV, input_uV, total_uA_load = 0;
1751        unsigned int mode;
1752
1753        mutex_lock(&rdev->mutex);
1754
1755        regulator->uA_load = uA_load;
1756        ret = regulator_check_drms(rdev);
1757        if (ret < 0)
1758                goto out;
1759        ret = -EINVAL;
1760
1761        /* sanity check */
1762        if (!rdev->desc->ops->get_optimum_mode)
1763                goto out;
1764
1765        /* get output voltage */
1766        output_uV = rdev->desc->ops->get_voltage(rdev);
1767        if (output_uV <= 0) {
1768                printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1769                        __func__, rdev->desc->name);
1770                goto out;
1771        }
1772
1773        /* get input voltage */
1774        if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1775                input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1776        else
1777                input_uV = rdev->constraints->input_uV;
1778        if (input_uV <= 0) {
1779                printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1780                        __func__, rdev->desc->name);
1781                goto out;
1782        }
1783
1784        /* calc total requested load for this regulator */
1785        list_for_each_entry(consumer, &rdev->consumer_list, list)
1786            total_uA_load += consumer->uA_load;
1787
1788        mode = rdev->desc->ops->get_optimum_mode(rdev,
1789                                                 input_uV, output_uV,
1790                                                 total_uA_load);
1791        ret = regulator_check_mode(rdev, mode);
1792        if (ret < 0) {
1793                printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1794                        " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1795                        total_uA_load, input_uV, output_uV);
1796                goto out;
1797        }
1798
1799        ret = rdev->desc->ops->set_mode(rdev, mode);
1800        if (ret < 0) {
1801                printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1802                        __func__, mode, rdev->desc->name);
1803                goto out;
1804        }
1805        ret = mode;
1806out:
1807        mutex_unlock(&rdev->mutex);
1808        return ret;
1809}
1810EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1811
1812/**
1813 * regulator_register_notifier - register regulator event notifier
1814 * @regulator: regulator source
1815 * @nb: notifier block
1816 *
1817 * Register notifier block to receive regulator events.
1818 */
1819int regulator_register_notifier(struct regulator *regulator,
1820                              struct notifier_block *nb)
1821{
1822        return blocking_notifier_chain_register(&regulator->rdev->notifier,
1823                                                nb);
1824}
1825EXPORT_SYMBOL_GPL(regulator_register_notifier);
1826
1827/**
1828 * regulator_unregister_notifier - unregister regulator event notifier
1829 * @regulator: regulator source
1830 * @nb: notifier block
1831 *
1832 * Unregister regulator event notifier block.
1833 */
1834int regulator_unregister_notifier(struct regulator *regulator,
1835                                struct notifier_block *nb)
1836{
1837        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1838                                                  nb);
1839}
1840EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1841
1842/* notify regulator consumers and downstream regulator consumers.
1843 * Note mutex must be held by caller.
1844 */
1845static void _notifier_call_chain(struct regulator_dev *rdev,
1846                                  unsigned long event, void *data)
1847{
1848        struct regulator_dev *_rdev;
1849
1850        /* call rdev chain first */
1851        blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1852
1853        /* now notify regulator we supply */
1854        list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1855          mutex_lock(&_rdev->mutex);
1856          _notifier_call_chain(_rdev, event, data);
1857          mutex_unlock(&_rdev->mutex);
1858        }
1859}
1860
1861/**
1862 * regulator_bulk_get - get multiple regulator consumers
1863 *
1864 * @dev:           Device to supply
1865 * @num_consumers: Number of consumers to register
1866 * @consumers:     Configuration of consumers; clients are stored here.
1867 *
1868 * @return 0 on success, an errno on failure.
1869 *
1870 * This helper function allows drivers to get several regulator
1871 * consumers in one operation.  If any of the regulators cannot be
1872 * acquired then any regulators that were allocated will be freed
1873 * before returning to the caller.
1874 */
1875int regulator_bulk_get(struct device *dev, int num_consumers,
1876                       struct regulator_bulk_data *consumers)
1877{
1878        int i;
1879        int ret;
1880
1881        for (i = 0; i < num_consumers; i++)
1882                consumers[i].consumer = NULL;
1883
1884        for (i = 0; i < num_consumers; i++) {
1885                consumers[i].consumer = regulator_get(dev,
1886                                                      consumers[i].supply);
1887                if (IS_ERR(consumers[i].consumer)) {
1888                        dev_err(dev, "Failed to get supply '%s'\n",
1889                                consumers[i].supply);
1890                        ret = PTR_ERR(consumers[i].consumer);
1891                        consumers[i].consumer = NULL;
1892                        goto err;
1893                }
1894        }
1895
1896        return 0;
1897
1898err:
1899        for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1900                regulator_put(consumers[i].consumer);
1901
1902        return ret;
1903}
1904EXPORT_SYMBOL_GPL(regulator_bulk_get);
1905
1906/**
1907 * regulator_bulk_enable - enable multiple regulator consumers
1908 *
1909 * @num_consumers: Number of consumers
1910 * @consumers:     Consumer data; clients are stored here.
1911 * @return         0 on success, an errno on failure
1912 *
1913 * This convenience API allows consumers to enable multiple regulator
1914 * clients in a single API call.  If any consumers cannot be enabled
1915 * then any others that were enabled will be disabled again prior to
1916 * return.
1917 */
1918int regulator_bulk_enable(int num_consumers,
1919                          struct regulator_bulk_data *consumers)
1920{
1921        int i;
1922        int ret;
1923
1924        for (i = 0; i < num_consumers; i++) {
1925                ret = regulator_enable(consumers[i].consumer);
1926                if (ret != 0)
1927                        goto err;
1928        }
1929
1930        return 0;
1931
1932err:
1933        printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1934        for (i = 0; i < num_consumers; i++)
1935                regulator_disable(consumers[i].consumer);
1936
1937        return ret;
1938}
1939EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1940
1941/**
1942 * regulator_bulk_disable - disable multiple regulator consumers
1943 *
1944 * @num_consumers: Number of consumers
1945 * @consumers:     Consumer data; clients are stored here.
1946 * @return         0 on success, an errno on failure
1947 *
1948 * This convenience API allows consumers to disable multiple regulator
1949 * clients in a single API call.  If any consumers cannot be enabled
1950 * then any others that were disabled will be disabled again prior to
1951 * return.
1952 */
1953int regulator_bulk_disable(int num_consumers,
1954                           struct regulator_bulk_data *consumers)
1955{
1956        int i;
1957        int ret;
1958
1959        for (i = 0; i < num_consumers; i++) {
1960                ret = regulator_disable(consumers[i].consumer);
1961                if (ret != 0)
1962                        goto err;
1963        }
1964
1965        return 0;
1966
1967err:
1968        printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1969        for (i = 0; i < num_consumers; i++)
1970                regulator_enable(consumers[i].consumer);
1971
1972        return ret;
1973}
1974EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1975
1976/**
1977 * regulator_bulk_free - free multiple regulator consumers
1978 *
1979 * @num_consumers: Number of consumers
1980 * @consumers:     Consumer data; clients are stored here.
1981 *
1982 * This convenience API allows consumers to free multiple regulator
1983 * clients in a single API call.
1984 */
1985void regulator_bulk_free(int num_consumers,
1986                         struct regulator_bulk_data *consumers)
1987{
1988        int i;
1989
1990        for (i = 0; i < num_consumers; i++) {
1991                regulator_put(consumers[i].consumer);
1992                consumers[i].consumer = NULL;
1993        }
1994}
1995EXPORT_SYMBOL_GPL(regulator_bulk_free);
1996
1997/**
1998 * regulator_notifier_call_chain - call regulator event notifier
1999 * @rdev: regulator source
2000 * @event: notifier block
2001 * @data: callback-specific data.
2002 *
2003 * Called by regulator drivers to notify clients a regulator event has
2004 * occurred. We also notify regulator clients downstream.
2005 * Note lock must be held by caller.
2006 */
2007int regulator_notifier_call_chain(struct regulator_dev *rdev,
2008                                  unsigned long event, void *data)
2009{
2010        _notifier_call_chain(rdev, event, data);
2011        return NOTIFY_DONE;
2012
2013}
2014EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2015
2016/**
2017 * regulator_mode_to_status - convert a regulator mode into a status
2018 *
2019 * @mode: Mode to convert
2020 *
2021 * Convert a regulator mode into a status.
2022 */
2023int regulator_mode_to_status(unsigned int mode)
2024{
2025        switch (mode) {
2026        case REGULATOR_MODE_FAST:
2027                return REGULATOR_STATUS_FAST;
2028        case REGULATOR_MODE_NORMAL:
2029                return REGULATOR_STATUS_NORMAL;
2030        case REGULATOR_MODE_IDLE:
2031                return REGULATOR_STATUS_IDLE;
2032        case REGULATOR_STATUS_STANDBY:
2033                return REGULATOR_STATUS_STANDBY;
2034        default:
2035                return 0;
2036        }
2037}
2038EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2039
2040/*
2041 * To avoid cluttering sysfs (and memory) with useless state, only
2042 * create attributes that can be meaningfully displayed.
2043 */
2044static int add_regulator_attributes(struct regulator_dev *rdev)
2045{
2046        struct device           *dev = &rdev->dev;
2047        struct regulator_ops    *ops = rdev->desc->ops;
2048        int                     status = 0;
2049
2050        /* some attributes need specific methods to be displayed */
2051        if (ops->get_voltage) {
2052                status = device_create_file(dev, &dev_attr_microvolts);
2053                if (status < 0)
2054                        return status;
2055        }
2056        if (ops->get_current_limit) {
2057                status = device_create_file(dev, &dev_attr_microamps);
2058                if (status < 0)
2059                        return status;
2060        }
2061        if (ops->get_mode) {
2062                status = device_create_file(dev, &dev_attr_opmode);
2063                if (status < 0)
2064                        return status;
2065        }
2066        if (ops->is_enabled) {
2067                status = device_create_file(dev, &dev_attr_state);
2068                if (status < 0)
2069                        return status;
2070        }
2071        if (ops->get_status) {
2072                status = device_create_file(dev, &dev_attr_status);
2073                if (status < 0)
2074                        return status;
2075        }
2076
2077        /* some attributes are type-specific */
2078        if (rdev->desc->type == REGULATOR_CURRENT) {
2079                status = device_create_file(dev, &dev_attr_requested_microamps);
2080                if (status < 0)
2081                        return status;
2082        }
2083
2084        /* all the other attributes exist to support constraints;
2085         * don't show them if there are no constraints, or if the
2086         * relevant supporting methods are missing.
2087         */
2088        if (!rdev->constraints)
2089                return status;
2090
2091        /* constraints need specific supporting methods */
2092        if (ops->set_voltage) {
2093                status = device_create_file(dev, &dev_attr_min_microvolts);
2094                if (status < 0)
2095                        return status;
2096                status = device_create_file(dev, &dev_attr_max_microvolts);
2097                if (status < 0)
2098                        return status;
2099        }
2100        if (ops->set_current_limit) {
2101                status = device_create_file(dev, &dev_attr_min_microamps);
2102                if (status < 0)
2103                        return status;
2104                status = device_create_file(dev, &dev_attr_max_microamps);
2105                if (status < 0)
2106                        return status;
2107        }
2108
2109        /* suspend mode constraints need multiple supporting methods */
2110        if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2111                return status;
2112
2113        status = device_create_file(dev, &dev_attr_suspend_standby_state);
2114        if (status < 0)
2115                return status;
2116        status = device_create_file(dev, &dev_attr_suspend_mem_state);
2117        if (status < 0)
2118                return status;
2119        status = device_create_file(dev, &dev_attr_suspend_disk_state);
2120        if (status < 0)
2121                return status;
2122
2123        if (ops->set_suspend_voltage) {
2124                status = device_create_file(dev,
2125                                &dev_attr_suspend_standby_microvolts);
2126                if (status < 0)
2127                        return status;
2128                status = device_create_file(dev,
2129                                &dev_attr_suspend_mem_microvolts);
2130                if (status < 0)
2131                        return status;
2132                status = device_create_file(dev,
2133                                &dev_attr_suspend_disk_microvolts);
2134                if (status < 0)
2135                        return status;
2136        }
2137
2138        if (ops->set_suspend_mode) {
2139                status = device_create_file(dev,
2140                                &dev_attr_suspend_standby_mode);
2141                if (status < 0)
2142                        return status;
2143                status = device_create_file(dev,
2144                                &dev_attr_suspend_mem_mode);
2145                if (status < 0)
2146                        return status;
2147                status = device_create_file(dev,
2148                                &dev_attr_suspend_disk_mode);
2149                if (status < 0)
2150                        return status;
2151        }
2152
2153        return status;
2154}
2155
2156/**
2157 * regulator_register - register regulator
2158 * @regulator_desc: regulator to register
2159 * @dev: struct device for the regulator
2160 * @init_data: platform provided init data, passed through by driver
2161 * @driver_data: private regulator data
2162 *
2163 * Called by regulator drivers to register a regulator.
2164 * Returns 0 on success.
2165 */
2166struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2167        struct device *dev, struct regulator_init_data *init_data,
2168        void *driver_data)
2169{
2170        static atomic_t regulator_no = ATOMIC_INIT(0);
2171        struct regulator_dev *rdev;
2172        int ret, i;
2173
2174        if (regulator_desc == NULL)
2175                return ERR_PTR(-EINVAL);
2176
2177        if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2178                return ERR_PTR(-EINVAL);
2179
2180        if (regulator_desc->type != REGULATOR_VOLTAGE &&
2181            regulator_desc->type != REGULATOR_CURRENT)
2182                return ERR_PTR(-EINVAL);
2183
2184        if (!init_data)
2185                return ERR_PTR(-EINVAL);
2186
2187        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2188        if (rdev == NULL)
2189                return ERR_PTR(-ENOMEM);
2190
2191        mutex_lock(&regulator_list_mutex);
2192
2193        mutex_init(&rdev->mutex);
2194        rdev->reg_data = driver_data;
2195        rdev->owner = regulator_desc->owner;
2196        rdev->desc = regulator_desc;
2197        INIT_LIST_HEAD(&rdev->consumer_list);
2198        INIT_LIST_HEAD(&rdev->supply_list);
2199        INIT_LIST_HEAD(&rdev->list);
2200        INIT_LIST_HEAD(&rdev->slist);
2201        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2202
2203        /* preform any regulator specific init */
2204        if (init_data->regulator_init) {
2205                ret = init_data->regulator_init(rdev->reg_data);
2206                if (ret < 0)
2207                        goto clean;
2208        }
2209
2210        /* register with sysfs */
2211        rdev->dev.class = &regulator_class;
2212        rdev->dev.parent = dev;
2213        dev_set_name(&rdev->dev, "regulator.%d",
2214                     atomic_inc_return(&regulator_no) - 1);
2215        ret = device_register(&rdev->dev);
2216        if (ret != 0)
2217                goto clean;
2218
2219        dev_set_drvdata(&rdev->dev, rdev);
2220
2221        /* set regulator constraints */
2222        ret = set_machine_constraints(rdev, &init_data->constraints);
2223        if (ret < 0)
2224                goto scrub;
2225
2226        /* add attributes supported by this regulator */
2227        ret = add_regulator_attributes(rdev);
2228        if (ret < 0)
2229                goto scrub;
2230
2231        /* set supply regulator if it exists */
2232        if (init_data->supply_regulator_dev) {
2233                ret = set_supply(rdev,
2234                        dev_get_drvdata(init_data->supply_regulator_dev));
2235                if (ret < 0)
2236                        goto scrub;
2237        }
2238
2239        /* add consumers devices */
2240        for (i = 0; i < init_data->num_consumer_supplies; i++) {
2241                ret = set_consumer_device_supply(rdev,
2242                        init_data->consumer_supplies[i].dev,
2243                        init_data->consumer_supplies[i].dev_name,
2244                        init_data->consumer_supplies[i].supply);
2245                if (ret < 0) {
2246                        for (--i; i >= 0; i--)
2247                                unset_consumer_device_supply(rdev,
2248                                    init_data->consumer_supplies[i].dev_name,
2249                                    init_data->consumer_supplies[i].dev);
2250                        goto scrub;
2251                }
2252        }
2253
2254        list_add(&rdev->list, &regulator_list);
2255out:
2256        mutex_unlock(&regulator_list_mutex);
2257        return rdev;
2258
2259scrub:
2260        device_unregister(&rdev->dev);
2261        /* device core frees rdev */
2262        rdev = ERR_PTR(ret);
2263        goto out;
2264
2265clean:
2266        kfree(rdev);
2267        rdev = ERR_PTR(ret);
2268        goto out;
2269}
2270EXPORT_SYMBOL_GPL(regulator_register);
2271
2272/**
2273 * regulator_unregister - unregister regulator
2274 * @rdev: regulator to unregister
2275 *
2276 * Called by regulator drivers to unregister a regulator.
2277 */
2278void regulator_unregister(struct regulator_dev *rdev)
2279{
2280        if (rdev == NULL)
2281                return;
2282
2283        mutex_lock(&regulator_list_mutex);
2284        WARN_ON(rdev->open_count);
2285        unset_regulator_supplies(rdev);
2286        list_del(&rdev->list);
2287        if (rdev->supply)
2288                sysfs_remove_link(&rdev->dev.kobj, "supply");
2289        device_unregister(&rdev->dev);
2290        mutex_unlock(&regulator_list_mutex);
2291}
2292EXPORT_SYMBOL_GPL(regulator_unregister);
2293
2294/**
2295 * regulator_suspend_prepare - prepare regulators for system wide suspend
2296 * @state: system suspend state
2297 *
2298 * Configure each regulator with it's suspend operating parameters for state.
2299 * This will usually be called by machine suspend code prior to supending.
2300 */
2301int regulator_suspend_prepare(suspend_state_t state)
2302{
2303        struct regulator_dev *rdev;
2304        int ret = 0;
2305
2306        /* ON is handled by regulator active state */
2307        if (state == PM_SUSPEND_ON)
2308                return -EINVAL;
2309
2310        mutex_lock(&regulator_list_mutex);
2311        list_for_each_entry(rdev, &regulator_list, list) {
2312
2313                mutex_lock(&rdev->mutex);
2314                ret = suspend_prepare(rdev, state);
2315                mutex_unlock(&rdev->mutex);
2316
2317                if (ret < 0) {
2318                        printk(KERN_ERR "%s: failed to prepare %s\n",
2319                                __func__, rdev->desc->name);
2320                        goto out;
2321                }
2322        }
2323out:
2324        mutex_unlock(&regulator_list_mutex);
2325        return ret;
2326}
2327EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2328
2329/**
2330 * regulator_has_full_constraints - the system has fully specified constraints
2331 *
2332 * Calling this function will cause the regulator API to disable all
2333 * regulators which have a zero use count and don't have an always_on
2334 * constraint in a late_initcall.
2335 *
2336 * The intention is that this will become the default behaviour in a
2337 * future kernel release so users are encouraged to use this facility
2338 * now.
2339 */
2340void regulator_has_full_constraints(void)
2341{
2342        has_full_constraints = 1;
2343}
2344EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2345
2346/**
2347 * rdev_get_drvdata - get rdev regulator driver data
2348 * @rdev: regulator
2349 *
2350 * Get rdev regulator driver private data. This call can be used in the
2351 * regulator driver context.
2352 */
2353void *rdev_get_drvdata(struct regulator_dev *rdev)
2354{
2355        return rdev->reg_data;
2356}
2357EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2358
2359/**
2360 * regulator_get_drvdata - get regulator driver data
2361 * @regulator: regulator
2362 *
2363 * Get regulator driver private data. This call can be used in the consumer
2364 * driver context when non API regulator specific functions need to be called.
2365 */
2366void *regulator_get_drvdata(struct regulator *regulator)
2367{
2368        return regulator->rdev->reg_data;
2369}
2370EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2371
2372/**
2373 * regulator_set_drvdata - set regulator driver data
2374 * @regulator: regulator
2375 * @data: data
2376 */
2377void regulator_set_drvdata(struct regulator *regulator, void *data)
2378{
2379        regulator->rdev->reg_data = data;
2380}
2381EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2382
2383/**
2384 * regulator_get_id - get regulator ID
2385 * @rdev: regulator
2386 */
2387int rdev_get_id(struct regulator_dev *rdev)
2388{
2389        return rdev->desc->id;
2390}
2391EXPORT_SYMBOL_GPL(rdev_get_id);
2392
2393struct device *rdev_get_dev(struct regulator_dev *rdev)
2394{
2395        return &rdev->dev;
2396}
2397EXPORT_SYMBOL_GPL(rdev_get_dev);
2398
2399void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2400{
2401        return reg_init_data->driver_data;
2402}
2403EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2404
2405static int __init regulator_init(void)
2406{
2407        printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2408        return class_register(&regulator_class);
2409}
2410
2411/* init early to allow our consumers to complete system booting */
2412core_initcall(regulator_init);
2413
2414static int __init regulator_init_complete(void)
2415{
2416        struct regulator_dev *rdev;
2417        struct regulator_ops *ops;
2418        struct regulation_constraints *c;
2419        int enabled, ret;
2420        const char *name;
2421
2422        mutex_lock(&regulator_list_mutex);
2423
2424        /* If we have a full configuration then disable any regulators
2425         * which are not in use or always_on.  This will become the
2426         * default behaviour in the future.
2427         */
2428        list_for_each_entry(rdev, &regulator_list, list) {
2429                ops = rdev->desc->ops;
2430                c = rdev->constraints;
2431
2432                if (c && c->name)
2433                        name = c->name;
2434                else if (rdev->desc->name)
2435                        name = rdev->desc->name;
2436                else
2437                        name = "regulator";
2438
2439                if (!ops->disable || (c && c->always_on))
2440                        continue;
2441
2442                mutex_lock(&rdev->mutex);
2443
2444                if (rdev->use_count)
2445                        goto unlock;
2446
2447                /* If we can't read the status assume it's on. */
2448                if (ops->is_enabled)
2449                        enabled = ops->is_enabled(rdev);
2450                else
2451                        enabled = 1;
2452
2453                if (!enabled)
2454                        goto unlock;
2455
2456                if (has_full_constraints) {
2457                        /* We log since this may kill the system if it
2458                         * goes wrong. */
2459                        printk(KERN_INFO "%s: disabling %s\n",
2460                               __func__, name);
2461                        ret = ops->disable(rdev);
2462                        if (ret != 0) {
2463                                printk(KERN_ERR
2464                                       "%s: couldn't disable %s: %d\n",
2465                                       __func__, name, ret);
2466                        }
2467                } else {
2468                        /* The intention is that in future we will
2469                         * assume that full constraints are provided
2470                         * so warn even if we aren't going to do
2471                         * anything here.
2472                         */
2473                        printk(KERN_WARNING
2474                               "%s: incomplete constraints, leaving %s on\n",
2475                               __func__, name);
2476                }
2477
2478unlock:
2479                mutex_unlock(&rdev->mutex);
2480        }
2481
2482        mutex_unlock(&regulator_list_mutex);
2483
2484        return 0;
2485}
2486late_initcall(regulator_init_complete);
2487