linux/drivers/rtc/rtc-mxc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
   3 *
   4 * The code contained herein is licensed under the GNU General Public
   5 * License. You may obtain a copy of the GNU General Public License
   6 * Version 2 or later at the following locations:
   7 *
   8 * http://www.opensource.org/licenses/gpl-license.html
   9 * http://www.gnu.org/copyleft/gpl.html
  10 */
  11
  12#include <linux/io.h>
  13#include <linux/rtc.h>
  14#include <linux/module.h>
  15#include <linux/interrupt.h>
  16#include <linux/platform_device.h>
  17#include <linux/clk.h>
  18
  19#include <mach/hardware.h>
  20
  21#define RTC_INPUT_CLK_32768HZ   (0x00 << 5)
  22#define RTC_INPUT_CLK_32000HZ   (0x01 << 5)
  23#define RTC_INPUT_CLK_38400HZ   (0x02 << 5)
  24
  25#define RTC_SW_BIT      (1 << 0)
  26#define RTC_ALM_BIT     (1 << 2)
  27#define RTC_1HZ_BIT     (1 << 4)
  28#define RTC_2HZ_BIT     (1 << 7)
  29#define RTC_SAM0_BIT    (1 << 8)
  30#define RTC_SAM1_BIT    (1 << 9)
  31#define RTC_SAM2_BIT    (1 << 10)
  32#define RTC_SAM3_BIT    (1 << 11)
  33#define RTC_SAM4_BIT    (1 << 12)
  34#define RTC_SAM5_BIT    (1 << 13)
  35#define RTC_SAM6_BIT    (1 << 14)
  36#define RTC_SAM7_BIT    (1 << 15)
  37#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  38                         RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  39                         RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  40
  41#define RTC_ENABLE_BIT  (1 << 7)
  42
  43#define MAX_PIE_NUM     9
  44#define MAX_PIE_FREQ    512
  45static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
  46        { 2,            RTC_2HZ_BIT },
  47        { 4,            RTC_SAM0_BIT },
  48        { 8,            RTC_SAM1_BIT },
  49        { 16,           RTC_SAM2_BIT },
  50        { 32,           RTC_SAM3_BIT },
  51        { 64,           RTC_SAM4_BIT },
  52        { 128,          RTC_SAM5_BIT },
  53        { 256,          RTC_SAM6_BIT },
  54        { MAX_PIE_FREQ, RTC_SAM7_BIT },
  55};
  56
  57/* Those are the bits from a classic RTC we want to mimic */
  58#define RTC_IRQF        0x80    /* any of the following 3 is active */
  59#define RTC_PF          0x40    /* Periodic interrupt */
  60#define RTC_AF          0x20    /* Alarm interrupt */
  61#define RTC_UF          0x10    /* Update interrupt for 1Hz RTC */
  62
  63#define MXC_RTC_TIME    0
  64#define MXC_RTC_ALARM   1
  65
  66#define RTC_HOURMIN     0x00    /*  32bit rtc hour/min counter reg */
  67#define RTC_SECOND      0x04    /*  32bit rtc seconds counter reg */
  68#define RTC_ALRM_HM     0x08    /*  32bit rtc alarm hour/min reg */
  69#define RTC_ALRM_SEC    0x0C    /*  32bit rtc alarm seconds reg */
  70#define RTC_RTCCTL      0x10    /*  32bit rtc control reg */
  71#define RTC_RTCISR      0x14    /*  32bit rtc interrupt status reg */
  72#define RTC_RTCIENR     0x18    /*  32bit rtc interrupt enable reg */
  73#define RTC_STPWCH      0x1C    /*  32bit rtc stopwatch min reg */
  74#define RTC_DAYR        0x20    /*  32bit rtc days counter reg */
  75#define RTC_DAYALARM    0x24    /*  32bit rtc day alarm reg */
  76#define RTC_TEST1       0x28    /*  32bit rtc test reg 1 */
  77#define RTC_TEST2       0x2C    /*  32bit rtc test reg 2 */
  78#define RTC_TEST3       0x30    /*  32bit rtc test reg 3 */
  79
  80struct rtc_plat_data {
  81        struct rtc_device *rtc;
  82        void __iomem *ioaddr;
  83        int irq;
  84        struct clk *clk;
  85        unsigned int irqen;
  86        int alrm_sec;
  87        int alrm_min;
  88        int alrm_hour;
  89        int alrm_mday;
  90        struct timespec mxc_rtc_delta;
  91        struct rtc_time g_rtc_alarm;
  92};
  93
  94/*
  95 * This function is used to obtain the RTC time or the alarm value in
  96 * second.
  97 */
  98static u32 get_alarm_or_time(struct device *dev, int time_alarm)
  99{
 100        struct platform_device *pdev = to_platform_device(dev);
 101        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 102        void __iomem *ioaddr = pdata->ioaddr;
 103        u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 104
 105        switch (time_alarm) {
 106        case MXC_RTC_TIME:
 107                day = readw(ioaddr + RTC_DAYR);
 108                hr_min = readw(ioaddr + RTC_HOURMIN);
 109                sec = readw(ioaddr + RTC_SECOND);
 110                break;
 111        case MXC_RTC_ALARM:
 112                day = readw(ioaddr + RTC_DAYALARM);
 113                hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
 114                sec = readw(ioaddr + RTC_ALRM_SEC);
 115                break;
 116        }
 117
 118        hr = hr_min >> 8;
 119        min = hr_min & 0xff;
 120
 121        return (((day * 24 + hr) * 60) + min) * 60 + sec;
 122}
 123
 124/*
 125 * This function sets the RTC alarm value or the time value.
 126 */
 127static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
 128{
 129        u32 day, hr, min, sec, temp;
 130        struct platform_device *pdev = to_platform_device(dev);
 131        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 132        void __iomem *ioaddr = pdata->ioaddr;
 133
 134        day = time / 86400;
 135        time -= day * 86400;
 136
 137        /* time is within a day now */
 138        hr = time / 3600;
 139        time -= hr * 3600;
 140
 141        /* time is within an hour now */
 142        min = time / 60;
 143        sec = time - min * 60;
 144
 145        temp = (hr << 8) + min;
 146
 147        switch (time_alarm) {
 148        case MXC_RTC_TIME:
 149                writew(day, ioaddr + RTC_DAYR);
 150                writew(sec, ioaddr + RTC_SECOND);
 151                writew(temp, ioaddr + RTC_HOURMIN);
 152                break;
 153        case MXC_RTC_ALARM:
 154                writew(day, ioaddr + RTC_DAYALARM);
 155                writew(sec, ioaddr + RTC_ALRM_SEC);
 156                writew(temp, ioaddr + RTC_ALRM_HM);
 157                break;
 158        }
 159}
 160
 161/*
 162 * This function updates the RTC alarm registers and then clears all the
 163 * interrupt status bits.
 164 */
 165static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
 166{
 167        struct rtc_time alarm_tm, now_tm;
 168        unsigned long now, time;
 169        int ret;
 170        struct platform_device *pdev = to_platform_device(dev);
 171        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 172        void __iomem *ioaddr = pdata->ioaddr;
 173
 174        now = get_alarm_or_time(dev, MXC_RTC_TIME);
 175        rtc_time_to_tm(now, &now_tm);
 176        alarm_tm.tm_year = now_tm.tm_year;
 177        alarm_tm.tm_mon = now_tm.tm_mon;
 178        alarm_tm.tm_mday = now_tm.tm_mday;
 179        alarm_tm.tm_hour = alrm->tm_hour;
 180        alarm_tm.tm_min = alrm->tm_min;
 181        alarm_tm.tm_sec = alrm->tm_sec;
 182        rtc_tm_to_time(&now_tm, &now);
 183        rtc_tm_to_time(&alarm_tm, &time);
 184
 185        if (time < now) {
 186                time += 60 * 60 * 24;
 187                rtc_time_to_tm(time, &alarm_tm);
 188        }
 189
 190        ret = rtc_tm_to_time(&alarm_tm, &time);
 191
 192        /* clear all the interrupt status bits */
 193        writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
 194        set_alarm_or_time(dev, MXC_RTC_ALARM, time);
 195
 196        return ret;
 197}
 198
 199/* This function is the RTC interrupt service routine. */
 200static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
 201{
 202        struct platform_device *pdev = dev_id;
 203        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 204        void __iomem *ioaddr = pdata->ioaddr;
 205        u32 status;
 206        u32 events = 0;
 207
 208        spin_lock_irq(&pdata->rtc->irq_lock);
 209        status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
 210        /* clear interrupt sources */
 211        writew(status, ioaddr + RTC_RTCISR);
 212
 213        /* clear alarm interrupt if it has occurred */
 214        if (status & RTC_ALM_BIT)
 215                status &= ~RTC_ALM_BIT;
 216
 217        /* update irq data & counter */
 218        if (status & RTC_ALM_BIT)
 219                events |= (RTC_AF | RTC_IRQF);
 220
 221        if (status & RTC_1HZ_BIT)
 222                events |= (RTC_UF | RTC_IRQF);
 223
 224        if (status & PIT_ALL_ON)
 225                events |= (RTC_PF | RTC_IRQF);
 226
 227        if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
 228                rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
 229
 230        rtc_update_irq(pdata->rtc, 1, events);
 231        spin_unlock_irq(&pdata->rtc->irq_lock);
 232
 233        return IRQ_HANDLED;
 234}
 235
 236/*
 237 * Clear all interrupts and release the IRQ
 238 */
 239static void mxc_rtc_release(struct device *dev)
 240{
 241        struct platform_device *pdev = to_platform_device(dev);
 242        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 243        void __iomem *ioaddr = pdata->ioaddr;
 244
 245        spin_lock_irq(&pdata->rtc->irq_lock);
 246
 247        /* Disable all rtc interrupts */
 248        writew(0, ioaddr + RTC_RTCIENR);
 249
 250        /* Clear all interrupt status */
 251        writew(0xffffffff, ioaddr + RTC_RTCISR);
 252
 253        spin_unlock_irq(&pdata->rtc->irq_lock);
 254}
 255
 256static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
 257                                unsigned int enabled)
 258{
 259        struct platform_device *pdev = to_platform_device(dev);
 260        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 261        void __iomem *ioaddr = pdata->ioaddr;
 262        u32 reg;
 263
 264        spin_lock_irq(&pdata->rtc->irq_lock);
 265        reg = readw(ioaddr + RTC_RTCIENR);
 266
 267        if (enabled)
 268                reg |= bit;
 269        else
 270                reg &= ~bit;
 271
 272        writew(reg, ioaddr + RTC_RTCIENR);
 273        spin_unlock_irq(&pdata->rtc->irq_lock);
 274}
 275
 276static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 277{
 278        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
 279        return 0;
 280}
 281
 282static int mxc_rtc_update_irq_enable(struct device *dev, unsigned int enabled)
 283{
 284        mxc_rtc_irq_enable(dev, RTC_1HZ_BIT, enabled);
 285        return 0;
 286}
 287
 288/*
 289 * This function reads the current RTC time into tm in Gregorian date.
 290 */
 291static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
 292{
 293        u32 val;
 294
 295        /* Avoid roll-over from reading the different registers */
 296        do {
 297                val = get_alarm_or_time(dev, MXC_RTC_TIME);
 298        } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
 299
 300        rtc_time_to_tm(val, tm);
 301
 302        return 0;
 303}
 304
 305/*
 306 * This function sets the internal RTC time based on tm in Gregorian date.
 307 */
 308static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
 309{
 310        /* Avoid roll-over from reading the different registers */
 311        do {
 312                set_alarm_or_time(dev, MXC_RTC_TIME, time);
 313        } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
 314
 315        return 0;
 316}
 317
 318/*
 319 * This function reads the current alarm value into the passed in 'alrm'
 320 * argument. It updates the alrm's pending field value based on the whether
 321 * an alarm interrupt occurs or not.
 322 */
 323static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 324{
 325        struct platform_device *pdev = to_platform_device(dev);
 326        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 327        void __iomem *ioaddr = pdata->ioaddr;
 328
 329        rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
 330        alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
 331
 332        return 0;
 333}
 334
 335/*
 336 * This function sets the RTC alarm based on passed in alrm.
 337 */
 338static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 339{
 340        struct platform_device *pdev = to_platform_device(dev);
 341        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 342        int ret;
 343
 344        if (rtc_valid_tm(&alrm->time)) {
 345                if (alrm->time.tm_sec > 59 ||
 346                    alrm->time.tm_hour > 23 ||
 347                    alrm->time.tm_min > 59)
 348                        return -EINVAL;
 349
 350                ret = rtc_update_alarm(dev, &alrm->time);
 351        } else {
 352                ret = rtc_valid_tm(&alrm->time);
 353                if (ret)
 354                        return ret;
 355
 356                ret = rtc_update_alarm(dev, &alrm->time);
 357        }
 358
 359        if (ret)
 360                return ret;
 361
 362        memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
 363        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
 364
 365        return 0;
 366}
 367
 368/* RTC layer */
 369static struct rtc_class_ops mxc_rtc_ops = {
 370        .release                = mxc_rtc_release,
 371        .read_time              = mxc_rtc_read_time,
 372        .set_mmss               = mxc_rtc_set_mmss,
 373        .read_alarm             = mxc_rtc_read_alarm,
 374        .set_alarm              = mxc_rtc_set_alarm,
 375        .alarm_irq_enable       = mxc_rtc_alarm_irq_enable,
 376        .update_irq_enable      = mxc_rtc_update_irq_enable,
 377};
 378
 379static int __init mxc_rtc_probe(struct platform_device *pdev)
 380{
 381        struct clk *clk;
 382        struct resource *res;
 383        struct rtc_device *rtc;
 384        struct rtc_plat_data *pdata = NULL;
 385        u32 reg;
 386        int ret, rate;
 387
 388        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 389        if (!res)
 390                return -ENODEV;
 391
 392        pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
 393        if (!pdata)
 394                return -ENOMEM;
 395
 396        pdata->ioaddr = ioremap(res->start, resource_size(res));
 397
 398        clk = clk_get(&pdev->dev, "ckil");
 399        if (IS_ERR(clk))
 400                return PTR_ERR(clk);
 401
 402        rate = clk_get_rate(clk);
 403        clk_put(clk);
 404
 405        if (rate == 32768)
 406                reg = RTC_INPUT_CLK_32768HZ;
 407        else if (rate == 32000)
 408                reg = RTC_INPUT_CLK_32000HZ;
 409        else if (rate == 38400)
 410                reg = RTC_INPUT_CLK_38400HZ;
 411        else {
 412                dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n",
 413                        clk_get_rate(clk));
 414                ret = -EINVAL;
 415                goto exit_free_pdata;
 416        }
 417
 418        reg |= RTC_ENABLE_BIT;
 419        writew(reg, (pdata->ioaddr + RTC_RTCCTL));
 420        if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
 421                dev_err(&pdev->dev, "hardware module can't be enabled!\n");
 422                ret = -EIO;
 423                goto exit_free_pdata;
 424        }
 425
 426        pdata->clk = clk_get(&pdev->dev, "rtc");
 427        if (IS_ERR(pdata->clk)) {
 428                dev_err(&pdev->dev, "unable to get clock!\n");
 429                ret = PTR_ERR(pdata->clk);
 430                goto exit_free_pdata;
 431        }
 432
 433        clk_enable(pdata->clk);
 434
 435        rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
 436                                  THIS_MODULE);
 437        if (IS_ERR(rtc)) {
 438                ret = PTR_ERR(rtc);
 439                goto exit_put_clk;
 440        }
 441
 442        pdata->rtc = rtc;
 443        platform_set_drvdata(pdev, pdata);
 444
 445        /* Configure and enable the RTC */
 446        pdata->irq = platform_get_irq(pdev, 0);
 447
 448        if (pdata->irq >= 0 &&
 449            request_irq(pdata->irq, mxc_rtc_interrupt, IRQF_SHARED,
 450                        pdev->name, pdev) < 0) {
 451                dev_warn(&pdev->dev, "interrupt not available.\n");
 452                pdata->irq = -1;
 453        }
 454
 455        return 0;
 456
 457exit_put_clk:
 458        clk_put(pdata->clk);
 459
 460exit_free_pdata:
 461        kfree(pdata);
 462
 463        return ret;
 464}
 465
 466static int __exit mxc_rtc_remove(struct platform_device *pdev)
 467{
 468        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 469
 470        rtc_device_unregister(pdata->rtc);
 471
 472        if (pdata->irq >= 0)
 473                free_irq(pdata->irq, pdev);
 474
 475        clk_disable(pdata->clk);
 476        clk_put(pdata->clk);
 477        kfree(pdata);
 478        platform_set_drvdata(pdev, NULL);
 479
 480        return 0;
 481}
 482
 483static struct platform_driver mxc_rtc_driver = {
 484        .driver = {
 485                   .name        = "mxc_rtc",
 486                   .owner       = THIS_MODULE,
 487        },
 488        .remove         = __exit_p(mxc_rtc_remove),
 489};
 490
 491static int __init mxc_rtc_init(void)
 492{
 493        return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
 494}
 495
 496static void __exit mxc_rtc_exit(void)
 497{
 498        platform_driver_unregister(&mxc_rtc_driver);
 499}
 500
 501module_init(mxc_rtc_init);
 502module_exit(mxc_rtc_exit);
 503
 504MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
 505MODULE_DESCRIPTION("RTC driver for Freescale MXC");
 506MODULE_LICENSE("GPL");
 507
 508